BeagleBoard Docs
Release 1.0.20230711-wip

BeagleBoard.org Foundation
Jul 11, 2023

Table of contents

1 Introduction

1.1 Support
1.1.1 Gettingstarted e e e e e e
1.1.2 Gettingsupport e e e e
1.1.3 Understanding Your Beagle L e e e e e e
1.1.4 Working with Cape Add-on Boards @ v i i e e e e e
Beagle 101
1.2.1 QWIIC, STEMMA and Grove Add-ons inLinux
Contribution . . .
Code of Conduct e e e e e e e
Frequently Asked Questions e e e e e

1.2

1.3

1.3.1
1.3.2
1.3.3
1.34
135

What should

2 BeaglePlay

Introduction
2.1.1 Detailed overview o e e e e e e e e e e e e e e e
Quick Start Guide .
What's included inthe box? e
Attaching antennas L e e
Tethering to PC o o e e e e e e e e e
Access VSCode o e e e e e
Demos and Tutorials o e e e e e e e e e e e
Design and specifications L e e e e e e e
Block diagram e e e e e
System on Chip (S0C) o e e e e e e e e
Power management L e e e e e e e e
General Connectivity and Expansion e e e e
Buttonsand LEDS e e e e e e e e
Wired and wireless connectivity e e
Memory, Media and Data storageo e e
Multimedia I/0 L e e e e e e e e

2.1

2.2

2.3

2.4

2.5

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9

RTC & Debug

| know before I getstarted?

2.3.10 Mechanical Specifications e e e e e
Expansion.

24.1
2.4.2
2.4.3
24.4
2.4.5

Demos and tutorials

2.5.1
2.5.2
2.5.3
2.5.4
2.5.5

mikroBUS .
Grove . . .
Qwiic . . .
csl.
oLDI

Using Serial Console o e e e e e e

Connect WiFi
Using Grove

Using mikroBUS o e e e e e e e e e e

Using QWIIC

©O© 00 00 0O =

N R R KRR
HF A NNR R

33
33
34
38
38
39
40
40
40
42
42
43
43
44
47
48
48
51
51
54
55
55
55
55
55
55
55
55
56
66
66
69

2.5.6 Using OLDI Displays o v v e e e e e e e e e e e e e e e e e e e 69

2.5.7 Using CSICameras v v v v v e 69
2.5.8 Wireless MCU Zephyr Development e 69
2.6 SuUpport . .. e e e e e 75
2.6.1 Certifications and exportcontrol e 75
2.6.2 Additional documentationo o e 76
2.6.3 Change History e e e e e e e e 76
BeagleBone Al-64 79
3.1 Introduction. L e e e e e 79
3.2 Change History e e e e 79
3.2.1 Document Change History 0 e e e e e e e e 80
3.2.2 Board Changes e e e e e e e e e e e e e e e e e 80
3.3 Connecting up your BeagleBone Al-64 e e e e e e e e e 80
3.3.1 Methods of operation e e e e e 81
3.3.2 What'sIntheBox e e e e e e e e 81
3.3.3 Main Connection SCenarios v v v i e e e e e e e e e 81
3.3.4 Tethered TOAPC o 0 o o e e e e e e e 81
3.3.5 Standalone w/Display and Keyboard/Mouse 84
3.4 BeagleBone Al-64 OVEerview i it e e e e e e e e e e e e 88
3.4.1 BeagleBone Compatibility e 89
3.4.2 BeagleBone Al-64 Features and Specification L. 89
3.4.3 Board Component Locations e e e e e e e 90
3.4.4 Board cOmponents i e e e e e e e e e e e e e e e e e 90
3.5 BeagleBone Al-64 High Level Specification o o 91
3.5.1 ProCeSSOr v i v i i e e e e e e e e e e e 91
3.5.2 MEMOIY . . o v o o e e e e e e e e e e e e e e 95
3.5.3 Power Management o i i e e e e e e e e e e e e e e 96
3.5.4 PCUSB Interface o o 0 i v i e e e e e 96
3.5.5 Serial Debug Ports L e e e e e e e 96
3.5.6 USBL1 HostPort e e e e e e e e 97
3.5.7 POWEI SOUICES . . .« v v i et e e e e e e e e e e e e e e e 97
3.5.8 Reset Button o e e e e e e e 97
3.5.9 PowerButton e e e e e 97
3.5.10 Indicators e e e e e e e e 97
3.6 Connectors e e e e e e 97
3.6.1 Expansion Connectors e e e e e e e e 97
3.7 BeagleBone Al-64 Mechanical e 113
3.7.1 Dimensions and Weight e e e e e e e e e e 113
3.7.2 Silkscreen and Component Locations 0 e e 113
3.8 Pictures e 113
3.9 SupportInformation e e 113
3.9.1 Hardware Design o i i e e e e e e e e 113
3.9.2 Software Updates e e e e e e e e e e 118
3.9.3 RMA SUPPOIt . . v v o e 118
3.9.4 Troubleshooting video outputissues e 118
3.10 Update software on BeagleBone Al-64 e 119
3.10.1 Update U-Boot: e e e e e e e 119
3.10.2 Update Kernel and SGX modules: e 119
3.10.3 Update xfce: o e e e e e e e e e e e e e e e e e 119
3.10.4 Update ti-edge-ai 8.2 examples e e e 119
3.10.5 Cleanup: . . . v e e e e e e e e e e e e e e e e e e 119
3. 1L Edge Al . . o o e e e e e 119
3.11.1 Getting Started L e e e e e 119
3.11.2 Running Simple demos o e e e e e e e e e e e e e e 123
3.11.3 DL models for Edge Inference e e e e 125
3.11.4 Demo Configuration file e e e e e 126
3.11.5 Running Advance demos e e e e e e e e e e e e 132

3.11.6 Docker Environment L e e e e e e e e e e e e e e 134

3.11.7 Data FIOWS o e e e e e e 137
3.11.8 Performance Visualization Tool e 149
3.11.9 Generating Performance Logs e e e e e e 150
3.11.1QRunning the Visualization tool e 150
3.11.18DK Components v v e 151
3.11.1Datasheet o L e e 152
3.11.13[est Report e e e e e e 158

4 BeagleBone Al 163
4.1 Introduction L e e e e e e e e e e e 163
4.2 Change History o e e e e e e e e e e e e 164
421 ReVAD o e e 164
4.2.2 ReV AL e e e e e e 164
4.2.3 ReV AL . . . o o e e e e e e e 164
4.2.4 ReV A2 e e e e e 165

4.3 Connecting Up Your BeagleBone Al e e e 165
4.3.1 What'sInthe Box i e e e e e e e e e e e e 165
4.3.2 What'sNotintheBox. i o e e 166
4.3.3 FaNS e e e e e e e e e e 166
4.3.4 Main Connection SCenarios i L e e e e e e e e 166
4.3.5 Tetheredtoa PC e e e e e e e 166
4.3.6 Standalone w/Display and Keyboard/Mouse 171
4.3.7 Wireless Connection o i e e e e e 172
4.3.8 Connecting a 3 PIN Serial Debug Cable 172

4.4 BeagleBone Al OVErVIEW o o i e e e e e e e e e e 173
4.4.1 BeagleBone® Al Features i e 173
4.4.2 Board Component Locations o e e e e e e e e e 175

4.5 BeagleBone Al High Level Specification e 175
4.5.1 Block Diagram e e e e e e e e e e e e e e e 175
4.5.2 AMS572x Sitara™ ProCessor e e e e e e e e e e e 176
453 MEMOIY . . .« o o i e e e e e e e e e e 180
4.5.4 BootModes e e e e e e e e e e 180
4.5.5 Power Management L e e e e e e e e e e e e 181
4.5.6 Connectivity L e e e e e e e e e e e 181

4.6 Detailed Hardware Design e e e e e e e e e e e e e e 181
4.6.1 PowerSection e e 182
4.6.2 eMMC Flash Memory (16GB) o o i i e e e 184
4.6.3 Wireless Communication: 802.11 ac & Bluetooth: AzureWave AW-CM256SM 184
4.6.4 HDMI e e e 185
4.6.5 PRU-ICSS e e 185
4.6.6 PRU-ICSS Resources and FAQ'S o i i i i i e e e e e e 186
4.6.7 UserLEDs e e e e e e e e e e 197

4.7 Connectorso e e e e e e e e e e e e e 197
4.7.1 EXpansion CoNNectors v v i v i e e e e e e e e e e e e e e e e e 198
4.7.2 Serial Debug L e e e e e e e e e e e 213
4.7.3 USB3Type-C o e e e e e e e 214
4.7.4 USB2Type-A . . . o o e e e 214
4.7.5 Gigabit Ethernet e e e 214
4.7.6 Coaxial e e e e e e e e e e e e e 214
4.7.7 microSD Memory o e e e e e e e e e e e e e e e e e e 214
4.7.8 microHDMI L e e e 214

4.8 Cape Board Support L e e e e e e 214
4.8.1 BeagleBone® Black Cape Compatibility 214
4.8.2 EEPROM e e e 215
4.8.3 Pin Usage Consideration 0 i i e e e e e e e e e e 215
4.8.4 GPIO . . . o o e e e e e e e e 215
4.8.5 12C . . o o e e e e e e 215

4.8.6 UART or PRUUART o o o e e e s e e e e e e e 215

4.8.7 SPl . . o e e e e e e e 216
4.8.8 Analog L e e e e e e 216
4.8.9 PWM, TIMER, eCAP or PRUPWM/eCAP o i e e e e e e e 216
4.8.10 eQEP e e 216
4.8.11 CAN . . . e 216
4.8.12 McASP (audio serial like 12S and AC97) e e 216
4.8 13 MMC . . . o o e e e e e e e e 216
4.8.LIALCD . . . o i e e e e e e 216
4815 PRUGPIO o e e e 216
4.8.16 CLKOUT o o o e e e e e e e e e 216
4.8.17 Expansion Connector Headers i e e e e e e e e e e 216
4.8.18 Signal Usage e e e e e e 216
4.8.19 Cape Power L e e e e e e e e e e e e e e 217
4.8.20 Mechanical e e e e e e e e e e e e 217
4.9 Mechanical Information L e e e e e e e e e 217
4.10 PICEUrES . v o o o e e e e e e e e e e e 217
4.11 Support Information L L e e e e e e e e e e e e e 218
4.12 Terms and Conditions e e e e e e e e e e e e e 218
4.12.1 REGULATORY, COMPLIANCE, AND EXPORT INFORMATION 218
4.12.2 WARRANTY AND DISCLAIMERS o o e e s e e e e e e e e e e 219
4.12.3 Warnings and Restrictions L e e e e e 220
BeagleBone Black 223
5.1 Introduction. e e e 224
5.2 Change History e e e 224
5.2.1 Document Change History 0 e e e e e e e e e 224
5.2.2 Board Changes i e e e e e e e e e e e e e e 225
5.3 Connecting Up Your BeagleBone Black e 227
5.3.1 What'sIntheBox e e e e e e 227
5.3.2 Main Connection SCenarios v v i e e e e e e e e e 228
5.3.3 Tethered TO APC e e e e e e e 228
5.3.4 Standalone w/Display and Keyboard/Mouse 231
5.4 BeagleBone Black Overview o 0 e e e e e e e e e e e e e e e e 235
5.4.1 BeagleBone Compatibility e 236
5.4.2 BeagleBone Black Features and Specification 237
5.4.3 Board Component Locations e e e e 238
5.5 BeagleBone Black High Level Specification 0 o oo 239
5.5.1 Block Diagram L e e e e e e e e e e e e e e e e e e 240
5.5.2 ProCeSSOr . . . v v v i e 240
5.5.3 MemMOry i e e e e e e e e e e e e e e e e 240
5.5.4 Power Management e e e e e e e e e 242
5.5.5 PCUSBInterface o 0 0 i i e e e e e e e e e 243
5.5.6 Serial Debug Port e e e e e e e e e 243
5.5.7 USBL HoStPort e e e e e e e e e e e e 243
5.5.8 POWEIrSOUICES . . v v v v v v ettt e e e e e e e e e e e e e e e 243
5.5.9 Reset Button L e e e e e e 243
5.5.10 Power Button L L e e e e e e e 244
5.5.11 Indicators e e e e e e e e e e e e e e e e 244
55.12 CTIJTAG Header o o i e e e e e e e e e e e e 244
55,13 HDMl Interface o o o o e e e e e e 244
5.5.14 Cape Board Support e e e e e e e e e e e e 245
5.6 Detailed Hardware Design e e e e e e 245
5.6.1 Power Section L e e e e e e e e e e e 246
5.6.2 Sitara AM3358BZCZ100 ProCeSSOr . . v v v v v v v e e e e e e e e e e e e e e e 255
5.6.3 4GB eMMC MEeMOIY & v v i e 260
5.6.4 Board ID EEPROM e e e e e e e e 262
5.6.5 Micro Secure Digital e e e e e e e e 262

5.6.6 6.6 User LEDS e e e e e e e e e e e 263

5.6.7 Boot Configuration e e e e e e e e e e 263
5.6.8 Default Boot Options e e e e e e 264
5.6.9 10/100 Ethernet L e e e e e e e 264
5.6.10 LAN8710A Mode Pins v 0 i i e e e e e e e e e e e e e 268
5.6.11 HDMI Interface o 0 e e e e e e e e e e e e e 268
5.6.12 USB HOSt e e e e 271
5.6.13 PRU-ICSS o e e e e e e e e e 273
5.7 Connectors e e e e e e e e e e e e e e 275
5.7.1 Expansion CoNNectors o v v v i i e e e e e e e e e e e e e e e e 276
5.7.2 Power Jack e e e e e e e e e e e 281
5.7.3 USBClient. e e e e 281
5.7.4 USBHOSt e e e e e e e e 281
5.7.5 Serial Header e e e e e e 281
5.7.6 HDMI e e e e 284
5.7.7 microSD e e e e e e e e e e e e e e e 284
5.7.8 Ethernet e e e 287
5.7.9 JTAG Connector o i i e e e e e e e 287
5.8 Cape Board Support e e e e e 287
5.8.1 BeagleBone Black Cape Compatibility L. 288
5.8.2 EEPROM e e e e e e 290
5.8.3 Pin Usage Consideration e e e e e e e e 295
5.8.4 Expansion ConNNectors v i i i e e e e e e e e e e e e 296
5.8.5 8.5SignalUsage e e e e e e e e e 298
5.8.6 8.6 Cape Power e e e e e 299
5.8.7 8.7 Mechanical e e e e e e e e 300
5.9 BeagleBone Black Mechanical e e e e e e 301
5.9.1 Dimensions and Weight e e e e e e e 301
5.9.2 Silkscreen and Component Locations 301
5.10 Pictures o e e e e e e 301
5.11 Support Information L e e 301
5.11.1 Hardware Design v i e e e e e e e e e e e e e e e e e 301
5.11.2 Software Updates e e e e e e e e e e 307
5.11.3 RMA SUppOort . . . o o e e e e e e e e e e e 307
5.11.4 Trouble Shooting HDMI Issues o i i i i e e e e 307
BeagleBone Blue 311
6.1 BeagleBone Blue Pinouts e 312
6.1.1 UTL o o e e e e e e e e 313
6.1.2 GPS . . . e e e 313
6.2 SSH . . . L e 313
6.3 WIiFi Setup e e e e e e 314
6.4 IPsettings e e e e e e 314
6.5 Flashing Firmware e e e e e e e e e e e e e 315
6.5.1 OVEIVIEW ot e 315
6.5.2 Required Items L L e e e e e e e 315
6.5.3 Steps OVerview o i i e e e e e e e e e e e e 315
6.5.4 Windows PCs e e e e e e e e e 315
6.6 Play withthecode e 316
6.7 BeagleBone Bluetests L e e e e e e e e e 317
6.7.1 ADC e e e 317
6.7.2 GPO e e 317
6.7.3 GPL . . . e e e e e e 317
6.7.4 UTL e e e e e e 317
6.7.5 GPS e e e 317
6.7.6 12C e e e e 318
6.7.7 MOLOIS o o e e e 318
6.8 ACCESSOMES . . v v v vt e e e e e e e e e e e e 318

6.9

6.8.1 Chassisand kits L e e e e e e e e e e e 318

6.8.2 CASES e e e e e e 318
6.8.3 Cable assemblies and sub-assemblieso oL 318
6.8.4 UART, I12C, CAN, Quadrature encoders, PWR v v v v 319
6.8.5 SPI, GPIO, ADC e e e e e e e 319
6.8.6 MOTOrS e e e e e e e e e e e e e e e e e 319
6.8.7 DSM . . . e e e e e e 319
6.8.8 Powersupplies e e e e 320
6.8.9 MOtOrs e e e e e e e e e e e 320
6.8.10 Radioremotes e e e e e e e e e e e e 320
6.8.11 GPS e e e e e e e 320
6.8.12 Replacement antennas L L L e e e e e e e e e e 320
6.8.13 USB deVviCeS e e e e e e e e e e 321
6.8.14 SPI devices e e e e e e e e 321
6.8.15 12C devices e e e e e e e e e e e e e e 321
6.8.16 UART deVICES« v i i e e e e e e s e e e e e e e e e e e e e e 321
6.8.17 Bluetooth devices L e e e e e e e e 321
Frequently Asked Questions (FAQS) 0 i i e e e e e e e e e 321
6.9.1 Are there any books to help me getstarted? L. 321
6.9.2 What system firmware should | use for starting to explore my BeagleBone Blue? 321

6.9.3 What is the name of the access point SSID and password default on BeagleBone Blue? . 322
6.9.4 |'ve connected to BeagleBone Blue’s access point. How do | get logged into the board? . 322

6.9.5 How do | connect BeagleBone Blue to my own WiFi network? 322
6.9.6 Where can | find examples and APIs for programming BeagleBone Blue? 322
6.9.7 My BeagleBone Blue fails to run successfultests, 322

6.9.8 I'm running an image off of a microSD card. How do | write it to the on-board eMMC flash? 322
6.9.9 [I've written the latest image to a uSD card, but some features aren’t working. How do |

make it run properly? L e e e e e e e e e e e 323

6.9.10 I've got my on-board eMMC flash configured in a nice way. How do | copy that to other
BeagleBone Blue boards? e e e e e e 323
6.9.11 | have some low-latency I/O tasks. How do | get started programming the BeagleBone PRUs?323
6.9.12 Are there available mechanical models?o o 323
6.9.13 What is the operating temperature range? o0 323
6.9.14 What is the DC motor drive strength? 324
7 BeagleBone (all) 325
8 Capes 327
8.1 BeagleBone capeinterfacespec o e e e e e e 327
8.1.1 Background and OVErview it e e e e e e e 328
8.1.2 Digital GPIO e e e e e 329
8.1.3 I2C . v v e 332
8.1.4 SPl . . . o e e e e e e e 333
8.1.5 UART . . . e e e 334
8.1.6 CAN e e e 335
8.1.7 ADC . . . e e e e 335
8.1.8 PWM . . . o o e e e e e e 336
8.1.9 TIMER PWM e e e e e e e e 337
8.1.10 eQEP e e 338
8.1.11 eCAP . . . o e e e 339
8.1L.1I2 MMC/SDIO . . . o v v e e e e e e e e 340
B.LIBLED . . v o e e e e e e e e e 340
8.1.14 MCASP . . . o e e e e e e e e 340
8.LLIS5PRU o e e 341
8.LLI6GPIO e e e 344
8.1.17 Methodology e e e e e 344
8.1.18 References o e e e e e e e e e e e e e e e 345
8.2 BeagleBoard.org BeagleBone Relay Cape i e e e e e 345
8.2.1 Installation e e e e 346

Vi

8.2.2 USAge i e e e e e e e e e e e e
8.2.3 Codeto GetStarted e
8.2.4 C Source with File Descriptors o o e
8.2.5 C Source with LibGPIOd-dev and File Descriptors

9 PocketBeagle

9.1
9.2

9.3

9.4

9.5

9.6

9.7

9.8
9.9

INtroduction L e e e e e e e e e e e e e e e e
Change History o e e e e e e e e e e e
9.2.1 Document Change History i e e e e e e e
9.2.2 Board Changes e e e e e e e
Connecting Up PocketBeagle o e e e e e e e e
9.3.1 What'sInthe Package @ . @ . e e e e
9.3.2 Connectingtheboard e e e
9.3.3 Tethered to a PCusing DebianImages« i v i i i it i
9.3.4 Other ways to Connect up to your PocketBeagle
PocketBeagle Overview L e e e e e e e e
9.4.1 PocketBeagle Features and Specificationo o0
9.4.2 Board Component Locations e e e e e e e e
PocketBeagle High Level Specification. e
9.5.1 Block Diagram e e e e e e e
9.5.2 Systemin Package (SiP) e e e e
9.5.3 Connectivity e e e e e e e e
9.5.4 POWEL . . . i i e e e e e e e e e e e e e e e e
9.5.5 JTAGPads o e e e e
9.5.6 Serial Debug Port e e e e e
Detailed Hardware Design 0 e e e e e e e e e
9.6.1 OSD3358-SM SIPDesign i i i i e e e e e e e
9.6.2 MicroSD Connection L e e e e e e e e e e e e
9.6.3 USB ConNeCtor v 0 v i e
9.6.4 Power Button Design e e e e e e e e e e e e
9.6.5 UserLEDs o . e e e e e e
9.6.6 JTAGPads o e e e e
9.6.7 PRU-ICSS o e e e e
CoNNECEOrs e e e e e e e e e e e e e e
9.7.1 Expansion Header Connectors i v i v i e e e e e e e
9.7.2 Pl Header e
9.7.3 P2 Header e e e e e e e
9.7.4 mikroBUS socket connections L e e e e e
9.7.5 Setting up an additional USB Connection
PocketBeagle Cape Support e e e e e e e e e e
PocketBeagle Mechanical e e e e e e e
9.9.1 9.1 Dimensions and Weight e

9.10 Additional Pictures L e e e e e e e e e e
9.11 Support Information L e e e e e e e e e e e

9.11.1 Hardware Design o e e e e e e e e e e e e e e e e e e
9.11.2 Software Updates e e e e e e e e e e e e
9.11.3 Export Information e e e
9.11.4 RMA SUPPOrt o e e e e e e e e e e e e e e e e e e
9.11.5 Getting Help e e e e e e e e e

1l0BeagleConnect Freedom
10.1 Introduction o L L e e e e e e e e e

10.2.2 Attaching antenna o e e e e e e e e e e e e
10.2.3 Tethering to PC e e e e e e e e e e e e e
10.2.4 Wireless Connection o v i i e e e e e e e e e e e e e

351
352
352
353
353
354
354
354
354
366
366
366
367
368
368
368
368
371
372
372
373
373
374
374
374
380
380
380
384
384
384
388
391
391
392
392
392
392
392
394
394
394
394
394

395
396
396
396
398
398
399
399
399

vii

10.2.5 Access Micropython L e e e e e e e e e e e 399

10.2.6 Demos and Tutorials e 399

10.3 DeSIgN . . o o e e e e e e e e e e e e e e e e 400
10.3.1 Detailed overview e e e e e 400
10.3.2 Detailed hardware design e e e e e e e e e e e 400
10.3.3 Mechanical o 0 e e e e e e e 406

10.4 CoNNECLOrS . . v v v v o e e e e e e e e e e e e e e e e 406
10.5 Demos & tutorials L e e e e e e e e e e 406
10.5.1 Using Micropython o e e e e e 406
10.5.2 Using Zephyr . . . o o i e e e e e e e e e e e 409
10.5.3 Using BeagleConnect Greybus o i e e e 410

10.6 SUPPOIE . & o o e e e e e e e e e e 414
10.6.1 Certifications and export control e 414
10.6.2 Additional documentation L L L e 414
10.6.3 Change History o e e e e e e e e e 414
10.6.4 Document Changes v i v v e 414
11BeagleBoard (all) 417
12 Projects 419
12.1 simpPRU . . o e e e e e e e e e e 419
12.1.1 simpPRU BaSICS o o o e 419
12.1.2 Build from source e e e e e e 420
12.1.310Install . . . L e e e e e 420
12.1.4 Language SyntaX v v v e 421
121510 FUNCLIONS v o o o e e e e e e e e e e e e e e 430
12.1.6 Usage(Simppru) . . o v v o v e 435
12.1.7 Usage(simppru-console) o 0 0 i e e e e e e 435
12.1.8 simpPRU Examples o o e e e e e 439

12.2 BB-Config o o o e e e e e e e e 453
12.2.1 BB-Config Detail e e e e e e e e e e e e 453
12.2.2 Build from Source v o o o o e e e e e e e e e e e e e 455
12.2.3 Features e e e e e e e e 455
12.2.4Version e e e e e e e e e e e e e 465

12.3 BeagleConnect o o o i e e e e e e e e 466
12.3.1 BeagleConnect Technology 0 0 v i e e e e s e e e e e 467
12.3.2 BeagleConnect™ Greybus demo using BeagleConnect™ Freedom 470
12.3.3 BeagleConnect™ Story o e e e e e 484
12.3.4 BeagleConnect Experience e e e 485
12.3.5 BeagleConnectboards e 486
13Books 487
13.1 BeagleBone Cookbook L e e e e e 487
13.1.1BaSICS . . o v o e e e e e e e e e e e e e e e 487
13.1.2 SENSOIS . . v v o e e e e e e e e e e e e e e 497
13.1.3 Displays and Other Outputs e e 524

13. 1.4 MOLOIS . . . o ot e e e e e e e e e e e e e e 537
13.1.5Beyond the BasiCsS i v v i e e e e e e e e e e e e e 551
13.1.6Internet of Things 0 e e e e e e e e e e 578
13.1.7 The Kernel o o o e e e e e e e e e 615
13.1.8 Real-Time I/O o e e e e e e 626
13.1.9Capes o e e e e e e e e e e e 639
13.1.1Parts and Suppliers o e e e e e e e e e e e e e 669
13.1.1IMISC . v v v v e e e e e e e e e e e e e e e 672

13.2 PRU CookboOok . . . v v v o o e e e e e e e 680
13.2.1 Case Studies - Introduction e e 681
13.2.2 Getting Started L e e e 705
13.2.3 Running a Program; Configuring Pins e 715
13.2.4 Debugging and Benchmarking L e e e e e 724

viii

13.2.5 Building Blocks - Applications e e 741

13.2.6 Accessing More I/O o i e e e e e e e e e e e e e 810
13.2.7 More Performance o e e e e e e e e 816
13.2.8 Moving to the BeagleBone Al L e e 827
13.2.9 PRUProjects o o e e e e e e e e e e e e e e e 833

14 Accessories 839
14.1 Power supplies o o e e e e e e e e e e e 841
14.2 Displays o o e e e e e e e e e 842
14.2.1 Monitors and Resolutions e e 842

14.3 Peripherals o e e e e e e e e e 843
14.3.1 Keyboard & Mouse Combo e e e e e e e 843
14.3.2 Keyboards e e e e e e e e e e e e e e 843
14.3.3MICe . . o o o o e e e 844
14.3.4USB HUBS it e e e e e e e e 844

14.4 Cables e e e e e 844
14.4.1USB Cables e e e 844
14.4.2 Serial Debug Cables e e e e e 845
14.4.3 JTAG debug Cables e e e e e e e 846
14.4.4 HDMI Cables o e e e e e e 846
14.45 miniDP to HDMI 0 e e e e e e 847

14.5 Cameras o i i e e e e e e e e e e e e 847
1451 USB Cameras . . . v v v v v e 847
1452 CSICameras . . . v v v v v e e e e e e e e e e e 847
15Terms & Conditions 849
15.1 DEeSigN . . o o e e e e e e e e e 849
15.2 Additional terms L e e e e e e e 849
15.3 United States FCC and Canada IC regulatory compliance information 850
15.4 Board warnings, restrictions and disclaimers 0 o s 850

Chapter 1

Introduction

Welcome to the BeagleBoard documentation project. If you are looking for help with your Beagle open-hardware
development platform, you’ve found the right place!

Important: This documentation is a work in progress. For the latest versions of this documentation, be sure
to check the official release sites:

* https://docs.beagle.cc (cached with local proxies)
* https://docs.beagleboard.org (non-cached, without proxies)
For bleeding edge (development-stage) documentation:

* https://docs.beagleboard.io (straight from docs repo)

Please check out our Support page to find out how to get started, resolve issues, and engage with the developer
community. Don’t forget that this is an open-source project! Your contributions are welcome. Learn about how
to contribute to the BeagleBoard documentation project and any of the many open-source Beagle projects
ongoing on our Contribution page.

Warning: Make sure you thoroughly read and agree with our Terms & Conditions which covers warnings,
restrictions, disclaimers, and warranty for all of our boards. Use of either the boards or the design materials
constitutes agreement to the T&C including any modifications done to the hardware or software solutions
provided by beagleboard.org foundation.

1.1 Support

1.1.1 Getting started

The starting experience for all Beagles has been made to be as consistent as is possible. For any of the Beagle
Linux-based open hardware computers, visit Getting Started Guide.

Getting Started Guide

Beagles are tiny computers ideal for learning and prototyping with electronics. Read the step-by-step getting
started tutorial below to begin developing with your Beagle in minutes.

https://docs.beagle.cc
https://docs.beagleboard.org
https://docs.beagleboard.io
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Update board with latest software This step may or may not be necessary, depending on how old a

software image you already have, but executing this step, the longest step, will
smooth as possible.

ensure the rest will go as

Download the latest software image Download the latest software image from beagleboard.org distros
page. The “loT” images provide more free disk space if you don’t need to use a graphical user interface (GUI).

Note: Due to sizing necessities, this download may take 30 minutes or more.

The Debian/Ubuntu distribution is provided for the boards. The file you download will have an .img.xz extension.

This is a compressed sector-by-sector image of the SD card.

7 beagleboardorg < e e conng s s s Qe

Latest Firmware Images

Fiter Software Distributions| Fiter Opt . = Latest Version

[& e | 0020 EREERE] [2 - [0200 ERZERH (S R 20200406

Install SD card programming utility Download and install balenaEtcher.

balenatiches - Home x o+
€ 5 C @ hups/jwww.balenaiofetcher! * o Q

A prjectby (3 balena | Mors products

."bqleantcher Foums Malinglist Changalog Etchor Pro

Flash. Flawless.

Flash OS images to SD cards & USB drives, safely and easily.

’

Windows (xB6[x64) (intaller]

‘Windows (xB6[x64) (Portable)

64 (64-bt) (Appimage)

86 (32-t) (Appmage)

: N S dri avoid

A better way to burn.

& balenaEicher-...dmg A

Chapter 1. Introduction

https://www.beagleboard.org/distros
https://www.balena.io/etcher/

BeagleBoard Docs, Release 1.0.20230711-wip

." balenaEicher

An open source project by L' balena

balenaEtcher Applications

Connect SD card to your computer Use your computer’s SD slot or a USB adapter to connect the SD card
to your computer.

Write the image to your SD card Use Etcher to write the image to your SD card. Etcher will transparently
decompress the image on-the-fly before writing it to the SD card.

bone-debi...7-4gb.img Generic S...ICE Media Flash!

&P balenakicher &g balena

Eject the SD card Eject the newly programmed SD card.

Boot your board off of the SD card Insert SD card into your (powered-down) board, hold down the
USER/BOOT button and apply power, either by the USB cable or 5V adapter.

If using an original BeagleBone or PocketBeagle, you are done.

Note: If using BeagleBone Black, BeagleBone Blue, BeagleBone Al, BeagleBone Al-64, BeaglePlay or other
board with on-board eMMC flash and you desire to write the image to your on-board eMMC, you'll need to

1.1. Support 3

BeagleBoard Docs, Release 1.0.20230711-wip

follow the instructions at http://elinux.org/Beagleboard:BeagleBoneBlack Debian#Flashing eMMC. When the
flashing is complete, all 4 USRx LEDs will be steady off and possibly power down the board upon completion.
This can take up to 45 minutes. Power-down your board, remove the SD card and apply power again to finish.

Start your Beagle If any step fails, it is recommended to update to the latest software image using the
instructions above.

Power and boot Most Beagles can be powered via a USB cable, providing a convenient way to provide both
power to your Beagle and connectivity to your computer. Be sure the cable is of good quality and your source
can provide enough power.

Alternatively, your Beagle may have a barrel jack which can take power from a wall adapter. Checkout Power
supplies to get the correct adapter for your Beagle.

Danger: Make sure to use only a 5V center positive adapter for all Beagles except BeagleBone Blue and
BeagleBoard-X15 (12V).

If you are using your Beagle with an SD (microSD) card, make sure it is inserted ahead of providing power. Most
Beagles include programmed on-board flash and therefore do not require an SD card to be inserted.

You'll see the power (PWR or ON) LED lit steadily. Within a minute or so, you should see the other LEDs blinking
in their default configurations. Consult your boards documentation to locate these LEDs.

¢ USRO is typically configured at boot to blink in a heartbeat pattern.

* USRL1 is typically configured at boot to light during SD (microSD) card accesses.
e USR2 is typically configured at boot to light during CPU activity.

¢ USR3 is typically configured at boot to light during eMMC accesses.

* USR4/WIFI is typically configured at boot to light with WiFi (client) network association (Only on boards
with built-in WiFi or M.2).

Enable a network connection If connected via USB, a network adapter should show up on your computer.
Your Beagle should be running a DHCP server that will provide your computer with an IP address of either
192.168.7.1 or 192.168.6.1, depending on the type of USB network adapter supported by your computer’s
operating system. Your Beagle will reserve 192.168.7.2 or 192.168.6.2 for itself.

If your Beagle includes WiFi, an access point called “BeagleBone-XXXX" where “XXXX" varies between boards.
The access point password defaults to “BeagleBone”. Your Beagle should be running a DHCP server that will
provide your computer with an IP address in the 192.168.8.x range and reserve 192.168.8.1 for itself.

If your Beagle is connected to your local area network (LAN) via either Ethernet or WiFi, it will utilize mDNS
to broadcast itself to your computer. If your computer supports mDNS, you should see your Beagle as bea-
glebone.local. Non-BeagleBone boards will utilize alternate names. Multiple BeagleBone boards on the same
network will add a suffix such as beaglebone-2.local.

Browse to your Beagle A web server with an Visual Studio Code (IDE) should be running on your Beagle.
Point your browser to http://192.168.7.2:3000 to begin development.

4 Chapter 1. Introduction

http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC
https://www.beagleboard.org/distros
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/Multicast_DNS

BeagleBoard Docs, Release 1.0.20230711-wip

@ EXPLORER . C blinkLED.c X >OD -
 BEAGLEBOARD (WORKSPACE) [3 B2 U @ examples > BeagleBone > Black > € blinkLED.c
v examples 2 10 #include <stdio.h> =
“ BeagleBone/Black 11 #include <unistd.h> >
> gpiod 12
analogln.py 13 dint main() {
analoginCallbackjs 14 FILE * trigger = fopen("/sys/class/leds/beaglebone:green:usr3/trigger”, "w");
. 15 FILE * brightness = fopen("/sys/class/leds/beaglebone:green:usr3/brightness”, "w");
2 analogInContinuous.py
16 int on = 0;
analogInOutjs 7
analogInSyncjs 18 fprintf(trigger, "none\n");
blinkLED.bs js 19
BT 0 vhile()
blinkLED js 21 fprintf(brightness, "%d\n", on);
& biinkLED.py 22 fflush(brightness);
$ blinkLED.sh 2 if(tom)
? 24 on =1
fadeLEDjs 25 else
@ fadeLED.py 26 on = 0;
inputjs 27 usleep(500000);
input2.js 28 ¥
® README.md 2
@ seqLEDs.py PROBLEMS OUTP DEBUG CONSOLE TERMINAL Bbash ++ @ @ ~ x
swipelEDjs .
J— © debian@BeagleBone: ~/examples$ neofetch
e _ met$$$ssgg. debian@BeagleBone
BeagleBoard.code-workspace | gSSSESFIISISESP.
LICENSE LgSP" R £ 1 PN 0S: Debian GNU/Linux 11 (bullseye) aarch64
® README.md ,::P' \Ss:ib Hcst:lDa AM625 Laughing Coyote Board
', $$P ,88s. “$$b: Kernel: 5.10.145+
settingsjson “dss $P"T . $$§ Uptime: 16 mins
$$P ds* , $$P Packages: 1366 (dpkg)
$$: $$. - ,d$$' Shell: bash 5.1.4
$$; Y$b._ _,dsp’ Resolution: 1920x1080
Y$$. CLUUYSSssPr Terminal: vscode
“$$b —— CPU: (4) @ 1.400GHz
TY$$ Memory: 610MiB / 1923MiB
v$$.
debian@BeagleBone:~/examples$ []
> oUTLINE

> TIMELINE
fPmain O ®o0A0 Ln1,Col1 TabSize:4 UTF8 LF C Layoutus Q

Note: Use either Firefox or Chrome (Internet Explorer will NOT work), browse to the web server running on
your board. It will load a presentation showing you the capabilities of the board. Use the arrow keys on your
keyboard to navigate the presentation.

The below table summarizes the typical addresses.

Link Connection type Operating System(s)
http://192.168.7.2 USB Windows
http://192.168.6.2 usB Mac OS X, Linux
http://192.168.8.1 WiFi all
http://beaglebone.local all mDNS enabled
http://beaglebone-2.local all mDNS enabled

Troubleshooting Do not use Internet Explorer.

Virtual machines are not recommended when using the direct USB connection. It is recommended you use
only network connections to your board if you are using a virtual machine.

When using ‘ssh’ with the provided image, the username is ‘debian’ and the password is ‘temppwd’.

With the latest images, it should no longer be necessary to install drivers for your operating system to give you
network-over-USB access to your Beagle. In case you are running an older image, an older operating system
or need additional drivers for serial access to older boards, links to the old drivers are below.

Operating system USB Driver Comments

Windows (64-bit) 64-bit installer If in doubt, try the 64-bit installer first.

Windows (32-bit) 32-bit installer

Mac OS X Network Serial Install both sets of drivers.

Linux mkudevrules.sh Driver installation isn’t required, but you might find a few udev rules helpful.

Note: For Windows (64-bit):
1. Windows Driver Certification warning may pop up two or three times. Click “Ignore”, “Install” or “Run”.

2. To check if you're running 32 or 64-bit Windows see this.

1.1. Support 5

https://www.mozilla.org/firefox
https://www.google.com/chrome
http://192.168.7.2
http://192.168.6.2
http://192.168.8.1
http://beaglebone.local
http://beaglebone-2.local
https://beagleboard.org/static/Drivers/Windows/BONE_D64.exe
https://beagleboard.org/static/Drivers/Windows/BONE_DRV.exe
https://beagleboard.org/static/Drivers/MacOSX/FTDI/EnergiaFTDIDrivers2.2.18.pkg
https://beagleboard.org/static/Drivers/Linux/FTDI/mkudevrule.sh
https://support.microsoft.com/en-us/topic/determine-whether-your-computer-is-running-a-32-bit-version-or-64-bit-version-of-the-windows-operating-system-1b03ca69-ac5e-4b04-827b-c0c47145944b

BeagleBoard Docs, Release 1.0.20230711-wip

3. On systems without the latest service release, you may get an error (0xc000007b). In that
case, please perform the following and retry: https://answers.microsoft.com/en-us/windows/forum/all/
windows-10-error-code-0xc000007b/02b74e7d-cel9-4ba4-90f0-e16e8d911866

4. You may need to reboot Windows.
5. These drivers have been tested to work up to Windows 10

Additional FTDI USB to serial/JTAG information and drivers are available from https://www.ftdichip.com/Drivers/
VCP.htm

Additional USB to virtual Ethernet information and drivers are available from http://www.linux-usb.org/gadget/
and https://joshuawise.com/horndis

Visit https://docs.beagleboard.org/latest/intro/support/index.html for additional debugging tips.

Hardware documentation Be sure to check check the latest hardware documentation for your board
at https://docs.beagleboard.org. Detailed design materials for various boards can be found at https://git.
beagleboard.org/explore/projects/topics/boards.

Books For a complete list of books on BeagleBone, see beagleboard.org/books.

Bad to the Bone

Perfect for high-school seniors or freshman univerisity level text, consider using “Bad to the Bone”
BeagleBone Cookbook

A lighter treatment suitable for a bit broader audience without the backgrounders on programming and elec-
tronics, consider “BeagleBone Cookbook”

Exploring BeagleBone and Embedded Linux Primer

To take things to the next level of detail, consider “Exploring BeagleBone"” which can be considered the missing
software manual and utilize “Embedded Linux Primer” as a companion textbook to provide a strong base on
embedded Linux suitable for working with any hardware that will run Linux.

1.1.2 Getting support

BeagleBoard.org products and open hardware designs are supported via the on-line community resources. We
are very confident in our community’s ability to provide useful answers in a timely manner. If you don’t get
a productive response within 24 hours, please escalate issues to Jason Kridner (contact info available on the
About Page). In case it is needed, Jason will help escalate issues to suppliers, manufacturers or others. Be sure
to provide a link to your questions on the community forums as answers will be provided there.

Be sure to ask smart questions that provide the following:
* What are you trying to accomplish?
¢ What did you find when researching how to accomplish it?
¢ What are the detailed results of what you tried?
* How did these results differ from what you expected?

¢ What would you consider to be a success?

Important: Remember that community developers are volunteering their expertise. Respect developers
time and expertise and they might be happy to share with you. If you want paid support, there are Consulting
and other resources options for that.

6 Chapter 1. Introduction

https://answers.microsoft.com/en-us/windows/forum/all/windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866
https://answers.microsoft.com/en-us/windows/forum/all/windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866
https://www.ftdichip.com/Drivers/VCP.htm
https://www.ftdichip.com/Drivers/VCP.htm
http://www.linux-usb.org/gadget/
https://joshuawise.com/horndis
https://docs.beagleboard.org/latest/intro/support/index.html
https://docs.beagleboard.org
https://git.beagleboard.org/explore/projects/topics/boards
https://git.beagleboard.org/explore/projects/topics/boards
https://beagleboard.org/books
https://bbb.io/bad-to-the-bone
https://bbb.io/cookbook
https://bbb.io/ebb
https://bbb.io/elp
https://www.oshwa.org/definition/
https://beagleboard.org/about
https://forum.beagleboard.org
http://www.catb.org/~esr/faqs/smart-questions.html

BeagleBoard Docs, Release 1.0.20230711-wip

Diagnostic tools

Best to be prepared with good diagnostic information to aide with support.
e Output of beagle-version script needed for support requests

* Beagle Tester source

Blbash +~ M @ v X

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL

® debian@BeagleBone:~/examples$ sudo beagle-version
[sudo] password for debian:
model: [Da_AM625_Laughing_Coyote_Board]
dogtag: [BeagleBoard.org Debian Bullseye Xfce Image 2022-10-20]
bootloader: [/dev/mmcblkOboot0]: [tiboot3.bin]:[U-Boot SPL 2021.01-gf87208ea5764 (Oct 27 2022 - 12:41:19 -0500)]
U bootloader: [/dev/mmcb1k0]: [/boot/firmware/tiboot3.bin]:[U-Boot SPL 2021.01-gf87208ea5764 (Oct 27 2022 - 12:41:19 -0500)]
bootloader: [/dev/mmcblk0]: [/boot/firmware/tispl.bin]:[U-Boot SPL 2021.01-gf87208ea5764 (Oct 27 2022 - 12:41:48 -0500)]
bootloader: [/dev/mmcb1k0]: [/boot/firmware/u-boot.img]: [U-Boot 2021.01-gf87208ea5764 (Oct 27 2022 - 12:41:48 -0500)]
kernel:[5.10.145+]
nodejs:[v12.22.12]
pkg check: to individually upgrade run: [sudo apt install --only-upgrade <pkg>]
pkg: [bb-customizations]:[1.20220802.0-0~bullseye+20220802]
pkg: [bb-usb-gadgets]:[1.20220816.0-0~bullseye+20220816]
cmdline: [quiet quiet quiet console=ttyS2,115200n8 earlycon=ns16550a,mmio32,0x02800000 root=/dev/mmcblkOp2 ro rootfstype=ext4 rootwait net.ifnames=0 q
uiet]
dmesg | grep remote
[9.514238] remoteproc

remoteproc0: releasing 78000000.r5f

[10.483479] remoteproc remoteprocO: 30074000.pru is available
[10.500448] remoteproc remoteproci: 30078000.pru is available
dmesg | grep pru

[10.483479] remoteproc remoteprocO: 30074000.pru is available
[10.500448] remoteproc remoteproci: 30078000.pru is available

dmesg | grep pinctrl-single

[1.682992] pinctrl-single 4084000.pinctrl: 34 pins, size 136
[1.683680] pinctrl-single f4000.pinctrl: 171 pins, size 684
dmesg | grep gpio-of-helper

lsusb

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
END
® debian@BeagleBone:~/examples$ sudo beagle-version > beagle-version.txt :
© debian@BeagleBone:~/examples$ 1s
BeagleBoard.code-workspace BeagleBone LICENSE README.md beagle-version.txt
debian@BeagleBone:~/exampless$ [l

settings.json

Q

Ln1,Col1 TabSize:4 UTF8 LF C Layout:us

EXPLORER beagle-version.txt X

v BEAGLEBOARD (WORKSPACE) examples > beagle-version.txt

v examples b 1 model:[Da_AM625_Laughing_Coyote_Board]

v BeagleBone/Black

leBoard.org Debian Bullseye Xfce Image 2022-10-20]

> Rl Run Code Cr+AIN - rdev/mmcb1k0boot0]: [tiboot3.bin]: [U-Boot SPL 2021.01-gf87208ea5764 (Oct 27 2022 -
O enelsET Open to the Side ctrl+enter 'dev/mmcblk0]:[/boot/firmware/tiboot3.bin]:[U-Boot SPL 2021.01-gf87208ea5764 (Oct
ST A, "dev/mmcb1k0]: [/boot/firmware/tispl.bin]:[U-Boot SPL 2021.01-gf87208ea5764 (Oct :
analoginCallbackj ©P ‘dev/mmcb1k0]: [/boot/firmware/u-boot.img]: [U-Boot 2021.01-gf87208ea5764 (Oct 27
@ analogInContinuol Open in Integrated Terminal ,145+]
s analogInOut.js 12.12]
analogInsync.js Select for Compare » individually upgrade run: [sudo apt install --only-upgrade <pkg>]
S blinkLED.bs.js o Timel ymizations]:[1.20220802.0-0~bullseye+20220802]
et pen Timeline 3 . _0-!
E MG jadgets]:[1.20220816.0-0~bullseye+20220816]
blinkLED.js Cut Ctrl+X |EBUG CONSOLE TERMINAL Blbash +~ [@ ~ X
@ blinkLED.
« binkLED pz Copy e 1 11.20220816.0-0-bul lseye+20220816] '
"S quiet console=ttyS2,115200n8 earlycon=ns16550a,mmio32,0x02800000 root=/dev/mmcblkOp2 ro ro
fadeLED.js ownioad... hit net.ifnames=0 quiet]
% fadelED.py
S inputys Copy Path Ctr+AIC teproc remoteproc0: releasing 78000000.r5f
input2.js Copy Relative Path Ctri+Shift+Alt+C ~ teproc remoteproc0: 30074000.pru is available
putZj teproc remoteproc1: 30078000.pru is available
® README.md Rename... F2
@ seqLEDs.py teproc remoteproc0: 30074000.pru is available
SWIDeLED Delete Permanently Delete teproc remoteproci: 30078000.pru is available
PR L-single
[gitmae Git: View File History AltsH - trl-single 4084000.pinctrl: 34 pins, size 136

beagle-version.txt - tevoovouy panctrl-single f4000.pinctrl: 171 pins, size 684

dmesg | grep gpio-of-helper

1susb
Bus 002 Device 001:
Bus 001 Device 001:
END

® debian@BeagleBone:~/examples$ sudo beagle-version > beagle-version.txt

® debian@BeagleBone:~/examples$ 1s I
BeagleBoard.code-workspace BeagleBone LICENSE README.md beagle-version.txt settings.json
debian@BeagleBone:~/examples$

} BeagleBoard.code-workspace
LICENSE
@® README.md
} settings.json

ID 1d6b:0003 Linux Foundation 3.0 root hub
ID 1d6b:0002 Linux Foundation 2.0 root hub

> OUTLINE
> TIMELINE

< ®oAo Ln1,Col1 Spaces:4 UTF-8 LF PlainText Layoutus 0

§° main*

Tip: For debugging purposes you can either share the beagle-version.txt file you just down-
loaded using the steps shown in pictures above Or you can just paste the terminal output of sudo
beagle—-version to https://pastebin.com/ and send us the link.

1.1. Support

https://git.beagleboard.org/jkridner/beagle-tester
https://pastebin.com/

BeagleBoard Docs, Release 1.0.20230711-wip

Community resources

Please execute the board diagnostics, review the hardware documentation, and consult the mailing list and
IRC channel for support. BeagleBoard.org is a “community” project with free support only given to those who
are willing to discussing their issues openly for the benefit of the entire community.

* Frequently Asked Questions
¢ Mailing List
e Live Chat

Consulting and other resources

Need timely response or contract resources because you are building a product?

* Resources

Repairs

Repairs and replacements only provided on unmodified boards purchased via an authorized distributor within
the first 90 days. All repaired board will have their flash reset to factory contents. For repairs and replacements,
please contact support at BeagleBoard.org using the RMA form:

* RMA request

1.1.3 Understanding Your Beagle

* Beagle 101
e Hardware
* Software

* Books

PRU Cookbook

BeagleBone Cookbook

Exploring BeagleBone

Bad to the Bone

1.1.4 Working with Cape Add-on Boards

* Capes
e BeagleBone cape interface spec

e Accessories

1.2 Beagle 101

Note: This page is under construction. Most of the information here is drastically out of date.

This is a collection of articles to aide in quickly understanding how to make use of Beagles running Linux. Most
of the useful information has moved to BeagleBone Cookbook, but some articles are being built here from a
different perspective.

8 Chapter 1. Introduction

https://forum.beagleboard.org/c/faq
https://forum.beagleboard.org
https://beagleboard.org/chat
https://beagleboard.org/resources
https://www.beagleboard.org/rma
https://beagleboard.org/Support/Hardware+Support
https://beagleboard.org/Support/Software+Support
https://beagleboard.org/ebb
https://beagleboard.org/bad-to-the-bone

BeagleBoard Docs, Release 1.0.20230711-wip

Articles under construction or to be imported and updated:
e QWIIC, STEMMA and Grove Add-ons in Linux

e https://beagleboard.github.io/bonel01/Support/bonel01/

1.2.1 QWIIC, STEMMA and Grove Add-ons in Linux

Note: This article is under construction.

I'm creating a place for me to start taking notes on how to load drivers for I12C devices (mostly), but also other
Grove add-ons.

For simplicity sake, I'll use these definitions
¢ add-on: the QWIIC, STEMMA (QT) or Grove add-on separate from your Linux computer
* device: the “smart” IC on the add-on to which we will interface from your Linux computer
e board: the Linux single board computer with the embedded interface controller you are using

* module: a kernel module that might contain the driver

Using 12C with Linux drivers

Linux has a ton of drivers for I12C devices. We just need a few parameters to load them.

Using a Linux I12C kernel driver module can be super simple, like in the below example for monitoring a digital
light sensor.

cd /dev/bone/i2c/2
echo tsl2561 0x29 > new_device
watch —n0 cat ”2-0029/iio:device0/in_illuminanceO_input”

Once you issue this, your screen continuously refresh with luminance values from the add-on sensor.

In the above example, /dev/bone/i2c/2 comes from which 12C controller we are using on the board and there
are specific pins on the board where you can access it. On BeagleBone boards, there is often a symbolic link to
the controller based upon the cape expansion header pins being used. See /2C for the cape expansion header
pin assignments.

ts/2561 is the name of the driver we want to load and 0x29 is the address of the device on the I12C bus. If you
want to know about 12C device addresses, the Sparkfun [2C tutorial isn't a bad place to start. The new_device
virtual file is documented in the Linux kernel documentation on instantiating 12C devices.

On the last line, watch is a program that will repeatedly run the command that follows. The -n0 sets the refresh
rate. The program cat will share the contents of the file 2-0029/iio:device0/in_illuminance0_input.

2-0029/iio:device0/in_illuminance0_input is not a file on a disk, but output directly from the driver. The leading
2 in 2-0029 represents the 12C controller index. The 0029 represents the device 12C address. Most small sensor
and actuator drivers will show up as Industrial I/O (110) devices. New IIO devices get incrementing indexes. In
this case, iio:device0 is the first 110 device driver loaded. Finally, in_illuminanceO_input comes from the SYSFS
application binary interface for this type of device, a light sensor. The Linux kernel ABI documentation for
sysfs-bus-iio provides the definition of available data often provided by light sensor drivers.

What : /sys/.../iio:deviceX/in_illuminance_input
What : /sys/.../ilio:deviceX/in_illuminance_raw

What : /sys/.../iio:deviceX/in_illuminanceY_input
What : /sys/.../iio:deviceX/in_illuminanceY_raw

What : /sys/.../iio:deviceX/in_illuminanceY_mean_raw
What : /sys/.../iio:deviceX/in_illuminance_ir_raw

(continues on next page)

1.2. Beagle 101 9

https://beagleboard.github.io/bone101/Support/bone101/
https://learn.sparkfun.com/tutorials/i2c
https://www.kernel.org/doc/html/v5.19/i2c/instantiating-devices.html
https://manpages.debian.org/bullseye/procps/watch.1.en.html
https://manpages.debian.org/bullseye/coreutils/cat.1.en.html
https://www.kernel.org/doc/html/v5.19/driver-api/iio/index.html
https://www.kernel.org/doc/html/v5.19/filesystems/sysfs.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

What : /sys/.../iio:deviceX/in_illuminance_clear_raw
KernelVersion: 3.4

Contact: linux—-iio@Qvger.kernel.org

Description:

Illuminance measurement, units after application of scale
and offset are lux.
Read further to discover how to find these bits of magic text used above.
The generic steps are fairly simple:
1. Identify driver name and address
. Ensure driver is enabled in kernel build

. Identify I12C signals on board and controller in Linux

2

3

4. Ensure pinmux set to 12C

5. Ensure add-on connection is good
6. Issue Linux command to load driver
7

. ldentify and utilize interface provided by driver

Driver name One resource that is very helpful is the list that Vaishnav put together for supporting Mikroelek-
tronika Click add-ons. This list of Click add-ons with driver information can help a lot with matching a device
to the driver name, device address, and kernel configuration setting.

Note: Documentation for your particular add-on might indicate a different device address than is configured
on Click add-ons.

I’'m not aware of a trivial way of discovering the mapping that Vaishnav created outside of looking at the kernel
sources. As an example, let’s look at the Grove Digital Light Sensor add-on which is documented to utilize a
TSL2561.

Searching through the kernel sources, we can find the driver code at drivers/iio/light/tsi2563.c. There is a list
of driver names in a i2c_device_id table:

static const struct 12c_device_id tsl1l2563_id[] = {
"tsl2560”, 0 1},
"tsl2561”, 1 1},
"t£512562”, 2 },
"tsl2563”, 3 1},

e e e

}i

Important: Don't miss that the driver, ts/2561 , is actually part of a a superset driver, ts/2563 . This can
make things a bit trickier to find, so you have to look within the text of the driver source, not just the filenames.

Kernel configuration

12C signals and controller

Pinmuxing

10 Chapter 1. Introduction

https://git.beagleboard.org/beagleconnect/manifesto/-/blob/main/click_info.csv
https://wiki.seeedstudio.com/Grove-Digital_Light_Sensor/
https://elixir.bootlin.com/linux/v5.19.5/source/drivers/iio/light/tsl2563.c#L862

BeagleBoard Docs, Release 1.0.20230711-wip

Wiring

Load driver

Interface

Finding 12C add-on modules
Note: There are some great resources out there:

¢ Adafruit list of 12C devices
e Sparkfun list of QWIIC devices

e Adafruit STEMMA QT introduction

Pitfalls Not all 12C devices with drivers in the Linux kernel can be loaded this way. The most common reason
is that the device driver expects an interrupt signal or other GPIO along with the 12C communication. In these
cases, a device tree overlay or driver modification may be necessary.

1.3 Contribution

Note: This section is under developmement right now.

Important: First off, thanks for taking the time to think about contributing!

Note: For donations, see BeagleBoard.org - Donate.

The BeagleBoard.org Foundation maintains source for many open source projects.
Example projects suitable for first contributions:

* BeagleBoard project documentation

* Debian image bug repository

¢ Debian image builder

These guidelines are mostly suggestions, not hard-set rules. Use your best judgment, and feel free to propose
changes to this document in a pull request.

1.3.1 Code of Conduct

This project and everyone participating are governed by the same code of conduct.

Note: Check out https://forum.beagleboard.org/faq as a starting place for our code of conduct.

By participating, you are expected to uphold this code. Please report unacceptable behavior to contact one of
our administrators or moderators on https://forum.beagleboard.org/about.

1.3. Contribution 11

https://learn.adafruit.com/i2c-addresses/the-list
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt/sparkfun-qwiic
https://beagleboard.org/donate
https://git.beagleboard.org/docs/docs.beagleboard.io
https://git.beagleboard.org/beagleboard/Latest-Images
https://git.beagleboard.org/beagleboard/image-builder
https://forum.beagleboard.org/faq
https://forum.beagleboard.org/about

BeagleBoard Docs, Release 1.0.20230711-wip

1.3.2 Frequently Asked Questions
Please refer to the technical and contribution frequently asked questions pages before posting any of your own
questions. Please feel encouraged to ask follow-up questions if any of the answers are not clear enough.

* Frequently asked questions contribution category on the BeagleBoard.org Forum

1.3.3 What should | know before | get started?

The more you know about Linux and contributing to upstream projects, the better, but this knowledge isn’t
strictly required. Simply reading about contributing to Linux and upstream projects can help build your vocab-
ulary in a meaningful way to help out. Learn about the skills required for Linux contributions in the Upstream
Kernel Contributions section.

The most useful thing to know is how to ask smart questions. Read about this in the Getting support section. If
you ask smart questions on the issue trackers and forum, you'll be doing a lot to help us improve the designs
and documentation.

Upstream Kernel Contributions

Note: For detailed information on Kernel Developmement checkout the official kernel.org kernel docs.

For a person or company who wishes to submit a change to the Linux kernel, the process can sometimes be
daunting if you're not familiar with “the system.” This text is a collection of suggestions which can help you
get started and greatly increase the chances of your change being accepted.

Note: This version is an unofficial draft and is subject to change.

Pre-requisites The following are the skills that are needed before you actually start to contribute to the linux
kernel:

* More Git!

e C-Programming

e Cross-arch Development

* Basics of embedded buses (I12C, UART, SPI, etc.)
* Device Drivers in Embedded Systems

* Device Trees

For more guidance, check out the Additional Resources.

More Git! Itis highly recommended that you go through Git Usage before starting to read and follow these
guidelines. You will need to have a proper git setup on your computer in order to effectively follow these steps.

Creating your first patch When you first enter the world of Linux Kernel development from a background
in contributing over gitlab or github, the terminologies slightly change.

Your Pull Requests (PRs) now become Patches or Patch Series. You no longer just go to some website and click
on a “Create Pull Request” button. Whatever code/changes you want to add will have to be sent as patches
via emails.

As an example, let’s consider a commit to add the git section to these docs. | stage these changes first using
git add -p.

12 Chapter 1. Introduction

https://forum.beagleboard.org/c/faq
https://www.kernel.org/doc/html/latest/

BeagleBoard Docs, Release 1.0.20230711-wip

diff --git a/contribution/contribute.rst b/contribution/contribute.rst
index defl100b..0af08c5 100644

-—— a/contribution/contribute.rst

+++ b/contribution/contribute.rst

Then, commit the above changes.

Note: Don’t forget to make your commit message descriptive of the feature you are adding or the work that
you have done in that commit. The commit has to be self explanatory in itself. Link any references if you have
used and paste any logs to prove your code works or if there is a fix.

git commit -vs

[linux-contrib 3bc0821] contribute.rst: Add git section
1 file changed, 27 insertions(+), 1 deletion(-)

Now, let’'s say we want to send this new feature to upstream kernel. You then have to create a patch file using
the following command:

git format-patch -1 HEAD

000l1-contribute.rst-Add-git-section.patch

This will generate one file that is generally referred to as the patch file. This is what you will now be sending
upstream in order to get your patch merged. But wait, there are a few more things we need to setup for sending
a patch via e-mail. That is, of course your email!

For configuring your email ID for sending patches refer to this excellent stackoverflow thread, configure git-
send-email.

Finally, after you have configured you email properly, you can send out a patch using:

git send-email 000l-contribute.rst-Add-git-section.patch

replacing of course the above patchfile name with whatever was your own patch. This command will then ask
you To whom should the emails be sent (if anyone) ? Here, you have to write the email
address of the list you want to send out the patch to.

git send-email also has command line options like ——t o and ——cc that you can also use to add more
email addresses of whoever you want to keep in CC. Generally it is a good idea to keep yourself in CC.

C-Programming It is highly recommended that you have proficiency in C-Programming, because well the
kernel is mostly written in C! For starters, you can go through Dennis Ritchie’s C Programming book to under-
stand the language and also solve the exercises given there for getting hands on.

Cross-arch Development While working with the kernel, you’ll most likely not be compiling it on the machine
that you intend to actually boot it on. For example if you are compiling the Kernel for BeageBone Black it's
probably not ideal for you to actually clone the entire kernel on BeagleBone Black and then compile it there.
What you'd do instead is pick a much powerful machine like a Desktop PC or laptop and then use cross arch
compilers like the arm-gcc for instance to compile the kernel for your target device.

Basics of embedded buses (12C, UART, SPI, etc.) In the world of embedded, you often need to commu-
nicate with peripherals over very low level protocols. To name a few, 12C, UART, SPI, etc. are all serial protocols
used to communicate with a variety of devices and peripherals.

It's recommended to understand at least the basics of each of the protocol so you know what’s actually going
on when you write for instance an 12C or SPI driver to communicate with let’'s say a sensor.

1.3. Contribution 13

https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to
https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to

BeagleBoard Docs, Release 1.0.20230711-wip

Device Drivers in Embedded Systems | used the term “Drivers” in the above section, but what does it
really mean?

Todo: Why “device” drivers?

Todo: Why do we need drivers?

Todo: What do drivers look like?

Device Trees We just learned about drivers, and it's time that once you have written a driver in the kernel,
you obviously want it to work! So how do we really tell the kernel which drivers to load? How do we, at boot
time, instruct which devices are present on the board you are booting on?

The kernel does not contain the description of the hardware, it is located in a separate binary: the device tree
blob.

What is a Device Tree?

A device tree is used to describe system hardware. A boot program loads a device tree into a client program’s
memory and passes a pointer to the device tree to the client.

A device tree is a tree data structure with nodes that describe the physical devices in a system.

Additional Resources
1. Device Trees for Dummies PDF
2. What are Device Drivers

3. Submitting your patches upstream

1.3.4 How can | contribute?

The most obvious way to contribute is using the git.beagleboard.org Gitlab server to report bugs, suggest
enhancements and providing merge requests, also called pull requests, the provide fixes to software, hardware
designs and documentation.

This documentation has a number of £t odo items where help is needed that can be searched in the source.

Todo: We need a 404 document to help people handle broken links (report, find, etc.).

(The original entry is located in /builds/jdneal/docs.beagleboard.io/404.rst, line 8.)

Todo: add cape compatibility details

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-64/ch04.rst, line 100.)

Todo: This section needs more work and references to greater detail. Other boot modes are possible. Software
to support USB and serial boot modes is not provided by beagleboard.org._Please contact Tl for support of this
feature.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-64/ch05.rst, line 225.)

14 Chapter 1. Introduction

https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://tldp.org/LDP/tlk/dd/drivers.html
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://git.beagleboard.org

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: IMX219 CSI sensor connection with BeagleBone® Al-64 for Edge Al

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-
64/edge_ai_apps/getting_started.rst, line 78.)

Todo: BeagleBone® Al-64 wallpaper upon boot

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-
64/edge_ai_apps/getting_started.rst, line 182.)

Todo: Microsoft Visual Studio Code for connecting to BeagleBone® Al-64 for Edge Al via SSH

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-
64/edge_ai_apps/getting_started.rst, line 243.)

Todo: Need info on BBAI boot mode settings

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 259.)

Todo: Need info on BBAI power management

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 264.)

Todo: Add WiFi/Bluetooth/Ethernet

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 269.)

Todo: This text needs to go somewhere.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 276.)

Todo: This table needs entries

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1490.)

Todo: Table entries needed

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1582.)

Todo: Need info on BealgeBone Al serial debug

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1596.)

Todo: Need info on BealgeBone Al USB Type-C connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1601.)

1.3. Contribution 15

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: Need info on BealgeBone Al USB Type-A connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1606.)

Todo: Need info on BealgeBone Al USB Gigabit Ethernet connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1611.)

Todo: Need info on BealgeBone Al u.FL antenna connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1616.)

Todo: Need info on BealgeBone Al uSD card slot

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1621.)

Todo: Need info on BealgeBone Al uHDMI connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1626.)

Todo: Make all figure references actual references

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/black/ch07.rst, line
1163.)

Todo: move accessory links to a single common document for all boards.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/black/ch07.rst, line
1184.)

Todo: We should include all support information in docs.beagleboard.org now and leave eLinux to others,
freeing it as much as possible

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/black/ch07.rst, line
1194.)

Todo: We are going to work on a unified accessories page for all the boards and it should replace this.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/blue/accessories.rst,
line 6.)

Todo: Image with what’s inside the box and a better description.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 14.)

16 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: Describe how to get a serial connection.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 55.)

Todo: Describe how to get an IEEE802.15.4g connection from BeaglePlay.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 62.)

Todo: Describe how to get to a local console and websockets console.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 73.)

Todo: Need to describe functionality of 0.2.2

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/demos-and-
tutorials/using-micropython.rst, line 201.)

Todo: provide images demonstrating Jupyter Notebook visualization

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/index.rst, line 76.)

Todo: think a bit more about this section with some feedback from Cathy.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/index.rst, line 95.)

Todo: Need an image of the logo

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 43.)

Todo: To make it stick, ...

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 92.)

Todo: Document kernel version that integrates this overlay and where to get update instructions.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 158.)

Todo:
¢ How do turn off the driver?
* How do turn on spidev?

* How do | enable GPIO?

1.3. Contribution 17

BeagleBoard Docs, Release 1.0.20230711-wip

* How do a provide a manifest?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 203.)

Todo:
* Needs udev

* Needs live description

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 211.)

Todo: Describe how to know it is working

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/zephyr-cc1352-development.rst, line 56.)

Todo: A big part of what is missing here is to put your BeaglePlay on the Internet such that we can download
things in later steps. That has been initially brushed over.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/zephyr-cc1352-development.rst, line 67.)

Todo: Describe how to handle the serial connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/zephyr-cc1352-development.rst, line 393.)

Todo: figure out if BONE-SPIO_0 and BONE-SPIO_1 can be loaded at the same time

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
504.)

Todo: We need a udev rule to make sure the ADC shows up at /dev/bone/adc! There’s nothing for sure that
110 devices will show up in the same place.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
669.)

Todo: | think we can also create symlinks for each channel based on which device is there, such that we can
do /dev/bone/adc/Px_y

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
671.)

Todo: | believe a multiplexing 110 driver is the future solution

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
673.)

18 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: remove deep references to git trees

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
768.)

Todo: This doesn’t include any abstraction yet.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
952.)

Todo: For each of the pins with a GPIO, there should be a symlink that comes from the names

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
1338.)

Todo: Describe how the Device Trees expose symbols for reuse across boards

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
1351.)

Todo: The steps used to verify all of these configurations is to be documented here. It will serve to document
what has been tested, how to reproduce the configurations, and how to verify each major triannual release.
All faults will be documented in the issue tracker.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
1385.)

Todo: Add cape examples of various sizes

(The original entry is located in /builds/jdneal/docs.beagleboard.io/books/beaglebone-
cookbook/09capes/capes.rst, line 18.)

Todo: Update display cape example

(The original entry is located in /builds/jdneal/docs.beagleboard.io/books/beaglebone-
cookbook/09capes/capes.rst, line 23.)

Todo: Make a mapping table for the Black

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp

(The original entry is located in /builds/jdneal/docs.beagleboard.io/books/pru-cookbook/05blocks/blocks.rst,
line 1809.)

Todo: Describe where and how to report issues on git.beagleboard.org

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/index.rst, line 76.)

1.3. Contribution 19

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/index.rst, line 82.)

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/index.rst, line 88.)

Todo: Why “device” drivers?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/linux-upstream.rst, line
148.)

Todo: Why do we need drivers?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/linux-upstream.rst, line
152.)

Todo: What do drivers look like?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/linux-upstream.rst, line
156.)

Todo: The terminology Implicit and Explicit is not accurate here.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/rst-cheat-sheet.rst, line
286.)

Reporting bugs

Todo: Describe where and how to report issues on git.beagleboard.org

Suggesting enhancements

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

Submitting merge requests

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

20 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

1.3.5 Style and usage guidelines

e Git Usage
¢ Git commit messages

* Documentation Style Guide

Git Usage

Note: For detailed information on Git and Gitlab checkout the official Git and GitLab help page. Also, for good
GitLab workflow you can checkout the Introduction to GitLab Flow (FREE) page.

These are (draft) general guidelines taken from BioPython project to be used for BeagleBoard development
using git. We're still working on the finer details.

This document is meant as an outline of the way BeagleBoard projects are developed. It should include all
essential technical information as well as typical procedures and usage scenarios. It should be helpful for core
developers, potential code contributors, testers and everybody interested in BeagleBoard code.

Note: This version is an unofficial draft and is subject to change.

Relevance This page is about actually using git for tracking changes.

If you have found a problem with any BeagleBoard project, and think you know how to fix it, then we suggest
following the simple route of filing a bug and describe your fix. Ideally, you would upload a patch file showing
the differences between the latest version of BeagleBoard project (from our repository) and your modified
version. Working with the command line tools diff and patch is a very useful skill to have, and is almost a
precursor to working with a version control system.

Technicalities This section describes technical introduction into git usage including required software and
integration with GitLab. If you want to start contributing to BeagleBoard, you definitely need to install git
and learn how to obtain a branch of the BeagleBoard project you want to contribute. If you want to share your
changes easily with others, you should also sign up for a BeagleBoard GitLab account and read the correspond-
ing section of the manual. Finally, if you are engaged in one of the collaborations on experimental BeagleBoard
modules, you should look also into code review and branch merging.

Installing Git You will need to install Git on your computer. Git is available for all major operating systems.
Please use the appropriate installation method as described below.

Linux Git is now packaged in all major Linux distributions, you should find it in your package manager.

Ubuntu/Debian You can install Git from the git-core package. e.qg.,

sudo apt—-get install git-core

You'll probably also want to install the following packages: gitk, git-gui, and git-doc

Redhat/Fedora/Mandriva gitis also packaged in rpom-based linux distributions.

dnf install gitk

should do the trick for you in any recent fedora/mandriva or derivatives

1.3. Contribution 21

https://git.beagleboard.org/help#git-and-gitlab
https://git.beagleboard.org/help/topics/gitlab_flow.md
https://biopython.org/wiki/GitUsage
https://git.beagleboard.org/users/sign_up
http://git-scm.com/

BeagleBoard Docs, Release 1.0.20230711-wip

Mac OS X Download the .dmg disk image from http://code.google.com/p/git-osx-installer/

Windows Download the official installers from Windows installers

Testing your git installation If your installation succeeded, you should be able to run

$ git —-help

in a console window to obtain information on git usage. If this fails, you should refer to git documentation for
troubleshooting.

Creating a GitLab account (Optional) Once you have Git installed on your machine, you can obtain the
code and start developing. Since the code is hosted at GitLab, however, you may wish to take advantage of
the site’s offered features by signing up for a GitLab account. While a GitLab account is completely optional
and not required for obtaining the BeagleBoard code or participating in development, a GitLab account will
enable all other BeagleBoard developers to track (and review) your changes to the code base, and will help
you track other developers’ contributions. This fosters a social, collaborative environment for the BeagleBoard
community.

If you don’t already have a GitLab account, you can create one here. Once you have created your account,
upload an SSH public key by clicking on SSH and GPG keys <https://git.beagleboard.org/-/profile/keys> after
logging in. For more information on generating and uploading an SSH public key, see this GitLab guide.

Working with the source code In order to start working with the BeagleBoard source code, you need to
obtain a local clone of our git repository. In git, this means you will in fact obtain a complete clone of our git
repository along with the full version history. Thanks to compression, this is not much bigger than a single copy
of the tree, but you need to accept a small overhead in terms of disk space.

There are, roughly speaking, two ways of getting the source code tree onto your machine: by simply “cloning”
the repository, or by “forking” the repository on GitLab. They’re not that different, in fact both will result in a
directory on your machine containing a full copy of the repository. However, if you have a GitLab account, you
can make your repository a public branch of the project. If you do so, other people will be able to easily review
your code, make their own branches from it or merge it back to the trunk.

Using branches on GitLab is the preferred way to work on new features for BeagleBoard, so it's useful to learn
it and use it even if you think your changes are not for immediate inclusion into the main trunk of BeagleBoard.
But even if you decide not to use GitLab, you can always change this later (using the .git/config file in your
branch.) For simplicity, we describe these two possibilities separately.

Cloning BeagleBoard directly Getting a copy of the repository (called “cloning” in Git terminology) without
GitLab account is very simple:

git clone https://git.beagleboard.org/docs/docs.beagleboard.io.git

This command creates a local copy of the entire BeagleBoard repository on your machine (your own personal
copy of the official repository with its complete history). You can now make local changes and commit them
to this local copy (although we advise you to use named branches for this, and keep the main branch in sync
with the official BeagleBoard code).

If you want other people to see your changes, however, you must publish your repository to a public server
yourself (e.g. on GitLab).

Forking BeagleBoard with your GitLab account If you are logged in to GitLab, you can go to the Beagle-
Board Docs repository page:

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main

22 Chapter 1. Introduction

http://code.google.com/p/git-osx-installer/
https://git-scm.com/download/win
https://git-scm.com/doc
https://git.beagleboard.org/users/sign_up
https://docs.gitlab.com/ee/user/ssh.html
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main

BeagleBoard Docs, Release 1.0.20230711-wip

and click on a button named ‘Fork’. This will create a fork (basically a copy) of the official BeagleBoard reposi-
tory, publicly viewable on GitLab, but listed under your personal account. It should be visible under a URL that
looks like this:

https://git.beagleboard.org/yourusername/docs.beagleboard.io/

Since your new BeagleBoard repository is publicly visible, it's considered good practice to change the de-
scription and homepage fields to something meaningful (i.e. different from the ones copied from the official
repository).

If you haven't done so already, setup an SSH key and upload it to gitlab for authentication.

Now, assuming that you have git installed on your computer, execute the following commands locally on your
machine. This “url” is given on the GitLab page for your repository (if you are logged in):

git clone https://git.beagleboard.org/yourusername/docs.beagleboard.io.git

Where yourusername, not surprisingly, stands for your GitLab username. You have just created a local copy of
the BeagleBoard Docs repository on your machine.

You may want to also link your branch with the official distribution (see below on how to keep your copy in
sync):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

If you haven’t already done so, tell git your name and the email address you are using on GitLab (so that your
commits get matched up to your GitLab account). For example,

git config —-—global user.name "David Jones” config —--global user.email ”d.
—jones(@example.com”

Making changes locally Now you can make changes to your local repository - you can do this offline, and
you can commit your changes as often as you like. In fact, you should commit as often as possible, because
smaller commits are much better to manage and document.

First of all, create a new branch to make some changes in, and switch to it:

git branch demo-branch checkout demo-branch

To check which branch you are on, use:

git branch

Let us assume you’ve made changes to the file beaglebone-black/ch01.rst Try this:

git status

So commit this change you first need to explicitly add this file to your change-set:

git add beaglebone-black/ch0l.rst

and now you commit:
git commit -m "added updates X in BeagleBone Black ch01”
Your commits in Git are local, i.e. they affect only your working branch on your computer, and not the whole

BeagleBoard tree or even your fork on GitLab. You don’t need an internet connection to commit, so you can
do it very often.

Pushing changes to GitLab If you are using GitLab, and you are working on a clone of your own branch,
you can very easily make your changes available for others.

1.3. Contribution 23

https://git.beagleboard.org/yourusername/docs.beagleboard.io/
https://docs.gitlab.com/ee/user/ssh.html

BeagleBoard Docs, Release 1.0.20230711-wip

Once you think your changes are stable and should be reviewed by others, you can push your changes back
to the GitLab server:

git push origin demo-branch

This will not work if you have cloned directly from the official BeagleBoard branch, since only the core devel-
opers will have write access to the main repository.

Merging upstream changes We recommend that you don’t actually make any changes to the main branch
in your local repository (or your fork onGitLab). Instead, use named branches to do any of your own work. The
advantage of this approach it is the trivial to pull the upstream main (i.e. the official BeagleBoard branch) to
your repository.

Assuming you have issued this command (you only need to do this once):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

Then all you need to do is:

git checkout main pull upstream main

Provided you never commit any change to your local main branch, this should always be a simple fast forward
merge without any conflicts. You can then deal with merging the upstream changes from your local main
branch into your local branches (and you can do that offline).

If you have your repository hosted online (e.g. at GitLab), then push the updated main branch there:

git push origin main

Submitting changes for inclusion in BeagleBoard If you think you changes are worth including in the
main BeagleBoard distribution, then file an (enhancement) bug on our bug tracker, and include a link to your
updated branch (i.e. your branch on GitLab, or another public Git server). You could also attach a patch to
the bug. If the changes are accepted, one of the BeagleBoard developers will have to check this code into our
main repository.

On GitLab itself, you can inform keepers of the main branch of your changes by sending a ‘pull request’ from
the main page of your branch. Once the file has been committed to the main branch, you may want to delete
your now redundant bug fix branch on GitLab.

If other things have happened since you began your work, it may require merging when applied to the official
repository’s main branch. In this case we might ask you to help by rebasing your work:

git fetch upstream checkout demo-branch

git rebase upstream/main

Hopefully the only changes between your branch and the official repository’s main branch are trivial and git
will handle everything automatically. If not, you would have to deal with the clashes manually. If this works,
you can update the pull request by replacing the existing (pre-rebase) branch:

git push origin demo-branch --force

If however the rebase does not go smoothly, give up with the following command (and hopefully the Beagle-
Board developers can sort out the rebase or merge for you):

git rebase —-—-abort

Evaluating changes Since git is a fully distributed version control system, anyone can integrate changes
from other people, assuming that they are using branches derived from a common root. This is especially
useful for people working on new features who want to accept contributions from other people.

24 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

This section is going to be of particular interest for the BeagleBoard core developers, or anyone accepting
changes on a branch.

For example, suppose Jason has some interesting changes on his public repository:
https://git.beagleboard.org/jkridner/docs.beagleboard.io

You must tell git about this by creating a reference to this remote repository:

git remote add jkridner https://git.beagleboard.org/jkridner/BeagleBoard.git

Now we can fetch all of Jason’s public repository with one line:

git fetch jkridner

Now we can run a diff between any of our own branches and any of Jason’s branches. You can list your own
branches with:

git branch

Remember the asterisk shows which branch is currently checked out.

To list the remote branches you have setup:

git branch -r

For example, to show the difference between your main branch and Jason’s main branch:

git diff main jkridner/main

If you are both keeping your main branch in sync with the upstream BeagleBoard repository, then his main
branch won't be very interesting. Instead, try:

git diff main jkridner/awesomebranch

You might now want to merge in (some) of Jason’s changes to a new branch on your local repository. To make
a copy of the branch (e.g. awesomebranch) in your local repository, type:

git checkout --track jkridner/awesomebranch

If Jason is adding more commits to his remote branch and you want to update your local copy, just do:

git checkout awesomebranch # if you are not already in branch awesomebranch.
—pull

If you later want to remove the reference to this particular branch:

git branch -r -d jkridner/awesomebranch
Deleted remote branch jkridner/awesomebranch (#######)

Or, to delete the references to all of Jason’s branches:

git remote rm jkridner

git branch -r
upstream/main
origin/HEAD
origin/main

Alternatively, from within GitLab you can use the fork-queue to cherry pick commits from other people’s forked
branches. While this defaults to applying the changes to your current branch, you would typically do this using
a new integration branch, then fetch it to your local machine to test everything, before merging it to your main
branch.

1.3. Contribution 25

https://git.beagleboard.org/jkridner/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Committing changes to main branch This section is intended for BeagleBoard developers, who are al-
lowed to commit changes to the BeagleBoard main “official” branch. It describes the typical activities, such as
merging contributed code changes both from git branches and patch files.

Prerequisites Currently, the main BeagleBoard branch is hosted on GitLab. In order to make changes to
the main branch you need a GitLab account and you need to be added as a collaborator/Maintainer to the
BeagleBoard account. This needs to be done only once. If you have a GitLab account, but you are not yet a
collaborator/Maintainer and you think you should be ask Jason to be added (this is meant for regular contribu-
tors, so in case you have only a single change to make, please consider submitting your changes through one
of developers).

Once you are a collaborator/Maintainer, you can pull BeagleBoard official branch using the private url. If you
want to make a new repository (linked to the main branch), you can just clone it:

git clone https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

It creates a new directory “BeagleBoard” with a local copy of the official branch. It also sets the “origin” to the
GitLab copy This is the recommended way (at least for the beginning) as it minimizes the risk of accidentally
pushing changes to the official GitLab branch.

Alternatively, if you already have a working git repo (containing your branch and your own changes), you can
add a link to the official branch with the git “remote command”... but we’'ll not cover that here.

In the following sections, we assume you have followed the recommended scenario and you have the following
entries in your .git/config file:

[remote "origin”]
url = https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

[branch ”"main”]
remote = origin

Committing a patch If you are committing from a patch, it's also quite easy. First make sure you are up to
date with official branch:

git checkout main pull origin

Then do your changes, i.e. apply the patch:

patch —-r someones_cool_feature.diff

If you see that there were some files added to the tree, please add them to git:

git add beaglebone-black/some_new_file

Then make a commit (after adding files):

git commit -a -m "committed a patch from a kind contributor adding feature X”

After your changes are committed, you can push toGitLab:

git push origin

Tagging the official branch If you want to put tag on the current BeagleBoard official branch (this is usually
done to mark a new release), you need to follow these steps:

First make sure you are up to date with official branch:

git checkout main pull origin

26 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Then add the actual tag:

git tag new_release

And push it to GitLab:

git push —-—-tags origin main

Additional Resources There are a lot of different nice guides to using Git on the web:
¢ Understanding Git Conceptually
e git ready: git tips
* https://web.archive.org/web/20121115132047/http://cheat.errtheblog.com/s/git

e https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development workflow.html Numpy is also evalu-
ating git

e https://github.github.com/training-kit/downloads/github-git-cheat-sheet
* https://skills.github.com/

e Pro Git

Documentation Style Guide

Note: This is currently a work-in-progress placeholder for some notes on how to style the BeagleBoard Doc-
umentation Project.

See the Zephyr Project Documentation Guidelines as a starting point.

ReStructuredText Cheat Sheet

BeagleBoard.org docs site uses ReStructuredText (rst) which is a file format® for textual data used primarily in
the Python programming language community for technical documentation. It is part of the Docutils project
of the Python Doc-SIG, aimed at creating a set of tools for Python similar to Javadoc for Java or Plain Old
Documentation for Perl. If you are new with rst you may go through this rst cheat sheet”?” chapter to gain
enough skills to edit and update any page on the BeagleBoard.org docs site. some things you should keep in
mind while working with rst,

1. like Python, RST syntax is sensitive to indentation !

2. RST requires blank lines between paragraphs

Text formatting With asterisk you can format the text as italic & bold,

1. Single asterisk (*) like *emphasis* gives you italic text

2. Double asterisk (**) like **strong emphasis** gives you bold text
With backquote character (‘) you can format the text as link & inline literal.

1. See Links section on how single backquote can be used to create a link like this.

2. With double back quotes before and after text you can easily create inline lierals.

reStructuredText wiki page
Sphinx and RST syntax guide (0.9.3)
Quick reStructuredText (sourceforge)

A W N R

A two-page cheatsheet for restructured text

1.3. Contribution 27

https://www.sbf5.com/~cduan/technical/git/
http://gitready.com/
https://web.archive.org/web/20121115132047/http://cheat.errtheblog.com/s/git
https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development_workflow.html
https://github.github.com/training-kit/downloads/github-git-cheat-sheet
https://skills.github.com/
https://git-scm.com/book/en/v2
https://docs.zephyrproject.org/latest/contribute/documentation/guidelines.html
www.beagleboard.org
https://en.wikipedia.org/wiki/ReStructuredText
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html#internal-and-external-links
https://docutils.sourceforge.io/docs/user/rst/quickref.html#hyperlink-targets
https://github.com/ralsina/rst-cheatsheet

BeagleBoard Docs, Release 1.0.20230711-wip

Note: backqguote can be found below escape key on most keyboards.

Headings For each document we divide sections with headings and in ReStructuredText we can use matching
overline and underline to indicate a heading.

1. Document heading (H1) use #.
2. First heading (H2) use *.

3. Second heading (H3) use =.

4. Third heading (H4) use —.
5

. Fourth heading (H5) use ~.

Note: You can include only one (H1) # in a single documentation page.

Make sure the length of your heading symbol is at least (or more) the at least of the heading text, for example:

incorrect H1
#H##4 ©

correct HI1
HHEHHEEAEERE @
@ Length of heading symbol # is smaller than the content above.

@ Shows the correct way of setting the document title (H1) with #.

Code For adding a code snippet you can use tab indentation to start. For more refined code snippet display
we have the code-block and 1iteralinclude directives as shown below.

Indentation This the simplest way of adding code snippet in ReStructuredText.

Example

This is python code:: ©
)
import numpy as np @
import math
® Provide title of your code snippet and add : : after the text.

@ Empty line after the title is required for this to work.

® Start adding your code.

Output This is python code:

import numpy as np
import math

Code block Simpleindentation only supports python program highlighting but, with code block you can spec-
ify which language is your code written in. code—-block also provides better readability and line numbers
support you can useas shown below.

28 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Example

code-block:: python ©
:linenos: @

import numpy as np O

import math
@ Start with adding . . code-block: : and then add language of code like python, bash, javascript, etc.
@ Optionally, you can enable line numbers for your code.

® Start adding your code.

Output

import numpy as np
import math

Literal include To include the entire code or a code snippet from a program file you can use this directive.

Example

literalinclude:: filename.cpp ©
:caption: Example C++ file @
:linenos: ©®
:language: C++ @
:lines: 2, 4-7 ®
:lineno-start: 113 ©
® Provide the code file destination.
@ Provide caption for the code.
® Enable line numbers.
@ Set programming language.

® Cherry pick some lines from a big program file.

® Instead of starting line number from 1 start it with some other number. It’s useful when you use :lines:,
:start-after:, and :end-before:.

Annotations We have a plug-in installed that enables annotated code blocks. Below is an example.

Example

callout:: @
code-block:: python

import numpy as np # <1> @
import math # <2>

annotations:: @
<1> Comment #1 ®
<2> Comment #2
annotations::

(continues on next page)

1.3. Contribution 29

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

® Indent everything under a callout’
@ Create a normal block for what you want to annotate

® Add ~ <number> = everywhere you want to annotate. Put it under a.
—comment block if you want the code to run when copied directly.

@ Create an annotations block to hold your callout comments
® Create an entry, separating each with a blank line and prefixing them.

~with & " <number>" "

Output

import numpy as np # [J
import math # [7

® Comment #1

@ Comment #2

Important: In the example, | inserted the invisible UTF character U+FEFF after the opening < to avoid it
being interpreted as a callout symbol. Be sure to remove that character if you attempt to copy-and-paste the
example.

Links We have three types of links to use in sphinx,
1. External links (http(s) links).
2. Implicit links to title (within same rst file).

3. Explicit links (labels that can be used anywhere in the project).

External links For a simple link to a site the format is

" <www.beagleboard.org>" _

this will be rendered as www.beagleboard.org.
You can also include a label to the link as shown below.

"BeagleBoard.org

this will be rendered as BeagleBoard.org.

Implicit Links These are basically the headings inside the rst page which can be used as a link to that section
within document.

"Links® _

when rendered it becomes Links

Explicit link

Todo: The terminology Implicit and Explicit is not accurate here.

These are special links you can assign to a specific part of the document and reference anywhere in the project
unlike implicit links which can be used only within the document they are defined. On top of each page you'll

30 Chapter 1. Introduction

www.beagleboard.org
www.beagleboard.org

BeagleBoard Docs, Release 1.0.20230711-wip

see some text like .. _rst-cheat-sheet: is used to create a label for this chapter. These are called
the explicit links amd you can reference these using ref:.

Note: This can be used inside or outside of the document and the rendered link will take you directly to that
specific section.

:ref: rst-cheat-sheet’

When rendered it becomes ReStructuredText Cheat Sheet.

YouTube Videos This section shows you the typical way of adding a YouTube video to docs.BeagleBoard.org
in a way that you see on page playable embedded YouTube video when you look at HTML version of the docs
and only a clicable thumnail linked to the YouTube video when you see the PDF.

only:: latex

image:: https://img.youtube.com/vi/<YouTube_video_ID>/maxresdefault.
—Jjpg O
:alt: BeagleConnect unboxing YouTube video
:width: 1280
:target: https://www.youtube.com/watch?v=<YouTube_video_ID> @

only:: html
raw:: html

<iframe style="display: block; margin: auto;” width="1280" height=
—"720"” style="align:center”
src="https://www.youtube.com/embed/<YouTube_video_ID>" ®
title="YouTube video player”
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media;.
—gyroscope; picture-in-picture; web-share”
allowfullscreen>
</iframe>

® @ ® Here you have to replace the <YouTube_video_ID> with your actual youtube ID.

More

footnotes

1.3. Contribution 31

BeagleBoard Docs, Release 1.0.20230711-wip

32 Chapter 1. Introduction

Chapter 2

BeaglePlay

Important: This is a work in progress, for latest documentation please visit https://docs.beagleboard.org/
latest/

oris
o1z

394

MICRO SD

owonJZE D

besgfleboarel

BeaglePlay™
(=

'v
S
=1
=
fl
"

® =
re2d®fee
7230 *

2.1 Introduction

BeaglePlay is an open-source single board computer designed to simplify the process of adding sensors, ac-
tuators, indicators, human interfaces, and connectivity to a reliable embedded system. It features a powerful
64-bit, quad-core processor and innovative connectivity options, including WiFi, Gigabit Ethernet, sub-GHz
wireless, and single-pair Ethernet with power-over-data-line. With compatibility with 1,000s of off-the-shelf
add-ons and a customized Debian Linux image, BeaglePlay makes expansion and customization easy. It also
includes ribbon-cable connections for cameras and touch-screen displays, and a socket for a battery-backed
real-time-clock, making it ideal for human-machine interface designs. With its competitive price and user-
friendly design, we expect BeaglePlay to provide you with a positive development experience. Some of the
real world applications for BeaglePlay include:

¢ Building/industrial automation gateways

* Digital signage

33

https://docs.beagleboard.org/latest/
https://docs.beagleboard.org/latest/

BeagleBoard Docs, Release 1.0.20230711-wip

¢ Human Machine Interface (HMI)

¢ BeagleConnect sensor gateways

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

294

go

"
n
¥
N
)
i
)
3
3

BeaglePlay™
(D}

=) oG
® =
2 CIER-5s
BB e
208 L0

2.1.1 Detailed overview

BeaglePlay is built around Texas Instruments AM62x Sitara™ Processors which is a Quad-Core Arm® Cortex®-
A53 Human-machine-interaction SoC. It comes with 2GB DDR4 RAM, 16GB eMMC storage, Full size HDMI, USB-A
host port, USB-C power & connectivity port, serial debug interface, and much more.

34 Chapter 2. BeaglePlay

http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230711-wip

Table 2.1: BeaglePlay features

Feature Description
Processor TI AM6254 (multicore A53s with R5, M4s and PRUSs)
PMIC TPS6521901
Memory 2GB DDR4
Storage 16GB eMMC
WiFi
¢ PHY: WL1807MOD (roadmap to next-gen Tl CC33XX WiFi
6 & BLE)
¢ Antennas: 2.4GHz & 5GHz
BLE/SubG
¢ CC1352P7 M4+MO with BeagleConnect firmware
* BeagleConnect Wireless enabled
¢ Antennas: 2.4GHz & SubG IEEE802.15.4 software defined
radio (SDR)
Ethernet

PHY: Realtek RTL8211F-VD-CG Gigabit Ethernet phy

Connector: integrated magnetics RJ-45

Single-pair Ethernet

BeagleConnect Wired enabled

PHY: DP83TD510E 10Mbit 10BASE-T1L single-pair Ether-
net phy

Connector: RJ-11 jack

Power (PoDL): Input: N/A (protection to 12V), Output: 5V
@ 250mA

USB type-C
* PD/CC: None, HS shorted to both sides
* Power: Input: 5V @ 3A, Output: N/A (USB-C DRP Not sup-
ported)
HDMI

Transmitter: 1T66121

Connector: full-size

Other connectors

microSD

USB 2.0 type-A (480Mbit)

mikroBUS connector (I12C/UART/SPI/MCAN/MCASP/PWM/GPI(
Grove connector (I12C/UART/ADC/PWM/GPIO)

QWIIC connector (12C)

CSI connector compatible with BeagleBone Al-64, Rasp-
berry Pi Zero / CM4 (22-pin)

OLDI connector (40-pin)

AM6254 SoC

The low-cost Texas Instruments AM625 family of application

velopment. With scalable Arm® Cortex®-A53 performance
support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x device
well-suited for a broad range of industrial and automotive applications while offering intelligent features and

optimized power architecture as well.
Some of these applications include:
* Industrial HMI

¢ EV charging stations

processors are built for Linux® application de-
and embedded features, such as: dual-display

2.1. Introduction

35

BeagleBoard Docs, Release 1.0.20230711-wip

¢ Touchless building access
¢ Driver monitoring systems

AMG625 processors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC-Q100 automo-
tive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety requirements
can be addressed using the integrated Cortex-M4F core and dedicated peripherals, which can all be isolated
from the rest of the AM62x processor.

Tip: For more details checkout https://www.ti.com/product/AM625

The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking
(TSN) support. An additional PRU module on the device enables real-time I/O capability for customer’'s own
use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity,
such as: USB, MMC/SD, CSI Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external
ASIC/FPGA. The AM62x device also employs advanced power management support for portable and power-
sensitive applications.

Board components location

This section describes the key components on the board, their location and function.

Power Expansion

(use) Amo254]
)

Power and USB connectivity

UART

Debug) - of Display

Host

Monitor

Gigabit Ethernet

Network Connectivity Expansion

SinglePair Ethernet

Network Connectivity

Power & connectivity

LEDs

Expansion

oD D

LD Storage Button

Fig. 2.1: BeaglePlay board front components location

36 Chapter 2. BeaglePlay

https://www.ti.com/product/AM625

BeagleBoard Docs, Release 1.0.20230711-wip

Front components location

Table 2.2: BeaglePlay board front components location

Feature Description

RTC Battery BQ32002 Real Time Clock (RTC) Battery holder takes CR1220 3V battery

User LEDs Five user LEDs, Power and boot section provides more details. These LEDs are connect to the AM6254 SoC
JTAG (AM62) AM6254 SoC JTAG debug port

mikroBUS mikroBUS for MikroE Click boards or any compliant add-on

OLDI AM6254 OpenLDI(OLDI) display port

()] AM6254 Camera Serial Interface (MIPI CSI-2)

Grove SeeedStudio Grove modules connection port

QWIIC SparkFun QWIIC / Adafruit STEMMA-QT port for I2C modules connectivity

User Button

Programmable user button, also servers as boot mode slect button (SD Card/eMMC). Press down to select
SD Card as boot medium

SD Card

Use to expand storage, boot linux image or flash latest image on eMMC

Reset button

Press to reset BeaglePlay board (AM6254 SoC)

JTAG (CC1352)

JTAG debug port for CC1352P7

Power button

Press to shut-down (OFF), hold down to boot (ON)

Power & Connectivity
LEDs

Indicator LEDs for Power ON, CC1352 RF, and Single-pair connectivity

Single-pair Ethernet

Single-pair Ethernet connectivity port with power over data line

GigaBit Ethernet

1Gb/s Wired internet connectivity

HDMI Output Full size HDMI port for connecting to external display monitors
USB-A host port Port to connect USB devices like cameras, keyboard & mouse combos, etc
USB-C port Power and Device data role port

WL1807 2.4GHz/5GHz uFL
WL1807 2.4GHz/5GHz uFL

CC1352P7 2.4GHz uFL

CC1352P7 SubGHz uFL

wL1807MOD Jll DP83TD510E i RTL8211F Jll AM6254 |

Dualband 2.4G/5G WiFi SP-Ethernet Ethernet SoC

Antenna

16GB eMMC

Antenna Storage

[CC1352P7 oo

BLE+SubGHz

2GB DDR4

Memory

Antenna

RTC

Antenna

TPS6521901

PMIC

HDMI

¢ beagleboard.org

Fig. 2.2: BeaglePlay board back components location

2.1. Introduction

37

BeagleBoard Docs, Release 1.0.20230711-wip

Back components location

Table 2.3: BeaglePlay board back components location

Feature Description

CC1352P7 2.4GHz BLE + SubG IEEE 802.15.4 with 1 x 2.4GHz + 1 x SubG uFL antenna
WL1807MOD Dual band (2.4GHz & 5GHz) WiFi module with 2 x uFL antennas
DP83TD510E Single-pair IEEE 802.3cg 10BASE-T1L Ethernet PHY

RTL8211F Gigabit IEEE 802.11 Ethernet PHY

AM6254 Main SoC

16GB eMMC Flash storage

2GB DDR4 RAM / Memory

BQ32002 Real Time Clock (RTC)

TPS6521901 Power Management IC

IT66121 HDMI Transmitter

2.2 Quick Start Guide

2.2.1 What’s included in the box?

When you purchase a brand new BeaglePlay, In the box you'll get:
1. BeaglePlay board
2. One (1) sub-GHz antenna
3. Three (3) 2.4GHz/5GHz antennas
4. Plastic standoff hardware
5.

Quick-start card

38 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

2.2.2 Attaching antennas

Note: Attaching the antennas can be complicated. This is not the expected BeaglePlay experience and we
hope to fix it in the future. This is necessary if you plan to use any of the wireless connectivity features.

Important: Add documentation on attaching antennas here.

You can watch this video to see how to attach the attennas.

2.2. Quick Start Guide 39

BeagleBoard Docs, Release 1.0.20230711-wip

BeaglePlay

Unboxing & Antenna Connection

2.2.3 Tethering to PC

Tip:

vk W N

Checkout Getting Started Guide for,
Updating to latest software.

Power and Boot.

Network connection.

Browsing to your Beagle.

Troubleshooting.

For tethering to your PC you’ll need a USB-C data cable.

2.2.4 Access VSCode

Once connected, you can browse to 192.168.7.2:3000 to access the VSCode IDE to browse documents and
start programming your BeaglePlay!

Note:

You may get a warning about an invalid or self-signed certificate. This is a limitation of not having a
public URL for your board. If you have any questions about this, please as on https://forum.beagleboard.org/
tag/play.

2.2.5 Demos and Tutorials

Using Serial Console
Connect WiFi
Using QWIIC

Using Grove

40

Chapter 2. BeaglePlay

https://youtu.be/8zeIVd-JRc0
http://192.168.7.2:3000
https://forum.beagleboard.org/tag/play
https://forum.beagleboard.org/tag/play

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.3: Tethering BeaglePlay to PC

@ EXPLORER LICENSE X >O MmO -
 BEAGLEBOARD (WORKSPACE) examples > f LICENSE
+ examples 5 1 MIT License
~ BeagleBone /Black)
> gplod j Copyright (c) 2021 BeagleBoard.org
2
analogln.py 5 Permission is hereby granted, free of charge, to any person obtaining a copy
CRElEERER 6 of this software and associated documentation files (the "Software"), to deal
%@ analogInContinuous.py 7 in the Software without restriction, including without limitation the rights
analogInOut.js 8 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

analogInSync.js 9 copies of the Software, and to permit persons to whom the Software is
$ blinkInternalLED.sh 10 furnished to do so, subject to the following conditions:

"

blinkLED.bs.js 12 The above copyright notice and this permission notice shall be included in all
© Gl 13 copies or substantial portions of the Software.

blinkLED js 14
@ blinkLED.py 15 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
$ blinkLED.sh 16 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
@ bIinkLED2.py 17 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ blinkLEDold.py PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL PORTS Bbash ++ M @ ~ x

fadeLED.js -
@ fadeLED.py ® debian@BeaglePlay:~/examples$ neofetch "

inputjs _.met$$$$$gg. debian@BeaglePlay 1

BISSSSSSSEESSIIP. oo '

oS L g$$P" nYSS L, 0S: Debian GNU/Linux 11 (bullseye) aarch64 H
© README.md L$$P" “$$%. Host: BeagleBoard.org BeaglePlay
@ seqLEDs.py ' $$P 1885, “$$b: Kernel: 5.10.153-ti-arm64-r86

Tdss SSPY . $$$ Uptime: 51 mins
LED.|

SIPELEDS $5P ds' . $$P Packages: 1379 (dpkg) i
© GUTTEE $$: $6. - ,d$s' Shell: bash 5.1.4

BeagleBoard.code-workspace $$; Y$b._ _,d$P* Terminal: vscode

LICENSE Y$$. TLUYSSSSPT CPU: (4) @ 1.400GHz
® README.md S:l;‘ - Memory: 658MiB / 1927MiB

settings.json Y$s.

. L o
"Y$$b.
“"Y$b.

debian@BeaglePlay:~/examples$

> OUTLINE € v P 1

> TIMELINE

Spaces:4 UTF-8 LF Markdown Layout:us 0

X Pmain & ®0A0 Ln1,Col1

Fig. 2.4: BeaglePlay VSCode IDE (192.168.7.2:3000)

2.2. Quick Start Guide 41

BeagleBoard Docs, Release 1.0.20230711-wip

* Using mikroBUS

Using OLDI Displays
e Using CSI Cameras

» Wireless MCU Zephyr Development

2.3 Design and specifications

If you want to know how the BeaglePlay hardware is designed and what are it's high-level specifications then
this chapter is for you. We are going to discuss each hardware design element in detail and provide high-level
device specifications in a short and crisp form as well.

Tip: You can download BeaglePlay schematic to have clear view of all the elements that makes up the
BeaglePlay hardware.

BeaglePlay design repository

2.3.1 Block diagram

The block diagram below shows all the parts that makes up your BeaglePlay board. BeaglePlay as mentioned
in previous chapters is based on AM6254 SoC which is shown in the middle. Connection of other parts like
power supply, memory, storage, wifi, ethernet, and others is also clearly shown in the block diagram. This
block diagram shows the high level specifications of the BeaglePlay hardware and the sections below this are
going to show you the individual part in more detail with schematic diagrams.

BeaglePlay System Block Diagram

Load Switch... Power Source
25MHz Crystal
DPIDM use 1 RMIl2 & »FEE 802.30g 10BASETIL.] Barrel Jack ‘
USB Type-C Connector.. —2- p N . J
1V ———— > \VDODSDOR RGMIIt «—————> GigabitEthernet... RUA4S + Magnetics ‘

D — 18V VDDA_1P8_USB S I,

—— VDDA _1P8_CSL.. —_—
Reset Button } MMC_2 ¢————————|

— VDDA _1P8_OLDI WLAN_EN/32k_CLK _|WIFi/2.4G MIMO/5G SISO.. UFL..

GPIO —————————= 3|
VDDSHV2

[PowerButton } eMMG/ VEREE ANT1,ANT2: 2.4~2 5GHz; 5.1~5.8GHz
- MicroSD/ (48virz Giysil } ANT_2.4G: 2.4~25GHz
WiFi/ VDDSHV4 48MHz Crysial }—L i—{:]ez.mskm Cnystal | ANT SubG: 906-824 MHz
HDMI/ s)
VDDSHV5 USART 6 «——————————————»
PMIC TPS65219.. RGMIV o BLE/SUDG... UFL.. ‘
AMIV VDDSHV6 PO —— 5| i)

GPIo/ VDDS_0SC
— VDDSHV_MCU DSS_0 *:z;;a:is > m 'm‘
ransmitter.. e-
MCASP_{ ——————=" e
078V ———— > VDD CORE —
85V [—————————————» VDDR_CORE (—_—
o - =20 EN Current Limit Switch and. USB Type-A
oo urrent Limit Switch and... ype
VSEL_SD (—\LSE'.< GPIO -
e —— MMC_1 || Micro SD Card Socket
AMB2x |
VDD_3Vv3 - 4
cst AN1
MCU_SPIf «——————— | 2 Channel, 10-Bit A'D...
> DCDC.. 33V VDDSHVO - annel 10-81
l2c/
e T VDDSHV1 — Cso
SPI/ VDDSHV_CANUA.. PWM/AN/RST/INT
GPIO! oo RXD/TXD
UART_5 DASOL
D LDO.. VDD_1v0 123 SOASel
32.768KHz Crystal > RTC... AN2

Grove Connector..

eMMC 16GB MMC_0 12C1 | Crove Bonnecter ‘

— 12C2 {_ QuiicConnector |
DDRA4 8Gb 16bit DDR_0

(User Button B »cro

oLDI { FPC 40pin)

4 LED J—————cP e

(I ¥ Uoor CED N EHE csi C woaen)
25MHz Crystal ——m e

VPP { 2-PIN Header)

| 32.768KkHz Crystal

“Textis not SVG - cannot display

a2 Chapter 2. BeaglePlay

https://git.beagleboard.org/beagleplay/beagleplay

BeagleBoard Docs, Release 1.0.20230711-wip

2.3.2 System on Chip (SoC)

AM62x Sitara™ Processors from Texas Instruments are Human-machine-interaction SoC with Arm® Cortex®-
A53-based edge Al and full-HD dual display. AM6254 which is on your BeaglePlay board has a multi core design
with Quad 64-bit Arm® Cortex®-A53 microprocessor subsystem at up to 1.4 GHz, Single-core Arm® Cortex®-
M4F MCU at up to 400MHz, and Dedicated Device/Power Manager. Talking about the multimedia capabilities of
the processor you can connect upto two display monitors with 1920x1080 @ 60fps each, additionally there is
a OLDI/LVDS (4 lanes - 2x) and 24-bit RGB parallel interface for connecting external display panels. One 4 Lane
CSI camera interface is also available which has support for 1,2,3 or 4 data lane mode up to 2.5Gbps speed.
The list of features is very long and if you are interested to know more about the AM62x SoC you may take a
look at AM62x Sitara™ Processors datasheet.

AM62x
Application Cores MCUSS With FFI

- Arm® Arm®
Cortex™-A53 Cortex®-A53 Cortex®-M4F

System Memory

512KB L2 with ECC
DDR4/A.PDDR4
General Connectivity (Main Domain) General Connectivity with inline ECC 3x MMCSD
2-port Gb Ethernet w/ 1588 5l (16b) -

Multimedia

256KB TCM
Arm

Cortex®-A53 Cortex®-A53 64KB OCRAM

with ECC

8x UART 2x Display 3D Graphics

with DPI 2 .
and OLDI/LVDS Processing Unit
5x 2C

CSI2 w/DPHY
[e | e |

Security
HSM
coaseam @ wos s | ene | sws

System Services

sysem | 0M8 I Firevall |
-

Fig. 2.5: AM6254 SoC block diagram

CAN-FD UART

2x CAN-FD

Secure

Device/Power

Manager

2.3.3 Power management

Different parts of the board requires different voltages to operate and to fulfill requirements of all the chips on
BeaglePlay we have Low Drop Out (LDO) voltage regulators for fixed voltage output and Power Management

2.3. Design and specifications 43

https://www.ti.com/product/AM625
https://www.ti.com/lit/ds/symlink/am625.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Integrated Circuit (PMIC) that interface with SoC to generate software programable voltages. 2 x LDOs and 1
x PMIC used on BeaglePlay are shown below.

TLV75801 - LDO

vDD_1V8
T FL2120BA _
/ 13A ule
BLM18PG121SN1D | C204 TLV75801PDBVR VDD_1V0
R210 0402 1uF
10K 10V 034
1% C0402 1 5 3A TP27
R0402 = IN ouT O
3 4 U18 FB
EN - FB I VUm=055v R211 €263
= 100K 1uF
o 1% 10V
~ R0402 C0402
SOT23-5 ——
R212
Vout = Vfb x (1 + R211/ R212) 120K
= 0.55V x (1 + 100K /120K) S 1%
= 0.55V x 1.8333 R0402
=1.008V

Fig. 2.6: TLV75801PDBVR LDO schematic for 1V0 output

TLV62595 - LDO

VSYS_5V
€133
R138 R137 10uF
10K 10K 10V
1% 1% C0603 U12 VDD_3V3
R0402 [RO402 = 1180.47uH
6 5 3A TP26
VIN sw 2520 5.0A O
VDD_3V3_EN 1 3 C98120pF
° EN FB C040235V
TP1 VDD _3V3 PG 2 4 | R260270K, R307180 c134 C135
© PG GND R0402 % Ro4028\5\/ % —220F S—220F
R261100K, 25v 25v
TIV62595DMQR R0402 % l C0805 | C0805
yssg%fodildeldelmm

Vout = Vfb x (1 + R260/ R261)

0.6V x (1 + 450K/ 100K)
0.6V x 5.5
3.3v

Fig. 2.7: TLV62595DMQR LDO schematic for 3V3 output

TPS65219 - PMIC

2.3.4 General Connectivity and Expansion

One of the main advantage of using a Single Board Computer (SBC) is having direct accessibility of general
purpose input & output (GPIO) pins and other interfaces like 12C, SPI, ADC, PWM. Your BeaglePlay board shines
in this domain as well with mikroBUS connector that can take 1000s of click board from MikroElektronika, Grove
connector allows to connect hundereds of Grove modules from Seeed Studio, and QWIIC connector allows to
connect 12C modules like QWIIC modules from SparkFun or STEMMA QT modules from Adafruit. Note that
you also get one USB-A port and one USB-C port. BeaglePlay’s USB-A port with host support enables you to
connect any USB device like your keyboard & mouse. The USB-C connector allows you to power the board and

a4 Chapter 2. BeaglePlay

https://www.mikroe.com/
https://www.seeedstudio.com/grove.html
https://www.sparkfun.com/qwiic
https://www.adafruit.com/category/1005

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_CORE
VSYS 5V u17 T
075V P
Hpviner1 il - e
c62 LS ieineiz - Bucki [~ LXB12 cs0
10uF ——a7uF
10v 6.3V
C0603 - el o805
: VSYS_5V VDD_1v8
24 0
30 pvinez xB2 1720
ce3 Buck2 [c60
10uF 32 47uF
1oV - fek2 63V
C0603 0805
= VSYS SV VDD_1v2
26 fpunss b e 2 s - @ gen
64 Buck3 [csa
10uF 24 47uF
10v - rees 63V
C0805
VDD_3V3 VDD_1V8 VDD_3v3 VDD_SD
“' VDDA 0V85 =

6 7 0.4A \TP22 VDDA 1v8

207 PVIN_LDO1 -u.l.- VLDO1 (g 0.4A B VoD.2v5 VDD 1v8

2 LU 10034 vioos[21 LETS LI Voo 3v3
Sl A -2 o { yeas

c125s | cu2 | cus | a VDD 3V3 VSYSSV VSYS5V ca9 cas ca7 ca6
2. 20F T—2.2UF ——2.2uF ——2.2uF T220F Tm22u0F T2.2uF 220F 2 R159 0 R160
10v 10v ov 10v 13 | gy 10v 10v 10v 10v 10K > 10K
c0402_| coa02_| co402_| cos02 SYs INT LDO C0402 0402 C0402 coa02 S 1% S 1%
= = = 141 ooies L L L L R0402(R0402
RS54 2 R228 0 R161 cs3 c52 ° : : °
10K > 10K o 10K 2.20F T2.20F
1% S1w S 10v 10V 18
NRSTOUT MCU_PORZ[16,21]
R0402(R0402(Ro402_| cos02_| cod0 N L BRG]
- - PMIC_GPIO
113.18] 12€0.sCL 8 scL DIGITAL GPio H5
[13;18] 12C0_SDA PWR BTN 55 SDA GPO2 g =
{211 PWR BTN - £ GPOL [——x
[9] SD_VOLT SEL 3% VSEL SD/VSEL_DDR 15
[9,10,11,12,16,19] RESETSTATz 37| MODE RESET AGND 33
{161 PMIC_LPM_ENO [MODE_STBY Thermal Pa
TPS65219
RS5 -
58 QFN-32
R0402

Fig. 2.8: TPS65219 Power Management Integrated Circuit (PMIC) schematic

to connect the board to a PC. You can then connect via SSH or use the pre-installed VisualStudio Code editor
by putting the address 192.168.7.2:3000 in your web browser.

USB A & USB C

vsys_sv
s
vsYs_sv 1
- H ono: N
Fonor: N1
FicNoz N2 s | an
R9410 R1322 PAD 10uF=—=100nF I
R0402 ™ R0402 ™ A4 10v | 10v TYPEC 2.0
- TVSO0500DRVR C0603| €0201] USB2 0 TYPE C
SON-6(2x2)
sv A4/BINVBUS
Ao/B4VBUS
cc1 25
cc1
cc 85 £CL
113908 400maA
uip usBo_oP ir o2 uss_c om arl oo
Ap11 87
USBO yseoop BT useo ou AN uss ¢ or onz
PwrGrp:VDDA 1P8_USB, - o o % DpPL
4 AE10 R1314: DIWZTSNG00HQ2L x x B6
VDDA_3P3_USB USBO_RCALIB RSN oL 5 H R128 0 R129 DP2
Ac11 2017 SY2s S YPD25 P 51K » 51K s1
USBO_VBUS. 2 g 1% S 1% A8 SISy
e & Brisonaif Brisonef roioz] Rosoz oA ET 2155
UsB1 UsB1 P HAey L o pev o pev =
B 2 . £ £ B12 S5
USBL DM 8% Aus12i6ND S5 (5%
PWrGrp:VDDA_1P8_USB, aco 1308 A12/B1/GND 56
VDDA_3P3_USB USB1_RCALIB R0402 TR =+ =
s veus |-ABLO UsB1_VBUS = GND
GENERAL c20
PWIGrpIVDDSHVO 33V USBO-DRWEUS |E{X usen orvveus
593425005 T3xT3mm AWG2X 5
BGA425
SHL
L490R_400mA 1
USB_A_ DM 27| VBUs|p
— $om
—~ use A Dp
4 3 AL I a GND D
DLW21SN900HQ2L g
2952 mm < sH3_sh2
GND e
R1362 usB A sV
R0402 ™
13
R152 ST.USB-117A 1
10K usb7p_Lrd_Laxsr72mm =
1% GND
R0402
vsYs sv
us
e
3, IN out 4
s
o
R1331 1" 2 0irg
RD302 ™ [EN © D2
cuo
c | a3 sorf)
==1ou==100nF 10V
10V | 10V c1206
co603] co2o1 SOT23¢
=%y

Fig. 2.9: USB-A and USB-C

ADC102S051 - 2ch 10bit ADC

mikroBUS

2.3. Design and specifications 45

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_3V3

FB17120R

VDD_3V3A

0402 |/ 1.3A

[16] McU_SPi1_cs1 <&l

C56 C232 €233
10n|

100nF

1ov 6.3V 1ov
C0201 C0201| C0402

1uF

AIN2 R671K,

INFUIN

R0402

Fig. 2.10

] —

C234
100pF =

oV
C0402

SCLK
DOUT

[o0

IN1

<5y MCU_SPI1_CLK[16]
5o MCU_SPI1_DO[16]
<5y MCU_SPI1_D1[16]

R681K AIN1

ADC1025051

VSSOP-8

R0402 1%
C235

100pF
50V
C0402

: ADC102S051 - 12bit Aanalog to Digital Converter (ADC)

i
mikroBUS
[AN_MB1 ; AN PWM 12 PWM_MB1]
[RST_MB1 SIRST INT [NT_MB1
CS_MB1 4 CS RX e CC1352 RX _MB1_RX
SCK SCK X CC1352_TX_MB1_TX
IS0 51 MISO scL L2 SCL]
05 61 MosI spa |LL SDA
[3V3 71 +3.3v +5v [LO {BV
<£———Ji GND GND iL———:L
GND oND
15
mikroBUS
[AN_MB2 ; AN PWM 12 PWM_MB?2
[RST_MB2 51 RST INT £ NT_MB2
CS_MB?2 . CS RX CC1352 RX _MB2 RX
SCK sCK X {3 CC1352_TX_MB2_TIX
150 51 MISO scL fL2 SCL]
05! 61 Mos| spa [LL SDA
[3v3 71 433V +5v [LO BV
J;———Ji GND GND iL———;L
GND oND
Fig. 2.11: mikroBUS connector schematic
46 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Grove
VDI2=3V3
17
1
FB2712 AIN2 Bl 12C1_SCL[13]
5 2 FB261 * Bl I2C1_SDA[13]
6 3 FB251 ~ ~ =
1 FB312 x x
0402 1.3A [a) [a)
T c253 & D19 & D20
4P-2.0mm-90D —100nF 9 @
JST4p_smd_2_0_90d v u w
C0201 o [a)
|—| o~
_ - =
Fig. 2.12: Grove connector schematic
Qwiic
VDQ:3V3 VDD_1v8 VDIz:3V3 VDD_1v8
R255 1 R186 R254 1 R226
10K 2.2k 10K 2.2k
gg 1% 1% 1% 1%
T‘; VDIZ:SVS REMOZ3 -Izr) R0402 ROA%Z -IF B R0402
4P-1.0mm Q6
— BSS138W BSS138W
4 : 78129?1 QWIIC_SCl SOT-323-3 SOT-323-3 o
3 312 B 2 S5 Co-SbALL6)
1 512 x x
— 2 1.3A g 2
L YLy
cno)\zlolgH é‘

1

Fig. 2.13: QWIIC connnector for I2C modules

2.3.5 Buttons and LEDs

To interact with the Single Board Computers we use buttons for input and LEDs for visual feedback. On your
BeaglePlay board you will find 3 buttons each with a specific purpose: power, reset, and user. For visual
feedback you will find 5 user LEDs near USB-C port and 6 more indicator LEDs near your BeaglePlay’s Single
Pair ethernet port. Schematic diagrams below show how these buttons and LEDs are wired.

Buttons
Table 2.4: BeaglePlay buttons
Power Reset User
SW2Z
Swi SW1
1.7 SR J_‘ -1 S,
L 1 2 {oUT>MCU_PORz[5,16] L
1 2 o PWR_BTN[5] S2 - ! 1 2 o PWR_BTN[5]
l s1 - ‘dfggil s1 Shie\dr S3 1 J s1 rg%*l
% ngm-a . £ L TS23M-BN-PT-PF = % ng% -PT-PF =
L4.7*W3.5*H1.85mm-90D - L4.7*W3.5%H1.85mm-90D L4.7*W3.5*H1.85mm-90D
button2_3p_4d55x2d3x1d88mm button2_3p_4d55x2d3x1d88mm button2_3p_4d55x2d3x1d88mm
LEDs
2.3. Design and specifications 47

BeagleBoard Docs, Release 1.0.20230711-wip

[19] CC1352_LED2 [W>
[19] CC1352_LED1 [W>
[13] LED_USR4 [>
[13] LED_USR3 [Ww>
[13] LED_USR2 > VDD_3v3
[13] LED_USR1
[13] LED_USRO
R201 R202 R203 R204 R205 R206 R236 R237
2.2k 2.2k 2.2k 2.2k 2.2k 2.2k 2.2k 2.2k
1% 1% 1% 1% 1% 1% 1% 1%
R0402 R0402 R0402 R0402 R0402 R0402 R0402 R0402
- - - - - - - - -
LED8 LED9 LED10
LED3 LED4 LED5 LED6 LED7 Yellow Yellow w Yelow
159" 159" B89 o B o B e 0402 [y 0402 o 002
Green Green Green Green Green Yellow Yellow Yellow
| 20mA ~f 20mA ~| 20mA] 20mA | 20mA ~ 20mA 20mA ~ 20mA
3
Q10
|'."_'_L“ DMG1012T-7
R2392.2k 1 S0T523
[14,20] WLEN [W> Reas? .]
2
Fig. 2.14: BeaglePlay LEDs
2.3.6 Wired and wireless connectivity
Gigabit ethernet
C256190pF .
C020230V N
D73
TPD1EOBO4DPY
X1SON(2)

C2571¢0pF.

U-FL3P-SMD-2_6X2_6X1_OMM
1,

J5
U.FLR-SMT-1(10)

040230V

074
TPD1E0BO4DPY
X1SON(2)
36V
VDD_1v8 VDD_3v3 -
usA
el 47 18
VBAT_IN_1 RF_ANT2
T3A1/ 0402 48] VBATIN™ REANTI 22 VDD_1v8
£B21; 38 /DD
1Y o0 o WLAN_RS232 TX
86 c8s c83 | caa %3 T T v chos ¢ TAN RS237] e
==2.20F ==100nF ==10uF==100nF b2 Mg
10v ov 10v [10v % g fe o)
C0402 | C0201 | C0803| CO201 e - w7
T GPIOI1 9
FLADO 3% X GPIO12 =X Roaoa
%—307| BTAUDFSYNC 40
= 2% BToAUDCLK WLAN_EN (¢1q W] WLEN14.21]
TP4. BT_UART DBG 43 WL_IRQ_1V8 WL_IRQI14]
Tps 3 WIURRT DBG——az] BTVART.DBG 3
WI_UART_DBG WL_SDIO_CMD_1v8 5> WL_CMDI9]
T
B 41y 57N wL_sbio_ctk & W] WL_CLK(9]
(16] WKUP_CLKOUTO [L — 384 ext_32¢ WL_SDIO D0_1v8 HT Ty WLDO[9]
o7 *—35-| RESERVED3 WLISDIO DI 1V8 5 53 WLD1(9)
3100 23 RESERVED2 WLZSDIO D271V8 (5 5% WLTD2(9]
B = »—21{ RESERVED1 WLZSDIO_D3]1v8 55 WLD3(9)
Place close to each
| other to’avoid stub. WiT

VDD_1v8

Single pair ethernet

WL1807MOD - WiFi 2.4G/5G

CC1352P7 - BLE & SubGHz

100P-13.3*13.4*2mm

Fig. 2.15: Gigabit ethernet

R22
DNP

19%
R0402

2.3.7 Memory, Media and Data storage

DDR4

48

Chapter 2.

BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

vevssv
™ o P— Voo 1va [R
o um By a—
£
13] POEN 1% sV
VB0 50 ocnina)
05w
u13 C0402
18] o 00 vooA 33 163 2550 m -
i o610
18 Rx 02 DVDD_1 S00uH
4 rx 03 - CSTA0950RB-501 psep %2 o
RMII2_CRS_DVSPE_RX_DV_CRS DV CEXT 3 s1
e 2o > TSI

RILL_6PAC_1d27 21 15x13 8x13,
" me0m
500uH

[1016] MDIOD_MDC STy
! CSTAO950RB-501

0.16] MDIOO_MDIOZS

RMIZ_REF CLK1

[20 teoo
SUCIoUT pog3s
voo_1va TED; —RO201 B

RMI2_REF CLK2

507
codo2

" SeE wTn 2
0302 PWON_INT ol o Roo0R r2220
Rod0z =% e
5 cpoz
Gpioz [S—SH02
> X PAD Gpion [PZ—SHOL—
19101216191 PoRz_OUT [D>—p2—j—1—
5 N DPEITDSI0ERHER
58101216,08) ReseTSTAT, [——L oreToeE
S RsTn 2 1 VoD 3v3
53 VoD 3v3
R8520530716
500523 236
200mA donr
30v Imv
coz01
< cLKOUTO[13]
= = w2
o
1%
R0402
€256190pF . 1
040230V 3
073
TPD1E0BOADPY
X150N(2) =
3.6V
J5
= UFLRSMT-1(10)
U-FL3P-SMD-2_6X2_6X1_OMM
C257100pF . 1
040296V »
074
TPD1E0BO4DPY
X1SON(2) =
36v
VDD_1v8 VDD_3v3 -
Usa
Fe1p 4 8
VBAT_IN_1 RF_ANT2
T3A(/ 0402 6] yBaTIN REANTL 22 vDD_1v8
38 vio_n
WLAN RS232 TX _ ~TP9
*—2% BT _HCLRTS 1v8 apio1 HaE—ian Mgl o
%234 BIHCICTS 1v8 GPIO2 |52
X—g5 BIHCITX_1v8 GPIO4 52X
%224 BTHCIRX 1v8 GPIO9 [3—X R27
s6 GPIO10 75— 6 10K
8T AUD OUT %29 BTAUD_IN GPIO11 o
L= ——2H sTTAuD out GPIO12 [—X 02
%25 BTAUD_FSYNC 40
%88 BT7AUD CLK WLAN_EN 1T WL_EN(14,21]
T4 . BT UART DBG 43 WL_IRQ_IV8 B> WLIRQ[L4]
7Ps (W UART DBG_——az | BT (ART.08C s
WI_UART_DBG WL_SDIO_CMD_1v8 5> WL_CMDI9]
BT EN
41y 57N wL_sbio_ctk & W] WL_CLKis]
(16] WKUP_CLKOUTO [L 5= 34 £xt_32¢ WL_SDIO D0_1v8 HT 5y WL DO[9]
. *—9%+ RESERVED3 WLZSDIO DI_1V8 [T 55 WD)
R31DNR O——————— 57| RESERVED2 WL SDIO D2 1V8 (5 5 WLTD2(9]
o %—= RESERVEDL WLZSDIO_D3]1v8 55 WLD3(9)
Place close to each
ther & WiT
100P-13.3*13.4*2mm i
0
VDD_1v8 R0402

10v 255x2.0 x 1.omm
€020

Fig. 2.17: WL1807MOD dual-band (2.4G/5G) WiFi

2.3. Design and specifications 49

BeagleBoard Docs, Release 1.0.20230711-wip

Meu_3v3

s P! ot e
CC1352 RESET N £C1352 TMS za 13 RF N(2.4GHz)

S e
voos 2B
L2650 oA b sw VoD
I X

100 T22uF

10V 10 0008 Y
cozor | cosos Xt

3

VDDRE

7 027
RF P(SU-GHz)
1 RF Nisub-GHz) Troteosoeory |
36V

anld
RX/TX 5 GND [,

RXTX GND —
€18 0300°CIsAG036E BFI00d5 2xIaZsxImm g

T000F g1 5 0w, 25#H0.95mm
100PF 6p-L2.0°W1.25°H0.951

o201

ENES

221 bcourt
£GP

c19
——100pF
507

ccTzsEeT
QP48

o201

)
upLRSHTIGY)
ULIPSHD-2 652 X1 oMM

3
onF

c22
100pF
S0V [63v
o201 | ci

3.2x15 x0.9m:

VoD 3v3 ey 3v3 VODRF

FB51203)

T3
BLM18PG1215NID.

0402 s | car

e

Seos| Covos

L. L1 'R OIE
e Lo BOTE G
e leledls lole
[=[]# il
ETRETETE OTETE o
I 20 dBm BOM:
FCC: 890-930 MHz, L52 = 27nH
Layout Note: ETSI: 863-889 MHz, L52 = 18nH
.

Place €39, €40, Ca1 close to pin 13, pin 22, pinds. Place these capacitors close to pinds, pinds.

—4%

Layout Note:

Fig. 2.18: CC1352P7 Bluetooth Low Energy (BLW) and SubGHz connectivity

VDD_1V2 VDD_1v2 DDR_VPP
DDR_VREFCA
2 BRB0etRER (LCRRECPN= =R J
DDR_AQ P3 YY) G2 DDR_DQO
DOR AT p7? A0 80088808288 2338888888 &8¢ § DQO ¢ DDR DOT
DDR AD Al >>>>>>>>>> Qo0000nooa >> L DQl g DDR DQ2
_ R3 S555555555 o 3 _DQ
DDR_A3 7 A2 2 DQ2 'R7 DDR DQ3
DDR _AZ 3 A3 DQ3 I h3 DDR DQ4
DDR_A5 pg | A4 DQ4 IHg DDR DQ5
DDR_A6 p2 7| AS DQ5 3 DDR DQ6
DDR A7 Rg ' A6 DQ6 17 DDR DQ7
DDR_AS R2 7 A7 DQ7 A3 DDR DQB8
DDR_AQ R77 A8 DQ8 g3 DDR DQO
DDR_AID 37 A9 DQ9 7¢3 DDR_DQI0
—DDRAIT T2 ALO/AP DQ10 DDR_DQIT
—DDOR AT w7 All DQ1115 DDR_DQ12
W’_ T8 A12/BC_N DQ12 3] DDR_DQ13
Al13 DQ13 53 DDR-DQTZ
DDR _Al4 WEn L2 DQl4 157 DDR_DQ15
T DDRAIS CAS __wg | WE_N/AL4 pais
—DDR AT6 RAS 18 | CAS_N/A15 B7 DDR_UDQS_P
RAS_N/A16 UDQS T a7 DDR_UDQS_N
DDR_BAO N2 ubQs_c = =
DDR_BAL N8 | BAO G3 DDR_LDQS P
BAl LDQS. T F3 DDR_[DQS_N
DDR BGO M2 LbQs_ ¢
BGO E2 DDR_UDM
DDR_CLKP K7 NF/UDM_N/UDBI_N
DDR_CLKN K8 [CK_T E7 DDR_LDM
cK_C NF/LDM_N/LDBI_N
DDR_CKE DDR_ALERTN
= K21 cke ALERT_N P9 =
DDR_ODT K3 F9 R1240
oot 2Q R04OZB\/\/\ %
DDR_PARITY T3 —
= PAR -
DDR_TEN
= N9 f ren
DDR_CSn L7
DDR_ACThH 3| ¢S.N efeleletedededededeod T7 TP11
_ nunununununununun nunununununununununun
RESET_N S>S>5>3>3>3>3>3> >>3>3>3>3>3>>>>
Gt plniaisidiogie| YEeNEnETe
FBGA-96

Fig. 2.19: DDR4 Memory

50 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

eMMC/SD

vDD_1ve
RS QR6 QR7 JRE QRO DRID JRIL JRI2 0RI3 O Rl4
49,95 9.9k 49.0kS 49.9kS 9.9k 49.0k$ 49.9kS 49'9KS 49.0kS 10K
1% 3 6 Sy 0 S S1w S S S
Ro402(Ro402(Roa02 Ro402(Ro402(R0202[Ros02(Ro402f R0402[RO402 eMMC
™ EMMC_CLK vDD_3v3
Mmco_cLk [FABL Uzl
IC_DO
MMCo_ DATO HAAZ DT : DATO vee gs B2 Ll
MMCO MMCO_DAT1 DAT1
MMCO-DAT2 [552 = DAT2 vee s (2 ool
PWIGrp:VDDSHV4 | D: & 020110V
Tov MMCO_DAT3 [ag7 31) DAT3 J10 C6710010F
MMCO_DAT4 -acT . DAT4 vee 1o Cos0LI0V
c 05 DATS K9 C681004F
MMCO_DAT6 (&) DAT6 Ve K9 Co50L10V
MMCO_DAT7 — = DAT7
EMMC_CMD
mmco_cup 2 - s v
CMD
B22 _ R8OOR, SD_CLK C6 C701004F
X
MMCL_CLK =51 M g RI60R EMMC CLK S M6 | veeq_ce C020110V
0
uvct_oto [432 RO20L T 1 veea wa [cootidv
MMC1 MMC1_DAT1 2 1 H5 N4 C721004F
PWIGrp:VDDSHV5 MMC1_DAT2 53 [5.9.10,11,12,16,19] RESETSTATz [ID—ga5——— RCLK VeeQ N4 53010V
oo MMC1_DAT3 22— vecops |22 C731004F
sD_cMp L
mmc1_cup| A2 SO.CMD 1141 eMmc_RsTn D2 —> K5 {pst n b5 Y
VCCQ_Ps 020110V
D17 _ GPIO1 48 SD _CD 2 1 €754.7)
GENERAL MMC1_SDCD 76;"0] - (10,11,12,16,19] PORz_OUT))—‘W 4”402 v
PWIGrp:VDDSHVO mmcy_sowp |LL—CPOLES @i, 5p vour seus) Ros20s30m16 R20 0 RIS
Taav jovaved 49,95 10K
D25 R7933R D) m/ 1% 1%
MMC2_CLK R0201 5% WL_CLK[20] 30v, R0402[R0402
mmc2_paro |-82¢ Sy WL D0[20) = = vooi (<2 S
MMC2_DATL S5 WLD1(20] - - =
MMC2 mmc2 a2 [E23 S5 WLD2(20] safeqe 02832 sk HgX g
PWIGTD:VDDSHVG MMCZ_DAT3 D WLD3(20] oomEaS godadl ver2 Frox
mmc2_cup |24 <&> Wi_cMD(20] 202020 Q2000 g [KIO
A23 _ GPIOO_71 alo]] EMMCI6G-TB29-PZ90
MMC2_SDCD TBEEE SRRE| veeca1ss
M2 spwp | B23x GPI00.72
SOWP [R251
Bgad25_0d5_T3I3mm _AMG2x 10K
BGA425 1% = =
R0402
VoD 5D
woss T vDD_3v3 5D
a2 R QR QR QRIS QR QRN
voD_3v3 10K oK Sk Sk Sk Sk S ook
% m S S 1% 1% o]
R0402 R0402 [Ro402 [R0402 [R0402 [Ro402 [R0402| n haial
voD_3v3 VDD_3v3_5D 5D D2 DatA2 38
R60 oD 33
10K 21 R cs
B Yuw vour & Voo
R0402 so_cwx Hrs
031 so_pwh_en DL Hyon ot s0_00 [vss
o s DT
2 qon DATAL
sor0m1216191 ReseTsTATE VRS Lo g oxe o s
RB52053071G 25v [TPSZI918DBVR 0 0 % 5 =" 3 % TTF003] o
S0D-523 Cosos so723 &]] g § 5] E2
SWoi SWorSWowIYos Yo WorsSYos | | |
BXor AR aXiXTEXTEX” = e =T <
& Busoneiz o G g o o 63v | 1v | 1ov
gpe &8, &) &) 8| &) Bl Coao | cozon | coron MICRO_SD_ST_TF_0034_16_1x14_Smn
13 3 13 13 £ £ £ ml

Fig. 2.21: microSD Card storage slot

Board EEPROM

2.3.8 Multimedia I/O
HDMI

oLDI

Csl

2.3.9 RTC & Debug
RTC

UART Debug Port

AM62x JTAG & TagConnect

CC1352 JTAG & TagConnect

2.3. Design and specifications 51

BeagleBoard Docs, Release 1.0.20230711-wip

[5,13] 12C0_SCL

[5,13] 12C0_SDA

VDD_3V3
VDD _3V3

U20

I2C0 SCL 1 4 C266 R209
0 SDA SCL VvCC —100nF 10K

SDA 10V 1%
ves -2 C0201 R0402

wp 2 (8> EEP_WP[13]
FT24C32A-ELRT

SOT-23-5 R213
DNP
1%
R0402

Fig. 2.22: Board EEPROM ID

vsvs sv
VoD 3v3

D55RB520S30TIG

oo 100ma
nar
= sops23
nou =1 SBomasov ret
22908 1001 oy -
ma 0
e 1‘1—\‘2 Rosoa| Rosoz)
2 0 nu s om T2+
114,17] 12€2_SCL 5 TX2P
7] X Q) 5 200mA
ek a5y 1 b [EAAAS pe y P ——
ST e m— 10 167 e 2L 0P i P
SYSRSTN au oo Jem==1s ‘ o] gl
51 per op 122 A Clnis
e luZDmA HDMI_TX0- | o
5 e |22 ""' ing oz
D3 CEC
o Blue cec L ;Sgéi;& = 0.85x0.65 mm_ AOTTCE cec
g; poCsCL HOMI_DSCL X5
VOUTo0n o7 Boceon = O DO
1o 08 ovi_ssv s [
J— 1) bl oo [LA
J— 11 01 | Green RET
D—)10) D12 © VDD_3v3 o~
———vouTooIT g}j 82412 T R66 ~ o7 ~ b ~
——ourobt o1 5 D i 04 060 J 057 L 05
(1) vouro p16[= B i Edopsaosoavos
4 youroifE ole Roso2 o 0102 0402 0402
4 Xy Vs R
4l Vouto piors blo o8y
H e - A 404 A
4] VouTo bzor 02
14} vouro-oziw B30 L
lk \\/'O‘U;D,g;%) D22 veess 2
vouro wsmie__ga Soonr <1000 hamitop, 1015523 1x7_7x16. 40
VOUTO_VSYNC 64| oINE 10v 10V v o -
o o 1 D ooz 5|2 Coror | Covon | oo 1v2
NEBI T o e .
x o0z U TR
; 2 o112 T Lan [an | oms cr
18 mMcASPLACLKX
181 weaseL acu [5 scmex ovooiz 22 S Soone —=Soine =S ==Sout Soor
} : Pagn TV Tov" T v T v e
b i e — o] TETHETETE. TE
[14] McashiAxme s 252 pcct2 A
4] MCASPLAXRS [0 21 1283/5PDIF N l l i i i o 3 £
oo 1
s B o | cso | e | cus | s | cm | an cass | caus
ENTEST g OvDD_34 100nF 10uF 1nF 100nF 10uF ==100nF —=10uF 100nF ==10uF
TV Tasv ey v Tasv [aov T e 100" T 63
rse ST = ron | Coso | Coron | cosor | Coson | coson | Codor Bror | Coson
B onves g
Roso2 =
Voo v
oV Taov S
o1 | coron Cosoz
s 9
L
]
oLd! o010 Ace s SroTRo : 2
)_# 3
AB4. OLDIO_A1 P 4
PwrGrp:VDDA_1P8_OLDI 8tgl‘g,§;; AD3 OLDI0_ALN 2
B 7
oLoio azp 488 OB AT 8
OLDIO 2N 9
10
oLD0_Azp |47 OB AT 1
OLDIOASN 0 12
13
oLpio_aap 4SS S 1
OLDIO"AIN R 15
1
oLpio_asp 428 SR 17
OLDIOCASN REL 18
19
oLoio_acp 427 OB 2
OLDIO_ASN 5] 21
22
oLoi0_a7p [AEZ OB A7 5
OLDIOATN RAR 21
25
OLDIO_CLKOP S 26
OLDIO_CLKON — 27
28
OLDI0_CLKIP T 29
OLDIO_CLKIN = = 30
bgad25_0d5_13x13mm AMB2x 31
BGA425 32
33
34
TP SDA_IVE §2
TP_SCL_1IVE
37
38
VSYS_5V 39 2
a0 &
FPC 40pin-
252

Fig. 2.24: OLDI display interface

52

Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

u1K

cs|
PwrGrp:VDDA_1P8_CSIRX

CS10_RXPO
CSI0_RXNO

€S10_RXP1
CSI0_RXNL

€S10_RXP2
CSI0_RXN2

.

2

CAM_DO_N

AC1S
AB14

AM_DO_F

AE14.

CAM DL N

ADLL

AW DI P

AE13

ADI3

CAM_CK N
AW _CK P

PY IS

e | 1 i
con e A |
i
S0 o oY] B s Ry e 181 47
o Lo sasne - i 3
bgad25_0d5_13x13mm M;Zx rosoz o — 21,
= =+ & Fec 220 05mn
L med L s =
e Lom
(B0 AR e, T8
Sesian Sesion L
[16] WKUP_12C0_SCL ¢ Lt S0T3233 i
[16] WKUP12C0_SDA
Fig. 2.25: CSI camera interface
VDD _3V3 VDD _3V3
C261DNP
R162 2 C264 C040230V
10K 100nF X7
1% 10V u1s 2.768kHz)
R0402[€0201 .2 x 1.5 x 0.9mm
— 8 1 —
B vCC X1 -
R1630 7 J— 2 C265DIP
[13] RTCINT <BD—Rgaa N sm——Toe0seT & sow/mT x2 5 STpE
[2C0 SDA 5 SCL Vbackup 4
= SDA GND[—
BQ32002 =
8-S0IC(3.9mm) N
& J10
o CR1220
S X bat-cr1220
o
—
w
—
o
o
'____ pr—
Fig. 2.26: Real Time Clock (RTC)
VDD 3V3
Layout Note:
Add Silkscreen:
VDD 3V3
T RB520530T1 Pinl: GND
C55100hF R70 Pin2: RXD
C020110V SOD-523 10K Pin3: TXD 6
u10 200mA 1%
8 —— 11 30V R0402 1
TIvee TOEf DEBUG_RXD 7B
[13] UARTO_RXD g v 5y 2 X DEBUG _TXD 33
[13] UARTO_TXD [w > 2A GND > 5 N
— o o — Header 1x3 2.54m
SN74LVC2G241IDCUR —= a) o = eade ->4m
8.VESOP SYDbs I X D10 header3p_2d54_di
3 3
w w
— —
[a] [a]
o | o |
= — '____
Fig. 2.27: UART debug port
VDD _1V8 VDD_1V8
uUlB
EMUO E12 SOC_EMUO
MCU GENERAL fuug <l 1 a0
PwrGrp:VDDSHV_MCU Al10 SOC_TCK 100nF
1.8V TCK{ATL SOC_TDI R154 R155 10V R157
DI p15 SOC_TDO 10K 10K €0201 10K
TDO MB11 SOC TVS 1% 1% = 1%
TRQ_"S B10 SOC TRSTH R0402 [R0402 1o soc emun R040:
bgad25_0d5_13x13mm AM62X SOC_TMS f% 18 9 SOC TRSTH
BGA425 3 8 SOC_TDT
SOCTCK [4]3 8[7 —SOCEMUD
5|4 7[6 SOCTDO
— 5 6
J19
= DNP
DNP

Fig. 2.28: AM62 JTAG debug port and TagConnect interface

2.3. Design and specifications

53

BeagleBoard Docs, Release 1.0.20230711-wip

u9B
DIO_5 DIO_18 4@ MCU_3v3
DIO_6 DIO_19 5y
DIO_7 DIO_20 (5
P14 DIO 8 DIO 21 |55 117 o] 1o CC1352 RESETN
TP12 Dio 3 DIO_22 =3¢ L1352 TMS 215 Y5
DIO_10 DIO 23 |35 1352 0k i E & cc1352.TDI
| DIO 11 DIO 243 [orr>CC1352_LED1[21] _
(13] UART6 TXD[i>—BI20AA~—281T3 Dio12 DIO 25 |39 [ouT5CC1352 LED2(21] 514 7[% cciss2 o
[13] UART6 RXD <out B~ DIO'13 DIO 26 %9
L1bi012 D027 (42 - J
[13] CC1352_BOO 561 DIO_15 DIO 28 75 DI029 RF PA = DNP
TCI352 10l 27| DIOC16 DIO29133 DI030_RF_SUBIG bNp
——=————=11DI0_17 DIO_30
CC1352P7
QFN-48

Fig. 2.29: CC1352 JTAG debug port and TagConnect interface

2.3.10 Mechanical Specifications

Dimensions & Weight

Table 2.5: Dimensions & weight

Parameter Value

Size 82.5x80x20mm
Max heigh 20mm

PCB Size 80x80mm

PCB Layers 8 layers

PCB Thickness 1.6mm

RoHS compliant Yes

Weight 55.39

80.0

“B:.-“ .::l " a "'.:B-EE-" o an '
12
= oo oooooooo ﬂ
opopmomn 'E T fyc |
|

EEN [oo

80.0
56.4

N oy

)
O-4,°F Ty

D e 111 o af

Fig. 2.30: BeaglePlay board dimensions

54 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

16.4

1.6

Fig. 2.31: BeaglePlay board side dimensions

2.4 Expansion

Note: This chapter is a work in progress and will include information on building expansion hardware for
BeaglePlay.

2.4.1 mikroBUS
2.4.2 Grove
2.4.3 QWIIC
2.4.4 cCsl

2.4.5 OLDI

2.5 Demos and tutorials

2.5.1 Using Serial Console

To see the board boot log and access your BeaglePlay’s console you can connect a USB-UART cable as dipicted
in image below and use application like t i 0o to access the conole.

If you are using Linux your USB to UART converter may appear as /dev/ttyUSB. It will be different for Mac
and Windows operatig systems.

[lorforlinux@fedora ~] $ tio /dev/ttyUSBO
tio v2.5

Press ctrl-t g to quit

Connected

Tip: For more information on USB to UART cables, you can checkout Serial Debug Cables section.

2.4. Expansion 55

BeagleBoard Docs, Release 1.0.20230711-wip

AT

2 CR1220 1p19
ﬁ beagleboard.org =)0 = 5

USB - UART

Bridge

K'E]

&) |

Transmit (TX)
Recieve (RX)

Ground (GND) Ground (GND)

Fig. 2.32: Serial debug (USB-UART) cable connection.

2.5.2 Connect WiFi

If you have a monitor and keyboard/mouse combo connected, the easiest way is to use the wpa gui.
Alternatively, you can use wpa_cli over a shell connection through:

* the serial console,

* VSCode or ssh over a USB network connection,

» VSCode or ssh over an Ethernet connection,

* VSCode or ssh over BeaglePlay WiFi access point, or

* a local Terminal Emulator session.

Once you have a shell connection, follow the wpa cli instructions.

BeaglePlay WiFi Access Point

Running the default image, your BeaglePlay should be hosting a WiFi access point with the SSID “BeaglePlay-
XXXX”, where XXXX is selected based on a hardware identifier on your board to try to increase the chances it
will be unique.

Tip: The “XXXX" will be a combination of numbers and the letters A through F.

Note: At some point, we plan to introduce a captive portal design that will enable using your smartphone to
provide BeaglePlay local WiFi login information. For now, you’ll need to use a computer and

Step 1. Connect to BeaglePlay-XXXX

Tip: The password is either “BeaglePlay” or “BeagleBone” and the IP address will be 192.168.8.1.

56 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Whatever your computer provides as a mechanism for searching for WiFi access points and connecting to them,
just use that. You will want to have DHCP enabled, but that is the typical default. Connect to the “BeaglePlay-
XXXX" access point and use the password “BeaglePlay” or “BeagleBone”.

Note: The configuration for the access point is in the file system at /etc/hostapd/hostapd.conf.

Once your are connected to the access point, BeaglePlay should provide your computer an IP address and use
192.168.8.1 for itself. It should also be broadcasting the mDNS name “beagleplay.local”.

Step 2. Browse to0 192.168.8.1 Once you have connected to the access point, you can simply open VSCode
by browsing to https://192.168.8.1:3000.

Within VSCode, you can press “CTRL-‘" to open a terminal session to get access to a shell connection.

You could also choose to ssh into your board via ssh debian@192.168.8.1 and use the password temppwd.

Important: Once logged in, you should change the default password using the passwd command.

wpa_gui
Simplest way to connect to WiFi is to use wpa_ gui tool pre-installed on your BeaglePlay. Follow simple steps

below to connect to any WiFi access point.

Step 1: Starting wpa_gui You can start wpa_gui either from Applications > Internet >
wpa_gui or double click on the wpa_gui desktop application shortcut.

3 Applications - 4, %) Sat dFeb, 07:30 Beagle User

@ Run Program...
Terminal Emulator
8 File Manager

(- Mail Reader

@ Web Browser

78l Settings

(28 Accessories

1 Muttimedia
@ System
'/ About Xfce
© Log Out.

Fig. 2.33: Starting wpa_gui from Applications > Internet > wpa_gui

Step 2: Understanding wpa_gui interface Let's see the wpa_gui interface in detail,

1. Adapter is the WiFi interface device, it should be wlanO (on-board WiFi) by default.

2.5. Demos and tutorials 57

https://192.168.8.1:3000

BeagleBoard Docs, Release 1.0.20230711-wip

¥ Applications = %) Sat 4Feb,03:23 Beagle User

T Bl

Fig. 2.34: Starting wpa_gui from Desktop application shortcut

2. Network shows the WiFi access point SSID if you are connected to that network.

3. Current Status tab shows you network information if you are connected to any network.
* Click on Connect to connect if not automatically done.
 Click on Disconnect to disconnect/reset the connection.
e Click on Scan to scan nearby WiFi access points.

4. Manage Network tab shows you all the saved networks and options to manage those.

Step 3: Scanning & Connecting to WiFi access points To scan the WiFi access points around you, just
click on Scan button availale under wpa_gui > Current Status > Scan.

A new window will open up with,
1. SSID (WiFi name)
2. BSSID
3. Frequency
4. Signal strength
5. flags

Now, you just have to double click on the Network you want to connect to as shown below.

Note: SSIDs and BSSIDs are not fully visible in screenshot below but you can change the column length to
see the WiFi names better.

Final step is to type your WiFi access point password under PSK input field and click on Add (as shown in
screenshot below) which will automatically connect your board to WiFi (if password is correct).

58 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

3 Applications = (@ wpa_gui #) Sat 4Feb, 03:23 Beagle User

wpa_gui

File Network Help

Adapter: |wiano

Network: [
Current Status | Manage Networks | \:

Status: Inactive
Last message:
Authentication:
Encryption:

SSID:

BSSID:

IP address:

| Connect | |Disconnect|| Scan

Fig. 2.35: wpa_gui interface

3 Applications = (@ wpa_gui #) Sat 4Feb, 03:24 Beagle User

wpa_gui

File Network Help

Adapter: |wiano

Network: (Y
Current Status | Manage Networks | \:

Status: Inactive
Last message:
Authentication:
Encryption:

SSID:

BSSID:

IP address:

| Connect | |Disconnect|| Scan .L

Fig. 2.36: Scanning WiFi access points

2.5. Demos and tutorials 59

BeagleBoard Docs, Release 1.0.20230711-wip

¥ Applications : gy Wpa_gui

% Applications = g, wpa_gui

Wpatou

wpa_gui

File Network Help
Adapter: | wiano

Network: [|

Current Status | Manage Networks | E

Status:

Last message:
Authentication:
Encryption:
SSID:

BSSID:

IP address:

Inactive

| Connect | [Disconnect|| Scan |

u™ %) Sat 4 Feb, 03:24 Beagle User

Scan results

¢« BSSID frequency signal flags
[WPA-PSK-CCMP-+TKIPI[WPA2-PSK-C(
[WPA-PSK-CCMP+TKIP][WPA2-PSK-CC
[WPA-PSK-CCMP+TKIPI[WPA2-PSK-CC...
|[WPA-PSK-CCMP][WPA2-PSK-CCMP][ESS]
|[WPA-PSKTKIP[WPA2-PSK-CCMP][ESS]
|[WPA-PSK-CCMP+TKIPJ[WPA2-PSK+FT...
Sm | [WPA-PSKTKIPJ[WPA2-PSK+FT/PSK-CC...

Fig. 2.37: Selecting WiFi access point

Upside Down Labs -2.4G

SsID |Upside Down Labs -2.4G
Authentication | WPA2-Personal (PSK)
Encryption |CCMP

PSK (o0

EAP method 11~

Identity (

Password |
CA certificate |

wpa_gui

Scan results

¢« BSSID frequency signal flags
| [WPA-PSK-CCMP+TKIPJ[WPA2-PSK-C...
|[WPA2-PSK+FT/PSK-CCMPJ[ESS]
[WPA-PSK-CCMP+TKIPI[WPA2-PSK-C...
[WPA-PSK-CCMP+TKIPI[WPA2-PSK-C...
[WPA-PSK-CCMPI{WPA2-PSK-CCMP][
| [WPA-PSKTKIPI[WPA2-PSK-CCMP]IE.
|[WPA-PSK-CCMP][WPA2-PSK-CCMPI[
| [WPA-PSK-CCMP-+TKIPJ[WPA2-PSK-+
|[WPA-PSK-CCMP+TKIPJ[WPA2-PSK+
| [WPA-PSKTKIP][WPA2-PSK-+FT/PSK-
| [WPA-PSKTKIP][WPA2-PSK-CCMP]IE...
|[WPA-PSK-CCMPI[WPSI[ESS]
| [WPA2-PSK-CCMP][WPS][ESS]

Close |

WEP keys

File Network Help

Okey 0

Adapter:

|wlano

o 1

Network: |0: Upside Down Labs 5G

Okey 2

Current Status | Manage Networks | WPS |

Optional Settings

IDString |

Inner auth |

Status:

Last message:
Authentication:
Encryption:
SSID:

BSSID:

IP address:

[priority [0 [

Completed (station)
- Connection to 64:fb:92:76:al:ee comple
WPA2-PSK

CCMP + TKIP

Upside Down Labs 5G

64:fb:92:76:al:ee

192.168.1.39

isconnect||

Fig. 2.38: Connecting to WiFi access point

60

Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

wpa_cli (shell)

Swap out “mywifi” and “mypassword” with your network SSID and password, respectively.

debian@BeaglePlay:~$ wpa_cli scan

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ wpa_cli scan_results

Selected interface 'wlanO'

bssid / frequency / signal level / flags / ssid

68:ff:7b:03:0a:8a 5805 -49 [WPA2-PSK-CCMP] [WPS] [ESS] mywifi

debian@BeaglePlay:~$ wpa_cli add_network

Selected interface 'wlanO'

1

debian@BeaglePlay:~$ wpa_cli set_network 1 ssid ""mywifi”'

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ wpa_cli set_network 1 psk '"mypassword”’'

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ wpa_cli enable_network 1

Selected interface 'wlanO'

OK

debian@BeaglePlay:~$ ifconfig wlanO

wlanO: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 192.168.0.245 netmask 255.255.255.0 Dbroadcast 192.168.0.255
inet6 fe80::6e30:2aff:fe29:757d prefixlen 64 scopeid 0x20<link>
inet6 2601:408:c083:b6c0::e074 prefixlen 128 scopeid 0x0<global>
ether 6c¢:30:2a:29:75:7d txqueuelen 1000 (Ethernet)
RX packets 985 Dbytes 144667 (141.2 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 52 Dbytes 10826 (10.5 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 <collisions O

Important: The single quotes around the double quotes are needed to make sure the double quotes are
given to wpa_ cli. It expects to see them.

Note: For more information about wpa_cli, see https://wl.fi/wpa_supplicant/

To make these changes persistent, you need to edit /etc/wpa_supplicant/wpa_supplicant-wlan0.conf. This is
described in wpa cli (XFCE).

wpa_cli (XFCE)

Another way of connecting to a WiFi access point is to edit the wpa_supplicant configuration file.

Step 1: Open up terminal Open up a terminal window either from Applications > Terminal
Emulator Or from Task Manager.

Step 2: Setup credentials To setup credentials of your WiFi access point follow these steps,

1. Execute sudo nano /etc/wpa_supplicant/wpa_supplicant-wlanO.conf, which
will open up wpa_supplicant-wlanO.conf inside nano (terminal based) text editor. 2. Edit
wpa_supplicant-wlanO.conf to add SSID (WiFi name) & PSK (WiFi password) of your WiFi access
point.

2.5. Demos and tutorials 61

https://w1.fi/wpa_supplicant/

BeagleBoard Docs, Release 1.0.20230711-wip

 Applications = %) Mon 6 Feb, 20:07 Beagle User
@ Run Program..

B File Manager
(- Mail Reader
@ web Browser
) Settings

(28 Accessories
@ Internet.

14 Multimedia
s System

' About Xfce
® Lo

EEEHXT

Fig. 2.39: Open terminal from Applications > Terminal Emulator

¥ Applications = %) Mon 6 Feb, 20:07 Beagle User

TYER

Fig. 2.40: Open terminal from Task Manager

62 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

network={
ssid="WiFi Name”
psk="WiFi Password”

3. Now save the details using ctrl + O then enter.

4, To exit out of the nano text editoruse ctrl + X.

% Applications = | Terminal - debian@Bea... = %) Mon 6 Feb, 20:09 Beagle User

>- | Terminal - debian@BeaglePlay: ~
File Edit Viey Terminal Tabs Help
$ o /etc/wpa_supplicant/wpa_supplicant-wlan@.conf

TILEELE

Fig. 2.41: Run: $ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

Step 3: Reconfigure wlan0 The WiFi doesn’t automatically connect to your WiFi access point after you add
the credentials to wpa_supplicant-wlanO.conf.

1. To connect you can either execute sudo wpa_cli —-i wlanO reconfigure
2. Or Reboot your device by executing reboot inside your terminal window.

3. Execute ping 8.8.8.8 to check your connection. Use ctrl + C to quit.

debian@BeaglePlay:~$ ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seg=1 ttl=118 time=5.83 ms
64 bytes from 8.8.8.8: icmp_seg=2 ttl=118 time=7.27 ms
64 bytes from 8.8.8.8: icmp_seg=3 ttl=118 time=5.30 ms
64 bytes from 8.8.8.8: icmp_seg=4 ttl=118 time=5.28 ms
64 bytes from 8.8.8.8: icmp_seg=5 ttl=118 time=9.04 ms
64 bytes from 8.8.8.8: icmp_seg=6 ttl=118 time=7.52 ms
64 bytes from 8.8.8.8: icmp_seg=7 ttl=118 time=5.39 ms
64 bytes from 8.8.8.8: icmp_seg=8 ttl=118 time=5.94 ms

~C

-—— 8.8.8.8 ping statistics —-——

8 packets transmitted, 8 received, 0% packet loss, time 7008ms
rtt min/avg/max/mdev = 5.281/6.445/9.043/1.274 ms

2.5. Demos and tutorials 63

BeagleBoard Docs, Release 1.0.20230711-wip

% Applications Terminal - debian@Bea [¥) Mon 6Feb,20:17 Beagle User

-} Terminal - debian@BeaglePlay: ~ - g

File Edit View Terminal Tabs Help
GNU nano 5.4 7etc/wpa_supplicant/wpa supplicant-wlan®.conf *

ctrl_interface=DIR=/run/wpa_supplicant GROUP=netdev

update_config

pside Down Labs 56"
beagleboard.orgll
RSN

il

auth_alg=O0PEN
mesh_fwding=

K write out g Where Is B Execute @ Location ®
@i Read File @} Replace @ W@

LS

Fig. 2.42: Add SSID and PSK

% Applications Terminal - deblan@Bea o) Mon 6 Feb, 20:12 Beagle User
L}

File Edit View Terminal Tabs Help

[GNU nano 5.4 /etc/wpa supplicant/wpa supplicant-wlan@.conf *
ctrl_interface=DIR=/run/wpa_supplicant GROUP=netdev

update_config=1

p2p_disables

Terminal - debian@BeaglePlay: ~ RSN

hetwork={
ssid="Upside Down Labs 56"
psk="beagleboard.org"
proto=RSN

mesh_fwding=1

/etc/wpa_supplicant/wpa
A D05 Format -
Mac Format

Fig. 2.43: Save credentials (ctrl + O) and Exit (ctrl + X)

64 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Applications Terminal - debian@Bea. =) Mon 6 Feb, 20:14 Beagle User

| Terminal - debian@BeaglePlay: {7
|

File Edit View Terminal

Tabs Help
debian@BeaglePlay:~$ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan®.conf
debian@BeaglePlay:~$ sudo wpa_cli -i wlan® reconfigure

0K
debian@BeaglePlay:~$ I

eboara.org

A

Fig. 2.44: Connect to WiFi by running $ sudo wpa_cli -i wlan0 reconfigure

% Applications Terminal - debian@Bea. F' | L %) Mon 6Feb, 20:24 Beagle User

IF] Torminal - deblan@Beaglepiay: ~lax
File Edit View Terminal Tabs Help

debian@BeaglePlay:-$ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan®.conf
debian@BeaglePlay:~$ sudo wpa_cli -i wlan® reconfigure
ok

debiangBeaglePlay:~$ ping 8.8.8.8
ping: connect: Network is unreachable

.8.8
56(84) bytes of data.
: icmp_seq=1 ttl=118 time=7.99
.8.8.8: icmp_seq=2 ttl=118 time=5.46
bytes .8.8.8: icmp_seq=3 18
bytes .8.8.8: icmp_seq=4 18
bytes .8.8.8: icmp_seq 18
bytes .8.8.8: icmp_seq=6 18
bytes .8.8.8: icmp_seq=7
bytes .8.8.8: icmp seq=8 t
bytes .8.8.8: icmp_seq=9 time=11.0
ﬁ4 bytes .8.8.8: icmp_seq=10 118 tim

Fig. 2.45: To check connection try running $ ping 8.8.8.8

2.5. Demos and tutorials 65

BeagleBoard Docs, Release 1.0.20230711-wip

2.5.3 Using Grove

See QWIIC, STEMMA and Grove Add-ons in Linux.

A link to the appropriate 12C controller can be found at /dev/play/grove/i2c.

2.5.4 Using mikroBUS
Using boards with ClickiD
Steps:
1. Identify if mikroBUS add-on includes an ID. If not, ID must be supplied.
. ldentify if mikroBUS add-on is supported by the kernel. If not, kernel module must be added.

2
3. ldentify how driver exposes the data: 110, net, etc.
4. Connect and power

5

. Verify and utilize

What is mikroBUS? mikroBUS is an open standard for add-on boards for sensors, connectivity, displays,
storage and more with over 1,400 available from just a single source, MikroE. With the flexibility of all of the
most common embedded serial busses, UART, 12C and SPI, along with ADC, PWM and GPIO functions, it is a
great solution for connecting all sorts of electronics.

Note: Learn more at https://www.mikroe.com/mikrobus

What is ClickiD? ClickID enables mikroBUS add-on boards to be identified along with the configuration re-
quired to use it with the mikroBUS Linux driver. The configuration portion is called a manifest.

Note: Learn more at https://github.com/MikroElektronika/click_id

BeaglePlay’s Linux kernel is patched with a mikrobus driver that automatically reads the ClickID and loads a
driver, greatly simplifying usage.

Does my add-on have ClickiD? Look for the “ID” logo on the board. It should be on the side with the pins
sticking out, near the AN pin.

Todo: Need an image of the logo

If your add-on has ClickID, simply connect it while BeaglePlay is powered off and then apply power.

Example of examining boot log to see a ClicklD was detected.

debian@BeaglePlay:~$ dmesg | grep mikrobus

[2.096254] mikrobus:mikrobus_port_register: registering port mikrobus-0
[2.096325] mikrobus mikrobus-0: mikrobus port 0 eeprom empty probing.
—~default eeprom

[2.663698] mikrobus_manifest:mikrobus_manifest_attach_device: parsed.
—~device 1, driver=opt3001, protocol=3, reg=44

[2.663711] mikrobus_manifest:mikrobus_manifest_parse: Ambient 2 Click.
—manifest parsed with 1 devices

[2.663783] mikrobus mikrobus-0: registering device : opt3001

66 Chapter 2. BeaglePlay

https://www.mikroe.com/click
https://www.mikroe.com/mikrobus
https://github.com/MikroElektronika/click_id

BeagleBoard Docs, Release 1.0.20230711-wip

To use the add-on, see TBD below.

What if my add-on doesn’t have ClickiD?

It is still possible a manifest has been created for your add-on as we have created over 100 of them. You
can install the existing manifest files onto your BeaglePlay.

sudo apt update

sudo apt install bbb.io-clickid-manifests

cat /lib/firmware/mikrobus/amibient-light-click.mnfb > /sys/bus/mikrobus/
—devices/mikrobus—-0/new_device

Note: We will be adding a link to the mikrobus-0 device at /dev/play/mikrobus inthe near future,
but you can find it for now at /sys/bus/mikrobus/devices/mikrobus—0. If you need to supply
an ID (manifest), this is the directory where you will do it.

Manifesto: https://git.beagleboard.org/beagleconnect/manifesto

Patched Linux with out-of-tree Mikrobus driver: https://git.beagleboard.org/beagleboard/linux

Note: It'll forget on reboot... need to have a boot service.

Todo: To make it stick, ...

Using boards with Linux drivers

11O driver https://docs.kernel.org/driver-api/iio/intro.html

debian@BeaglePlay:~$ iio_info
Library version: 0.24 (git tag: v0.24)
Compiled with backends: local xml ip usb
ITO context created with local backend.
Backend version: 0.24 (git tag: v0.24)
Backend description string: Linux BeaglePlay 5.10.168-ti-arm64-r104
—#lbullseye SMP Thu Jun 8 23:07:22 UTC 2023 aarch64
IIO context has 2 attributes:
local,kernel: 5.10.168-ti-arm64-r104
uri: local:
IIO context has 2 devices:
iio:deviceO: opt3001
1 channels found:
illuminance: (input)
2 channel-specific attributes found:
attr O0: input value: 163.680000
attr 1: integration_time wvalue: 0.800000
2 device-specific attributes found:
attr O0: current_timestamp_clock value:.
—realtime

attr 1: integration_time_available value: 0.
-1 0.8
No trigger on this device
iio:devicel: adc102s051
2 channels found:
voltagel: (input)
(continues on next page)

2.5. Demos and tutorials 67

https://git.beagleboard.org/beagleconnect/manifesto
https://git.beagleboard.org/beagleboard/linux
https://docs.kernel.org/driver-api/iio/intro.html

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

2 channel-specific attributes found:

attr 0: raw value: 4084

attr 1: scale value: 0.805664062
voltageO: (input)
2 channel-specific attributes found:

attr 0: raw value: 2440

attr 1: scale value: 0.805664062

No trigger on this device

Storage driver

Network driver

How does ClicklD work?
Disabling the mikroBUS driver

If you'd like to use other means to control the mikroBUS connector, you might want to disable the mikroBUS
driver. This is most easily done by enabling a deivce tree overlay at boot.

Todo: Document kernel version that integrates this overlay and where to get update instructions.

Note: To utilize the overlay with these instructions, make sure to have TBD version of kernel, modules and
firmware installed. Use uname -a to determine the currently running kernel version. See TBD for information
on how to update.

Apply overlay to disable mikrobus0 instance.

echo ” fdtoverlays /overlays/k3-am625-beagleplay-release-mikrobus.dtbo” |.
—sudo tee —a /boot/firmware/extlinux/extlinux.conf
sudo shutdown —-r now

Log back in after reboot and verify the device driver did not capture the busses.

debian@BeaglePlay:~$ ls /dev/play

grove mikrobus qgwiic

debian@BeaglePlay:~$ ls /dev/play/mikrobus/

i2c

debian@BeaglePlay:~$ 1ls /sys/bus/mikrobus/devices/
debian@BeaglePlay:~$ ls /proc/device-tree/chosen/overlays/
k3-am625-beagleplay-release-mikrobus name
debian@BeaglePlay:~$

To re-enable.

sudo sed -e '/release-mikrobus/ s/ #*/#/' -i /boot/firmware/extlinux/
—extlinux.conf
sudo shutdown —-r now

Verify driver is enabled again.

debian@BeaglePlay:~$ ls /sys/bus/mikrobus/devices/
mikrobus-0
debian@BeaglePlay:~$ 1s /proc/device-tree/chosen/overlays/
(continues on next page)

68 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
1s: cannot access '/proc/device-tree/chosen/overlays/': No such file or.
—directory
debian@BeaglePlay:~$

Todo:
* How do turn off the driver?
* How do turn on spidev?
* How do | enable GPIO?

* How do a provide a manifest?

Todo:
* Needs udev

* Needs live description

2.5.5 Using QWIIC

See QWIIC, STEMMA and Grove Add-ons in Linux.

A link to the appropriate 12C controller can be found at /dev/play/qwiic/i2c.

2.5.6 Using OLDI Displays
2.5.7 Using CSI Cameras

2.5.8 Wireless MCU Zephyr Development

BeaglePlay includes a Texas Instruments CC1352P7 wireless microcontroller (MCU) that can be programmed
using the Linux Foundation Zephyr RTOS.

Developing directly in Zephyr will not be ultimately required for end-users who won’t touch the firmware running
on the CC1352 on BeaglePlay™ and will instead use the provided wireless functionality. However, itis important
for early adopters as well as people looking to extend the functionality of the open source design. If you are
one of those people, this is a good place to get started.

Further, BeaglePlay is a reasonable development platform for creating Zephyr-based applications for Beagle-
Connect Freedom. The same Zephyr development environment setup here is also described for targeting
applications on that board.

Install the latest software image for BeaglePlay

Note: These instructions should be generic for BeaglePlay and other boards and only the specifics of which
image was used to test these instructions need be included here moving forward and the detailed instructions
can be referenced elsewhere.

You may want to download and install the latest Debian Linux operating system image for BeaglePlay.

2.5. Demos and tutorials 69

https://www.ti.com/product/CC1352P7
https://www.zephyrproject.org/

BeagleBoard Docs, Release 1.0.20230711-wip

Note: These instructions were validated with the BeagleBoard.org Debian image BeaglePlay Debian 11.6
Flasher 2023-03-10.

1. Load this image to a microSD card using a tool like Etcher.
. Insert the microSD card into BeaglePlay.

. Power BeaglePlay via the USB-C connector.

. Remove power from BeaglePlay.

2

3

4. Wait for the LEDs to start blinking, then turn off.

5

6. IMPORTANT Remove microSD card from BeaglePlay.
7

. Apply power to BeaglePlay.

Note: This will flash the CC1352 as well as the eMMC flash on BeaglePlay.

Todo: Describe how to know it is working

Log into BeaglePlay

Please either plug in a keyboard, monitor and mouse or ssh into the board. We can point somewhere else for
instructions on this. You can also point your web browser to the board to log into the Visual Studio Code IDE
environment.

Todo: A big part of what is missing here is to put your BeaglePlay on the Internet such that we can download
things in later steps. That has been initially brushed over.

Flash existing IEEE 802.15.4 radio bridge (WPANUSB) firmware

If you’'ve recieved a board fresh from the factory, this is already done and not necessary, unless you want to
restore the contents back to the factory condition.

Background This WPANUSB application was originally developed for radio devices with a USB interface. The
CC1352P7 does not have a USB device, so the application was modified to communicate over a UART serial
interface.

For the BeagleConnect Freedom, a USB-to-UART bridge device was used and the USB endpoints were made
compatible with the WPANUSB linux driver which we augmented to support this board. To utilize the existing
WPANUSB Zephyr application and this Linux driver, we chose to encode our UART traffic with HDLC. This has the
advantage of enabing a serial console interface to the Zephyr shell while WPANUSB-specific traffic is directed
to other USB endpoints.

For BeaglePlay, the USB-to-UART bridge is not used, but we largely kept the same WPANUSB application, in-
cluding the HDLC encoding.

Note: Now you know why this WPAN bridge application is called WPANUSB, even though USB isn’t used!

70 Chapter 2. BeaglePlay

https://www.beagleboard.org/distros/beagleplay-debian-11-6-flasher-2023-03-10
https://www.beagleboard.org/distros/beagleplay-debian-11-6-flasher-2023-03-10
https://github.com/finikorg/wpanusb
https://git.beagleboard.org/beagleconnect/linux/wpanusb/
https://en.wikipedia.org/wiki/High-Level_Data_Link_Control
https://simple.wikipedia.org/wiki/USB#How_USB_works

BeagleBoard Docs, Release 1.0.20230711-wip

Steps

1. Ensure the bcfserial driver isn’t blocking the serial port.

echo ” fdtoverlays /overlays/k3-am625-beagleplay-bcfserial-no—
~firmware.dtbo” | sudo tee —-a /boot/firmware/extlinux/extlinux.
—conf

sudo shutdown -r now

Note: The default password is temppwd.

2. Download and flash the WPANUSB Zephyr application firmware onto the CC1352P7 on BeaglePlay from
the releases on git.beagleboard.org or distros on www.beagleboard.org/distros.

cd

wget https://files.beagle.cc/file/beagleboard-public-2021/images/
—download

unzip download

build/play/cc2538-bsl.py build/play/wpanusb

3. Ensure the bcfserial driver is set to load.

sudo sed —-e '/bcfserial-no-firmware/ s/ #*/#/' —-i /boot/firmware/
—extlinux/extlinux.conf
sudo shutdown —-r now

4. Verify the the 6LoWPAN network is up.

debian@BeaglePlay:~$ lsmod | grep bcfserial
bcfserial 24576 0 ©
mac802154 77824 2 wpanusb,bcfserial
debian@BeaglePlay:~$ ifconfig
SoftApO: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500

inet 192.168.8.1 netmask 255.255.255.0 broadcast 192.
—168.8.255

inet6 feB80::3eed:b0ff:fe7e:b5f7 prefixlen 64 scopeid.
—0x20<1ink>

ether 3c:e4:b0:7e:b5:f7 txqueuelen 1000 (Ethernet)

RX packets 4046 Dbytes 576780 (563.2 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 4953 bytes 5116336 (4.8 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
‘*)0

docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

inet 172.17.0.1 netmask 255.255.0.0 Dbroadcast 172.17.
—255.255

ether 02:42:£8:29:41:69 txgqueuelen 0 (Ethernet)

RX packets 0 Dbytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 Dbytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
'—)O

ethO: flags=4099<UP, BROADCAST,MULTICAST> mtu 1500

ether f4:84:4c:£fc:5d:13 txqueuelen 1000 (Ethernet)

RX packets 0 Dbytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
-0

(continues on next page)

2.5. Demos and tutorials 71

https://git.beagleboard.org/beagleconnect/zephyr/zephyr/-/releases
https://www.beagleboard.org/distros

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

lo: flags=73<UP, LOOPBACK, RUNNING> mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6 ::1 prefixlen 128 scopeid 0x10<host>

loop txgqueuelen 1000 (Local Loopback)

RX packets 246239 Dbytes 19948296 (19.0 MiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 246239 Dbytes 19948296 (19.0 MiB)

TX errors 0 dropped 0 overruns 0O carrier 0 collisions.
%O

lowpanO: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1280 ©@
inet6 fe80::200:0:0:0 prefixlen 64 scopeid 0x20<link> ®
inet6 2001:db8::2 prefixlen 64 scopeid 0x0<global> @
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 .
—txqueuelen 1000 (UNSPEC)
RX packets 107947 Dbytes 6629290 (6.3 MiB)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 2882 Dbytes 179511 (175.3 KiB) ©
TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
‘—}O

usb0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500

inet 192.168.7.2 netmask 255.255.255.0 Dbroadcast 192.
—168.7.255

inet6 fe80::1eba:8cff:fea2:edbb prefixlen 64 scopeid.
—0x20<1link>

ether 1c:ba:8c:a2:ed:6b txqueuelen 1000 (Ethernet)

RX packets 9858 Dbytes 2638440 (2.5 MiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 4155 bytes 1454082 (1.3 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
‘—>O

usbl: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500

inet 192.168.6.2 netmask 255.255.255.0 Dbroadcast 192.
—168.6.255

inet6 feB80::1eba:8cff:fea2:edb6d prefixlen 64 scopeid.
—0x20<1link>

ether 1c:ba:8c:a2:ed:6d txqueuelen 1000 (Ethernet)

RX packets 469614 Dbytes 35385636 (33.7 MiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 365548 Dbytes 66523708 (63.4 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
‘—>O

wlanO: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 192.168.0.161 netmask 255.255.255.0 Dbroadcast 192.

—~168.0.255

inet6 feB80::3eed:b0ff:fe7e:b5f6 prefixlen 64 scopeid.
< 0x20<1link>

inet6 2601:408:c083:b6c0::d00d prefixlen 128 scopeid.
—~0x0<global>

ether 3c:e4:b0:7e:b5:f6 txqueuelen 1000 (Ethernet)

RX packets 3188898 Dbytes 678154090 (646.7 MiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 1162074 bytes 293237366 (279.6 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions.
‘—)O

wpanO: flags=195<UP, BROADCAST, RUNNING, NOARP> mtu 123 ©®

(continues on next page)

72 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 .
—txqueuelen 300 (UNSPEC)

RX packets 108495 Dbytes 2539160 (2.4 MiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 2888 bytes 140523 (137.2 KiB)

TX errors 0 dropped 0 overruns 0O carrier 0 collisions.
t—>O

@ You'll want to see that the bcfserial driver has been loaded.

® There should be a lowpan0 interface.

® There should be a link-local address for lowpanO.

@ There should be a global address for lowpanO.

® Seeing some packets have been transmitted can give you some confidence.

® The wpanO interface should be there, but we have a 6LoWPAN adapter on top of it.

Note: You may find Linux-WPAN.org useful.

Setup Zephyr development on BeaglePlay

1. Download and setup Zephyr for BeaglePlay

cd
sudo apt update
sudo apt install --no-install-recommends -y \

gperf \

ccache dfu-util \

libsdl2-dev \

libxml2-dev libxsltl-dev libssl-dev libjpeg62-turbo-dev.
—libmagicl \

libtool-bin autoconf automake libusb-1.0-0-dev \

python3-tk python3-virtualenv
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/
—download/v0.15.1/zephyr-sdk-0.15.1_linux-aarch64_minimal.tar.gz
tar xf zephyr-sdk-0.15.1_linux-aarch64_minimal.tar.gz
rm zephyr-sdk-0.15.1_linux—aarché64_minimal.tar.gz
./zephyr-sdk-0.15.1/setup.sh -t arm-zephyr-eabi -c
west init -m https://git.beagleboard.org/beagleconnect/zephyr/
—zephyr —--mr sdk zephyr-beagle-ccl352-sdk
cd SHOME/zephyr-beagle-ccl1352-sdk
python3 -m virtualenv zephyr-beagle-ccl352-env
echo "export ZEPHYR _TOOLCHAIN_VARIANT=zephyr” >> SHOME/zephyr-—
—beagle-ccl1352-sdk/zephyr-beagle-ccl352-env/bin/activate
echo "export ZEPHYR_SDK_INSTALL_DIR=$HOME/zephyr-sdk-0.15.1" >>
— SHOME/zephyr-beagle-ccl1352-sdk/zephyr-beagle-ccl352-env/bin/
—activate
echo "export ZEPHYR BASE=$HOME/zephyr-beagle-ccl1352-sdk/zephyr” >
—> SHOME/zephyr-beagle-ccl1352-sdk/zephyr-beagle-ccl352-env/bin/
—activate
echo 'export PATH=SHOME/zephyr-beagle-ccl352-sdk/zephyr/scripts:
—$PATH' >> SHOME/zephyr—-beagle-ccl1352-sdk/zephyr-beagle-ccl1352-
—env/bin/activate
echo "export BOARD=beagleplay” >> $HOME/zephyr-beagle-ccl352-sdk/
—zephyr-beagle-ccl352-env/bin/activate
source S$HOME/zephyr-beagle-ccl352-sdk/zephyr-beagle-ccl1352-env/
—bin/activate

(continues on next page)
2.5. Demos and tutorials 73

https://linux-wpan.org/documentation.html

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

west update
west zephyr—-export
pip3 install -r zephyr/scripts/requirements-base.txt

2. Activate the Zephyr build environment

If you exit and come back, you’ll need to reactivate your Zephyr build environment.

source S$HOME/zephyr-beagle—-ccl352-sdk/zephyr-beagle-ccl1352-env/
—~bin/activate

3. Verify Zephyr setup for BeaglePlay

(zephyr-beagle—-ccl352-env) debian@BeaglePlay:~$ cmake —--version
cmake version 3.22.1

CMake suite maintained and supported by Kitware (kitware.com/
—cmake) .

(zephyr-beagle—-ccl1352-env) debian@BeaglePlay:~$ python3 —--version
Python 3.9.2

(zephyr-beagle-cc1352-env) debian@BeaglePlay:~$ dtc —--version
Version: DTC 1.6.0

(zephyr-beagle—-ccl352-env) debian@BeaglePlay:~$ west —-version
West version: v0.14.0

(zephyr-beagle-ccl352-env) debian@BeaglePlay:~$./zephyr-sdk-0.15.1/
—arm-zephyr—-eabi/bin/arm-zephyr-eabi-gcc —--version
arm-zephyr-eabi-gcc (Zephyr SDK 0.15.1) 12.1.0

Copyright (C) 2022 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. o

—~There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A._

—PARTICULAR PURPOSE.

Build applications for BeaglePlay CC1352

Now you can build various Zephyr applications

1. Build and flash Blinky example

cd $SHOME/zephyr-beagle-ccl1352-sdk/zephyr
west build -d build/play_blinky samples/basic/blinky
west flash -d build/play_blinky

2. Try out Micropython

cd

git clone -b beagleplay-ccl352 https://git.beagleboard.org/
—beagleplay/micropython

cd micropython

west build -d play ports/zephyr

west flash -d play

tio /dev/ttyS4

Build applications for BeagleConnect Freedom

1. Build and flash Blinky example

cd $SHOME/zephyr-beagle-ccl1352-sdk/zephyr
west build -d build/freedom_blinky -b beagleconnect_freedom.
(continues on next page)

74 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

—samples/basic/blinky
west flash -d build/freedom_blinky

2. Try out Micropython

cd

git clone -b beagleplay-ccl1352 https://git.beagleboard.org/
—beagleplay/micropython

cd micropython

west build -d freedom -b beagleconnect_freedom ports/zephyr
west flash —-d freedom

tio /dev/ttyACMO

Important: Nothing below here is tested

1. TODO
west build —-d build/sensortest zephyr/samples/boards/beagle_bcf/
—sensortest —- —-DOVERLAY_CONFIG=overlay-subghz.conf

2. TODO
west build -d build/wpanusb modules/lib/wpanusb_bc -- -DOVERLAY_

—CONFIG=overlay—-subghz.conf

3. TODO

west build -d build/bcfserial modules/lib/wpanusb_bc -- -
—~DOVERLAY_CONFIG=overlay-bcfserial.conf -DDTC_OVERLAY_
—FILE=bcfserial.overlay

4. TODO

west build -d build/greybus modules/lib/greybus/samples/subsys/
—greybus/net —- —-DOVERLAY_CONFIG=overlay-802154-subg.conf

Flash applications to BeagleConnect Freedom And then you can flash the BeagleConnect Freedom

boards over USB

1. Make sure you are in Zephyr directory

cd $HOME/bcf-zephyr

2. Flash Blinky

cc2538-bsl.py build/blinky

Debug applications over the serial terminal

Todo: Describe how to handle the serial connection

2.6 Support

2.6.1 Certifications and export control

2.6. Support

75

BeagleBoard Docs, Release 1.0.20230711-wip

Export designations

* HS: 8471504090
* US HS: 8473301180
* EU HS: 8471707000

Size and weight

¢ Bare board dimensions: 82.5 x 80 x 20 mm
* Bare board weight: 55.3 g
¢ Full package dimensions: 140 x 100 x 40 mm

e Full package weight: 125.3 g

2.6.2 Additional documentation
Hardware docs

For any hardware document like schematic diagram PDF, EDA files, issue tracker, and more you can checkout
the BeaglePlay design repository.

Software docs

For BeaglePlay specific software projects you can checkout all the BeaglePlay project repositories group.

Support forum

For any additional support you can submit your queries on our forum, https://forum.beagleboard.org/tag/play

Pictures

2.6.3 Change History

Note: This section describes the change history of this document and board. Document changes are not
always a result of a board change. A board change will always result in a document change.

Document Changes

For all changes, see https://git.beagleboard.org/docs/docs.beagleboard.io. Frozen releases tested against spe-
cific hardware and software revisions are noted below.

Table 2.6: BeaglePlay document change history
Rev Changes Date By

76 Chapter 2. BeaglePlay

https://git.beagleboard.org/beagleplay/beagleplay
https://git.beagleboard.org/beagleplay
https://forum.beagleboard.org/tag/play
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Board Changes

For all changes, see https://git.beagleboard.org/beagleplay/beagleplay. Versions released into production are

noted below.

Table 2.7: BeaglePlay board change history

Rev

Changes

Date

By

A2

Initial production version

2023-03-08

K

2.6. Support

77

https://git.beagleboard.org/beagleplay/beagleplay

BeagleBoard Docs, Release 1.0.20230711-wip

78 Chapter 2. BeaglePlay

Chapter 3

BeagleBone Al-64

BeagleBone® Al-64 brings a complete system for developing artificial intelligence (Al) and machine learning
solutions with the convenience and expandability of the BeagleBone® platform and the peripherals on board
to get started right away learning and building applications. With locally hosted, ready-to-use, open-source fo-
cused tool chains and development environment, a simple web browser, power source and network connection
are all that need to be added to start building performance-optimized embedded applications. Industry-leading
expansion possibilities are enabled through familiar BeagleBone® cape headers, with hundreds of open-source
hardware examples and dozens of readily available embedded expansion options available off-the-shelf.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

3.1 Introduction

This document is the System Reference Manual for BeagleBone Al-64 and covers its use and design. The board
will primarily be referred to in the remainder of this document simply as the board, although it may also be
referred to as Al-64 or BeagleBone Al-64 as a reminder.

This design is subject to change without notice as we will work to keep improving the design as the product
matures based on feedback and experience. Software updates will be frequent and will be independent of the
hardware revisions and as such not result in a change in the revision number.

Make sure you frequently check the BeagleBone Al-64 git repository for the most up to date support documents.

3.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

79

http://creativecommons.org/licenses/by-sa/4.0/
https://git.beagleboard.org/beagleboard/beaglebone-ai-64/

BeagleBoard Docs, Release 1.0.20230711-wip

3.2.1 Document Change History

This table seeks to keep track of major revision cycles in the documentation. Moving forward, we’ll seek to

align these version numbers across all of the various documentation.

Table 3.1: Table 1: Change History

Rev Changes Date By

0.0.1 Al-64 initial prototype September 2021 James Anderson

0.0.2 Al-64 final prototype December 2021 James Anderson

0.0.3 Al-64 initial production release June 9, 2022 Deepak Khatri and Jason Kridner

3.2.2 Board Changes

Be sure to check the board revision history in the schematic file in the BeagleBone Al-64 git repository . Also
check the issues list .

Rev B

We are starting with revision B based on this being an update to the BeagleBone Black Al. However, because
this board ended up being so different, we've decided to name it BeagleBone Al-64, rather than simply a new
revision. This refers to the Seeed release on 21 Dec 2021 of “BeagleBone Al-64_SCH_Rev B_211221". This is
the initial production release.

3.3 Connecting up your BeagleBone Al-64

This section provides instructions on how to hook up your board. This beagle requires a 5V > 3A power supply
to work properly via either USB Type-C power adapter or a barrel jack power adapter.

Recommended adapters:

* 5V @ 3A USB C power supply adapter for SBCs.

* 5V > 3A laptop/mobile adapter with USB-C cable.

All the Fig 3.1 BeagleBone Al-64 connections ports we will use in this chapter are shown in the figure below.

Barre

u%:

agh

HeatSink

Fig. 3.1: Fig 3.1 BeagleBone Al-64 connections ports

80

Chapter 3. BeagleBone Al-64

https://git.beagleboard.org/beagleboard/beaglebone-ai-64
https://git.beagleboard.org/beagleboard/beaglebone-ai-64/-/issues
https://www.digikey.com/en/products/detail/raspberry-pi/RPI-USB-C-power-supply-White-US/10258760

BeagleBoard Docs, Release 1.0.20230711-wip

3.3.1 Methods of operation

1. Tethered to a PC

2. Standalone development platform in a PC configuration using external peripherals

3.3.2 What’s In the Box

In the box you will find three main items as shown in Fig: BeagleBone Al-64 box content.
* BeagleBone Al-64.
* Instruction card.

A USB-C to USB-C cable is not included bot recommended for the tethered scenario and creates an out of box
experience where the board can be used immediately with no other equipment needed.

e

=

SeagleSoncaicq *
Duick start gutae

T

Fig. 3.2: Fig: BeagleBone Al-64 box content

3.3.3 Main Connection Scenarios
This section describes how to connect and power the board and serves as a slightly more detailed description
of the Quick Start Guide included in the box.
The board can be configured in several different ways, but we will discuss the two most common scenarios.
e Tethered to a PC via the USB cable

- Board 1s accessed as a storage drive and virtual Ethernet
connection.

* Standalone Desktop
- Display
- Keyboard and Mouse
- External 5V > 3A power supply

Each of these configurations is discussed in general terms in the following sections.

3.3.4 Tethered To A PC

In this configuration, the board is powered by the PC via a single USB cable. The board is accessed either as
a USB storage drive or via the browser on the connected PC. You need to use either Firefox or Chrome on the
PC, Internet Explorer will not work properly.

3.3. Connecting up your BeagleBone Al-64 81

BeagleBoard Docs, Release 1.0.20230711-wip

X | USBAtoUSBC
< | 5V23A

-«
USB g >

Fig. 3.3: Fig: Tethered Configuration

At least 5V @ 3A is required to power the board, In most cases the PC may not be able to supply sufficient
power for the board unless the connection is made over a Type-C to Type-C cable. You should always use an
external 5V > 3A DC power supply connected to the barrel jack if you are unsure that the system can provide
the required power or are otherwise using a USB-A to Type-C cable which will always require power from the
DC barrel jack.

Connect the Cable to the Board

1. Connect the type C USB cable to the board as shown in Fig: USB Connection to the Board. The connector
is on the top side of the board near barrel jack.

=== = PO MBEm B ws e

(R

SuE

[

For power and
tethered connection

additional peripherals are atta o
'] BeagleBone Al-64, such as on the USB ports,

increase the supply current accordingly.

Fig. 3.4: Fig: USB Connection to the Board

2. Connect the USB-A end of the cable to your PC or laptop USB port as shown in the Fig: USB Connection
to the PC/Laptop below.

3. The board will power on and the power LED will be on as shown in Fig: Board Power LED below.

4. When the board starts to the booting process started by the process of applying power, the LEDs will
come on in sequence as shown in Fig: Board Boot Status below. It will take a few seconds for the status
LEDs to come on, so be patient. The LEDs will be flashing in an erratic manner as it begins to boot the
Linux kernel.

82 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

USB-A_\j

For power and
tethered connection

Fig. 3.5: Fig: USB Connection to the PC/Laptop

POWE

This LED glows
green when you
power the board

.
Runnin
This LED blinks in a .
HeartBeat pattern when 3
the board is running 15
il

This LED blinks when
a data transfer
activity is detected

IE*_z/ U_ E

E2 E4

>
0
ot
<.
%

368

(S

384 d

Fig. 3.7: Fig: Board Boot Status

3.3.

Connecting up your BeagleBone Al-64

83

BeagleBoard Docs, Release 1.0.20230711-wip

Accessing the Board as a Storage Drive

The board will appear around a USB Storage drive on your PC after thekernel has booted, which will take a
round 10 seconds. The kernel on the board needs to boot before the port gets enumerated. Once the board
appears as a storage drive, do the following:

1. Open the USB Drive folder.
2. Click on the file named start.htm

3. The file will be opened by your browser on the PC and you should get a display showing the Quick Start
Guide.

4. Your board is now operational! Follow the instructions on your PC screen.

3.3.5 Standalone w/Display and Keyboard/Mouse

In this configuration, the board works more like a PC, totally free from any connection to a PC as shown in Fig:
Desktop Configuration. It allows you to create your code to make the board do whatever you need it to do. It
will however require certain common PC accessories. These accessories and instructions are described in the
following section.

'w~__—Ethernet

Connect to Internet

kPeri herals
Connect Mouse & Keyboard
’LDisPlo ’
Use Mini DP to HDMI Cable
Adaptor -

Use SV 2 3A power brick
USB-

For data transfer & tathering
™

WiFi + BT

Use M2 WIFI+BT card

Fig. 3.8: Fig: Desktop Configuration

Ethernet cable and M.2 WiFi + Bluetooth card are optional. They can be used if network access required.

Required Accessories

In order to use the board in this configuration, you will need the following accessories:
* 5V > 3A power supply.
* Display Port or HDMI monitor.

¢ miniDP-DP or active miniDP-HDMI cable (or a recommended miniDP-DP or active miniDP-HDMI
adapter https://www.amazon.com/dp/B089GF8M87 has been tested and worked beautifully).

e USB wired/wireless keyboard and mouse.

e powered USB HUB (OPTIONAL). The board has only two USB Type-A host ports, so you may need to use
a powered USB Hub if you wish to add additional USB devices, such as a USB WiFi adapter.

e M.2 Bluetooth & WiFi module (OPTIONAL). For wireless connections, a USB WiFi adapter or a recom-
mended M.2 WiFi module can provide wireless networking.

84 Chapter 3. BeagleBone Al-64

https://www.amazon.com/dp/B089GF8M87

BeagleBoard Docs, Release 1.0.20230711-wip

Connecting Up the Board

1. Connect the miniDP to DP or active miniDP to HDMI cable from your BeagleBone Al-64 to your monitor.

1 BBAI-64 miniDP to HDMI 2 BBAI-64 miniDP to DP

To Menitor's .
== To monitor's =
Ay
L, HDMI IN Chii < 2
, “‘"
/
/
To BBAI-64 ~
/) € iniDP OUT
To BBAI-64 T

r miniDP OUT
v -
v

Fig. 3.9: Fig: Connect miniDP-DP or active miniDP-HDMI cable to BeagleBone Al-64

2. If you have an Display Port or HDMI monitor with HDMI-HDMI or DP-DP cable you can use adapters as
shown in. Fig: Display adapters.

41 =BAI64 miniDP to HOMI 2 BBAI64 miniDP to DP

K 1
DMI OUT

Cannect to HDMI iniDP IN DP QU

coble to TV/Moritor conneet to mini Display Connect to Disgloy
Port of BBAI-64 board. Port to TV/Monitor

A\ Active adaptor is required! A\

Fig. 3.10: Fig: Display adapters

3. If you have wired/wireless USB keyboard and mouse such as

seen in Figkeyboard and Mouse below, you need to plug the receiver in the USB host port of the board
as shown in Figkeyboard and Mouse.

4. Connect the Ethernet Cable

If you decide you want to connect to your local area network, an Ethernet cable can be used. Connect the
Ethernet Cable to the Ethernet port as shown in Fig: Ethernet Cable Connection. Any standard 100M Ethernet
cable should work.

5. The final step is to plug in the DC power supply to the DC power jack as shown in Fig: External DC Power
below.

6. The cable needed to connect to your display is a miniDP-DP or active miniDP-HDMI. Connect the miniDP
connector end to the board at this time. The connector is on the top side of the board as shown in Fig:
Connect miniDP to DP or active miniDP to HDMI Cable to the Board below.

The connector is fairly robust, but we suggest that you not use the cable as a leash for your Beagle. Take
proper care not to put too much stress on the connector or cable.

3.3. Connecting up your BeagleBone Al-64 85

BeagleBoard Docs, Release 1.0.20230711-wip

Wired: Connect both USB cables
Wireless: Connect Bluetooth dongle(s)

Wired/Wireless
Mouse & Keyboard

Fig. 3.11: Figkeyboard and Mouse

Ethernet Coblf

Connect Ethernet cable
from router to Al-64

Fig. 3.12: Fig: Ethernet Cable Connection

arrel jack

Supply SV 2 3A

Fig. 3.13: Fig: External DC Power

86 Chapter 3.

BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

miniDP to DP or
active miniDP to HDMI
Cable/Adaptor

Fig. 3.14: Fig: Connect miniDP to DP or active miniDP to HDMI Cable to the Board

7. Booting the Board

As soon as the power is applied to the board, it will start the booting up process. When the board starts to boot
the LEDs will come on. It will take a few seconds for the status LEDs to come on, so be patient. The LEDs will
be flashing in an erratic manner as it boots the Linux kernel.

| |-

LED! it i
LED2 —g” @‘_@_!ﬂ
MH8

HeartBeat =p |4 -L| (mul)
microSD —p —m[z]

CPU ——p
eMMC ——p
WiFi =

Power LED [y 2

Fig. 3.15: Fig: BeagleBone Al-64 LEDs

While the four user LEDS can be over written and used as desired, they do have specific meanings in the image
that is shipped with the board once the Linux kernel has booted.

* USRO is the heartbeat indicator from the Linux kernel.

¢ USR1 turns on when the microSD card is being accessed

¢ USR2 is an activity indicator. It turns on when the kernel is not in the idle loop.

¢ USRS3 turns on when the onboard eMMC is being accessed.

* USR4 is an activity indicator for WiFi.

8. A Booted System

a. The board will have a mouse pointer appear on the screen as it enters the Linux boot step. You may
have to move the physical mouse to get the mouse pointer to appear. The system can come up in
the suspend mode with the monitor in a sleep mode.

b. After a minute or two a login screen will appear. You do not have to do anything at this point.

3.3. Connecting up your BeagleBone Al-64 87

BeagleBoard Docs, Release 1.0.20230711-wip

c. After a minute or two the desktop will appear. It should be similar to the one shown in Fig: Bea-
gleBone XFCE Desktop Screen. HOWEVER, it will change from one release to the next, so do not
expect your system to look exactly like the one in the figure, but it will be very similar.

d. And at this point you are ready to go! Fig: BeagleBone XFCE Desktop Screen shows the desktop
after booting.

Web Browser

TIEELD

Fig. 3.16: Fig: BeagleBone XFCE Desktop Screen

3.4 BeagleBone Al-64 Overview

BeagleBone Al-64 is the latest addition to BeagleBoard.org family and like its predecessors, is designed to
address the open-source Community, early adopters, and anyone interested in a low cost 64-bit Dual Arm®
Cortex®-A72 processor based Single Board Computer (SBC).

It has been equipped with a minimum set of features to allow the user to experience the power of the processor
and is not intended as a full development platform as many of the features and interfaces supplied by the
processor are not accessible from BeagleBone Al-64 via onboard support of some interfaces. Itis nota complete
product designed to do any particular function. It is a foundation for experimentation and learning how to
program the processor and to access the peripherals by the creation of your own software and hardware.

It also offers access to many of the interfaces and allows for the use of add-on boards called capes, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

BeagleBone Al-64 is manufactured and warranted by partners listed at https://beagleboard.org/logo for the
benefit of the community and its supporters including the current BeagleBoard.org Foundation board members

¢ Jason Kridner, principal of JK Embedded Consulting an independent contractor and architect for new
Beagle designs.

* Drew Fustini, independent Linux developer
* Robert Nelson, applications engineer at Digi-Key
¢ Mark Yoder, professor at Rose-Hulman Institute of Technology
* Kathy Giori, product engineer at ZEDEDA
See bbb.io/about

BeagleBone Al-64 has been designed by Seeed Studio (Seeed Development Limited) under guidance from
BeagleBoard.org Foundation.

88 Chapter 3. BeagleBone Al-64

https://beagleboard.org/logo
https://beagleboard.org/about

BeagleBoard Docs, Release 1.0.20230711-wip

3.4.1 BeagleBone Compatibility

The board is intended to provide functionality well beyond BeagleBone Black or BeagleBone Al, while still
providing compatibility with BeagleBone Black’s expansion headers as much as possible. There are several
significant differences between the three designs.

Table 3.2: Table: BeagleBone Compatibility

Feature Al-64 Al Black

SoC TDA4VM AM5729 AM3358

Arm CPU Cortex-A72 (64-bit) Cortex-Al5 (32-bit) Cortex-A8 (32-bit)
Arm cores/MHz 2x 2GHz 2x 1.5GHz 1x 1GHz

RAM 4GB 1GB 512MB

eMMC flash 16GB 16GB 4GB

Size 4" x 3.1 3.4" x2.1" 4" x2.1"
Display miniDP + DSI microHDMI microHDMI

USB host (Type-A) 2x 5Gbps 1x 480Mbps 1x 480Mbps

USB dual-role Type-C 5Gbps Type-C 5Gbps mini-AB 480Mbps
Ethernet 10/100/1000M 10/100/1000M 10/100M

M.2 E-key - -

WiFi/ Bluetooth - AzureWave AW‑CM2565M -

Todo: add cape compatibility details

3.4.2 BeagleBone Al-64 Features and Specification

This section covers the specifications and features of the board and provides a high level description of the

major components and interfaces that make up the board.

Table 3.3: Table: BeagleBone Al-64 Features and Specification

Feature

Processor

Texas Instruments TDA4VM

Graphics Engine

PowerVR® Series8XE GE8430

SDRAM Memory

LPDDR4 3.2GHz (4GB) Kingston Q3222PM1WDGTK-U

Onboard Flash

eMMC (16GB) Kingston EMMC16G-TB29-PZ90

PMIC

TPS65941213 and TPS65941111 PMICs regulator and one addi-
tional LDO.

Debug Support

2x 3 pin 3.3V TTL header
1. WKUP_UARTO: Wake-up domain serial port
2. UARTO: Main domain serial port

10-pin JTAG TAG-CONNECT footprint

Power Source

USB C or DC Jack (5V, >3A)

PCB

4" x3.1"

Indicators

1-Power, 5-User Controllable LEDs

USB-3.0 Client Port

Access to USBO, SuperSpeed, dual-role mode via USB-C (no power
output)

USB-3.0 Host Port

TUSB8041 4-port SuperSpeed hub on USB1, 2xType A Socket, up-
to 2.8A total, depending on power input

Ethernet Gigabit, RJ45, link indicator, speed indicator
SD/MMC Connector microSD , 1.8/3.3V
User Input
1. Reset Button
2. Boot Button
3. Power Button
Video Out miniDP
Audio via miniDP (stereo)
Weight 192gm (with heatsink)
Power Refer to main-board-power section

3.4. BeagleBone Al-64 Overview

89

BeagleBoard Docs, Release 1.0.20230711-wip

3.4.3 Board Component Locations

This section describes the key components on the board. It provides information on their location and function.

Familiarize yourself with the various components on the board.

3.4.4 Board components

Fig: BeagleBone Al-64 board components below shows the locations of the connectors, LEDs, and switches on

the PCB layout of the board.

BeagleBone Al-64

Expansion headers compatible with many Boot button
BeagleBone® cape add-on boardse Power button

Reset button

M.2 E-key connector with PCle, o
USB, and SDIO for WiFi/Bluetooth S8

. 16-pin microcontroller header
and expansion

Gigabit Ethernet

Dual USB super-speed
(5Gbps) Type-A host ports

5 user LEDs and \
1 power LED

Wake-up domain \‘;“;(
serial port -t :;:.'q‘

Main domain serial port —

USB super-speed (5Gbps) Type-C port
with power input (5V@3A)

Bottom-side:

* Texas Instruments TDA4VM system-on-chip
with dual Arm" Cortex”-A72, C7x DSP, and
deeplearning, vision and multimedia accelerators

* 4GB DDR4 RAM

___Mini-DisplayPort
5V input power

* 16GB on-board eMMC flash storage

* Micro-SD slot

* Dual CSI-2 camera connectors

Fig. 3.17: Fig: BeagleBone Al-64 board components

* DC Power is the main DC input that accepts 5V power.

* Power Button alerts the processor to initiate the power down sequence and is used to power down the

board.

* GigaBit Ethernet is the connection to the LAN.

» Serial Debug ports WKUP_UARTO for early boot from the management MCU and UARTO is for the main

processor.

¢ USB Client is a USB-C connection to a PC that can also power the board.

*« BOOT switch can be used to force a boot from the microSD card if the power is cycled on the board,

removing power and reapplying the power to the board.
e There are five green LEDs that can be used by the user.
* Reset Button allows the user to reset the processor.
* microSD slot is where a microSD card can be installed.

* miniDP connector is where the display is connected to.

* USB Host can be connected different USB interfaces such as Wi-Fi, Bluetooth, Keyboard, etc.

On bottom side we have,
* TI TDA4VM processor.
* 4GB LPDDR4 Dual Data Rate RAM memory.

20

Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

« Ethernet PHY physical interface to the network.

*« eMMC onboard MMC chip that holds up to 16GB of data.

3.5 BeagleBone Al-64 High Level Specification

Fig: BeagleBone Al-64 Key Components below shows the high level block diagram of BeagleBone Al-64 board
surrounding TDA4VM SoC.

BeagleBone Al -64

. N MCU_BOOTMODEO03
Boot Mode Configuration Boot Mode
Pull-Up Pull-Down Resistor | <72 550TMGES Button
SYS_BOOTMODE MCU_BOOTMODE
Ethernet PHY
UsBO MCU_RGMII] xRias w/
SERDES3(2L) Magnetics
Tag-Connect
e o *l 10Pin
—wKuP_i2co
WKUP_UARTO Buffer Debug UART
EEPROM 4Kbit SN74LVC2G241 Pin Header
24FCO4HT-1/0T
UsB2.0_Hs 1 UARTO Buffer Debug UART
0583055 1 SN74LVC2G241 Pin Header
leuss.oss.1

Power Input 1 Power Input 2

DC Jack
& BBB P9
5V only

USBTYPE C
5V 3A Only
UsB3.0

Power MUX
TPS2121

BUCK REG
(3.3v)
LM5141RGET

o USB2.0_HS_2
USB3.0 Type A L HS Timer g
UsB3.0 55 2 H
PWM g
2
MCASP 8 _
USB3OHUB | use_h UART K3 §
[Biparsion Header AR E@ use1 e HY
7 1toa DES2 (1L) = =
U520 1154 MCU_ADC 2
msoes] TDA4VM ©° s
ecie 102
(21) MCU_ADC1 [+—— o
Ze
PCle M.2Conn (Key E) 2 SoC MCU_SPI1 3E
ASOBC27-S40BE-7H ‘_’UARATsle MCU_TIMER_IO 39
MCU_UARTO IR E
0 s 2 £
MCU_I2C1 L
=3
MiniDP Conn [DPOU seppEsq Tx (RET |
iadis LADE Cs10 Conn

el (RPi) 22Pin

alane
eMMC (16GB) 8b
e e
Eial (RPi) 22Pin
4lane
LPDDR4 (4GB) 32b
o EEIGTOET)
22Pin
4tane

DSI-TX
Micro SD 4b MMC1
'YLOO4-030-001
Crystal
WKUP_0SCO
19,22 - MCU_PORz| Reset Button
Crystal
2.5792mhz [105 GPIO) —W

Fig. 3.18: Fig: BeagleBone Al-64 Key Components

3.5.1 Processor

BeagleBone Al-64 uses Tl J721E-family TDA4VM system-on-chip (SoC) which is part of the K3 Multicore SoC ar-
chitecture platform and it is targeted for the reliability and low-latency needs of the automotive market provide
for a great general purpose platform suitable for industrial automation, mobile robotics, building automation
and numerous hobby projects.

The SoC designed as a low power, high performance and highly integrated device architecture, adding sig-
nificant enhancement on processing power, graphics capability, video and imaging processing, virtualization
and coherent memory support. In addition, these SoCs support state of the art security and functional safety
features. For the remaining of this section device, SoC, and processor will be used interchangeably.

Some of the main distinguished characteristics of the device are:

3.5. BeagleBone Al-64 High Level Specification 91

https://www.ti.com/product/TDA4VM

BeagleBoard Docs, Release 1.0.20230711-wip

64-bit architecture with virtualization and coherent memory support, which leverages full processing
capability of 64-bit Arm® Cortex®-A72

Fully programmable industrial communication subsystems to enable future-proof designs for customers
that need to adopt the new Gigabit Time-sensitive Networks (TSN) standards, but still need full support
on legacy protocols and continuous system optimization over the product deployment

Integration of vision hardware processing accelerators to facilitate extensive processing requirements in
low power budget for automotive ADAS and machine vision applications

Integration of a general-purpose microcontroller unit (MCU) with a dual Arm® Cortex®-R5F MCU subsys-
tem, available for general purpose use as two cores or in lockstep, intended to help customers achieve
functional safety goals for their end products

Integration of a next-generation fixed and floating-point C71x Digital Signal Processor (DSP) that signifi-
cantly boosts power over a broad range of general signal processing tasks for both general applications
and automotive functions which also incorporates advanced techniques to improve control code effi-
ciency and ease of programming such as branch prediction, protected pipeline, precise exception and
virtual memory management

Tightly coupled Matrix Multiplication Accelerator (MMA) that extends the C71x DSP architecture’s scalar
and vector facilities enabling deep learning and enhance vision, analytics and wide range of general ap-
plications. The achieved total TOPS (Tera Operations Per Second) performance significantly differentiates
the device for single board computer in machine vision and deep learning applications

Key display features including flexibility to interface with different panel types (eDP, DSI, DPI) with multi-
layer hardware composition

Integration of hardware features that help applications to achieve functional safety mechanisms

Robust security architecture with sandboxed DMSC controller managing all secure configurations with
high performance client-server messaging scheme between secure DMSC and all cores

Simplified solution for power supply management, enabling lower cost system solution (on-die bias LDOs
and power good comparators for minimal power sequencing requirements consistent with low cost supply
design)

The device is composed of the following main subsystems, across different domains of the SoC,
among others:

One dual-core 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz and up to 24K DMIPS
(Dhrystone Million Instructions per Second)

Up to three Microcontroller Units (MCU), based on dual-core Arm Cortex-R5F processor running at up to
1.0 GHz, up to 12K DMIPS

Up to two TMS320C66x DSP CorePac modules running at up to 1.35 GHz, up to 40 GFLOPS
One C71x floating point, vector DSP running at up to 1.0 GHz, up to 80 GFLOPS
One deep-learning MMA, up to 8 TOPS (8b) at 1.0 GHz

Up to two gigabit dual-core Programmable Real-Time Unit and Industrial Communication Subsystems
(PRU_ICSSG)

Two Navigator Subsystems (NAVSS) for data movement and control

One multi-pipeline Display Subsystem (DSS) with one MIPI® Display Serial Interface Controller (DSI)
and shared MIPI D-PHY Transmitter (DPHY_TX), one Embedded DisplayPort Transmitter (EDP) with shared
Serializer/Deserializer (SERDES), and two MIPI Display Pixel Interface (DPI) ports

Two Camera Streaming Interface Receivers (CSI_RX_IF) with dedicated MIPI D-PHYs (DPHY_RX)

One Camera Streaming Interface Transmitter (CSI_TX_IF) with MIPI D-PHY Transmitter (DPHY_TX) shared
with DSI

One Vision Processing Accelerator (VPAC) with image signal processor

One Depth and Motion Processing Accelerator (DMPAC)

92

Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

One dual-core multi-standard HD Video Decoder (DECODER)

One dual-core multi-standard HD Video Encoder (ENCODER)

One Graphics Processing Unit (GPU)

One Device Management and Security Controller (DMSC)

The device provides a rich set of peripherals such as:

¢ General connectivity peripherals, including:

Two 12-bit general purpose Analog-to-Digital Converters (ADC)
Ten Inter-Integrated Circuit (I2C) interfaces
Three Improved Inter-Integrated Circuit (I3C) controllers

Eleven master/slave Multichannel Serial Peripheral Interfaces
(MCSPTI)

Twelve configurable Universal Asynchronous Receiver/Transmitter
(UART) interfaces

Ten General-Purpose Input/Output (GPIO) modules

* High-speed interfaces, including:

Two Gigabit Ethernet Switch (CPSW) modules

Two Dual-Role-Device (DRD) Universal Serial Bus Subsystems (US-—
BSS) with integrated PHY

Four Peripheral Component Interconnect express (PCIe) Gen3 sub-
systems

* Flash memory interfaces, including:

One Octal SPI (OSPI) interface and one Quad SPI (QSPI) or one
QSPI and one HyperBus”TM"

One General Purpose Memory Controller (GPMC) with Error Location
Module (ELM) and 8- or 1l6-bit-wide data bus width (supports
parallel NOR or NAND FLASH devices)

Three Multimedia Card/Secure Digital (MMCSD) controllers

One Universal Flash Storage (UFS) interface

¢ Industrial and control interfaces, including:

Sixteen Controller Area Network (MCAN) interfaces with flexible
data rate support

Three Enhanced Capture (ECAP) modules
Six Enhanced Pulse-Width Modulation (EPWM) subsystems

Three Enhanced Quadrature Encoder Pulse (EQEP) modules

¢ Audio peripherals, including:

One Audio Tracking Logic (ATL)

Twelve Multichannel Audio Serial Port (MCASP) modules supporting
up to 16 channels with independent TX/RX clock/sync domain

* One Video Processing Front End (VPFE) interface module

The device also integrates:

* Power distribution, reset controls and clock management components

* Power-management techniques for device power consumption minimization:

3.5. BeagleBone Al-64 High Level Specification 93

BeagleBoard Docs, Release 1.0.20230711-wip

- Adaptive Voltage Scaling (AVS)

- Dynamic Frequency Scaling (DFS)

- Gated clocks

- Multiple voltage domains

- Independently controlled power domains for major modules
- Voltage and Temperature Management (VIM) module

- Power—-on Reset Generators (PRG)

- Power Sleep Controllers (PSC)

Optimized interconnect (CBASS) architecture to enable latency-critical real time network and 10 applica-
tions

Control modules (CTRL_MMRs) mainly associated with device top-level configurations such as:
- I0 Pad and pin multiplexing configuration
- PLL control and associated High-Speed Dividers (HSDIV)
- Clock selection
- Analog function controls

Multicore Shared Memory Controller (MSMC)

DDR Subsystem (DDRSS) with Error Correcting Code (ECC), supporting LPDDR4

1KB RAM with ECC support for C71x boot vectors

2KB RAM with ECC support for A72 and R5F boot vectors

512KB On-Chip SRAM protected by ECC

One Global Time Counter (GTC) module

Thirty 32-bit counter timers with compare and capture modes

Debug and trace capabilities

The device includes different modules for functional safety requirements support:

MCU island with dual lock step Arm Cortex-R5F
Safety enabled interconnect with implemented features to help with Freedom From Interference (FFI)

Twelve Real Time Interrupt (RTI) modules with Windowed Watchdog Timer (WWDT) functionality to mon-
itor processor cores

Sixteen Dual-Clock Comparators (DCC) to monitor clocking sources during run-time
Three Error Signaling Modules (ESM) to enable error monitoring

Temperature monitoring sensors

ECC on all critical memories

Dedicated hardware Memory Cyclic Redundancy Check (MCRC) blocks

The device supports the following main security functionalities among others:

Secure Boot Management

Public Key Accelerator (PKA) for large vector math operation

Cryptographic acceleration (AES, 3DES, MD5, SHAL, SHA2-224, 256, 512 operation)
Trusted Execution Environment (TEE)

Secure storage support

On-the-fly encryption and authentication support for OSPI interface

924

Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

The device is partitioned into three functional domains as shown in Fig: Device Top-level Block Diagram, each
containing specific processing cores and peripherals:

¢ Wake-up (WKUP) domain
¢ Microcontroller (MCU) domain with one of the dual Cortex-R5 cluster

¢ MAIN domain

I' MAIN Domain I | WKUP Domain }
| V254 Dicoder [|
| ez | WRUP_CTRL VR
| = A72SS C71SS ||2xRSFSS|| C66SS! L WKUP PSC |
| ez o o o Lo DMSC WKUP_PLLCTRL !
! ST R m x o | |[2 coox b o wius orio \
| eoss Corex-A72 ||| PSPHMMA | Corex RSP | oSP L WU e I
I
I 20x PLL 32KB SRAM +| | | WHKUP_UART |
[ez]|[sike 2]| [1om oexe]| || ma 2soke L2 L WKUP_ESM
! o Ll |
| 10x wwDT ‘ ‘ [TR T o o — —
| MSMC | | MCU Domain |
| I WCU_CTRL MR i
DDRSS 3x MCU_PLL]
I 32b, ECC [DbrU_ | [8MB SRAMwith ECC /! = |
| | 10 Timers |
| } | 2 MCUWWOT |
vy | T024K6 L3 RAW
Seralchpad RAV 5125
! [0t} — [. : !
| ToCs! Spinl WAV [RSFSS
PR 1 — IR] I
| Tocesw | ollellolElglloll<!lo| & \: !
g
| oowere T forrven wor] [row J[crts] HIE A EE R R ‘
e >18(1%11Z][e]|°[1=]1 78] 1 |
2
| (ToMeUNAVSS | L - | MCU internal Diagnostics | |
I | ¥ oy oed [weuew]l | |
I I
| S12KB SRAM 0
	:		
B mle			
£ RN s -	MCU_CPSW		
I A g <[12 /& Z /! Tonasss,			
e E1 I g = I I			
! 2213 HIRGIE h WEU_POVA I			
g BN H	ZWCU_T2C		
g HIH	e		
2	S WeU_WCseT		
! u i — h ViCU_UART I			
: h ZCU_CANTD I			
! sswos‘s WP 9 5 W }	FSS }		
SEROES muxpr F g g o o e			
s mucper e	[D-PHY RX S g g g		g !
(21) I (L) (@) (3L) © !	2x MCU_ADC [
		(12004M5PS)	
! h I
[1

Fig. 3.19: Fig: Device Top-level Block Diagram

3.5.2 Memory

Described in the following sections are the three memory devices found on the board.

4GB LPDDR4

A single (1024M x 16bits x 2channels) LPDDR4 4Gb memory device is used. The memory used is:
¢ Kingston Q3222PM1WDGTK-U

4Kb EEPROM

A single 4Kb EEPROM (24FC04HT-I/OT) is provided on 12CO0 that holds the board information. This information
includes board name, serial number, and revision information.

16GB Embedded MMC

A single 16GB embedded MMC (eMMC) device is on the board. The device connects to the MMCL1 port of the
processor, allowing for 8bit wide access. Default boot mode for the board will be MMC1 with an option to
change it to MMCO, the SD card slot, for booting from the SD card as a result of removing and reapplying the
power to the board. Simply pressing the reset button will not change the boot mode. MMCO cannot be used
in 8Bit mode because the lower data pins are located on the pins used by the Ethernet port. This does not
interfere with SD card operation but it does make it unsuitable for use as an eMMC port if the 8 bit feature is
needed.

3.5. BeagleBone Al-64 High Level Specification 95

BeagleBoard Docs, Release 1.0.20230711-wip

MicroSD Connector

The board is equipped with a single microSD connector to act as the secondary boot source for the board and,
if selected as such, can be the primary boot source. The connector will support larger capacity microSD cards.
The microSD card is not provided with the board. Booting from MMCO will be used to flash the eMMC in the
production environment or can be used by the user to update the SW as needed.

Boot Modes

As mentioned earlier, there are two boot modes:

* eMMC Boot: This is the default boot mode and will allow for the fastest boot time and will enable the
board to boot out of the box using the pre-flashed OS image without having to purchase an microSD card
or an microSD card writer.

¢ SD Boot: This mode will boot from the microSD slot. This mode can be used to override what is on the
eMMC device and can be used to program the eMMC when used in the manufacturing process or for field
updates.

Todo: This section needs more work and references to greater detail. Other boot modes are possible. Software
to support USB and serial boot modes is not provided by beagleboard.org._Please contact Tl for support of this
feature.

A switch is provided to allow switching between the modes.

* Holding the boot switch down during a removal and reapplication of power without a microSD card in-
serted will force the boot source to be the USB port and if nothing is detected on the USB client port, it
will go to the serial port for download.

* Without holding the switch, the board will boot try to boot from the eMMC. If it is empty, then it will try
booting from the microSD slot, followed by the serial port, and then the USB port.

¢ If you hold the boot switch down during the removal and reapplication of power to the board, and you
have a microSD card inserted with a bootable image, the board will boot from the microSD card.

Note: Pressing the RESET button on the board will NOT result in a change of the boot mode. You MUST remove
power and reapply power to change the boot mode. The boot pins are sampled during power on reset from
the PMIC to the processor.The reset button on the board is a warm reset only and will not force a boot mode
change.

3.5.3 Power Management

The TPS65941213 and TPS65941111 power management device is used along with a separate LDO to provide
power to the system.

3.5.4 PC USB Interface

The board has a USB type-C connector that connects to USBO port of the processor.

3.5.5 Serial Debug Ports

Two serial debug ports are provided on board via 3pin micro headers,

1. WKUP_UARTO: Wake-up domain serial port

96 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

2. UARTO: Main domain serial port

In order to use the interfaces a 3pin micro to 6pin dupont adaptor header is required with a 6 pin USB to TTL
adapter. The header is compatible with the one provided by FTDI and can be purchased for about $$12 to $$20
from various sources. Signals supported are TX and RX. None of the handshake signals are supported.

3.5.6 USB1 Host Port
On the board is a single USB Type A female connector with full LS/FS/HS Host support that connects to USB1
on the processor. The port can provide power on/off control and up to 1.5A of current at 5V. Under USB power,

the board will not be able to supply the full 1.5A, but should be sufficient to supply enough current for a lower
power USB device supplying power between 50 to 100mA.

3.5.7 Power Sources

The board can be powered from two different sources:
¢ A5V > 3A power supply plugged into the barrel jack.
¢ A wall adaptor with 5V > 3A output power.

The power supply is not provided with the board but can be easily obtained from numerous sources. A5V > 3A
supply is mandatory to have with the board, but if there is a cape plugged into the board or you have a power
hungry device or hub plugged into the host port, then more current may needed from the DC supply.

3.5.8 Reset Button

When pressed and released, causes a reset of the board.

3.5.9 Power Button

This button takes advantage of the input to the PMIC for power down features.

3.5.10 Indicators

There are a total of six green LEDs on the board.
* One green power LED indicates that power is applied and the power management IC is up.

* Five blue LEDs that can be controlled via the SW by setting GPIO pins.

3.6 Connectors

3.6.1 Expansion Connectors

The expansion interface on the board is comprised of two headers P8 (46 pin) & P9 (50 pin). All signals on the
expansion headers are 3.3V unless otherwise indicated.

Note: Do not connect 5V logic level signals to these pins or the board will be damaged.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

3.6. Connectors 97

https://uk.farnell.com/element14/1103004000156/beaglebone-ai-serials-cable/dp/3291081

BeagleBoard Docs, Release 1.0.20230711-wip

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Connector P8

The following tables show the pinout of the P8 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.
The GPIO row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of X Y. You can use these values to directly control the
GPIO pins with the commands shown below.

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset X Y=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset X Y=0

For Example:

e e et +

| Pin | P8.03 |

t========={==========+

| GPIO | 1 20 |

fo— fo———— +

Use the commands below for controlling this pin (P8.03) where X = 1 and Y =_
—20

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset 1 20=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset 1 20=0

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY 1/O0 PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P8.01-P8.02

P8.01 P8.02
GND GND

98 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

P8.03-P8.05 _
Pin P8.03 P8.04 P8.05
GPIO 120 148 133
BALL AH21 AC29 AH25
REG 0x00011C054 0x00011C0C4 0x00011C088
Page 46 30 50
MODE 0 PRG1_PRUO_GPO19 PRGO_PRUO_GPO5 PRG1_PRU1_GPO12
1 PRG1_PRUO_GPI19 PRGO_PRUO_GPI5 PRG1_PRU1_GPI12
2 PRG1_IEPO_EDC_SYNC_OUTO ~ PRG1_RGMII2_TD1
3 PRG1_PWMO_TZ_OUT PRGO_PWM3_B2 PRG1_PWM1_AO
4 ~ ~ RGMII2_TD1
5 RMII5_TXDO RMII3_TXDO ~
6 MCANG6_TX ~ MCAN7_TX
7 GPIO0_20 GPI00_48 GPIO0_33
8 ~ GPMCO_ADO RGMII8_TD1
9 ~ ~ ~
10 VOUTO_EXTPCLKIN ~ VOUTO_DATA12
11 VPFEO_PCLK ~ ~
12 MCASP4_AFSX MCASPO_AXR3 MCASP9_AFSX
13 ~ ~ ~
14 ~ ~ ~
Bootstrap ~ BOOTMODE2 ~
P8.06-P8.09
Pin P8.06 P8.07 P8.08 P8.09
GPIO 134 115 114 117
BALL AG25 AD24 AG24 AE24
REG 0x00011C08C 0x00011C03C 0x00011C038 0x00011C044
Page 51 44 44 45
MODE 0 PRG1_PRU1_GPO13 PRG1_PRUO_GPO14 PRG1_PRUO_GPO13 PRG1_PRUO_GPO16
1 PRG1_PRU1_GPI13 PRG1_PRUO_GPI14 PRG1_PRUO_GPI13 PRG1_PRUO_GPI16
2 PRG1_RGMII2_TD2 PRG1_RGMII1_TD3 PRG1_RGMII1_TD2 PRG1_RGMII1_TXC
3 PRG1_PWM1_BO PRG1_PWMO_Al PRG1_PWMO_BO PRG1_PWMO_A2
4 RGMII2_TD2 RGMII1_TD3 RGMII1_TD2 RGMII1_TXC
5 ~ ~ ~ ~
6 MCAN7_RX MCAN5_RX MCAN5_TX MCANG6_RX
7 GPIO0_34 GPIOO_15 GPIO0_14 GPIOO_17
8 RGMII8_TD2 ~ ~ ~
9 ~ RGMII7_TD3 RGMII7_TD2 RGMII7_TXC
10 VOUTO_DATA13 VOUTO_DATA19 VOUTO_DATA18 VOUTO_DATA21
11 VPFEO_DATA8 VPFEO_DATA3 VPFEO_DATA2 VPFEO_DATA5
12 MCASP9_AXRO MCASP7_AXR1 MCASP7_AXRO MCASP7_AXR3
13 MCASP4_ACLKR ~ ~ MCASP7_AFSR
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P8.10-P8.13

3.6. Connectors

929

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P8.10 P8.11 P8.12 P8.13
GPIO 116 160 159 189
BALL AC24 AB24 AH28 V27
REG 0x00011C040 0x00011COF4 0x00011COFO 0x00011C168
Page 44 33 33 56
MODE 0 PRG1_PRUO_GPO15 PRGO_PRUO_GPO17 PRGO_PRUO_GPO16 RGMII5_TD1
1 PRG1_PRUO_GPI15 PRGO_PRUO_GPI17 PRGO_PRUO_GPI16 RMII7_TXD1
2 PRG1_RGMII1_TX_CTL PRGO_IEPO_EDC_SYNC_OUT1 PRGO_RGMII1_TXC 12C3_SCL
3 PRG1_PWMO B1 PRGO_PWMO_B2 PRGO_PWMO_A2 ~
4 RGMII1_TX_CTL PRGO_ECAPO_SYNC_OUT RGMII3_TXC VOUT1_DATA4
5 ~ ~ ~ TRC_DATA2
6 MCANG6_TX ~ ~ EHRPWMO_B
7 GPIO0_16 GPIO0_60 GPIO0_59 GPIO0_89
8 ~ GPMCO_AD5 ~ GPMCO_A5
9 RGMINI7_TX_CTL OBSCLK1 ~ ~
10 VOUTO_DATA20 ~ DSS_FSYNC1 ~
11 VPFEO_DATA4 ~ ~ ~
12 MCASP7_AXR2 MCASPO_AXR13 MCASPO_AXR12 MCASP11_ACLKX
13 MCASP7_ACLKR ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ BOOTMODE7 ~ ~
P8.14-P8.16

Pin P8.14 P8.15 P8.16

GPIO 175 161 162

BALL AF27 AB29 AB28

REG 0x00011C130 0x00011COF8 0x00011COFC

Page 37 33 34

MODE 0 PRGO_PRU1_GPO12 PRGO_PRUO_GPO18 PRGO_PRUO_GPO19

1 PRGO_PRU1_GPI12 PRGO_PRUO_GPI18 PRGO_PRUO_GPI19

2 PRGO_RGMII2_TD1 PRGO_IEPO_EDC_LATCH_INO PRGO_IEPO_EDC_SYNC_OUTO

3 PRGO_PWM1_AO PRGO_PWMO_TZ_IN PRGO_PWMO_TZ_OUT

4 RGMII4_TD1 PRGO_ECAPO_IN_APWM_OUT ~

5 ~ ~ ~

6 ~ ~ ~

7 GPIO0_75 GPIO0_61 GPIO0_62

8 ~ GPMCO_AD6 GPMCO_AD7

9 ~ ~ ~

10 ~ ~ ~

11 ~ ~ ~

12 MCASP1_AXR8 MCASPO_AXR14 MCASPO_AXR15

13 ~ ~ ~

14 UART8_CTSn ~ ~

Bootstrap ~ ~ ~

100 Chapter 3. BeagleBone Al-64

BeagleBoard Docs,

Release 1.0.20230711-wip

P8.17-P8.19
Pin P8.17 P8.18 P8.19
GPIO 13 14 188
BALL AF22 AJ23 V29
REG 0x00011C00C 0x00011C010 0x00011C164
Page 40 40 57
MODE 0 PRG1_PRUO_GPO2 PRG1_PRUO_GPO3 RGMII5_TD2
1 PRG1_PRUO_GPI2 PRG1_PRUO_GPI3 UART3_TXD
2 PRG1_RGMII1_RD2 PRG1_RGMII1_RD3 ~
3 PRG1_PWM2_A0 PRG1_PWM3_A2 SYNC3_OuUT
4 RGMII1_RD2 RGMII1_RD3 VOUT1_DATA3
5 RMII1_CRS_DV RMII1_RX_ER TRC_DATA1
6 ~ ~ EHRPWMO_A
7 GPIO0_3 GPIO0_4 GPIO0_88
8 GPMCO_WAIT1 GPMCO_DIR GPMCO0_A4
9 RGMII7_RD2 RGMII7_RD3 ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP6_AXRO MCASP6_AXR1 MCASP10_AXR1
13 ~ ~ ~
14 UART1_RXD UART1_TXD ~
Bootstrap ~ ~ ~
P8.20-P8.22
Pin P8.20 P8.21 P8.22
GPIO 176 130 15
BALL AF26 AF21 AH23
REG 0x00011C134 0x00011C07C 0x00011C014
Page 37 49 41
MODE 0 PRGO_PRU1_GPO13 PRG1_PRU1_GPO9 PRG1_PRUO_GPO4
1 PRGO_PRU1_GPI13 PRG1_PRU1_GPI9 PRG1_PRUO_GPI4
2 PRGO_RGMII2_TD2 PRG1_UARTO_RXD PRG1_RGMII1_RX_CTL
3 PRGO_PWM1_BO ~ PRG1_PWM2_BO
4 RGMII4_TD2 SPI6_CS3 RGMII1_RX_CTL
5 ~ RMII6_RXD1 RMII1_TXDO
6 ~ MCAN8_TX ~
7 GPIO0_76 GPI0O0_30 GPIO0_5
8 ~ GPMCO_CSn0O GPMCO0_CSn2
9 ~ PRG1_IEPO_EDIO_DATA_IN_OUT30 RGMII7_RX_CTL
10 ~ VOUTO_DATA9 ~
11 ~ ~ ~
12 MCASP1_AXR9 MCASP4_AXR3 MCASP6_AXR2
13 ~ ~ MCASP6_ACLKR
14 UART8_RTSn ~ UART2_RXD
Bootstrap ~ ~ ~

P8.23-P8.26

3.6. Connectors

101

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P8.23 P8.24 P8.25 P8.26

GPIO 131 16 135 151

BALL AB23 AD20 AH26 AC27

REG 0x00011C080 0x00011C018 0x00011C090 0x00011CODO

Page 50 41 51 31

MODE 0 PRG1_PRU1_GPO10 PRG1_PRUO_GPO5 PRG1_PRU1 GPO14 PRGO_PRUO_GPO8

1 PRG1_PRU1 GPI10 PRG1_PRUO_GPI5 PRG1_PRU1 GPI14 PRGO_PRUO_GPI8

2 PRG1_UARTO_TXD ~ PRG1_RGMII2_TD3 ~

3 PRG1_PWM2_TZ_IN PRG1_PWM3 B2 PRG1_PWM1 Al PRGO_PWM2_Al

4 ~ ~ RGMII2_TD3 ~

5 RMII6_CRS_DV RMII1_TX_EN ~ ~

6 MCAN8_RX ~ MCAN8_TX MCAN9_RX

7 GPIO0_31 GPIOO_6 GPI0O0_35 GPIO0_51

8 GPMCO_CLKOUT GPMCO_WEn RGMII8_TD3 GPMCO_AD2

9 PRG1_IEPO_EDIO_DATA_IN_OUT31 ~ ~ ~

10 VOUTO_DATA10 ~ VOUTO_DATA14 ~

11 GPMCO_FCLK_MUX ~ ~ ~

12 MCASP5_ACLKX MCASP3_AXRO MCASP9_AXR1 MCASPO_AXR6

13 ~ ~ MCASP4_AFSR ~

14 ~ ~ ~ UART6_RXD

Bootstrap ~ BOOTMODEO ~ ~
P8.27-P8.29

Pin P8.27 P8.28 P8.29

GPIO 171 172 173

BALL AA28 Y24 AA25

REG 0x00011C120 0x00011C124 0x00011C128

Page 36 36 36

MODE 0 PRGO_PRU1_GPO8 PRGO_PRU1_GPO9 PRGO_PRU1_GPO10

1 PRGO_PRU1_GPI8 PRGO_PRU1_GPI9 PRGO_PRU1_GPI10

2 ~ PRGO_UARTO_RXD PRGO_UARTO_TXD

3 PRGO_PWM2_TZ_OUT ~ PRGO_PWM2_TZ_IN

4 ~ SPI3_CS3 ~

5 ~ ~ ~

6 MCAN11_RX PRGO_IEPO_EDIO_DATA_IN_OUT30 PRGO_IEPO_EDIO_DATA_IN_OUT31

7 GPIO0_71 GPIO0_72 GPIO0_73

8 GPMCO_AD10 GPMCO_AD11 GPMCO_AD12

9 ~ ~ CLKOUT

10 ~ DSS_FSYNC3 ~

11 ~ ~ ~

12 MCASP1_AFSX MCASP1_AXR5 MCASP1_AXR6

13 ~ ~ ~

14 ~ UART8_RXD UART8_TXD

Bootstrap ~ ~ ~
P8.30-P8.32

102 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release

1.0.20230711-wip

Pin P8.30 P8.31 ~ P8.32 ~
GPIO 174 132 163 126 164
BALL AG26 AJ25 AE29 AG21 AD28
REG 0x00011C12C 0x00011C084 0x00011C100 0x00011C06C 0x00011C104
Page 37 50 34 48 34
MODE 0 PRGO_PRU1_GPO11 PRG1_PRU1_GPO1l1 PRGO_PRU1_GPOO PRG1_PRU1_GPO5 PRGO_PRU1_GPO1
1 PRGO_PRU1_GPI11 PRG1_PRU1_GPI11 PRGO_PRU1_GPIO PRG1_PRU1_GPI5 PRGO_PRU1_GPI1
2 PRGO_RGMII2_TDO PRG1_RGMII2_TDO PRGO_RGMII2_RDO ~ PRGO_RGMII2_RD1
3 ~ ~ ~ ~ ~
4 RGMII4_TDO RGMII2_TDO RGMII4_RDO ~ RGMII4_RD1
5 RMII4_TX_EN RMII2_TX_EN RMI14_RXDO RMII5_TX_EN RMII4_RXD1
6 ~ ~ ~ MCANG6_RX ~
7 GPIO0_74 GPIO0_32 GPIO0_63 GPIO0_26 GPIO0_64
8 GPMCO_A26 RGMII8_TDO UART4_CTSn GPMCO_WPn UART4_RTSn
9 ~ EQEP1_I ~ EQEP1_S ~
10 ~ VOUTO_DATAL1 ~ VOUTO_DATA5 ~
11 ~ ~ ~ ~ ~
12 MCASP1_AXR7 MCASP9_ACLKX MCASP1_AXRO MCASP4_AXRO MCASP1_AXR1
13 ~ ~ ~ ~ ~
14 ~ ~ UART5_RXD TIMER_IO4 UART5_TXD
Bootstrap ~ ~ ~ ~ ~
P8.33-P8.35
Pin P8.33 ~ P8.34 P8.35| ~
GPIO 125 1111 17 124 1116
BALL AH24 AA2 AD22 AD23 Y3
REG 0x00011C068 0x00011C1CO 0x00011C01C 0x00011C064 0x00011C1D4
Page 48 67 41 47 67
MODE 0 PRG1_PRU1_GPO4 SPI0_CSO PRG1_PRUO_GPO6 PRG1_PRU1_GPO3 SPI1_CSO
1 PRG1_PRU1_GPI4 UARTO_RTSn PRG1_PRUO_GPI6 PRG1_PRU1_GPI3 UARTO_CTSn
2 PRG1_RGMII2_RX_CTL ~ PRG1_RGMII1_RXC PRG1_RGMII2_RD3 ~
3 PRG1_PWM2_B2 ~ PRG1_PWM3_Al ~ UART5_RXD
4 RGMII2_RX_CTL ~ RGMII1_RXC RGMII2_RD3 ~
5 RMII2_TXDO ~ RMII1_TXD1 RMII2_RX_ER ~
6 ~ ~ AUDIO_EXT_REFCLKO ~ PRGO_IEPO_EDIO_OUTVALID
7 GPIO0_25 GPIO0_111 GPIO0_7 GPIOO0_24 GPIOO_116
8 RGMII8_RX_CTL ~ GPMCO0_CSn3 RGMII8_RD3 PRGO_IEPO_EDC_LATCH_INO
9 EQEP1_B ~ RGMII7_RXC EQEP1_A ~
10 VOUTO_DATA4 ~ ~ VOUTO_DATA3 ~
11 VPFEO_DATA13 ~ ~ VPFEO_WEN ~
12 MCASP8_AXR2 ~ MCASP6_AXR3 MCASP8_AXR1 ~
13 MCASP8_ACLKR ~ MCASP6_AFSR MCASP3_AFSR ~
14 TIMER_IO3 ~ UART2_TXD TIMER_IO2 ~
Bootstrap ~ ~ ~ ~ ~
P8.36-P8.38

3.6. Connectors

103

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P8.36 P8.37 ~ P8.38 ~
GPIO 18 1106 111 1105 19
BALL AE20 Y27 AD21 Y29 AJ20
REG 0x00011C020 0x00011C1AC 0x00011C02C 0x00011C1A8 0x00011C024
Page 42 58 43 58 42
MODE 0 PRG1_PRUO_GPO7 RGMII6_RD2 PRG1_PRUO_GPO10 RGMII6_RD3 PRG1_PRUO_GPO8
1 PRG1_PRUO_GPI7 UART4_RTSn PRG1_PRUO_GPI10 UART4_CTSn PRG1_PRUO_GPI8
2 PRG1_IEPO_EDC_LATCH_IN1 ~ PRG1_UARTO_RTSn ~ ~
3 PRG1_PWM3_B1 UART5_TXD PRG1_PWM2_B1 UART5_RXD PRG1_PWM2_Al
4 ~ ~ SPI6_CS2 CLKOUT ~
5 AUDIO_EXT_REFCLK1 TRC_DATA19 RMII5_CRS_DV TRC_DATA18 RMII5_RXDO
6 MCAN4_TX EHRPWM5_A ~ EHRPWM_TZn_IN4| MCAN4_RX
7 GPIO0_8 GPIO0_106 GPIOO_11 GPIO0_105 GPI0O0_9
8 ~ GPMCO_A22 GPMCO_BEONn_CLE GPMCO_A21 GPMCO_OEn_REn
9 ~ ~ PRG1_IEPO_EDIO_DATA_IN_OUT29 ~ ~
10 ~ ~ OBSCLK2 ~ VOUTO_DATA22
11 ~ ~ ~ ~ ~
12 MCASP3_AXR1 MCASP11_AXR5| MCASP3_AFSX MCASP11_AXR4 MCASP3_AXR2
13 ~ ~ ~ ~ ~
14 ~ ~ ~ ~ ~
Boot- ~ ~ ~ ~ ~
strap
P8.39-P8.41
Pin P8.39 P8.40 P8.41
GPIO 169 170 167
BALL AC26 AA24 AD29
REG 0x00011C118 0x00011C11C 0x00011C110
Page 35 36 35
MODE 0 PRGO_PRU1_GPO6 PRGO_PRU1_GPO7 PRGO_PRU1_GPO4
1 PRGO_PRU1_GPI6 PRGO_PRU1_GPI7 PRGO_PRU1_GPI4
2 PRGO_RGMII2_RXC PRGO_IEP1_EDC_LATCH_IN1 PRGO_RGMII2_RX_CTL
3 ~ ~ PRGO_PWM2_B2
4 RGMII4_RXC SPI3_CSO RGMII4_RX_CTL
5 RMII4_TXDO ~ RMII4_TXD1
6 ~ MCAN11_TX ~
7 GPIO0_69 GPIOO_70 GPIO0_67
8 GPMCO_A25 GPMCO_AD9 GPMCO0_A24
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_AXR3 MCASP1_AXR4 MCASP1_AXR2
13 ~ ~ ~
14 ~ UART2_TXD ~
Bootstrap ~ ~ ~

104 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Connector P9

P8.42-P8.44
Pin P8.42 P8.43 P8.44
GPIO 168 165 166
BALL AB27 AD27 AC25
REG 0x00011C114 0x00011C108 0x00011C10C
Page 35 34 35
MODE 0 PRGO_PRU1_GPO5 PRGO_PRU1_GPO2 PRGO_PRU1_GPO3
1 PRGO_PRU1_GPI5 PRGO_PRU1_GPI2 PRGO_PRU1_GPI3
2 ~ PRGO_RGMII2_RD2 PRGO_RGMII2_RD3
3 ~ PRGO_PWM2_A2 ~
4 ~ RGMII4_RD2 RGMII4_RD3
5 ~ RMII4_CRS_DV RMII4_RX_ER
6 ~ ~ ~
7 GPIOO_68 GPIO0_65 GPIO0_66
8 GPMCO_ADS8 GPMCO0_A23 ~
9 -~ ~ =
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_ACLKX MCASP1_ACLKR MCASP1_AFSR
13 ~ MCASP1_AXR10 MCASP1_AXR11
14 ~ ~ ~
Bootstrap BOOTMODEG6 ~ ~
P8.45-P8.46
Pin P8.45 P8.46
GPIO 179 180
BALL AG29 Y25
REG 0x00011C140 0x00011C144
Page 38 38
MODE 0 PRGO_PRU1_GPO16 PRGO_PRU1_GPO17
1 PRGO_PRU1_GPI16 PRGO_PRU1_GPI17
2 PRGO_RGMII2_TXC PRGO_IEP1_EDC_SYNC_OUT1
3 PRGO_PWM1_A2 PRGO_PWM1_B2
4 RGMII4_TXC SPI3_CLK
5 ~ ~
6 ~ ~
7 GPIO0_79 GPIO0_80
8 ~ GPMCO_AD13
9 ~ ~
10 ~ ~
11 ~ ~
12 MCASP2_AXR2 MCASP2_AXR3
13 ~ ~
14 ~ ~
Bootstrap ~ BOOTMODE3

The following tables show the pinout of the P9 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of X Y. You can use these values to directly control the
GPIO pins with the commands shown below.

to set the GPIO

debian@BeagleBone:

to set the GPIO
debian@BeagleBone

pin state to HIGH
~$ gpioset X Y=1

pin state to LOW

:~$ gpioset X Y=0

(continues on next page)

3.6. Connectors

105

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

For Example:

Fomm fom +
| Pin | P9.11 |
t=========t==========1
| GPIO [11 |
fomm fom e +

Use the commands below for controlling this pin (P9.11) where X = 1 and Y = 1

to set the GPIO
debian@BeagleBone:

pin state to HIGH
~$ gpioset 1 20=1

to set the GPIO
debian@BeagleBone:

pin state to LOW

~$ gpioset 1 20=0

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P9.E1-P9.E4
E1 E2 E3 E4
USB1 DP USB1 DN VSYS_5V0 GND
P9.01-P9.05
P9.01 P9.02 P9.03 P9.04 P9.05
GND GND VOUT_3V3 VOUT_3V3 VIN
P9.06-P9.10
P9.06 P9.07 P9.08 P9.09 P9.10
VIN VOUT_SYS VOUT_SYS RESET# RESET#

106

Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

P9.11-P9.13

P9.14-P9.16

Pin P9.11 P9.12 P9.13
GPIO 11 145 12
BALL AC23 AE27 AG22
REG 0x00011C004 0x00011C0B8 0x00011C008
Page 39 29 40
MODE 0 PRG1_PRUO_GPOO PRGO_PRUO_GPO2 PRG1_PRUO_GPO1
1 PRG1_PRUO_GPIO PRGO_PRUO_GPI2 PRG1_PRUO_GPI1
2 PRG1_RGMII1_RDO PRGO_RGMII1_RD2 PRG1_RGMII1_RD1
3 PRG1_PWM3_A0 PRGO_PWM2_A0 PRG1_PWM3_BO
4 RGMII1_RDO RGMII3_RD2 RGMII1_RD1
5 RMII1_RXDO RMII3_CRS_DV RMII1_RXD1
6 ~ ~ ~
7 GPIOO0_1 GPI00_45 GPI00_2
8 GPMCO_BE1n UART3_RXD GPMCO_WAITO
9 RGMII7_RDO ~ RGMII7_RD1
10 ~ ~ ~
11 ~ ~ ~
12 MCASP6_ACLKX MCASPO_ACLKR MCASP6_AFSX
13 ~ ~ ~
14 UARTO_RXD ~ UARTO_TXD
Bootstrap ~ ~ ~
Pin P9.14 P9.15 P9.16
GPIO 193 147 194
BALL u27 AD25 u24
REG 0x00011C178 0x00011C0CO 0x00011C17C
Page 56 30 56
MODE 0 RGMII5_RD3 PRGO_PRUO_GPO4 RGMII5_RD2
1 UART3_CTSn PRGO_PRUO_GPI4 UART3_RTSn
2 ~ PRGO_RGMII1_RX_CTL ~
3 UART6_RXD PRGO_PWM2_BO UART6_TXD
4 VOUT1_DATA8 RGMII3_RX_CTL VOUT1_DATA9
5 TRC_DATA6 RMII3_TXD1 TRC_DATA7
6 EHRPWM2_A ~ EHRPWM2_B
7 GPIO0_93 GPIO0_47 GPIO0_94
8 GPMCO_A9 ~ GPMCO_A10
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP11_AXRO MCASPO_AXR2 MCASP11_AXR1
13 ~ ~ ~
14 ~ ~ ~
Bootstrap ~ ~ ~

P9.17-P9.18

3.6. Connectors

107

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.17 ~ P9.18 ~
GPIO 128 1115 140 1120
BALL AC21 AA3 AH22 Y2
REG 0x00011C074 0x00011C1D0 0x00011C0A4 0x00011C1E4
Page 49 67 53 68
MODE 0 PRG1_PRU1_GPO7 SPIO_D1 PRG1_PRU1_GPO19 SPI1_D1
1 PRG1_PRU1_GPI7 ~ PRG1_PRU1_GPI19 ~
2 PRG1_IEP1_EDC_LATCH_IN1 12C6_SCL PRG1_IEP1_EDC_SYNC_OUTO 12C6_SDA
3 ~ ~ PRG1_PWM1_TZ OUT ~
4 SP16_CSO ~ SPI6_D1 ~
5 RMII6_RX_ER ~ RMII6_TXD1 ~
6 MCAN7_TX ~ PRG1_ECAPO_IN_APWM_OUT ~
7 GPIO0_28 GPIO0_115 GPIO0_40 GPIO0_120
8 ~ ~ ~ PRGO_IEP1_EDC_SYNC_OUTO
9 ~ ~ ~ ~
10 VOUTO_DATA7 . VOUTO_PCLK ~
11 VPFEO_DATA15 ~ ~ ~
12 MCASP4_AXR1 ~ MCASP5_AXR1 ~
13 ~ ~ ~ ~
14 UART3_TXD ~ ~ ~
Bootstrap ~ ~ ~ ~
P9.19-P9.20
Pin P9.19 ~ P9.20 ~
GPIO 21 178 22 177
BALL W5 AF29 W6 AE25
REG 0x00011C208 0x00011C13C 0x00011C20C 0x00011C138
Page 19 38 19 37
MODE 0 MCANO_RX PRGO_PRU1_GPO15 MCANO_TX PRGO_PRU1_GPO14
1 ~ PRGO_PRU1_GPI15 ~ PRGO_PRU1_GPI14
2 ~ PRGO_RGMII2_TX_CTL ~ PRGO_RGMII2_TD3
3 ~ PRGO_PWM1_B1 ~ PRGO_PWM1_Al
4 12C2_SCL RGMII4_TX_CTL 12C2_SDA RGMII4_TD3
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 GPIO1_1 GPIOO_78 GPIO1 2 GPIO0_77
8 ~ ~ ~ ~
9 ~ ~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASP2_AXR1 ~ MCASP2_AXRO
13 ~ ~ ~ ~
14 ~ UART2_RTSn ~ UART2_CTSn
Bootstrap ~ ~ ~ ~
P9.21-P9.22
108 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.21 ~ P9.22 ~

GPIO 139 190 138 191

BALL AJ22 u28 AC22 u29

REG 0x00011CO0AOQ 0x00011C16C 0x00011C09C 0x00011C170

Page 52 56 52 54

MODE 0 PRG1_PRU1_GPO18 RGMII5_TDO PRG1_PRU1_GPO17 RGMII5_TXC

1 PRG1_PRU1_GPI18 RMII7_TXDO PRG1_PRU1_GPI17 RMII7_TX_EN

2 PRG1_IEP1_EDC_LATCH_INO 12C3_SDA PRG1_IEP1_EDC_SYNC_OUT1 12C6_SCL

3 PRG1_PWM1 TZ_IN ~ PRG1_PWM1 B2 ~

4 SPI6_DO VOUT1_DATA5 SPI6_CLK VOUT1_DATA6

5 RMII6_TXDO TRC_DATA3 RMII6_TX_EN TRC_DATA4

6 PRG1_ECAPO_SYNC_IN EHRPWM1_A PRG1_ECAPO_SYNC_OUT EHRPWM1_B

7 GP100_39 GPIO0_90 GPI00_38 GPIO0_91

8 ~ GPMCO_A6 ~ GPMCO_A7

9 VOUTO_VP2_VSYNC ~ VOUTO_VP2_DE ~

10 VOUTO_VSYNC ~ VOUTO_DE ~

11 ~ ~ VPFEO_DATA10 ~

12 MCASP5_AXRO MCASP11_AFSX MCASP5_AFSX MCASP10_AXR2

13 ~ ~ ~ ~

14 VOUTO_VPO_VSYNC ~ VOUTO_VPO_DE ~

Bootstrap ~ ~ BOOTMODE1 ~
P9.23-P9.25

Pin P9.23 P9.24 ~ P9.25 ~

GPIO 110 1119 113 1127 1104

BALL AG20 Y5 AJ24 AC4 W26

REG 0x00011C028 0x00011C1EO 0x00011C034 0x00011C200| 0x00011C1lA4

Page 42 68 43 69 54

MODE 0 PRG1_PRUO_GPO9 SPI1_DO PRG1_PRUO_GPO12| UART1_CTSn RGMII6_RXC

1 PRG1_PRUO_GPI9 UART5_RTSn PRG1_PRUO_GPI12 | MCAN3_RX ~

2 PRG1_UARTO_CTSn 12C4_SCL PRG1_RGMII1_TD1 | ~ ~

3 PRG1_PWM3_TZ_IN UART2_TXD PRG1_PWMO_AO ~ AU-

DIO_EXT_REFCLK2

4 SPI6_CS1 ~ RGMII1_TD1 SPI2_DO VOUT1_DE

5 RMII5_RXD1 ~ ~ EQEPO_S TRC_DATA17

6 ~ ~ MCAN4_RX ~ EHRPWM4_B

7 GPIOO_10 GPIOO_119 GPIOO_13 GPIO0_127 GPIO0O_104

8 GPMCO_ADVn_ALE PRGO_IEP1_EDC_LATCH_INQ ~ ~ GPMCO0_A20

9 PRG1_IEPO_EDIO_DATA_IN_OUT2B ~ RGMII7_TD1 ~ VOUT1_VPO_DE

10 VOUTO_DATA23 ~ VOUTO_DATA17 ~ ~

11 ~ ~ VPFEO_DATA1 ~ ~

12 MCASP3_ACLKX ~ MCASP7_AFSX ~ MCASP10_AXR7

13 ~ ~ ~ ~ ~

14 ~ ~ ~ ~ ~

Boot- ~ ~ ~ ~ ~

strap

P9.26-P9.27

3.6. Connectors

109

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.26 ~ P9.27 ~
GPIO 1118 112 146 1124
BALL Y1l AF24 AD26 AB1
REG 0x00011C1DC 0x00011C030 0x00011COBC 0x00011C1F4
Page 67 43 30 69
MODE 0 SPI1_CLK PRG1_PRUO_GPO11 PRGO_PRUO_GPO3 UARTO_RTSn
1 UART5_CTSn PRG1_PRUO_GPI11 PRGO_PRUO_GPI3 TIMER_IO7
2 12C4_SDA PRG1_RGMII1_TDO PRGO_RGMII1_RD3 SPI0O_CS3
3 UART2_RXD PRG1_PWM3_TZ OUT PRGO_PWM3_A2 MCAN2_TX
4 ~ RGMII1_TDO RGMII3_RD3 SPI2_CLK
5 ~ ~ RMII3_RX_ER EQEPO_B
6 ~ MCAN4_TX ~ ~
7 GPIO0_118 GPIOO0_12 GPIO0_46 GPIO0_124
8 PRGO_IEPO_EDC_SYNC_OUTO ~ UART3_TXD ~
9 ~ RGMII7_TDO ~ ~
10 ~ VOUTO_DATA16 ~ ~
11 ~ VPFEO_DATAO ~ ~
12 ~ MCASP7_ACLKX MCASPO_AFSR ~
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~
P9.28-P9.29

Pin P9.28 ~ P9.29 ~

GPIO 211 143 214 153

BALL U2 AF28 V5 AB25

REG 0x00011C230 0x00011C0BO 0x00011C23C 0x00011C0D8

Page 18 29 68 31

MODE 0 ECAPO_IN_APWM_OUT PRGO_PRUO_GPOO TIMER_IO1 PRGO_PRUO_GPO10

1 SYNCO_OUT PRGO_PRUO_GPIO ECAP2_IN_APWM_OUT PRGO_PRUO_GPI10

2 CPTSO_RFT_CLK PRGO_RGMII1_RDO OBSCLKO PRGO_UARTO_RTSn

3 ~ PRGO_PWM3_A0 ~ PRGO_PWM2_B1

4 SPI2_CS3 RGMII3_RDO ~ SPI3_CS2

5 13CO_SDAPULLEN RMII3_RXD1 ~ PRGO_IEPO_EDIO_DATA_IN_OUT29

6 SPI7_CSO ~ SPI7_D1 MCAN10_RX

7 GPIO1_11 GPIO0_43 GPIO1_14 GPIO0_53

8 ~ ~ ~ GPMCO_AD4

9 ~ ~ ~ ~

10 ~ ~ ~ ~

11 ~ ~ ~ ~

12 ~ MCASPO_AXRO ~ MCASPO_AFSX

13 ~ ~ ~ ~

14 ~ ~ ~ ~

Bootstrap ~ ~ BOOTMODE5 ~

P9.30-P9.31

110 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.30 ~ P9.31 ~
GPIO 213 144 212 152
BALL V6 AE28 u3 AB26
REG 0x00011C238 0x00011C0B4 0x00011C234 0x00011C0D4
Page 68 29 18 31
MODE 0 TIMER_IOO PRGO_PRUO_GPO1 EXT_REFCLK1 PRGO_PRUO_GPO9
1 ECAP1_IN_APWM_OUT PRGO_PRUO_GPI1 SYNC1_OuT PRGO_PRUO_GPI9
2 SYSCLKOUTO PRGO_RGMII1_RD1 ~ PRGO_UARTO_CTSn
3 ~ PRGO_PWM3_B0 ~ PRGO_PWM3_TZ_IN
4 ~ RGMII3_RD1 ~ SPI3_CS1
5 ~ RMII3_RXDO ~ PRGO_IEPO_EDIO_DATA_IN_OUT28
6 SPI7_DO ~ SPI7_CLK MCAN10_TX
7 GPIO1_13 GPIOO0_44 GPIO1_12 GPIO0_52
8 ~ ~ ~ GPMCO_AD3
9 ~ -~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASPO_AXR1 ~ MCASPO_ACLKX
13 ~ ~ ~ ~
14 ~ ~ ~ UART6_TXD
Bootstrap BOOTMODE4 ~ ~ ~
P9.32-P9.35
P9.32 P9.34
VDD_ADC GND
Pin P9.33 ~ P9.35 ~
GPIO ~ 150 ~ 155
BALL K24 AC28 K29 AH27
REG 0x00011C140 0x00011C0CC 0x00011C148 0x00011COEO
Page 20 31 20 32
MODE 0 MCU_ADCO_AIN4 PRGO_PRUO_GPO7 MCU_ADCO_AIN6 PRGO_PRUO_GPO12
1 ~ PRGO_PRUO_GPI7 ~ PRGO_PRUO_GPI12
2 ~ PRGO_IEPO_EDC_LATCH_IN1 ~ PRGO_RGMII1_TD1
3 ~ PRGO_PWM3_B1 ~ PRGO_PWMO_AO
4 ~ PRGO_ECAPO_SYNC_IN ~ RGMII3_TD1
5 ~ ~ ~ ~
6 ~ MCAN9_TX ~ ~
7 ~ GPIO0_50 ~ GPIO0_55
8 ~ GPMCO_AD1 ~ ~
9 ~ ~ ~ ~
10 ~ ~ ~ DSS_FSYNCO
11 ~ ~ ~ ~
12 ~ MCASPO_AXR5 ~ MCASPO_AXR8
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~
P9.36-P9.37

3.6. Connectors 111

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.36 ~ P9.37 ~
GPIO ~ 156 ~ 157
BALL K27 AH29 K28 AG28
REG 0x00011C144 0x00011COE4 0x00011C138 0x00011COE8
Page 20 32 20 32
MODE 0 MCU_ADCO_AIN5 PRGO_PRUO_GPO13 MCU_ADCO_AIN2 PRGO_PRUO_GPO14
1 ~ PRGO_PRUO_GPI13 ~ PRGO_PRUO_GPI14
2 ~ PRGO_RGMII1_TD2 ~ PRGO_RGMII1_TD3
3 ~ PRGO_PWMO_BO ~ PRGO_PWMO_A1
4 ~ RGMII3_TD2 ~ RGMII3_TD3
5 ~ ~ ~ ~
[~ ~ ~ ~
7 ~ GPIO0_56 ~ GPIO0_57
8 ~ - ~ UART4_RXD
9 ~ ~ ~ ~
10 ~ DSS_FSYNC2 ~ ~
11 ~ ~ ~ ~
12 ~ MCASPO_AXR9 ~ MCASPO_AXR10
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~
P9.38-P9.39
Pin P9.38 ~ P9.39 ~
GPIO ~ 158 ~ 154
BALL L28 AG27 K25 AJ28
REG 0x00011C13C 0x00011COEC 0x00011C130 0x00011CODC
Page ~ 33 20 32
MODE 0 MCU_ADCO_AIN3 PRGO_PRUO_GPO15 MCU_ADCO_AINO PRGO_PRUO_GPO11
1 ~ PRGO_PRUO_GPI15 ~ PRGO_PRUO_GPI11
2 ~ PRGO_RGMII1_TX_CTL ~ PRGO_RGMII1_TDO
3 ~ PRGO_PWMO_B1 ~ PRGO_PWM3_TZ_OUT
4 ~ RGMII3_TX_CTL ~ RGMII3_TDO
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 ~ GPIO0_58 ~ GPIO0_54
8 ~ UART4_TXD ~ ~
9 ~ ~ ~ CLKOUT
10 ~ DSS_FSYNC3 ~ ~
11 ~ ~ ~ ~
12 ~ MCASPO_AXR11 ~ MCASPO_AXR7
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.40-P9.42

112

Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.40 ~ P9.41 P9.42 ~

GPIO ~ 181 20 1123 118

BALL K26 AA26 AD5 AC2 AJ21

REG 0x00011C134 0x00011C148 0x00011C204 0x00011C1FO 0x00011C04C

Page 20 38 69 68 45

MODE 0 MCU_ADCO_AIN1 PRGO_PRU1_GPO18 UART1_RTSn UARTO_CTSn PRG1_PRUO_GPO17

1 ~ PRGO_PRU1_GPI18 MCAN3_TX TIMER_IO6 PRG1_PRUO_GPI17

2 ~ PRGO_IEP1_EDC_LATCH_INO ~ SPI0_CS2 PRG1_IEPO_EDC_SYNC_OUT1

3 ~ PRGO_PWM1_TZ_IN ~ MCAN2_RX PRG1_PWMO_B2

4 ~ SPI3_DO SPI2_D1 SPI2_CSO ~

5 ~ ~ EQEPO_| EQEPO_A RMII5_TXD1

6 ~ MCAN12_TX ~ ~ MCAN5_TX

7 ~ GPIO0_81 GPIO1_0 GPIO0_123 GPIO0_18

8 ~ GPMCO_AD14 ~ ~ ~

9 - - - ~ ~

10 ~ ~ ~ ~ ~

11 ~ ~ ~ ~ VPFEO_DATA6

12 ~ MCASP2_AFSX ~ ~ MCASP3_AXR3

13 ~ ~ ~ ~ ~

14 ~ UART2_RXD ~ ~ ~

Bootstrap ~ ~ ~ ~ ~
P9.43-P9.46

P9.43 P9.44 P9.45 P9.46
GND GND GND GND

3.7 BeagleBone Al-64 Mechanical

3.7.1 Dimensions and Weight

Size: 102.5 x 80 (4" x 3.15")
Max height: #TODO#

PCB Layers: #TODO#

PCB thickness: 2mm (0.08")
RoHS Compliant: Yes
Weight: 192gm

3.7.2 Silkscreen and Component Locations

3.8 Pictures

3.9 Support Information

All support for this design is through BeagleBoard.org community at: link: BeagleBoard.org forum .

3.9.1 Hardware Design

You can find all BeagleBone Al-64 hardware files here under the hw folder.

3.7. BeagleBone Al-64 Mechanical 113

https://forum.beagleboard.org/
https://git.beagleboard.org/beagleboard/beaglebone-ai-64

BeagleBoard Docs, Release 1.0.20230711-wip

¥
|
48.3
1.9000
41.9
1.
6500 .
3.1497
| |
: !
30.3 59 4
[1.1914° 1 0664
‘! | 1‘
16.2_ 66 o . 51
2458 2.6000 2000
Fig. 3.20: Fig: Board Dimensions
(.] I =] =
co N L] [| [4] 2
O @e h Be e = . S5 = gEE 'Jllﬁ me 1 r.,,,,,,,fl; ;iu
g oD a2 & m%lI:"B g, "“‘ﬂl' ik = O Liniie g .rglz
- Caution] 00z =@ g TeLe
Hot surface e

siiie

3.

L
FAN :.I:“ . C Eﬂ'
-]@uw mm@

T " M BT E

l 00000

00000 sooo00
m 9 ooo::c% L
: o o' " ‘@
O ee oo

Fig. 3.21: Fig: Top silkscreen

114 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

JitlINIINNNIRNNNRNNE wﬁ
OO]
isnn 450
P8 M =
== 8
8 = T
o ='—_E.J .;;;- -
= G Te_s
l|||I I|| . W2 |
=1 Senan 1w 5- =
S D =g |
= TTEls
BE Hml-_..,g.a.

uﬁﬁ

TPAT 1pyg™ 2
118 gog

Setp20

s
(o) oD T o lﬂﬂmé T Mi2

SEED (=] o

bo EIED T & Eme 0
L@ E]“'“. = ey, PO B0n S e o
2
@u o] gF"lllllllllllllllllllllog E
a2 EDMH7 =
SE (o) OO] J10 &
éﬁB;;@@m ngallllllllllllllllllllll.-/’—‘
= g nEo Q =e I
e B e QOO R =t = =
glﬂ]ﬂi]n bt ads ©O0000 ——
72y U i O™ Neeesem | ©000OC "= =
B Sor 0::0:9 0 or =
=28 —RRR 5| | eeeee | L -

wh 8 pimmirg eeee
= Zlee oo/
m M 2 z
P

Fig. 3.23: Fig:

BeagleBone Al-64 front

Fig. 3.24: Fig: BeagleBone Al-64 back

3.9. Support Information

115

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.25: Fig: BeagleBone Al-64 back with heatsink

Fig. 3.26: Fig: BeagleBone Al-64 front at 45° angle

Fig. 3.27: Fig: BeagleBone Al-64 back at 45° angle

116 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.28: Fig: BeagleBone Al-64 back with heatsink at 45° angle

Fig. 3.29: Fig: BeagleBone Al-64 ports

3.9.

Support Information 117

BeagleBoard Docs, Release 1.0.20230711-wip

3.9.2 Software Updates

Follow instructions below to download the latest image for your BeagleBone Al-64:
1. Go to BeagleBoard.org distro page.

2. Filter Software Distributions for BeagleBone Al-64 from dropdown and download the image.

e » Latest Firmware Images

Download the latest firmware for your BeagleBoard, BeagleBoard-x«M, BeagleB:
BeagleBone Blt SeagleB dio Bea G
BeagleBone Black Industrial, Arrow BeagleBone Black Industrial, Mentorel BeagleBone uSoml

See the Geting Started Guide for hints on loading these images. See our Debian page on how the latest images are built

Filter Software Distributions | BeagleBone Al64 - = Latest Version

21101106BSDXFCE @

agleBone Al-64 Kemel: 510120-ti-
v202101 default fla
password is [debiantemppwd]

mage 2022-11-01 eMMC
thly snapshot

TDA4VM Debian 1.3 2022-06-14 10GB SD XFCE ©
Debian image for BeagleBone Al-64

Fig. 3.30: Filter Software Distributions for BeagleBone Al-64

Tip: You can follow the Update board with latest software guide for more information on flashing the down-
loaded image to your board.

To see what SW revision is loaded into the eMMC check /etc/dogtag. It should look something like as shown
below,

root@BeagleBone:~# cat /etc/dogtag BeagleBoard.org Debian Bullseye
Xfce Image 2022-01-14 °

3.9.3 RMA Support

If you feel your board is defective or has issues, request an Return Merchandise Application (RMA) by filling
out the form at http://beagleboard.org/support/rma . You will need the serial number and revision of the board.
The serial numbers and revisions keep moving. Different boards can have different locations depending on
when they were made. The following figures show the three locations of the serial and revision number.

3.9.4 Troubleshooting video output issues

Warning: When connecting to an HDMI monitor, make sure your miniDP adapter is active. A passive
adapter will not work. See Fig: Display adapters.

118 Chapter 3. BeagleBone Al-64

https://www.beagleboard.org/distros
http://beagleboard.org/support/rma

BeagleBoard Docs, Release 1.0.20230711-wip

Getting Help

If you need some up to date troubleshooting techniques, you can post your queries on link: BeagleBoard.org
forum

3.10 Update software on BeagleBone Al-64

Production boards currently ship with the factory-installed 2022-01-14-8GB image. To upgrade from the soft-
ware image on your BeagleBone Al-64 to the latest, you don’t need to completely reflash the board. If you do
want to reflash it, visit the flashing instructions on the getting started page. Factory Image update (without
reflashing)...

sudo apt update
sudo apt install --only-upgrade bb-j72le-evm-firmware generic-sys-mods
sudo apt upgrade

3.10.1 Update U-Boot:

to ensure only tiboot3.bin is in boot0, the pre-production image we tried to do more in boot0, but failed...

sudo /opt/u-boot/bb-u-boot-beagleboneaibd/install-emmc.sh
sudo /opt/u-boot/bb-u-boot-beagleboneai6d/install-microsd.sh
sudo reboot

3.10.2 Update Kernel and SGX modules:

sudo apt install bbb.io-kernel-5.10-ti-k3-j721le

3.10.3 Update xfce:

sudo apt install bbb.io-xfced-desktop

3.10.4 Update ti-edge-ai 8.2 examples

sudo apt install ti-edgeai-8.2-base ti-vision-apps—-8.2 ti-vision—-apps-eaik-
—firmware-8.2

3.10.5 Cleanup:

sudo apt autoremove —-—-purge

3.11 Edge Al

3.11.1 Getting Started

3.10. Update software on BeagleBone Al-64 119

https://forum.beagleboard.org/
https://forum.beagleboard.org/

BeagleBoard Docs, Release 1.0.20230711-wip

Hardware setup

BeagleBone® Al-64 has TI's TDA4VM SoC which houses dual core A72, high performance vision accelerators,
video codec accelerators, latest C71x and C66x DSP, high bandwidth realtime IPs for capture and display,
GPU, dedicated safety island security accelerators. The SoC is power optimized to provide best in class perfor-
mance for perception, sensor fusion, localization and path planning tasks in robotics, industrial and automotive
applications.

For more details visit https://www.ti.com/product/TDA4VM

BeagleBone® Al-64 BeagleBone® Al-64 brings a complete system for developing artificial intelligence (Al)
and machine learning solutions with the convenience and expandability of the BeagleBone® platform and the
peripherals on board to get started right away learning and building applications. With locally hosted, ready-
to-use, open-source focused tool chains and development environment, a simple web browser, power source
and network connection are all that need to be added to start building performance-optimized embedded
applications. Industry-leading expansion possibilities are enabled through familiar BeagleBone® cape headers,
with hundreds of open-source hardware examples and dozens of readily available embedded expansion options
available off-the-shelf.

To run the demos on BeagleBone® Al-64 you will require,
* BeagleBone® Al-64
e USB camera (Any V4L2 compliant 1MP/2MP camera, Eg. Logitech C270/C920/C922)
e Full HD eDP/HDMI display
¢ Minimum 16GB high performance SD card
* 100Base-T Ethernet cable connected to internet
* UART cable
* External Power Supply or Power Accessory Requirements
a. Nominal Output Voltage: 5VDC
b. Maximum Output Current: 5000 mA

Connect the components to the SK as shown in the image.

USB Camera UVC (USB video class) compliant USB cameras are supported on the BeagleBone® Al-64. The
driver for the same is enabled in linux image. The linux image has been tested with C270/C920/C922 ver-
sions of Logitech USB cameras. Please refer to the Tl Edge Al SDK FAQ to stream from multiple USB cameras
simultaneously.

IMX219 Raw sensor IMX219 camera module from Raspberry pi / Arducam is supported by
BeagleBone® AI-64. It is a 8MP sensor with no ISP, which can transmit raw SRGGB8 frames over
CSI lanes at 1080p 60 fps. This camera module can be ordered from https://www.amazon.com/
Raspberry-Pi-Camera-Module-Megapixel/dp/BO1ER2SKFS The camera can be connected to any of the 2 RPi
zero 22 pin camera headers on BB Al-64 as shown below

Todo: IMX219 CSl sensor connection with BeagleBone® Al-64 for Edge Al

Note that the headers have to be lifted up to connect the cameras

Note: To be updated By default IMX219 is disabled. After connecting the camera you can enable it by
specifying the dtb overlay file in /run/media/mmcblk0pl/uenv.txt as below,

name_overlays=k3-j72le-edgeai-apps.dtbo k3-3721e-sk-rpi-cam—-imx219.
dtbo

120 Chapter 3. BeagleBone Al-64

https://www.ti.com/product/TDA4VM
https://software-dl.ti.com/jacinto7/esd/edgeai-sdk-j721e/latest/exports/docs/faq.html
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS

BeagleBoard Docs, Release 1.0.20230711-wip

The Images shows the
BB Al-64 backside with
L heatsink removed

SD Card

®_—FEthernet

Fig. 3.31: BeagleBone® Al-64 for Edge Al connections

Reboot the board after editing and saving the file.

Two RPi cameras can be connected to 2 headers for multi camera use-cases

Please refer Camera sources (v412) to know how to list all the cameras connected and select which one to use
for the demo.

By default imx219 will be configured to capture at 8 bit, but it also supports 10 bit capture in 16 bit container.
To use it in 10 bit mode, below steps are required:

* Modify the /opt/edge_ai_apps/scripts/setup_cameras.sh to set the for-
mat to 10 bit like below

CSI_CAM_O0_FMT='[fmt:SRGGB8_1X10/1920x1080]"
CSI_CAM_ 1 FMT='[fmt:SRGGBS8_1X10/1920x10807]"

¢ Change the imaging binaries to use 10 bit versions

mv /opt/imaging/imx219/dcc_2a.bin /opt/imaging/imx219/dcc_2a_8b.bin
mv /opt/imaging/imx219/dcc_viss.bin /opt/imaging/imx219/dcc_viss_8b.
—bin

mv /opt/imaging/imx219/dcc_2a_10b.bin /opt/imaging/imx219/dcc_2a.bin
mv /opt/imaging/imx219/dcc_viss_10b.bin /opt/imaging/imx219/dcc_viss.
—bin

» Set the input format in the /opt/edge_ai_apps/configs/
rpiV2_cam_example.yaml as rggbl10

Software setup
Preparing SD card image Download thebullseye-xfce-edgeai—-arm64 image from the links be-
low and flash it to SD card using Balena etcher tool.

* To use via SD card: bbai64-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

¢ To flash on eMMC: bbai64-emmc-flasher-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

3.11. Edge Al 121

https://www.balena.io/etcher/
https://rcn-ee.net/rootfs/bb.org/testing/2022-08-02/bullseye-xfce-edgeai-arm64/bbai64-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz
https://rcn-ee.net/rootfs/bb.org/testing/2022-08-02/bullseye-xfce-edgeai-arm64/bbai64-emmc-flasher-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

BeagleBoard Docs, Release 1.0.20230711-wip

The Balena etcher tool can be installed either on Windows/Linux. Just download the etcher image and follow
the instructions to prepare the SD card.

Etcher

ﬁ balenaEtcher

O

B Flash from file

& Flash from URL

IE Clone drive

Fig. 3.32: Balena Etcher tool to flash SD card with Processor linux image Linux for Edge Al

The etcher image is created for 16 GB SD cards, if you are using larger SD card, it is possible to expand the
root filesystem to use the full SD card capacity using below steps

#find the SD card device entry using lsblk (Eg: /dev/sdc)
#use the following commands to expand the filesystem
#Make sure you have write permission to SD card or run the commands as root

#Unmount the BOOT and rootfs partition before using parted tool
umount /dev/sdX1
umount /dev/sdX2

#Use parted tool to resize the rootfs partition to use
#the entire remaining space on the SD card

#You might require sudo permissions to execute these steps
parted -s /dev/sdX resizepart 2 '100%'

e2fsck —-f /dev/sdX2

resize2fs /dev/sdX2

#replace /dev/sdX in above commands with SD card device entry

Power ON and Boot Ensure that the power supply is disconnected before inserting the SD card. Once the
SD card is firmly inserted in its slot and the board is powered ON, the board will take less than 20sec to boot
and display a wallpaper as shown in the image below.

Todo: BeagleBone® Al-64 wallpaper upon boot

You can also view the boot log by connecting the UART cable to your PC and use a serial port communications
program.

122 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

For Linux OS minicom works well. Please refer to the below documentation on ‘minicom’ for more details.
https://help.ubuntu.com/community/Minicom

When starting minicom, turn on the colors options like below:

sudo minicom -D /dev/ttyUSB2 -c on

For Windows OS Tera Term works well. Please refer to the below documentation on “TeraTerm’ for more
details

https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows

Note: Baud rate should be configured to 115200 bps in serial port communication program. You may not see
any log in the UART console if you connect to it after the booting is complete or login prompt may get lost in
between boot logs, press ENTER to get login prompt

As part of the linux systemd /opt/edge_ai_apps/init_script.sh is executed which does the
below,

* This kills weston compositor which holds the display pipe. This step will make the wallpaper showing on
the display disappear and come back

¢ The display pipe can now be used by ‘kmssink’ GStreamer element while running the demo applications.
* The script can also be used to setup proxies if connected behind a firewall.

Once Linux boots login as root user with no password.

Connect remotely If you don't prefer the UART console, you can also access the device with the IP address
that is shown on the display.

With the IP address one can ssh directly to the board, view the contents and run the demos.

For best experience we recommend using VSCode which can be downloaded from here.
https://code.visualstudio.com/download

You also require the “Remote development extension pack” installed in VSCode as mentioned here:

https://code.visualstudio.com/docs/remote/ssh

Todo: Microsoft Visual Studio Code for connecting to BeagleBone® Al-64 for Edge Al via SSH

3.11.2 Running Simple demos

This chapter describes how to run Python and C++ demo applications in edge_ai_apps with live camera and
display.

Note: Please note that the Python demos are useful for quick prototyping while C++ demos are similar by
design but tuned for performance.

Running Python based demo applications

Python based demos are simple executable scripts written for image classification, object detection and se-
mantic segmentation. Demos are configured using a YAML file. Details on configuration file parameters can
be found in Demo Configuration file

3.11. Edge Al 123

https://help.ubuntu.com/community/Minicom
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://code.visualstudio.com/download
https://code.visualstudio.com/docs/remote/ssh
https://git.ti.com/cgit/edgeai/edge_ai_apps

BeagleBoard Docs, Release 1.0.20230711-wip

Sample configuration files for out of the box demos can be found in edge_ai_apps/configs this folder
also contains a template config file which has brief info on each configurable parameter edge_ai_apps/
configs/app_config_template.yaml

Here is how a Python based image classification demo can be run,

go to edge-ai-apps folder
debian@beaglebone:~$ cd /opt/edge_ai_apps/apps_python

enable root (password: temppwd)
debian@beaglebone:~$ sudo su
[sudo] password for beaglebone:

use edge—ai-apps
debian@beaglebone: /opt/edge_ai_apps/apps_cpp# sudo ./app_edgeai.py ../
—~configs/image_classification.yaml

The demo captures the input frames from connected USB camera and passes through pre-processing, inference
and post-processing before sent to display. Sample output for image classification and object detection demos
are as below,

Model : TFL-0D-2

To exit the demo press Ctrl+C.

Building and running C++ based demo applications

C++ apps needs to be built directly on target and requires header files of different deep-learning runtime
framework and its dependencies which are installed in the setup script. The setup script builds the C++ apps
when executed. However one can also follow below steps to clean build C++ apps

debian@beaglebone: /opt/edge_ai_apps/apps_cpp# rm -rf build bin 1lib
debian@beaglebone: /opt/edge_ai_apps/apps_cpp# mkdir build
debian@beaglebone: /opt/edge_ai_apps/apps_cpp# cd build
debian@beaglebone: /opt/edge_ai_apps/apps_cpp/build# cmake
debian@beaglebone: /opt/edge_ai_apps/apps_cpp/build# make -7j2

Run the demo once the application is successfully built

debian@beaglebone: /opt/edge_ai_apps/apps_cpp# ./bin/Release/app_edgeai ../
—configs/image_classification.yaml

To exit the demo press Ctrl+C.

Note: Both Python and C++ applications are similar by construction and can accept the same config file and
command line arguments

124 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Note: The C++ apps built on Yocto Linux may not run in Docker as there could be a mismatch in Glib and
other related tools. So its highly recommended to rebuild the C++ apps within the Docker environment.

3.11.3 DL models for Edge Inference
Model Downloader Tool

Tl Model Zoo is a large collection of deep learning models validated to work on Tl processors for edge Al. It
hosts several pre-compiled model artifacts for Tl hardware.

Use the Model Downloader Tool to download more models on target as shown,

debian@beaglebone: /opt/edge_ai_apps# ./download_models.sh

The script will launch an interactive menu showing the list of available, pre-imported models for download. The
downloaded models will be placed under /opt /model_zoo/ directory

Model Downloader
Keys:
Up-Down to Navigate Menu
Space to Select Models
Enter to Continue

_l classification all models

OMR-CL-6068-mobileNetV1 17M
OMR-CL-6078-mobileNetV2 15M
ONR-CL-6078-mobileNetV2-qgat 14M
ONR-CL-6080-shuffleNetv2 o9M
ONR-CL-6090-mobileNetV2-tv 15M
ONR-CL-6098-mobileNetV2-tv-qgat 14M
ONR-CL-6100-resNetl8 47TM
ONR-CL-6110-resNetb0 105M
OMR-CL-6120-regNetX-400mf 21M
OMR-CL-6130-regNetX-800mf 30M
OMR-CL-6140-regNetX-1.6gf 38M
ONR-CL-6158-mobileNetV2-1p4-qat 25M
ONR-CL-6360-regNetx-200mf 11M
ONR-CL-6440-harDNet68 T2M
OMR-CL-6450-harDNet85 149M
OMR-CL-64608-harDNet68ds 1™
OMR-CL-6478-harDNet39ds 14M
ONR-CL-6480-mobv3-1lite-small 8M

L W W W W W I s W I s W W e W s W W I s W s W Wi |
o bl bt b b b b bl b bl b b e bl e bl e b

Fig. 3.33: Model downloader tool menu option to download models

The script can also be used in a non-interactive way as shown below:

debian@beaglebone: /opt/edge_ai_apps# ./download_models.sh —-—-help

Import Custom Models

The BeagleBone® Al-64 Linux for Edge Al also supports importing pre-trained custom models to run inference
on target.

The SDK makes use of pre-compiled DNN (Deep Neural Network) models and performs inference using various
OSRT (open source runtime) such as TFLite runtime, ONNX runtime and Neo AI-DLR. In order to infer a DNN,
SDK expects the DNN and associated artifacts in the below directory structure.

3.11. Edge Al 125

https://github.com/TexasInstruments/edgeai-modelzoo

BeagleBoard Docs, Release 1.0.20230711-wip

TFL-0D-2010-ssd-mobV2-coco-mlperf-300x300

|
F— param.yaml

|

— artifacts

| F— 264_tidl_io_1.bin

| F— 264_tidl_net.bin

| If 264_tidl_net.bin.layer_info.txt
| If 264_tidl_net.bin_netLog.txt

| F— 264_tidl_net.bin.svg

| — allowedNode.txt

|

L— runtimes_visualization. SVg

L

model
L— ssd_mobilenet v2 300_float.tflite

DNN directory structure Each DNN must have the following 3 components:
1. model: This directory contains the DNN being targeted to infer

2. artifacts: This directory contains the artifacts generated after the compilation of DNN for SDK, and
described in DNN compilation for SDK - Basic Instructions

3. param.yaml: A configuration file in yaml format to provide basic information about DNN, and associated
pre and post processing parameters. More details can be find Param file format

Param file format Each DNN has its own pre-process, inference and post-process parameters to get the
correct output. This information is typically available in the training software that was used to train the model.
In order to convey this information to the SDK in a standardized fashion, we have defined a set of parameters
that describe these operations. These parameters are in the param.yaml file.

Please see sample yaml files for various tasks such as image classification, semantic segmentation and object
detection in edgeai-benchmark examples. Descriptions of various parameters are also in the yaml files. If
users want to bring their own model to the SDK, then they need to prepare this information offline and get to
the SDK. In next section we explain how to prepare this information

DNN compilation for SDK - Basic Instructions The BeagleBone® Al-64 Linux for Edge Al supports three
different runtimes to infer a DNN, and user can choose a run time depending on the format of DNN. We recom-
mend users to use different run times and compare the performance and select the one which provides best
performance. User can find the steps to generate the artifacts directory at Edge Al TIDL Tools

DNN compilation for SDK - Advanced Instructions For beginners who are trying to compile models for
the SDK, we recommend the basic instructions given in the previous section. However, DNNs have lot of variety
and some models may need a different kind of preprocessing or postprocessing operations. In order to help
customers deal with different kinds of models, we have prepared a model zoo in the repository edgeai-modelzoo

For the DNNs which are part of TI's model zoo, one can find the compilation settings and pre-compiled model
artifacts in edgeai-benchmark repository. Instructions are also given to compile custom models. When using
edgeai-benchmark for model compilation, the yaml file is automatically generated and artifacts are packaged
in the way SDK understands. Please follow the instructions in the repository to get started.

3.11.4 Demo Configuration file

The demo config file uses YAML format to define input sources, models, outputs and finally the flows which de-
fines how everything is connected. Config files for out-of-box demos are keptin edge_ai_apps/configs
folder. The folder contains config files for all the use cases and also multi-input and multi-inference case. The

126 Chapter 3. BeagleBone Al-64

https://github.com/TexasInstruments/edgeai-benchmark/tree/master/examples/configs/yaml
https://github.com/TexasInstruments/edgeai-tidl-tools/blob/master/examples/osrt_python/README.md#model-compilation-on-pc
https://github.com/TexasInstruments/edgeai-modelzoo
https://github.com/TexasInstruments/edgeai-benchmark
https://github.com/TexasInstruments/edgeai-benchmark

BeagleBoard Docs, Release 1.0.20230711-wip

folder also has a template YAML file app_config_template.yaml which has detailed explanation of
all the parameters supported in the config file.

Config file is divided in 4 sections:
1. Inputs
2. Models
3. Outputs

4. Flows

Inputs

The input section defines a list of supported inputs like camera, filesrc etc. Their properties like shown below.

inputs:
inputO: #Camera Input
source: /dev/video?2 #Device file entry of the.
—camera
format: jpeg #Input data format.
—supported by camera
width: 1280 #Width and Height of the.
—Iinput
height: 720
framerate: 30 #Framerate of the source
inputl: #Video Input
source: ../data/videos/video_0000_h264.mp4 #Video file
format: h264 #File encoding format
width: 1280
height: 720
framerate: 25
input2: #Image Input

source: ../data/images/%$04d.jpg #Sequence of Image files, .
—printf style formatting is used

width: 1280

height: 720

index: O #Starting Index.
— (optional)

framerate: 1

All supported inputs are listed in template config file. Below are the details of most commonly used inputs.

Camera sources (v4l2) v4l2src GStreamer element is used to capture frames from camera sources which
are exposed as v4I2 devices. In Linux, there are many devices which are implemented as v412 devices. Not all
of them will be camera devices. You need to make sure the correct device is configured for running the demo
successfully.

init_script.shisran as part of systemd, which detects all cameras connected and prints the detail like
below in the UART console:

debian@beaglebone: /opt/edge_ai_apps# ./init_script.sh
USB Camera detected

device = /dev/videol$

format Jjpeg
CSI Camera detected

device /dev/video2

name = imx219 8-0010

format = [fmt:SRGGB8_1X8/1920x1080]

ol

(continues on next page)

3.11. Edge Al 127

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
subdev_id = 2
isp_required = yes
IMX390 Camera 0 detected
device = /dev/videol$
name = imx390 10-001a
format = [fmt:SRGGB12_1X12/1936x1100 field: none]
subdev_1id = /dev/v4l-subdev’
isp_required = yes
ldc_required = yes

script can also be run manually later to get the camera details.

From the above log we can determine that 1 USB camera is connected (/dev/videol8), and 1 CSI camera is
connected (/dev/video2) which is imx219 raw sensor and needs ISP. IMX390 camera needs both ISP and LDC.

Using this method, you can configure correct device for camera capture in the input section of config file.

inputO:
source: /dev/videol8 #USB Camera
format: jpeg #1f connected USB camera supports jpeg

width: 1280
height: 720
framerate: 30

inputl:
source: /dev/video2 #CSI Camera
format: auto #let the gstreamer negotiate the format

width: 1280
height: 720
framerate: 30

input2:
source: /dev/video2 #IMX219 raw sensor that needs ISP
format: rggb #ISP will be added in the pipeline

width: 1920

height: 1080

framerate: 30

subdev-id: 2 #needed by ISP to control sensor params via ioctls

input3:
source: /dev/video2 #IMX390 raw sensor that needs ISP
width: 1936
height: 1100
format: rggbl2 #ISP will be added in the pipeline
subdev-id: 2 #needed by ISP to control sensor params via ioctls
framerate: 30
sen—-id: imx390
ldc: True #LDC will be added in the pipeline

Make sure to configure correct format for camera input. jpeg for USB camera that supports MJPEG (Ex.
C270 logitech USB camera). auto for CSI camera to allow gstreamer to negotiate the format. rggb for
sensor that needs ISP.

Video sources H.264 and H.265 encoded videos can be provided as input sources to the demos. Sample
video files are provided under /opt/edge_ai_apps/data/videos/video_0000_h264 .mp4
and /opt/edge_ai_apps/data/videos/video_000_h265.mp4

inputl:
source: ../data/videos/video_0000_h264.mp4
format: h264
width: 1280
(continues on next page)

128 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

height: 720
framerate: 25

input2:
source: ../data/videos/video_0000_h265.mp4
format: h265
width: 1280
height: 720
framerate: 25

Make sure to configure correct format for video input as shown above. By default the format is set to auto
which will then use the GStreamer bin decodebin instead.

Image sources JPEG compressed images can be provided as inputs to the demos. A sample set of images
are provided under /opt/edge_ai_apps/data/images. The names of the files are numbered se-
quentially and incrementally and the demo plays the files at the fps specified by the user.

input2:
source: ../data/images/%$04d.Jpg
width: 1280
height: 720
index: 0
framerate: 1

RTSP sources H.264 encoded video streams either coming from a RTSP compliant IP camera or via RTSP
server running on a remote PC can be provided as inputs to the demo.

inputO:

source: rtsp://172.24.145.220:8554/test # rtsp stream url, replace this.
—with correct url

width: 1280

height: 720

framerate: 30

Note: Usually video streams from any IP camera will be encrypted and cannot be played back directly without
a decryption key. We tested RTSP source by setting up an RTSP server on a Ubuntu 18.04 PC by referring to
this writeup, Setting up RTSP server on PC

Models

The model section defines a list of models that are used in the demo. Path to the model directory is a required
argument for each model and rest are optional properties specific to given use cases like shown below.

models:
modelO:
model_path: ../models/segmentation/ONR-SS-871-deeplabv3lite-mobv2-
—cocoseg21-512x512 #Model Directory
alpha: 0.4 a
. #alpha for blending segmentation mask (optional)
modell:
model_path: ../models/detection/TFL-OD-202-ssdLite-mobDet-DSP—-coco-
—320x320
viz_threshold: 0.3 -
< #Visualization threshold for adding bounding boxes.

— (optional)
(continues on next page)

3.11. Edge Al 129

https://gist.github.com/Santiago-vdk/80c378a315722a1b813ae5da1661f890

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

model2:
model_path: ../models/classification/TVM-CL-338-mobileNetV2-gat
topN: 5 -
< #Number of top N classes (optional)

Below are some of the use case specific properties:

1. alpha: This determines the weight of the mask for blending the semantic segmentation output with the
input image alpha * mask + (1 - alpha) * image

2. viz_threshold: Score threshold to draw the bounding boxes for detected objects in object detection. This
can be used to control the number of boxes in the output, increase if there are too many and decrease
if there are very few

3. topN: Number of most probable classes to overlay on image classification output
The content of the model directory and its structure is discussed in detail in Import Custom Models

Outputs

The output section defines a list of supported outputs.

outputs:
outputO: #Display.
—Output
sink: kmssink
width: 1920 #Width and.

—Height of the output

height: 1080

connector: 39 #Connector.
—ID for kmssink (optional)

outputl: #Video Output
sink: ../data/output/videos/output_video.mkv #Output.
—video file
width: 1920
height: 1080

output2: #Image Output
sink: ../data/output/images/output_image_%04d. jpg #Image file.
—name, printf style formatting is used
width: 1920
height: 1080

All supported outputs are listed in template config file. Below are the details of most commonly used outputs

Display Sink (kmssink) When you have only one display connected to the SK, kmssink will try to use it
for displaying the output buffers. In case you have connected multiple display monitors (e.g. Display Port
and HDMI), you can select a specific display for kmssink by passing a specific connector ID number. Following
command finds out the connected displays available to use.

Note: Run this command outside docker container. The first number in each line is the connector-id which we
will use in next step.

debian@beaglebone: /opt/edge_ai_apps# modetest -M tidss -c | grep connected
39 38 connected DP-1 530x300 12 38
48 0 disconnected HDMI-A-1 0x0 0 47

From above output, we can see that connector ID 39 is connected. Configure the connector ID in the output
section of the config file.

130 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Video sinks The post-processed outputs can be encoded in H.264 format and stored on disk. Please specify
the location of the video file in the configuration file.

outputl:
sink: ../data/output/videos/output_video.mkv
width: 1920
height: 1080

Image sinks The post-processed outputs can be stored as JPEG compressed images. Please specify the
location of the image files in the configuration file. The images will be named sequentially and incrementally
as shown.

output2:
sink: ../data/output/images/output_image_%04d. jpg
width: 1920
height: 1080

Flows

The flows section defines how inputs, models and outputs are connected. Multiple flows can be defined to
achieve multi input, multi inference like below.

flows:
flowO: #First Flow
input: inputO #Input for the Flow
models: [modell, modelZ2] #List of models to be used
outputs: [outputO, outputO] #Outputs to be used for each model.
—~inference output
mosaic: #Positions to place the inference.
—outputs in the output frame
mosaicO:
width: 800
height: 450
pos_x: 160
pos_y: 90
mosaicl:
width: 800
height: 450
pos_x: 960
pos_y: 90
flowl: #Second Flow
input: inputl
models: [modelO, model3]
outputs: [outputO, outputO]
mosaic:
mosaicO:
width: 800
height: 450
pos_x: 160
pos_y: 540
mosaicl:

width: 800
height: 450
pos_x: 960
pos_y: 540

Each flow should have exactly 1 input, n models to infer the given input and n outputs to render the output
of each inference. Along with input, models and outputs it is required to define n mosaics which are the
position of the inference output in the final output plane. This is needed because multiple inference outputs
can be rendered to same output (Ex: Display).

3.11. Edge Al 131

BeagleBoard Docs, Release 1.0.20230711-wip

Command line arguments Limited set of command line arguments can be provided, run with ‘-h’ or ‘~help’
option to list the supported parameters.

usage: Run : ./app_edgeai.py -h for help
positional arguments:
config Path to demo config file
ex: ./app_edgeai.py ../configs/app_config.yaml

optional arguments:

-h, --help show this help message and exit
-n, —-no-curses Disable curses report
default: Disabled
-v, —-verbose Verbose option to print profile info on stdout

default: Disabled

3.11.5 Running Advance demos
The same Python and C++ demo applications can be used to run multiple inference models and also work with
multiple inputs with just simple changes in the config file.

From a repo of input sources, output sources and models one can define advance dataflows which connect
them in various configurations. Details on configuration file parameters can be found in Demo Configuration
file

Single input multi inference demo

Here is an example of a single-input, multi-inference demo which takes a camera input and run multiple net-
works on each of them.

debian@beaglebone: /opt/edge_ai_apps/apps_python# ./app_edgeai.py ../configs/
—single_input_multi_infer.yaml

Sample output for single input, multi inference demo is as shown below,

Model | ONR=55=872=cdesep: e =ragretkBO0mMT = tocoseg2] =511x512 Mol

Fig. 3.34: Sample output showing single input, mutli-inference output

132 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

We can specify the output window location and sizes as shown in the configuration file,

flows:
flowO:
input: inputO
models: [model0O, modell, model2, model3]
outputs: [outputO, outputO, outputO, outputO]
mosaic:
mosaicO:

width: 800
height: 450
pos_x: 160
pos_y: 90
mosaicl:
width: 800
height: 450
pos_x: 960
pos_y: 90
mosaic2:
width: 800
height: 450
pos_x: 160
pos_y: 540
mosaic3:
width: 800
height: 450
pos_x: 960
pos_y: 540

Multi input multi inference demo

Here is an example of a multi-input, multi-inference demo which takes a camera input and video input and
runs multiple networks on each of them.

debian@beaglebone: /opt/edge_ai_apps/apps_python# ./app_edgeai.py ../configs/
—multi_input_multi_infer.yaml

Sample output for multi input, multi inference demo is as shown below,

We can specify the output window location and sizes as shown in the configuration file,

flows:
flowO:
input: inputO
models: [modell, model2]
outputs: [outputO, outputO]
mosaic:
mosaicO:
width: 800
height: 450
pos_x: 160
pos_y: 90
mosaicl:
width: 800
height: 450
pos_x: 960
pos_y: 90
flowl:
input: inputl
models: [model0, model3]

outputs: [outputO, outputO]
(continues on next page)

3.11. Edge Al 133

BeagleBoard Docs, Release 1.0.20230711-wip

Wodel @ TFL=00=202=ssdl ite=moblat=D5F =soco=3204320 Wodsl @ TV =CL=333=mabilaNeivZ=gat

borzed, Russkon wolfhewnd
Bordst colile

collle . £y i
Cordigan, GordiganWaish i"I. -
s groorm, bridegroam — 3

it BOOmMT—cocoaeg2] =512

Fig. 3.35: Sample output showing multi-input, mutli-inference output

(continued from previous page)

mosaic:

mosaicO:
width: 800
height: 450
pos_x: 160
pos_y: 540

mosaicl:
width: 800
height: 450
pos_x: 960
pos_y: 540

3.11.6 Docker Environment

Docker is a set of “platform as a service” products that uses the OS-level virtualization to deliver software in
packages called containers. Docker container provides a quick start environment to the developer to run the
out of box demos and build applications.

The Docker image is based on Ubuntu 20.04.LTS and contains different open source components like OpenCV,
GStreamer, Python and pip packages which are required to run the demos. The user can choose to install any
additional 3rd party applications and packages as required.

Building Docker image

The docker/Dockerfile in the edge_ai_apps repo describes the recipe for creating the Docker container image.
Feel free to review and update it to include additional packages before building the image.

Note: Building Dockerimage on target using the provided Dockerfile will take about 15-20 minutes to complete
with good internet connection. Building Docker containers on target can be slow and resource constrained. The
Dockerfile provided will build on target without any issues but if you add more packages or build components
from source, running out of memory can be a common problem. As an alternative we highly recommend trying

134 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

QEMU builds for cross-compiling the images for arm64 architecture on a PC and then load the compiled image
on target.

Initiate the Docker image build as shown,

debian@beaglebone: /opt/edge_ai_apps/docker#./docker_build.sh

Running the Docker container

Enter the Docker session as shown,

debian@beaglebone: /opt/edge_ai_apps/docker#./docker_run.sh

This will start a Ubuntu 20.04.LTS image based Docker container and the prompt will change as below,

[docker] debian@Rbeaglebone:/opt/edge_ai_apps#

The Docker container has been created in privilege mode, so that it has root capabilities to all devices on the
target system like Network etc. The container file system also mounts the target file system of /dev, /opt to
access camera, display and other hardware accelerators the SoC has to offer.

Note: Itis highly recommended to use the docker_run.sh script to launch the Docker container because this
script will take care of saving any changes made to the filesystem. This will make sure that any modifications
to the Docker filesystem including new package installation, updates to some files and also command history is
saved automatically and is available the next time you launch the container. The container will be committed
only if you exit from the container explicitly. If you restart the board without exiting container, any changes
done from last saved state will be lost.

Note: After building and running the docker container, one needs to run setup_script.sh before
running any of the demo applications. Please refer to Software setup for more details.

Handling proxy settings

If the board running the Docker container is behind a proxy server, the default settings for downloading files
and installing packages via apt-get will not work. If you are running the board from Tl network, docker build
and run scripts will automatically detect and configure necessary proxy settings

For other cases, you need to modify the script /usr/bin/setup_proxy.sh to add the custom proxy
settings required for your network.

Additional Docker commands

Note: This section is provided only for additional reference and not required to run out-of-box demos

Commit Docker container

Generally, containers have a short life cycle. If the container has any local changes it is good to save the
changes on top of the existing Docker image. When re-running the Docker image, the local changes can be
restored.

Following commands show how to save the changes made to the last container. Note that this is already done
automatically by docker_run. sh when you exit the container.

3.11. Edge Al 135

BeagleBoard Docs, Release 1.0.20230711-wip

cont_id="docker ps —-g -1°

docker commit Scont_id edge_ai_kit
docker container rm Scont_id

For more information refer: Commit Docker image

Save Docker Image

Docker image can be saved as tar file by using the command below:

docker save —--output <pre_built_docker_image.tar>

For more information refer here. Save Docker image
Load Docker image

Load a previously saved Docker image using the command below:

docker load —--input <pre_built_docker_image.tar>

For more information refer here. Load Docker image
Remove Docker image

Docker image can be removed by using the command below:

Remove selected image:
docker rmi <image_name/ID>

Remove all image:

docker image prune -a

For more information refer rmi reference and Image prune reference
Remove Docker container

Docker container can be removed by using the command below:

Remove selected container:
docker rm <container_ID>

Remove all container:
docker container prune

For more information refer here. rm reference and Container Prune reference

Relocating Docker Root Location

The default location for Docker files is /var/lib/docker. Any Docker images created will be stored here. This
will be a problem anytime the SD card is updated with a new targetfs. If a secondary storage (SSD or USB based
storage) is available, then it is recommended to relocate the default Docker root location so as to preserve any
existing Docker images. Once the relocation has been done, the Docker content will not be affected by any
future targetfs updates or accidental corruptions of the SD card.

The following steps outline the process for Docker root directory relocation assuming that the current Docker
root is not at the desired location. If the current location is the desired location then exit this procedure.

1. Run ‘Docker info’ command inspect the output. Locate the line with content Docker Root Dir. It will list
the current location.

2. To preserve any existing images, export them to .tar files for importing later into the new location.

3. Inspect the content under /etc/docker to see if there is a file by name daemon.json. If the file is not
present then create /etc/docker/docker.json and add the following content. Update the ‘key:value’ pair

136 Chapter 3. BeagleBone Al-64

https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/rmi/
https://docs.docker.com/engine/reference/commandline/image_prune/
https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/container_prune/

BeagleBoard Docs, Release 1.0.20230711-wip

for the key “graph” to reflect the desired root location. If the file already exists, then make sure that the
line with “graph” exists in the file and points to the desired target location.

{
"graph”: ”/run/media/nvmeOnl/docker_root”,
"storage—-driver”: "overlay”,
"live-restore”: true

}

In the configuration above, the key/value pair ‘““graph”: “/run/media/nvmeOnl/docker_root”’ defines the
root location ‘/run/media/nvmeOnl/docker_root’.

4. Once the daemon.json file has been copied and updated, run the following commands

$ systemctl restart docker
$ docker info
Make sure that the new Docker root appears under Docker Root Dir value.

5. If you exported the existing images in step (2) then import them and they will appear under the new
Docker root.

6. Anytime the SD card is updated with a new targetfs, steps (1), (3), and (4) need to be followed.

Additional references

https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/ps/

3.11.7 Data Flows

The app_edgeai application at a high level can be split into 3 parts,
* Input pipeline - Grabs a frame from camera, video, image or RTSP source
* Output pipeline - Sends the output to display or a file
¢ Compute pipeline - Performs pre-processing, inference and post-processing

Here are the data flows for each reference demo and the corresponding GStreamer launch strings that
app_edgeai application generates. User can interact with the application via the Demo Configuration file

Image classification

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resizes the
input maintaining the aspect ratio and crops the input to match the resolution required to run the deep learning
network. The “visualization” path is provided to the post-processing module which overlays the detected
classes. Post-processed output is given to HW mosaic plugin which positions and resizes the output window on
an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/videol8 io-mode=2 ! image/jpeg, width=1280, height=720 !.

—Jjpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !_
—tiovxmultiscaler name=split_01

split_01. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert.
—~out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115_

—~top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
—675000 mean-1=116.280000 mean—-2=103.530000 scale-0=0.017125 scale-1=0.
017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
—tensor-tiovx ! appsink name=pre_0 max-buffers=2 drop=true

(continues on next page)

3.11. Edge Al 137

https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/ps/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
split_01. ! queue ! video/x-raw, width=1280, height=720 !.
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !._
—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280, .
—~height=720 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_ 0 !._
—tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—~queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—driver—-name=tidss

Image classification dataflow m
X_
454x256

1MP USB camera 1280x720 1280x720 1280x720 : 454x256

IdevivideoX videoljpeg 1420 NV12 NV12 i

NV12 !

jpegdec tiovxcolorconvert

454x256
RGB

videobox
224x224
1280x720 RGB

- GStreamer plugins on ARM NV12

= ce6x_ 1 | tiovxdlpreproc
Compute on ARM S

RGB Planar
|:| Deep Learning Runtime with DSP offload 1280x720 .
RGB appsink
- GStreamer plugin with HWA
[Remote core or HwA appsink
- C66x_0 (DSP) (0 fe-—--—-
. C66x_1(DSP)

- C71x_0 (DSP)

- MSC (Multi-scaler HWA)
- DSS (Display Subsystem)

1280x720
RGB

1280x720 1280x720
NV12 RGB

tiovxcolorconvert appsrc

1920x1080
NV12

Display kmssink tiovxmosaic

Fig. 3.36: GStreamer based data-flow pipeline for image classification demo with USB camera and display

Object Detection

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resizes the
input to match the resolution required to run the deep learning network. The “visualization” path is provided
to the post-processing module which overlays rectangles around detected objects. Post-processed output is
given to HW mosaic plugin which positions and resizes the output window on an empty background before
sending to display.

GStreamer input pipeline:

v41l2src device=/dev/videol8 io-mode=2 ! image/jpeg, width=1280, height=720 !._

—Jjpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !
—tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-

—type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.

—~000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-

—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
(continues on next page)

138 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
—0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !_
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !_
—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280, .
—~height=720 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !._
—tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—~driver—-name=tidss

Object detection dataflow

1MP USB camera 1280x720 1280720 1280x720 320x320
fdevivideoX video/peg 1420 NV12 | NV12

val|2src

jpegdec
320x320

NV12

1280x720 tiovxdlpreproc

- GStreamer plugins on ARM NV12

I:I Compute on ARM Cebx_1 [+

I:I Deep Leaming Runtime with DSP offload

320x320
RGB Planar

1280x720 appsink
RGB
[Gstreamer plugin with Hwa

] Rremote core orHwa

- C66x_0 (DSP)
- C66x_1 (DSP)

- C71x_0 (DSP)

- MSC (Multi-scaler HWA)
- DSS (Display Subsystem)

post-proc

1280x720
RGB

1280x720 1280x720
NV12 RGB

tiovxcolorconvert appsrc

1920x1080
NV12

Display kmssink tiovxmosaic

Fig. 3.37: GStreamer based data-flow pipeline for object detection demo with USB camera and display

Semantic Segmentation

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resize the
input to match the resolution required to run the deep learning network. The “visualization” path is provided to
the post-processing module which blends each segmented pixel to a color map. Post-processed output is given
to HW mosaic plugin which positions and resizes the output window on an empty background before sending
to display.

GStreamer input pipeline:

v41l2src device=/dev/videol8 io-mode=2 ! image/jpeg, width=1280, height=720 !._

—Jjpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !_
—tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-

—type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean—-2=128.
—~000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-

(continues on next page)

3.11. Edge Al 139

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
—0 max-buffers=2 drop=true

split_01. ! queue ! video/x-raw, width=1280, height=720 !_
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !._

—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280, .
—~height=720 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !._
—tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—~driver—-name=tidss

Semantic segmentation dataflow

AMP USB camera 1280x720 1280X720 1280x720 i 512x512
/devivideoX videoljpeg 1420 NV12 I NV12

vdl2src jpegdec

512x512
Nv12

1280x720
- GStreamer plugins on ARM Nv12

D Compute on ARM Cebx_1 [«

D Deep Learning Runtime with DSP offload

512x512
RGB Planar

1280x720
RGB
- GStreamer plugin with HWA

] Remote core or HwA

- C66x_0 (DSP)
- C66x_1 (DSP)

- C71x_0 (DSP)

- MSC (Multi-scaler HWA)
- DSS (Display Subsystem)

1280x720
RGB

1280x720 1280x720
NV12 : RGB

tiovxcolorconvert

1920x1080
NVv12

Display kmssink tiovxmosaic appsrc

Fig. 3.38: GStreamer based data-flow pipeline for semantic segmentation demo with USB camera and display

Human Pose Estimation

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resize the
input to match the resolution required to run the deep learning network. The “visualization” path is provided
to the post-processing module which overlays the keypoints and lines to draw the pose. Post-processed output
is given to HW mosaic plugin which positions and resizes the output window on an empty background before
sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video2 io-mode=2 ! image/Jjpeg, width=1280, height=720 !._

—Jjpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !
—~tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=640, height=640 ! tiovxdlpreproc data-

—type=10 target=0 channel-order=0 mean-0=0.000000 mean-1=0.000000 mean-2=0.
(continues on next page)

140 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
—~000000 scale-0=1.000000 scale-1=1.000000 scale-2=1.000000 tensor-

—format=bgr out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
-0 max-buffers=2 drop=true

split_01. ! queue ! video/x-raw, width=1280, height=720 !.
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !._

—appsink name=sen_0 max-buffers=2 drop=true
GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NvV12, width=1280,_
—height=720 ! queue ! mosaic_0.sink_0

tiovxmosaic name=mosaic_0 background=/tmp/background_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—driver—-name=tidss

Human Pose Estimation Dataflow

1MP USB camera 1280x720 1280x720 1280x720 B40x640
IdevivideoX videofjpeg 1420 NV12 | NV12

i 640x640
NV12
C66x_0
12806720 oM S tiovxdlpreproc

- GStreamer plugins on ARM NV12

l:l Compute on ARM C66x_1 i

D Deep Learning Runtime with DSP offload

tiovxmultiscaler

queuel

640x640
RGB Planar

tiovxcolorconvert

1280x720
RGB

appsink
- GStreamer plugin with HWA

l:l Remote core or HWA

- C66x_0(DSP) C71x 0 |-
- CB6x_1(DSP)
- C710(DSP)

- MSC (Mutti-scaler HWA)
- DSS (Display Subsystem)

DSS

1280x720
1920x1080 RGB

|
|
Display m RGB

TI Confidential — NDA Restrictions Q’; TEXAS INSTRUMENTS

Fig. 3.39: GStreamer based data-flow pipeline for Human Pose Estimation demo with USB camera and display

Video source

In this demo, a video file is read from a known location and passed to a de-muxer to extract audio and video
streams, the video stream is parsed and raw encoded information is passed to a HW video decoder. Note that
H.264 and H.265 encoded videos are supported, making use of the respective HW decoders. The resulting
output is split into two paths. The “analytics” path resizes the input to match the resolution required to run
the deep learning network. The “visualization” path is provided to the post-processing module which does
the required post process required by the model. Post-processed output is given to HW mosaic plugin which
positions and resizes the output window on an empty background before sending to display.

GStreamer input pipeline:

filesrc location=/opt/edge_ai_apps/data/videos/video_0000_h264.mp4 ! gtdemux..

—! h264parse ! v412h264dec ! video/x-raw, format=NV12 ! tiovxmultiscaler.

—name=split_01

split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
(continues on next page)

3.11. Edge Al 141

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
—type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
—~000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
-0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !_
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !_
—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280,._
—~height=720 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_ 0 !
—~tiovxdlcolorconvert ! video/x-raw, format=Nv12, width=1920, height=1080 !._
—queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—~driver—-name=tidss

Video source, single inference Msc

1280x720 320x320
video_0000_h264.mp4 Nv12 | Nvi2

h264parse vd|2h264dec

filesrc

qtdemux tiovxmultiscaler

320x320
NV12

queuel

- GStreamer plugins on ARM 1280x720

(o8O B tiovxdlpreproc

NV12
] compute onArM :
(o[>0 B tiovxcolorconvert 320x320
E Deep Leaming Runtime with DSP offload RGB Planar
[streamer plugin with Hwa 1280x720 appsink
RGB
I:I Remote core or HWA o
appsink
- C66x_0 (DSP)
- C66x_1(DSP)
- C71x_0 (DSP) C71x 0 [«
- MSC (Multi-scaler HWA)
. DSS (Display Subsystem)
- HWD (Hardware decoder)
DSS MSC

1280X720
RGB

1280x720 1280x720
NV12 : RGB

tiovxcolorconvert appsrc

1920x1080
NV12

Display tiovxmosaic

Fig. 3.40: GStreamer based data-flow pipeline with video file input source and display

RTSP source

In this demo, a video file is read from a RTSP source and passed to a de-muxer to extract audio and video
streams, the video stream is parsed and raw encoded information is passed to a video decoder and the resulting
output is split into two paths. The “analytics” path resizes the input to match the resolution required to run
the deep learning network. The “visualization” path is provided to the post-processing module which does
the required post process required by the model. Post-processed output is given to HW mosaic plugin which
positions and resizes the output window on an empty background before sending to display.

GStreamer input pipeline:

rtspsrc location=rtsp://172.24.145.220:8554/test latency=0 buffer-mode=auto !
— rtph264depay ! h264parse ! v412h264dec ! video/x-raw, format=NV12 !

(continues on next page)

142 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
—tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
—type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
—~000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-

—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
-0 max-buffers=2 drop=true

split_01. ! queue ! video/x-raw, width=1280, height=720 !.
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !._

—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280, .
—~height=720 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_ 0 !._
—tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—~queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—driver—-name=tidss

RTSP source, single inference A

1280x720 320x320
video_0000_h264.mp4 NV12 ! NV12

h264parse v4|2h264dec

rtspsrc

rtph264depay tiovxmultiscaler

queue0

320%320
Nv12

[Gstreamer plugins on ARM 1280x720 CEON S tiovxdlpreproc
NV12
] compute onARM :
(I B tiovxcolorconvert 320x320
|:I Deep Leaming Runtime with DSP offload RGB Planar
- GStreamer plugin with HWA 1280x720 appsi nk

RGB

|:| Remote core or HWA
- C66x_0 (DSP)

appsink

- C66x_1(DSP)
- C71x_0 (DSP) C71x 0 [«
- MSC (Multi-scaler HWA)

. DSS (Display Subsystem)
- HWD (Hardware decoder)

C66x_0
1280x720 1280x720

1280x720
! RGB RGB

NV12

1920%1080
NV12

Display kmssink tiovxmosaic tiovxcolorconvert appsrc

Fig. 3.41: GStreamer based data-flow pipeline with RTSP based video file source and display

RPiV2 Camera Sensor (IMX219)

In this demo, raw frames in SRGGB8 format are captured form RPiV2 (imx219) camera sensor. VISS (Vision
Imaging Subsystem) is used to process the raw frames and get the output in NV12, VISS also cotrols the sensor
parameters like exposure, gain etc.. via v412 ioctls. The NV12 output is split into two paths. The “analytics”
path resizes the input to match the resolution required to run the deep learning network. The “visualization”
path is provided to the post-processing module which does the required post process required by the model.
Post-processed output is given to HW mosaic plugin which positions and resizes the output window on an empty
background before sending to display.

GStreamer input pipeline:

3.11. Edge Al 143

BeagleBoard Docs, Release 1.0.20230711-wip

v412src device=/dev/video2 io-mode=5 ! video/x-bayer, width=1920,.
—~height=1080, format=rggb ! tiovxisp device=/dev/v4l-subdev2 dcc-isp-file=/
—opt/imaging/imx219/dcc_viss.bin dcc-2a-file=/opt/imaging/imx219/dcc_2a.bin.
—format-msb=7 ! video/x-raw, format=NV12 ! tiovxmultiscaler ! video/x-raw,.
—width=1280, height=720 ! tiovxmultiscaler name=split_01

split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
—~type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
—000000 scale-0=0.007812 scale-1=0.007812 scale—-2=0.007812 tensor-
—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
-0 max-buffers=2 drop=true

split_01. ! queue ! video/x-raw, width=1280, height=720 !.
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !._
—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280, .
—~height=720 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !_
—tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—driver—-name=tidss

RPiV2 (IMX219) Sensor

Exposure, gain

IMX219 control via v412 MSC
focts 320x320
1920x1080 1280x720 X
L2080 NV12 NV12 NV12

v4l2src tiovxisp

VISS MSC
1280x720

[l Gsteamer piugins on ARM Nv12
(L —
|:I Compute on ARM

|:| Deep Learning Runtime with DSP offload 1280x720
RGB

320x320
NV12

tiovxdlpreproc

320x320
RGB Planar

appsink

[Gstreamer plugin with HWA

|:I Remote core or HWA

- C66x_0 (DSP) 1920x1080
- Ceéx_1 (DSP) RGBX
- C71x_0 (DSP)

- MSC (Multi-scaler HWA)
- DSS (Display Subsystem)

- VISS (Vision Imaging Subsystem) DSS MSC oo 0
1280x720 — 1280x720

1920x1080
NV12 NV12 RGB

1280x720
RGB

Display kmssink tiovxmosaic tiovxcolorconvert appsrc
PP

Fig. 3.42: GStreamer based data-flow pipeline with IMX219 sensor, ISP and display

IMX390 Camera Sensor

In this demo, raw frames in SRGGB12 format are captured from IMX390 camera sensor. VISS (Vision Imaging
Subsystem) is used to process the raw frames and get the output in NV12, VISS also controls the sensor
parameters like exposure, gain etc.. via v4l2 ioctls. This is followed by LDC (Lens Distortion Correction) required
due to the fisheye lens. The NV12 output is split into two paths. The “analytics” path resizes the input to
match the resolution required to run the deep learning network. The “visualization” path is provided to the

144 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

post-processing module which does the required post process required by the model. Post-processed output

is given to HW mosaic plugin which positions and resizes the output window on an empty background before
sending to display.

GStreamer input pipeline:

v4l2src device=/dev/videol8 ! queue leaky=2 ! video/x-bayer, width=1936,.
—height=1100, format=rggbl2 ! tiovxisp sink_0::device=/dev/v4l-subdev7.
—»sensor-name=IMX390-UB953_D3 dcc-isp-file=/opt/imaging/imx390/dcc_viss.bin.
—sink_0::dcc-2a-file=/opt/imaging/imx390/dcc_2a.bin format-msb=11 ! video/x-
—raw, format=NV12 ! tiovxldc dcc-file=/opt/imaging/imx390/dcc_ldc.bin.
—sensor—-name=IMX390-UB953_D3 ! video/x-raw, format=NV12, width=1920, .
—height=1080 !tiovxmultiscaler name=split_01

split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
—~type=3 target=0 channel-order=0 tensor-format=bgr out-pool-size=4 !_
—application/x-tensor-tiovx ! appsink name=pre_0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !_
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !_
—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280,_
—height=720 ! queue ! mosaic_0.sink_0

tiovxmosaic name=mosaic_0 background=/tmp/background_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NvV12, width=1920, height=1080 !

kmssink sync=false.
—~driver—-name=tidss

IMX390 Sensor

Exposure, gain

IMX390 control via v4I2 MsC

ioctls
1936x1100 1936x1100 19201080
NV12 NV12
RGGB12
v4|2src

tiovxisp tiovxldc

512x512
NV12

512x512
NV12

tiovxdlpreproc
1280x720

) NV12 512x512

- GStreamer plugins on ARM - RGB Planar
-C66x 1 fe---- -

I:I Compute on ARM - appsmk

|:| Deep Leamning Runtime with DSP offload 1280x720

RGB
- GStreamer plugin with HWA

I:I Remote core or HWA —

- CB6x_0 (DSP)
- C66x_1 (DSP) 1920%1080
- C71x_0 (DSP) RGB

- MSC (Multi-scaler HWA)
- DSS (Display Subsystem)

- VISS (Vision Imaging Subsystem) DSS
- LDC (Lens Distortion Correction)

1280x720
RGB

C66x_0
1280x720 1280x720

NV12 RGB

1920x1080
NV12

Display kmssink

tiovxmosaic tiovxcolorconvert appsrc

Fig. 3.43: GStreamer based data-flow pipeline with IMX390 sensor, ISP, LDC and display

Video output

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resizes the
input to match the resolution required to run the deep learning network. The “visualization” path is provided
to the post-processing module which does the required post process required by the model. Post-processed

3.11. Edge Al 145

BeagleBoard Docs, Release 1.0.20230711-wip

output is given to HW mosaic plugin which positions and resizes the output window on an empty background.
Finally the video is encoded using the H.264 HW encoder and written to a video file.

GStreamer input pipeline:

v4l2src device=/dev/videol8 io-mode=2 ! image/jpeg, width=1280, height=720 !._
—Jjpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !
—tiovxmultiscaler name=split_01

split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
—type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean—-2=128.
—~000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
—0 max-buffers=2 drop=true

split_01. ! queue ! video/x-raw, width=1280, height=720 !_
—tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !_
—appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1280,_
—height=720 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_ 0 !._
—tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
—0::height=720

! video/x-raw, format=NV12, width=1920, height=1080 ! v412h264enc.
—bitrate=10000000 ! h264parse ! matroskamux ! filesink location=/opt/edge_
—.ai_apps/data/output/videos/output_video.mkv

Video output, Single inference

AMP USB camera 1280x720 1280x720 1280x720 : 320x320
/devivideoX videoljpeg 1420 NV12 I Nv12

ipegdec tiovxcolorconvert tiovxmultiscaler

320x320
NV12

1280x720
- GStreamer plugins on ARM NV12

D Compute on ARM Ceex_1 [«———-

D Deep Learning Runtime with DSP offload

tiovxdlpreproc

CB6x_0 [e---

tiovxcolorconvert 320x320

RGB Planar

1280x720 appsink
RGB

- GStreamer plugin with HWA

|:| Remote core or HWA SRoll k

- C66x_0 (DSP)

- CBBx_1 (DSP)

- C71x_0 (DSP)

- MSGC (Multi-scaler HWA)

- DSS (Display Subsystem)

C71x 0 -

1280x720
RGB

C66x_0
1920x1080 - 1280x720 1280x720
I

output_video.mkv NV12 NV12 | RGB

filesink matroskamux

h264parse v4l2h264enc

tiovxmosaic tiovxcolorconvert appsrc

Fig. 3.44: GStreamer based data-flow pipeline with video file input source and display

Single Input Multi inference

In this demo, a frame is grabbed from an input source and split into multiple paths. Each path is further split
into two sub-paths one for analytics and another for visualization. Each path can run any type of network,
image classification, object detection, semantic segmentation and using any supported run-time.

146 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

For example the below GStreamer pipeline splits the input into 4 paths for running 4 deep learning networks.
First is a semantic segmentation network, followed by object detection network, followed by two image classifi-
cation networks. If we look at the image classification path, the analytics sub-path resizes the input to maintain
the aspect ratio and crops the input to match the resolution required to run the deep learning network. The
visualization sub-path is provided to the post-processing module which overlays the detected classes. Post-
processed output from all the 4 paths is given to HW mosaic plugin which positions and resizes the output
windows on an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/videol8 io-mode=2 ! image/jpeg, width=1280, height=720 !.

—Jjpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 ! tee name=tee_
—splitO

tee_split0. ! queue ! tiovxmultiscaler name=split_01

tee_split0. ! queue ! tiovxmultiscaler name=split_02

tee_split0. ! queue ! tiovxmultiscaler name=split_03

tee_split0. ! queue ! tiovxmultiscaler name=split_04

split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-

—type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
—~000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-

—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
-0 max-buffers=2 drop=true

split_01. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert.
—target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_0.
—max-buffers=2 drop=true

split_02. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-

—~type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
—~000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-

—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
—1 max-buffers=2 drop=true

split_02. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert..
—~target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_1._
—max-buffers=2 drop=true

split_03. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert.
—out—-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115.

—~top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=1 mean-0=128.
—000000 mean-1=128.000000 mean-2=128.000000 scale-0=0.007812 scale-1=0.
007812 scale-2=0.007812 tensor-format=rgb out-pool-size=4 ! application/x-
—tensor-tiovx ! appsink name=pre_2 max-buffers=2 drop=true

split_03. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert.
—target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_2..
—max-buffers=2 drop=true

split_04. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert.
—out—-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115.
—~top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
—~675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
—~tensor-tiovx ! appsink name=pre_3 max-buffers=2 drop=true

split_04. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert.
—target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_3.
—max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.

—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=640, .
—height=360 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_1 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=640, .
—height=360 ! queue ! mosaic_0.sink_1

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_2 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=640, .
—height=360 ! queue ! mosaic_0.sink_2

(continues on next page)

3.11. Edge Al 147

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_3 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,._
—~height=360 ! queue ! mosaic_0.sink_3
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !_
—~tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=640 sink_
—0::height=360
sink_1::startx=960 sink_1::starty=180 sink_1::width=640 sink_
—1::height=360
sink_2::startx=320 sink_2::starty=560 sink_2::width=640 sink_
—2::height=360
sink_3::startx=960 sink_3::starty=560 sink_3::width=640 sink_
—3::height=360
! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—~driver—-name=tidss

Multi Input Multi inference

In this demo, a frame is grabbed from multiple input sources and split into multiple paths. The multiple input
sources could be either multiple cameras or a combination of camera, video, image, RTSP source. Each path
is further split into two sub-paths one for analytics and another for visualization. Each path can run any type
of network, image classification, object detection, semantic segmentation and using any supported run-time.

For example the below GStreamer pipeline splits two inputs into 4 paths for running 2 deep learning networks.
First is a object detection network, followed by image classification networks. If we look at the image classifi-
cation path, the analytics sub-path resizes the input to maintain the aspect ratio and crops the input to match
the resolution required to run the deep learning network. The visualization sub-path is provided to the post-
processing module which overlays the detected classes. Post-processed output from all the 4 paths is given to
HW mosaic plugin which positions and resizes the output windows on an empty background before sending to
display.

GStreamer input pipeline:

v4l2src device=/dev/videol8 io-mode=2 ! image/jpeg, width=1280, height=720 !.

—Jjpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 ! tee name=tee_
—split0

tee_split0. ! queue ! tiovxmultiscaler name=split_01

tee_split0. ! queue ! tiovxmultiscaler name=split_02

split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-

—type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
—~000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-

—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
—0 max-buffers=2 drop=true

split_01. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert.
—target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_0.
—max-buffers=2 drop=true

split_02. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert.
—out—-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115.

—top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=1 mean-0=128.
000000 mean-1=128.000000 mean-2=128.000000 scale-0=0.007812 scale-1=0.
007812 scale-2=0.007812 tensor-format=rgb out-pool-size=4 ! application/x-
—tensor-tiovx ! appsink name=pre_1 max-buffers=2 drop=true

split_02. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert.
—target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_1.
—max-buffers=2 drop=true

filesrc location=/opt/edge_ai_apps/data/videos/video_0000_h264.mp4 ! gtdemux.
—! h264parse ! v41l2h264dec ! video/x-raw, format=NV12 ! tee name=tee_splitl
(continues on next page)

148 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

tee_splitl. ! queue ! tiovxmultiscaler name=split_11
tee_splitl. ! queue ! tiovxmultiscaler name=split_12
split_11. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-

—type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
—~000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-

—format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
—2 max-buffers=2 drop=true
split_11. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert.

—target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_2..
—max-buffers=2 drop=true

split_12. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert.
—out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115_
—top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
—~675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
—017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
—tensor-tiovx ! appsink name=pre_3 max-buffers=2 drop=true

split_12. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert..
—target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_3.
—max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.

—name=post_0 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=640,._
—~height=360 ! queue ! mosaic_0.sink_0

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_1 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=640,._
—~height=360 ! queue ! mosaic_0.sink_1

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_2 ! tiovxdlcolorconvert ! video/x-raw, format=NV12, width=640,._
—~height=360 ! queue ! mosaic_0.sink_ 2

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true.
—name=post_3 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,._
—~height=360 ! queue ! mosaic_0.sink_3

appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !_
—tiovxdlcolorconvert ! video/x-raw, format=NV12, width=1920, height=1080 !._
—queue ! mosaic_0.background

tiovxmosaic name=mosaic_0

sink_0::startx=320 sink_0::starty=180 sink_0::width=640 sink_
—0::height=360

sink_1::startx=960 sink_1::starty=180 sink_1::width=640 sink_
—1::height=360

sink_2::startx=320 sink_2::starty=560 sink_2::width=640 sink_
—2::height=360

sink_3::startx=960 sink_3::starty=560 sink_3::width=640 sink_
—3::height=360

! video/x-raw, format=NV12, width=1920, height=1080 ! kmssink sync=false.
—driver—-name=tidss

3.11.8 Performance Visualization Tool

The performance visualization tool can be used to view all the performance statistics recorded when running the
edge Al C++ demo application. This includes the CPU and HWA loading, DDR bandwidth, Junction Temperatures
and FPS obtained. Refer to Available options for details on the performance metrics available to be plotted.

This tool works as follows:

* Logging: When running the application, the performance statistics can be recorded and stored in log
files. This is done automatically when running the C++ application, but the Python application does not
generate logs. However a standalone binary executable is provided that can be run in parallel with the
Python application, which will generate these performance logs.

3.11. Edge Al 149

BeagleBoard Docs, Release 1.0.20230711-wip

* Visualization: There is a Python script which parses these logs and plots graphs, which can be easily
viewed by a visiting a URL in any browser. This script uses Streamlit package to update the graphs in
real-time, as the Edge Al application runs in parallel. However, since Streamlit is not supported in the
SDK out of box, this script needs to run on docker. Please refer to Docker Environment for building and
running a docker container.

3.11.9 Generating Performance Logs

Each log file contains real-time values for some performance metrics, averaged over a 2s window. The temper-
ature sensor values are sampled in real time, every 2s. The performance visualization tool then parses these
log files one by one based on the modification timestamps.

The edge Al C++ demo will automatically generate log files and store them in the directory . . /perf_logs,
that is, one level up from where the C++ app is run. For example, if the app is run from edge_ai_apps/
apps_cpp. the logs will be stored in edge_ai_apps/perf_logs.

Similarly, there is a binary executable that can be compiled that does the same logging standalone. The source
for this is available under edge_ai_apps/scripts/perf_stats/. The README.md file has simple
instructions to build and run this standalone logger binary. After building it, use following command to print
the statistics on the terminal as well as save them in log files that can be parsed.

debian@beaglebone: /opt/edge_ai_apps/scripts/perf_stats/build# ../bin/Release/
—ti_perfstats -1

3.11.10 Running the Visualization tool

To use this tool, simply start a docker session and then run the command given below. This script expects some
log files to be present in the directory edge_ai_apps/perf_logs after running any C++ demo. One
can also bring up this tool while running the demo but it might affect the performance of the demo itself as it
consumes a bit of ARM cycles during launch but stabilizes over a certain duration.

[docker] debian@beaglebone:/opt/edge_ai_apps# streamlit run scripts/perf_vis.
—py —-—theme.base="1ight”

This script also accepts the log directory as a command line argument as follows:

[docker] debian@beaglebone:/opt/edge_ai_apps# streamlit run scripts/perf_vis.
—py ——-theme.base="1ight” -- -D <path/to/logs/directory/>

A network URL can be seen in the terminal output. The graphs can be viewed by visiting this URL in any
browser. The plotted graphs will keep updating based on the available log files.

To exit press Ctrl+C in the terminal.

Available options

Average frames per second (FPS) recorded by the application is displayed by default. Using the checkboxes in
the sidebar, one can select which performance metrics to view. There are 14 metrics available to be plotted,
as seen from the above image:

* CPU Load: Total loading for the A72(mpul_0), R5F(mcu2_0/1), C66x(c6x_1/2) and C71x(c7x_1) DSPs.
* HWA Load: Loading (percentage) for the various available hardware accelerators.

+ DDR Bandwidth: Average read, write and total bandwidth recorded in the previous 2s interval.

* Junction Temperatures: The live temperatures recorded at various junctions

* Task Table: A separate graph for each cpu showing the loading due to various tasks running on it.

¢ Heap Table: A separate graph for each cpu showing the heap memory usage statistics.

150 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

EdgeAl Performance Visualization Tool so | =
Select Graphing Method Current FPS:29.95
Line Summary of CPU load HWA performance statistics

© Bar
Select statistics to display: dony dony
CPU Load
HWA Load ; =

E| Ee
DDR Bandwidth 2 g

z -
) Junction Temperature statisics - z omm .

o o oc BLNF MSCO MSCI DOF SDE GPU VAL

Ml om0 medl escl 52 el vss

mcu2_0 Heap Table
cru HWA
mcu2_1 Task Table

mcu2_1 Heap Table

C6x_1Heap Table

c6x_2 Task Table

c6x_1 Task Table DDR performance statistics Temperature statistics
0
c6%_2 Heap Table

310
&
w o 7 o
200 @
C7x_1Task Table)
o
CTx_1Heap Table Lok
) -
»
¢ o
READ WRITE TOTAL o WK . = R

DDRBW ZONE

DDREW (ME/s)
TEMPERATURE

Fig. 3.45: Performance visualizer dashboard showing CPU and HWA loading, DDR bandwidth, Junction Temper-
atures and the FPS obtained

For the first three metrics, there is a choice to view line graphs with a 30s history or bar graphs with only the
real-time values. The remaining eleven have real-time bar graphs as the only option.

3.11.11 SDK Components

The BeagleBone® Al-64 Linux for Edge Al can be divided into 3 parts, Applications, BeagleBone® AI-64 Linux
and Processor SDK RTOS. Users can get the latest application updates and bug fixes from the public repositories
(GitHub and git.ti.com) which aligns with the SDK releases done quarterly. One can also build every component
from source by following the steps in the Tl Edge Al SDK development flow.

edge_ai_apps (Python, C++)
i-gst- i dgeai-model GStreamer
\ edgeai-gst-plugins] [edgeai-modelzoo] TELite)
1 ONNX | \
edgeai-tiovx-modules IED AL =D O &Y)
g N\
PSDK-Linux (Yocto Dunfell and Docker)

A J
g Y
PSDK-RTOS
Tiovx, TIDL, vision_apps, HWA, remote core binaries
A J

Fig. 3.46: BeagleBone® Al-64 Linux for Edge Al components

Edge Al Applications

The edge Al applications are designed for users to quickly evaluate various Deep Learning networks on TDA4
SoC. The user can run standalone examples and Jupyter notebook applications to evaluate inference models

3.11. Edge Al 151

https://software-dl.ti.com/jacinto7/esd/edgeai-sdk-j721e/latest/exports/docs/development_flow.html

BeagleBoard Docs, Release 1.0.20230711-wip

either from Tl Edge Al Model Zoo or a custom network. Once a network is finalized for performance and accuracy
it can also be easily integrated in a typical capture-inference-display usecase using example GStreamer based
applications for rapid prototyping and deployment.

edgeai-tidl-tools This application repository provides standalone Python and C/C++ examples to quickly
evaluate inference models using TFLite, ONNX and NeoAI-DLR runtime using file based inputs. It also houses
the Jupyter notebooks similar to Tl Edge Al Cloud which can be executed right on the TDA4VM Starter Kit.

For more details on using this application repo please refer to the documentation and source code found here:
https://github.com/TexasInstruments/edgeai-tidl-tools

edgeai-modelzoo This repo provides collection of example Deep Neural Network (DNN) Models for various
computer vision tasks. A few example models are packaged as part of the SDK to run out-of-box demos. More
can be downloaded using a download script made available in the edge_ai_apps repo.

For more details on the pre-imported models and related documentation please visit: https://github.com/
Texaslnstruments/edgeai-modelzoo

edge ai_apps These are plug-and-play Deep Learning applications which support running open source run-
time frameworks such as TFLite, ONNX and NeoAl-DLR with a live camera and display. They help connect
realtime camera, video or RTSP sources to DL inference to live display, bitstream or RTSP sinks.

The latest source code with fixes can be pulled from: https://git.ti.com/cgit/edgeai/edge_ai_apps

edgeai-gst-plugins This repo provides the source of custom GStreamer plugins which helps offload tasks
to TDA4 hardware accelerators and advanced DSPs with the help of edgeai-tiovx-modules. The repo gets
downloaded, built and installed as part of the Software setup step.

Source code and documentation: https://github.com/TexasInstruments/edgeai-gst-plugins

edgeai-tiovx-modules This repo provides OpenVx modules which help access underlying hardware accel-
erators in the TDA4 SoC and serves as a bridge between GStreamer custom elements and underlying OpenVx
custom kernels. The repo gets downloaded, built and installed as part of the Software setup step.

Source code and documentation: https://github.com/TexasInstruments/edgeai-tiovx-modules

Processor SDK RTOS

The BeagleBone® Al-64 Linux for Edge Al gets all the HWA drivers, optimized libraries, OpenVx framework and
more from Processor SDK RTOS

For more information visit Processor SDK RTOS Getting Started Guide.

BeagleBone® Al-64 Linux

The BeagleBone® Al-64 Linux for Edge Al gets all the Linux kernel, filesystem, device-drivers and more from
BeagleBone® Al-64 Linux

For more information visit BeagleBone® Al-64 Linux Software Developer’'s Guide.

3.11.12 Datasheet

This chapter describes the performance measurements of the Edge Al Inference demos.

Performance data of the demos can be auto generated by running following command on target:

152 Chapter 3. BeagleBone Al-64

https://github.com/TexasInstruments/edgeai-modelzoo
https://dev.ti.com/edgeai/
https://github.com/TexasInstruments/edgeai-tidl-tools
https://github.com/TexasInstruments/edgeai-modelzoo
https://github.com/TexasInstruments/edgeai-modelzoo
https://git.ti.com/cgit/edgeai/edge_ai_apps
https://github.com/TexasInstruments/edgeai-gst-plugins
https://github.com/TexasInstruments/edgeai-tiovx-modules
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_overview.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_02_00_03/exports/docs/devices/J7/linux/index.html

BeagleBoard Docs, Release 1.0.20230711-wip

debian@beaglebone: /opt/edge_ai_apps/tests# ./gen_data_sheet.sh

The performance measurements includes the following

1. FPS : Effective framerate at which the application runs

2. Total time : Average time taken to process each frame, which includes pre-processing, inference and

post-processing time

. Inference time : Average time taken to infer each frame

3
4. CPU loading : Loading on different CPU cores present
5. DDR BW : DDR read and write BW used

6

. HWA Loading : Loading on different Hardware accelerators present

Following are the latest performance numbers of the C++ demos:
Source : USB Camera

Capture Framerate : 30 fps Resolution : 720p format : JPEG

Object detection dataflow

1MP USB camera 1280720 1280x720 1280x720 320x320
/devivideoX videofjpeg 1420 NV12 I NV12

va|2src jpegdec

1280x720
- GStreamer plugins on ARM NV12

I:I Compute on ARM Ce6x_1 [«——--

I:I Deep Learning Runtime with DSP offload 1980x720

RGB
- GStreamer plugin with HWA

I:I Remote core or HWA

- C66x_0 (DSP)
- C66x_1 (DSP)

- C71x_0 (DSP)

- MSC (Multi-scaler HWA)
- DSS (Display Subsystem)

post-proc

1920x1080 1280X720 1280x720
NV12 NvV12 RGB

Display tiovxmosaic tiovxcolorconvert appsrc

Fig. 3.47: GStreamer based data-flow pipeline with USB camera input and display output

320x320
Nv12

320x320
RGB Planar

1280x720
RGB

3.11. Edge Al

153

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS| To- | In- | A72| DDR DDR DDR C71| C66]1C662MCU2MCU2MSCG_MSCG_VYISS NF | LDC| SDE| DOH
tal | fer- | Load Read Writ¢ To- | Load Load Load Load Load (%) | (%) | (%) | (%) | (%) | (%) | (%)
time| ence (%) | BW | BW | tal (%) | (%) | (%) | (%) | (%)
(ms)| time (MB/s)(MB/s)BW

(ms) (MBs)
ONR{ 30.80 33.22 3.02| 21.60 1596 619 | 2215 9.0 20.0| 9.0 6.0 1.0 22.17 O 0 0 0 0 0
CL-
6150-
mobileNetVR
1p4-
gat
TFL-| 30.69 33.19 1.04| 15.93 1425 563 | 1988 5.0 22.0| 9.0 6.0 1.0 21.90 0 0 0 0 0 0
CL-
0000-
mobileNetVL
mlperf
TFL-| 30.69 33.25 5.00| 10.24 1534 570 | 2104 15.0| 29.0| 9.0 6.0 1.0 2267 0 0 0 0 0 0
OD-
2020-
ssdLite-
mobDet-
DSP-
coco
320x320
TVM{ 30.58 33.21 2.02| 22.80 1522 617 | 2139 6.0 20.0| 9.0 6.0 1.0 21.84 0 0 0 0 0 0
CL-
3410-
gluomcv-
mxnet-
moby2

Source : Video

Video Framerate : 30 fps Resolution : 720p Encoding : h264

Video source, single inference Msc

1280x720 320x320

video_0000_h264.mp4 NV12 ! NV12

h264parse vd|2h264dec

filesrc qtdemux tiovxmultiscaler

320x320
NV12

- GStreamer plugins on ARM 1280x720 C66x_0 |+ tiovxdlpreproc
NV12
] compute onARM :
(o[>0 B tiovxcolorconvert 320x320
I:l Deep Learning Runtime with DSP offload RGB Planar
- GStreamer plugin with HWA éz(?gxno apps! nk
I:l Remote core or HWA .
appsink

- C66x_0 (DSP)

- C66x_1(DSP)

- C71x_0(DSP) C71x 0 [«

- MSC (Multi-scaler HWA)

- DSS (Display Subsystem)

- HWD (Hardware decoder)

post-proc
pss Mse (et 1280x720
1280x720 ; 1280x720 RGB

1920x1080
NV12

NV12 - RGB
tiovxcolorconvert

Display kmssink tiovxmosaic appsrc

Fig. 3.48: GStreamer based data-flow pipeline with video file input source and display output

154 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS| To- | In- | A72| DDR DDR DDR C71| C66]1C662MCU2MCU2MSCG_MSCG_VYISS NF | LDC| SDE| DOH
tal | fer- | Load Read Writ¢ To- | Load Load Load Load Load (%) | (%) | (%) | (%) | (%) | (%) | (%)
time| encg (%) | BW | BW | tal | (%) | (%) | (%) | (%) | (%)

(ms)| time (MB/s)(MB/s)BW
(ms) (MBs)

ONR{ 30.52 33.46 3.03| 14.28 990 | 403 | 1393 2.0 | 7.0 | 40 | 1.0 | 1.0 | 10.27 O 0 0 0 0 0
CL-
6150-
mobileNetVp-
1p4-
gat

TFL-| 30.77 33.47 1.07| 30.7¢ 746 | 97 843 20 | 20 | 1.0 | 1.0 | 1.0 | 1576 O 0 0 0 0 0
CL-
0000-
mobileNetV[L
mlperf
TFL-| 30.5¢ 33.54 5.06| 22.58 736 | 92 828 20 | 20 | 1.0 | 1.0 | 1.0 | 16.9| O 0 0 0 0 0
OD-
2020-
ssdLite-
mobDet-
DSP-
coco
320x320
TVM{ 30.64 33.47 2.01| 33.33 712 | 110| 822 | 1.0 | 1.0 | 0.0 | 1.0 | 1.0 | 153| O 0 0 0 0 0
CL-
3410-
gluomcv-
mxnét-
moby?2

Source : CSI Camera (ov5640)

Capture Framerate : 30 fps Resolution : 720p format : YUYV

CSI Camera (OV5640) input

1MP CSI camera 1280x720 1280x720 : 320x320
Idev/videoX uyvy NV12 H NV12
i

val2src tiovxcolorconvert

1
I
|
|

320x320

NV12
C66x_0
1280x720 tiovxdlpreproc
- GStreamer plugins on ARM NV12
———— 320x320
I:I Compute on ARM coex 1 RG; Planar
I:I Deep Learning Runtime with DSP offload 1280x720 appsin k
RGB

- GStreamer plugin with HWA
I:I Remote core or HWA

- C66x_0 (DSP)

- C66x_1 (DSP)

- C71x_0 (DSP)

- MSC (Multi-scaler HWA)

- DSS (Display Subsystem)

post-proc
DSS MSC
1280x720
19201080 1280x720 1280x720 RGB
NV12 NV12 RGB

Display kmssink tiovxmosaic tiovxcolorconvert appsrc

Fig. 3.49: GStreamer based data-flow pipeline for with CSI camera (OV5640) input and display output

3.11. Edge Al 155

BeagleBoard Docs, Release 1.0.20230711-wip

Model FPS| To- | In- | A72| DDR DDR DDR C71| C66]1C66|2MCU2MCU2MISG_MSG_VISS NF | LDC| SDE| DOH
tal | fer- | Load Read Writ¢ To- | Load Load Load Load Load (%) | (%) | (%) | (%) | (%) | (%) | (%)
time| ence (%) | BW | BW | tal (%) | (%) | (%) | (%) | (%)

(ms)| time (MB/s)(MB/s)BW
(ms) (MBs)

ONR{ 29.57 34.09 3.02| 12.21 1671 699 | 2370 8.0 45.01 9.0 6.0 1.0 2135 0 0 0 0 0 0

CL-

6150-

mobileNetVPR-

1p4-

gat

TFL-| 29.41 34.1%5 1.01| 10.27 1502 645 | 2147 5.0 47.01 9.0 6.0 1.0 20.96 0 0 0 0 0 0

CL-

0000-

mobileNetV[L-

mlperf

TFL-| 29.36 34.65 5.00| 10.5| 1610 655 | 2265 14.0| 53.0| 9.0 6.0 1.0 21.47 O 0 0 0 0 0

OD-

2020-

ssdLite-

mobDet-

DSP-

coco

320x320

TVM{ 29.38 34.17 2.01| 11.66 1596 698 | 2294 6.0 45.01 9.0 5.0 1.0 21.10 O 0 0 0 0 0

CL-

3410-

gluomcv-

mxnét-

moby?2

Source : CSI Camera with VISS (imx219)
Capture Framerate : 30 fps Resolution : 1080p format : SRGGB8
RPiV2 (IMX219) Sensor
Exposure, gain
itrol 412 MSC
1920%1080 1920x1080 1280x720 I
RGGES NV12 NV12 NV12
v4l2src tiovxisp tiovxmultiscaler tiovxmultiscaler
I i 320x320
! ‘1 NV12
MSC ,,, tiovxdlpreproc
1280x720

I Gstreamer plugins on ARM Nv12 . gzgéflgnar

O compueonarn [SE tiovxcolorconvert appsink

I:I Deep Learning Runtime with DSP offload 1280X720

RGB
- GStreamer plugin with HWA appsink
[Remote core or Hwi ﬂ”
- C66x_0 (DSP
~ comc EDSP; Laa0x1080
- C71x_0 (DSP)
- MSC (Multi-scaler HWA)
i ost-proc
- DSS (Display Subsystem) DSS MSC P p

- VISS (Vision Imaging Subsystem)

1920x1080
NV12

Display kmssink tiovxmosaic

Fig. 3.50: GStreamer based data-flow pipe

1280%720
RGB

C66x_0

tiovxcolorconvert

1280x720
RGB

1280x720
NV12

appsrc

line with IMX219 sensor, ISP and display

156

Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS| To- | In- | A72| DDR DDR DDR C71| C66]1C662MCU2MCU2MSCG_MSCG_VYISS NF | LDC| SDE| DOH
tal | fer- | Load Read Writ¢ To- | Load Load Load Load Load (%) | (%) | (%) | (%) | (%) | (%) | (%)
time| encg (%) | BW | BW | tal | (%) | (%) | (%) | (%) | (%)

(ms)| time (MB/s)(MB/s)BW
(ms) (MBs)

ONR{ 30.64 33.19 3.01| 15.72 1781 853 | 2634 9.0 | 16.0| 9.0 | 13.0| 1.0 | 31.78 0 2237 0 0 0 0
CL-
6150-
mobileNetVp-
1p4-
gat

TFL-| 30.59 33.14 1.04| 12.78 1612 798 | 2410 5.0 | 18.0/ 9.0 | 13.0| 1.0 | 31.65 0 22310 0 0 0
CL-
0000-
mobileNetV[L
mlperf
TFL-| 30.56 33.07 5.00| 13.30 1730 809 | 2539 15.0| 25.0/ 9.0 | 13.0| 1.0 | 32.6| O 22.19 0 0 0 0
OD-
2020-
ssdLite-
mobDet-
DSP-
coco
320x320
TVM{ 30.48 33.14 2.01| 12.91 1708 852 | 2560 7.0 | 16.0/ 9.0 | 13.0| 1.0 | 31.83 0 22.26 0 0 0 0
CL-
3410-
gluomcv-
mxnét-
moby?2

Source : IMX390 over FPD-Link
Capture Framerate : 30 fps Resolution : 1080p format : SRGGB12

IMX390 Sensor

Exposure, gain
control via v412 MsC
ioctls

IMX390

512x512

1936x1100
1920x1080 NVA2

NV12 NV12

1936x1100
RGGB12

tiovxisp tiovxldc

VISS LDC tiovxdlpreproc

1280x720
GStreamer plugins on ARM NV12 512x512

RGB Planar
C66x_1 [« q
Compute on ARM - appsmk

Deep Learning Runtime with DSP offload 1280x720
RGB

v4|2src

512x512
NV12

GStreamer plugin with HWA

OREON

Remote core or HWA
- C66x_0 (DSP)

- C66x_1 (DSP) 1920x1080
- C71x_0 (DSP) RGB

- MSC (Multi-scaler HWA)

- DSS (Display Subsystem) post-proc
- VISS (Vision Imaging Subsystem) DSS MSC
- LDC (Lens Distortion Correction)

1280x720
RGB

1280x720 1280x720
NV12 RGB
tiovxmosaic tiovxcolorconvert appsrc

1920x1080
NV12

Display kmssink

Fig. 3.51: GStreamer based data-flow pipeline with IMX390 sensor, ISP, LDC and display

3.11. Edge Al 157

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS| To- | In- | A72| DDR DDR DDR C71| C66]1C662MCU2MCU2MSCG_MSCG_VYISS NF | LDC| SDE| DOH
tal | fer- | Load Read Writ¢ To- | Load Load Load Load Load (%) | (%) | (%) | (%) | (%) | (%) | (%)
time| ence (%) | BW | BW | tal (%) | (%) | (%) | (%) | (%)
(ms)| time (MB/s)(MB/s)BW
(ms) (MB/s)
ONR{ 30.59 33.15 3.09| 25.18 2207 1102 3309 10.0| 16.0| 9.0 14.0| 1.0 31.73 0 22.94 0 10.8| O 0
CL-
6150-
mobileNetVp-
1p4-
gat
TFL-| 30.53 33.15 1.21| 16.20 2019 1040 3059 5.0 18.0| 9.0 15.0| 1.0 32.80 0 2334 0 10.10 O 0
CL-
0000-
mobileNetV[-
mlperf
TFL-| 30.43 33.13 5.02| 23.7| 2201 1067 3268 15.0| 25.0| 9.0 14.0| 1.0 32.80 0 22.88 0 9.95| 0
OD-
2020-
ssdLite-
mobDet-
DSP-
coco
320x320
TVM{ 30.44 33.16 2.12| 21.50 2111 1100 3211 7.0 16.0| 9.0 15.0| 1.0 3228 0 2288 0 10.6| O 0
CL-
3410-
gluomcv-
mxnet-
moby2

3.11.13 Test Report
Here is the summary of the sanity tests we ran with both Python and C++ demos. Test cases vary with different
inputs, outputs, runtime, models, python/c++ apps.
1. Inputs:
e Camera (Logitech C270, 1280x720, JPEG)
¢ Camera (Omnivision OV5640, 1280x720, YUV)
e Camera (Rpi v2 Sony IMX219, 1920x1080, RAW)
* Image files (30 images under edge_ai_apps/data/images)
« Video file (10s video 1 file under edge_ai_apps/data/videos)
» RSTP Video Server
2. Outputs:
¢ Display (eDP or HDMI)
* File write to SD card
3. Inference Type:
* Image classification
* Object detection
¢ Semantic segmentation
4. Runtime/models:
* DLR
¢ TFLite

* ONNX

158 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

5. Applications:

¢ Python

o C++

6. Platform:

¢ Host OS

¢ Docker

Demo Apps test report

Single Input Single Output

Category # test case Pass Fail

Host OS - Python 99 99 0

Host OS - C++ 99 99 0
S.No | Models Input Output Host OS-C-
1 TVM-CL-3410-gluoncv-mxnet-mobv?2 Image Display Pass
2 TVM-CL-3410-gluoncv-mxnet-mobv?2 Image Video-Filewrite Fail
3 TVM-CL-3410-gluoncv-mxnet-mobv2 Image Image-Filewrite | Pass
4 TVM-CL-3410-gluoncv-mxnet-mobv?2 Video Display Pass
5 TVM-CL-3410-gluoncv-mxnet-mobv2 Video Video-Filewrite Pass
6 TVM-CL-3410-gluoncv-mxnet-mobv?2 USB Camera | Display Pass
7 TVM-CL-3410-gluoncv-mxnet-mobv2 USB Camera | Video-Filewrite | Pass
8 TVM-CL-3410-gluoncv-mxnet-mobv2 CSI Camera Display Pass
9 TVM-CL-3410-gluoncv-mxnet-mobv2 CSI Camera Video-Filewrite | Pass
10 TVM-CL-3410-gluoncv-mxnet-mobv?2 RPI Camera Display Pass
11 TVM-CL-3410-gluoncv-mxnet-mobv?2 RPI Camera Video-Filewrite Pass
12 TVM-CL-3410-gluoncv-mxnet-mobv?2 RTSP - Video | Display Pass
13 TVM-CL-3410-gluoncv-mxnet-mobv?2 RTSP - Video | Video-Filewrite Pass
14 TFL-CL-0000-mobileNetV1-mlperf Image Display Pass
15 TFL-CL-0000-mobileNetV1-miperf Image Video-Filewrite Fail
16 TFL-CL-0000-mobileNetV1-miperf Image Image-Filewrite | Pass
17 TFL-CL-0000-mobileNetV1-miperf Video Display Pass
18 TFL-CL-0000-mobileNetV1-mlperf Video Video-Filewrite Pass
19 TFL-CL-0000-mobileNetV1-miperf USB Camera | Display Pass
20 TFL-CL-0000-mobileNetV1-mlperf USB Camera | Video-Filewrite Pass
21 TFL-CL-0000-mobileNetV1-miperf CSI Camera Display Pass
22 TFL-CL-0000-mobileNetV1-mlperf CSI Camera Video-Filewrite | Pass
23 TFL-CL-0000-mobileNetV1-miperf RPI Camera Display Pass
24 TFL-CL-0000-mobileNetV1-mlperf RPI Camera Video-Filewrite Pass
25 TFL-CL-0000-mobileNetV1-miperf RTSP - Video | Display Pass
26 TFL-CL-0000-mobileNetV1-mlperf RTSP - Video | Video-Filewrite Pass
27 ONR-CL-6360-regNetx-200mf Image Display Pass
28 ONR-CL-6360-regNetx-200mf Image Video-Filewrite Fail
29 ONR-CL-6360-regNetx-200mf Image Image-Filewrite | Pass
30 ONR-CL-6360-regNetx-200mf Video Display Pass
31 ONR-CL-6360-regNetx-200mf Video Video-Filewrite | Pass
32 ONR-CL-6360-regNetx-200mf USB Camera | Display Pass
33 ONR-CL-6360-regNetx-200mf USB Camera | Video-Filewrite Pass
34 ONR-CL-6360-regNetx-200mf CSI Camera Display Pass
35 ONR-CL-6360-regNetx-200mf CSI Camera Video-Filewrite Pass
36 ONR-CL-6360-regNetx-200mf RPI Camera Display Pass
37 ONR-CL-6360-regNetx-200mf RPI Camera Video-Filewrite Pass

3.11. Edge Al

159

BeagleBoard Docs, Release 1.0.20230711-wip

Table 3.4 - continued from previous page

S.No | Models Input Output Host OS-C-
38 ONR-CL-6360-regNetx-200mf RTSP - Video | Display Pass
39 ONR-CL-6360-regNetx-200mf RTSP - Video | Video-Filewrite Pass
40 TVM-0OD-5020-yolov3-mobvl-gluon-mxnet-coco-416x416 Image Display Pass
41 TVM-0OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Image Video-Filewrite Fail
42 TVM-0OD-5020-yolov3-mobvl-gluon-mxnet-coco-416x416 Image Image-Filewrite | Pass
43 TVM-0OD-5020-yolov3-mobvl-gluon-mxnet-coco-416x416 Video Display Pass
44 TVM-0OD-5020-yolov3-mobvl-gluon-mxnet-coco-416x416 Video Video-Filewrite Pass
45 TVM-0OD-5020-yolov3-mobvl-gluon-mxnet-coco-416x416 USB Camera | Display Pass
46 TVM-OD-5020-yolov3-mobvl-gluon-mxnet-coco-416x416 USB Camera | Video-Filewrite Pass
47 TVM-0OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 CSI Camera Display Pass
48 TVM-OD-5020-yolov3-mobvl-gluon-mxnet-coco-416x416 CSI Camera Video-Filewrite Pass
49 TVM-0OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RPI Camera Display Pass
50 TVM-0D-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RPI Camera Video-Filewrite | Pass
51 TVM-0OD-5020-yolov3-mobv1l-gluon-mxnet-coco-416x416 RTSP - Video | Display Pass
52 TVM-0D-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RTSP - Video | Video-Filewrite | Pass
53 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Display Pass
54 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Video-Filewrite | Fail
55 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Image-Filewrite | Pass
56 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Video Display Pass
57 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Video Video-Filewrite Pass
58 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 USB Camera | Display Pass
59 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 USB Camera | Video-Filewrite Pass
60 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 CSI Camera Display Pass
61 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 CSI Camera Video-Filewrite Pass
62 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RPI Camera Display Pass
63 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RPI Camera Video-Filewrite Pass
64 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RTSP - Video | Display Pass
65 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RTSP - Video | Video-Filewrite Pass
66 ONR-0OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | Image Display Pass
67 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | Image Video-Filewrite Fail
68 ONR-0OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | Image Image-Filewrite | Pass
69 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | Video Display Pass
70 ONR-0OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | Video Video-Filewrite | Pass
71 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | USB Camera | Display Pass
72 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | USB Camera | Video-Filewrite Pass
73 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | CSI Camera Display Pass
74 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | CSI Camera Video-Filewrite Pass
75 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | RPI Camera Display Pass
76 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | RPI Camera Video-Filewrite Pass
77 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | RTSP - Video | Display Pass
78 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 | RTSP - Video | Video-Filewrite Pass
79 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Display Pass
80 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Video-Filewrite Fail
81 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Image-Filewrite | Pass
82 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Video Display Pass
83 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Video Video-Filewrite | Pass
84 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 USB Camera | Display Pass
85 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 USB Camera | Video-Filewrite | Pass
86 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 CSI Camera Display Pass
87 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 CSI Camera Video-Filewrite | Pass
88 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RPI Camera Display Pass
89 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RPI Camera Video-Filewrite Pass
90 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RTSP - Video | Display Pass
160 Chapter 3. BeagleBone Al-64

BeagleBoard Docs, Release 1.0.20230711-wip

Table 3.4 - continued from previous page

S.No | Models Input Output Host OS-C-
91 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RTSP - Video | Video-Filewrite Pass
92 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Display Pass
93 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Video-Filewrite Fail
94 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Image-Filewrite | Pass
95 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Video Display Pass
96 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Video Video-Filewrite Pass
97 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 USB Camera | Display Pass
98 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 USB Camera | Video-Filewrite Pass
99 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 CSI Camera Display Pass
100 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mliperf-512x512 CSl Camera | Video-Filewrite | Pass
101 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RPI Camera Display Pass
102 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RPI Camera Video-Filewrite | Pass
103 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RTSP - Video | Display Pass
104 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RTSP - Video | Video-Filewrite Pass
105 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Display Pass
106 ONR-S5-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Video-Filewrite Fail
107 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Image-Filewrite | Pass
108 ONR-55-8610-deeplabv3lite-mobv2-ade20k32-512x512 Video Display Pass
109 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Video Video-Filewrite | Pass
110 ONR-S5-8610-deeplabv3lite-mobv2-ade20k32-512x512 USB Camera | Display Pass
111 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 USB Camera | Video-Filewrite | Pass
112 ONR-55-8610-deeplabv3lite-mobv2-ade20k32-512x512 CSI Camera Display Pass
113 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 CSI Camera Video-Filewrite | Pass
114 ONR-55-8610-deeplabv3lite-mobv2-ade20k32-512x512 RPI Camera Display Pass
115 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RPI Camera Video-Filewrite | Pass
116 ONR-55-8610-deeplabv3lite-mobv2-ade20k32-512x512 RTSP - Video | Display Pass
117 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RTSP - Video | Video-Filewrite | Pass
Single Input Multi Output i

Category # test case Pass Fail

Host OS - Python 15 15 0

docker - Python 15 15 0

Host OS - C++ 15 15 0

Docker - C++ 15 15 0

3.11. Edge Al

161

BeagleBoard Docs, Release 1.0.20230711-wip

S.No | Models Input Out- | Host OS- | Host OS- | Docker- Docker- Com-
put C++ Python C++ Python ments
1 2 Models (TFL-CL, ONR-SS) %04d.jpg Dis- Pass Pass Pass Pass
play
2 3-Models (TVM-CL, TFL-OD, %04d.jpg Dis- Pass Pass Pass Pass
ONR-SS) play
3 4-Models (TVM-SS, TFL-OD, %04d.jpg Dis- Pass Pass Pass Pass
ONR-SS, ONR-CL) play
4 2 Models (TFL-CL, ONR-SS) video_0000.mp®is- Pass Pass Pass Pass
play
5 3-Models (TVM-CL, TFL-OD, video_0000.mp®is- Pass Pass Pass Pass
ONR-SS) play
6 4-Models (TVM-SS, TFL-OD, | video_0000.mp®is- Pass Pass Pass Pass
ONR-SS, ONR-CL) play
7 2 Models (TFL-CL, ONR-SS) USB_camera | Dis- Pass Pass Pass Pass
play
8 3-Models (TVM-CL, TFL-OD, USB_camera | Dis- Pass Pass Pass Pass
ONR-SS) play
9 4-Models (TVM-SS, TFL-OD, USB_camera | Dis- Pass Pass Pass Pass
ONR-SS, ONR-CL) play
10 2 Models (TFL-CL, ONR-SS) CSl_camera Dis- Pass Pass Pass Pass
play
11 3-Models (TVM-CL, TFL-OD, CSl_camera Dis- Pass Pass Pass Pass
ONR-SS) play
12 4-Models (TVM-SS, TFL-OD, CSl_camera Dis- Pass Pass Pass Pass
ONR-SS, ONR-CL) play
13 2 Models (TFL-CL, ONR-SS) rtsp Dis- Pass Pass Pass Pass
play
14 3-Models (TVM-CL, TFL-OD, rtsp Dis- Pass Pass Pass Pass
ONR-SS) play
15 4-Models (TVM-SS, TFL-OD, rtsp Dis- Pass Pass Pass Pass
ONR-SS, ONR-CL) play

Multi Input Multi Output

Category # test case Pass Fail
Host OS - Python 8 8 0
docker - Python 8 8 0
Host 0S - C++ 8 8 0
Docker - C++ 8 8 0

S.No | Models Input OQutput Host Host OS- | Docker-| Docker- | Com-
oS- Python C++ Python ments
C++
1 2 Models (TVM-CL, TFL- | %04d.jpg,video_0000.mp4 Display Pass Pass Pass Pass
0oD)
2 2 Models (TVM-OD, ONR- %04d.jpg,rtsp Video- Pass Pass Pass Pass
SS) Filewrite
3 2 Models (ONR-CL, TVM- | %04d.jpg,USB_camera Display Pass Pass Pass Pass
SS)
4 3-Models (TVM-CL, TFL- %04d.jpg,CSI_camera,rtsp Video- Pass Pass Pass Pass
OD, ONR-SS) Filewrite
5 3-Models (TVM-CL, TFL- | video_0000.mp4,rtsp,%04d psplay Pass Pass Pass Pass
OD, ONR-SS)
6 3-Models (TFL-CL, ONR- | video_0000.mp4,USB_cameXxadest camePass Pass Pass Pass
CL, TVM-SS) Filewrite
7 4-Models (TVM-CL, TFL- USB_camera,CSI_camera | Display Pass Pass Pass Pass
SS, ONR-OD, TFL-CL)
8 4-Models (TVM-SS, TFL- USB_camera,video_0000.mpAdeo- Pass Pass Pass Pass
SS, ONR-SS, ONR-OD) Filewrite
Note:

¢ Video file from RTSP server used for RTSP input test

* Please refer to the Tl Edge Al SDK release notes and known issues for more details

162 Chapter 3. BeagleBone Al-64

https://software-dl.ti.com/jacinto7/esd/edgeai-sdk-j721e/latest/exports/docs/release_notes.html

Chapter 4

BeagleBone Al

Contributors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

All derivative works are to be attributed to Jason Kridner of BeagleBoard.org.

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

4.1 Introduction

Built on the proven BeagleBoard.org® open source Linux approach, BeagleBone® Al fills the gap between
small SBCs and more powerful industrial computers. Based on the Texas Instruments AM5729, developers
have access to the powerful SoC with the ease of BeagleBone® Black header and mechanical compatibility.
BeagleBone® Al makes it easy to explore how artificial intelligence (Al) can be used in everyday life via Tl C66x
digital-signal-processor (DSP) cores and embedded-vision-engine (EVE) cores supported through an optimized
TIDL machine learning OpenCL API with pre-installed tools. Focused on everyday automation in industrial,
commercial and home applications.

163

http://creativecommons.org/licenses/by-sa/4.0/
https://beagleboard.org/about/jkridner

BeagleBoard Docs, Release 1.0.20230711-wip

4.2 Change History

4.2.1 Rev A0

Initial prototype revision. Not taken to production. eMMC flash image provided by Embest.

4.2.2 Rev Al

Second round prototype.
* Fixed size of mounting holes.
* Added LED for WiFi status.
* Added microHDMI.
¢ Changed eMMC voltage from 3.3V to 1.8V to support HS200.
* Changed eMMC from 4GB to 16GB.
* Changed serial debug header from 6-pin 100mil pitch to 3-pin 1.5mm pitch.
* Switched expansion header from UART4 to UART5. The UART4 pins were used for the microHDMI.

eMMC flash image provided by Embest.

4.2.3 Rev Ala

Alpha pilot-run units and initial production.

e Added pull-down resistor on serial debug header RX line.

164 Chapter 4. BeagleBone Al

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/24

BeagleBoard Docs, Release 1.0.20230711-wip

Alpha pilot-run eMMC flash image: https://debian.beagleboard.org/images/bbai-pilot-20190408.img.xz

Production eMMC flash image: http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.
9-Ixqt-armhf-2019-08-03-4gb.img.xz

4.2.4 Rev A2

Proposed changes.
¢ HW: need pull-down on console uart RX line.
e HW: position of microSD may impact existing case designs.
* HW: P9.13 does not have a GPIO.
* HW: HDMI hotplug detection not working.
* HW: add extra DCAN.
* HW: wire mods required to enable JTAG.

* HW: Small 12C nvmem/eeprom for board identifier.

4.3 Connecting Up Your BeagleBone Al

4.3.1 What’s In the Box

BeagleBone® Al comes in the box with the heat sink and antenna already attached. Developers can get up
and running in five minutes with no microSD card needed. BeagleBone® Al comes preloaded with a Linux
distribution. In the box you will find:

* BeagleBone® Al
* Quick Start Guide
TODO: Add links to the design materials for both

-

4.3. Connecting Up Your BeagleBone Al 165

https://debian.beagleboard.org/images/bbai-pilot-20190408.img.xz
http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.9-lxqt-armhf-2019-08-03-4gb.img.xz
http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.9-lxqt-armhf-2019-08-03-4gb.img.xz
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/24
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/25
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/22
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/19
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/20
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/21
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/23

BeagleBoard Docs, Release 1.0.20230711-wip

4.3.2 What’s Not in the Box

You will need to purchase:
* USB C cable or USB C to USB A cable
e MicroSD Card (optional)
» Serial cable (optional)
More information or to purchase a replacement heat sink or antenna, please go to these websites:
e Antenna

¢ Heat Sink

4.3.3 Fans
The pre-attached heat sink has M3 holes spaced 20x20 mm. The height of the heat sink clears the USB type A
socket, and all other components on the board except the 46-way header sockets and the Ethernet socket.

If you run all of the accelerators or have an older software image, you'll likely need fan. To find a fan, visit the
link to fans in the FAQ.

Caution: BeagleBone Al can run HOT! Even without running the accelerators, getting up to 70C is not
uncommon.

Official BeagleBone Fan Cape: https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/
50AH3704

TODO: create short-links for any long URLs so that text works.

4.3.4 Main Connection Scenarios

This section will describe how to connect the board for use. The board can be configured in several different
ways. Below we will walk through the most common scenarios. NOTE: These connection scenarios are depen-
dent on the software image presently on your BeagleBone® Al. When all else fails, follow the instructions at
https://beagleboard.org/upgrade

e Tethered to a PC via USB C cable
* Standalone Desktop with powered USB hub, display, keyboard and mouse

* Wireless Connection to BeagleBone® Al

4.3.5 Tethered to a PC

The most common way to program BeagleBone® Al is via a USB connection to a PC. If your computer has a USB
C type port, BeagleBone® Al will both communicate and receive power directly from the PC. If your computer
does not support USB C type, you can utilize a powered USB C hub to power and connect to BeagleBone® Al
which in turn will connect to your PC. You can also use a powered USB C hub to power and connect peripheral
devices such as a USB camera. After booting, the board is accessed either as a USB storage device or via the
browser on the PC. You will need Chrome or Firefox on the PC.

NOTE:Start with this image “am57xx-eMMC-flasher-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz" loaded
on your BeagleBone® Al.

1. Locate the USB Type-C connector on BeagleBone® Al

166 Chapter 4. BeagleBone Al

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable
https://bit.ly/2kmXAzF
https://bit.ly/2klxxJa
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#fans
https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/50AH3704
https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/50AH3704
https://beagleboard.org/upgrade

BeagleBoard Docs, Release 1.0.20230711-wip

USB 3
Type-C™

Serial Debug

2. Connect a USB type-C cable to BeagleBone® Al USB type-C port.

|

.,
£

|

o |
g1

.- !) L
i RERERREE

L] E_-

3. Connect the other end of the USB cable to the PC USB 3 port.

4.3. Connecting Up Your BeagleBone Al 167

BeagleBoard Docs, Release 1.0.20230711-wip

4. BeagleBone® Al will boot.

5. You will notice some of the 5 user LEDs flashing

6. Look for a new mass storage drive to appear on the PC.

| Mame
|
I autorun.inf
> [Docs
= B Drivers
i LICENSE. txt
€ README.htm
README.md
» [scripts
: ¢ START.htm

7. Open the drive and open START.HTM with your web browser.

168 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

g Geming waed anibesge |

A | Aok TEASE | BONTSTAA T h £y 'q.l 2 O om ﬂ

Sl Pta 0

Start your Beagle

it arw Ly S, el [P iy o P, Syl P Pk fal, megeres, g rupine Flisie T iy
e el o 1 R havERngenyg e P By
1 &
- g b - a bom - —_ ui Fw - - oy
i
=
%
"
&
[- s - . 1] . . - - -
aar el - 1 - -
., 24 B Tyne T e oy e - -
- g T
Al vy Ve P Fai e 1% i i e =Tl i -]
w e 13 .
v Ju = (o e e —
By i [T e L L i ' = ime

L i el e
gt @ MeEpeiord & "oy Boratongs £ 7 1 ERMgETOrs EE

==

8. Follow the instructions in the browser window.

4.3. Connecting Up Your BeagleBone Al 169

BeagleBoard Docs, Release 1.0.20230711-wip

i
i

9. Go to Cloud9 IDE.
10. Open the directories in the left navigation of Cloud9.

+

R E R AR S LA G

170 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

4.3.6 Standalone w/Display and Keyboard/Mouse

t beagleboard.org

e

J=lEiE s Ty
S el B L R W S
S
= - EEEE
T .

|

Note: This configuration requires loading the latest debian 9 image from https://elinux.org/Beagleboard:
Latest-images-testing

4.3. Connecting Up Your BeagleBone Al 171

https://elinux.org/Beagleboard:Latest-images-testing
https://elinux.org/Beagleboard:Latest-images-testing

BeagleBoard Docs, Release 1.0.20230711-wip

Load “am57xx-eMMC-flasher-debian-9.13-Ixqt-tidl-armhf-2020-08-25-6gb.img.xz” image on the BeagleBone®

Al

Presently, the “Cloud 9" application is broken in debian 10 only for this configuration. We re working on a better
solution.

1.

2
3
4.
5
6
7

Connect a combo keyboard and mouse to BeagleBone® Al’s USB host port.

. Connect a microHDMI-to-HDMI cable to BeagleBone® Al’s microHDMI port.

. Connect the microHDMI-to-HDMI cable to an HDMI monitor.

Plug a 5V 3A USB type-C power supply into BeagleBone® Al’'s USB type-C port.

. BeagleBone® Al will boot. No need to enter any passwords.
. Depending on which software image is loaded, either a Desktop or a login shell will appear on the monitor.

. Follow the instructions at https://beagleboard.org/upgrade

4.3.7 Wireless Connection

NOTE:Start with this image “am57xx-eMMC-flasher-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz" loaded
on your BeagleBone® Al.

1.

2
3
4.
5
6

Plug a 5V 3A USB type-C power supply into BeagleBone® Al's USB type-C port.

. BeagleBone® Al will boot.

. Connect your PC’s WiFi to SSID “BeagleBone-XXXX" where XXXX varies for your BeagleBone® Al.

Use password “BeagleBone” to complete the WiFi connection.

. Open http://192.168.8.1 in your web browser.

. Follow the instructions in the browser window.

4.3.8 Connecting a 3 PIN Serial Debug Cable

A 3 PIN serial debug cable can be helpful to debug when you need to view the boot messages through a terminal
program such as putty on your host PC. This cable is not needed for most BeagleBone® Al boot up scenarios.

Cables: https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#
serial-cable

Locate the 3 PIN debug header on BeagleBone® Al, near the USB C connection.

USB 3
Type-C™

Serial Debu

Press the small white connector into the 3 PIN debug header. The pinout is:

* Pin 1 (the pin closest to the screw-hole in the board. It is also marked with a shape on the silkscreen):

GND

e Pin 2: UART1_RX (i.e. this is a BB-Al input pin)

172

Chapter 4. BeagleBone Al

https://beagleboard.org/upgrade
http://192.168.8.1
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable

BeagleBoard Docs, Release 1.0.20230711-wip

e Pin 3: UART1_TX (i.e. BB-Al transmits out on this pin)

5031 alin

[8L31]

BeagleBone Black Cape Headers

4.4.1 BeagleBone® Al Features

4.4. BeagleBone Al Overview 173

BeagleBoard Docs, Release 1.0.20230711-wip

Main Processor Features of the AM5729 Within BeagleBone® Al

Dual 1.5GHz ARM® Cortex®-Al15 with out-of-order speculative issue 3-way superscalar execution
pipeline for the fastest execution of existing 32-bit code

2 C66x Floating-Point VLIW DSP supported by OpenCL
4 Embedded Vision Engines (EVEs) supported by TIDL machine learning library

2x Dual-Core Programmable Real-Time Unit (PRU) subsystems (4 PRUs total) for ultra low-latency control
and software generated peripherals

2x Dual ARM® Cortex®-M4 co-processors for real-time control

IVA-HD subsystem with support for 4K @ 15fps H.264 encode/decode and other codecs @ 1080p60
Vivante® GC320 2D graphics accelerator

Dual-Core PowerVR® SGX544™ 3D GPU

Communications

BeagleBone Black header and mechanical compatibility
16-bit LCD interfaces

4+ UARTs

2 12C ports

2 SPI ports

Lots of PRU I/O pins

Memory

1GB DDR3L
16GB on-board eMMC flash

Connectors

USB Type-C connector for power and SuperSpeed dual-role controller
Gigabit Ethernet
802.11ac 2.4/5GHz WiFi via the AzureWave AW-CM256SM

Out of Box Software

Zero-download out of box software environment

174

Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

4.4.2 Board Component Locations

1GB
DORS ! | E TPS659037
Touch screen A N 4 | . PMIC
Controller ' Y iz AEETEER (SR [
AMS5729 Gigabit
S0OC with Ethernet
Heatsink PHY
16GB
eMMC 802.11ac &

Bluetooth

U IS I S R
LB S8 80 5L S) S8 8 B) 8L

4.5 BeagleBone Al High Level Specification
This section provides the high level specification of BeagleBone® Al

4.5.1 Block Diagram

The figure below is the high level block diagram of BeagleBone® Al. For detailed layout information please
check the schematics.

4.5. BeagleBone Al High Level Specification 175

BeagleBoard Docs, Release 1.0.20230711-wip

PS Connector

wy—_——

MOSFET 1.8/3.3V SEL

USB2 -USB HOST
MMC2 .
PMIC Tl

AMS729 microSD

ITAG

Header 1x3 (NoPOP)
(Debug) iy

RGMII/MDIO RJ45

UART6/I2C/MMC4 WiFi/BT

P8 Connector

4.5.2 AM572x Sitara™ Processor

The Texas Instruments AM572x Sitara™ processor family of SOC devices brings high processing performance
through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine
programmable video processing with a highly integrated peripheral set ideal for Al applications. The AM5729
used on BeagleBone® Al is the super-set device of the family.

Programmability is provided by dual-core ARM® Cortex®-A15 RISC CPUs with Arm® Neon™ extension, and two
Tl C66x VLIW floating-point DSP core, and Vision AccelerationPac (with 4x EVEs). The Arm allows developers
to keep control functions separate from other algorithms programmed on the DSPs and coprocessors, thus
reducing the complexity of the system software.

Texas Instruments AM572x Sitara™ Processor Family Block Diagram*

176 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

AMS72x

MPU IVA HD Display Subsystem

(2x Arm 1080p Video EE—
Cortex—-A15) Co-Processor 1% GFX Fipeline

GPU BB2D 3x Video Pipeline
(2x SGX544 3D) (GC320 2D)

DSP IPU1
{Dual Cortex—M4)
(2x C66x Vision Acceleration Pac
Co-Processor) IPU2 4x EVE Analytic Processors
{Dual Cortex—-M4)
High-Speed Interconnect

Connectivity
|_Spinlock | PWM SS x3 UsSB 3.0 PCle SS x2
Mailbox x13 DT e bivs | PRUICSS x2

GPIO x8 USB2.0 GMAC_SW

Duad Role F5/HS —
wi PHY

Blend / Scale HDKMI1.4a

Serial Interfaces Program/Data Storage

UART x10
MMC / SD x4 SATA

Up to 2.5 MB GPMC/ELM EMIF x2
OCMC_RAM (NAND/NOR/ 2x 32-bit
DCAN x2 12C x5 Wi ECC Async) DDR3(L)

irtro-001
MPU Subsystem The Dual Cortex-Al5 MPU subsystem integrates the following submodules:
* ARM Cortex-A15 MPCore
- Two central processing units (CPUs)

- ARM Version 7 ISA: Standard ARM instruction set plus Thumb®-2, Jazelle® RCT Java™ accelerator,
hardware virtualization support, and large physical address extensions (LPAE)

- Neon™ SIMD coprocessor and VFPv4 per CPU
- Interrupt controller with up to 160 interrupt requests
- One general-purpose timer and one watchdog timer per CPU - Debug and trace features
- 32-KiB instruction and 32-KiB data level 1 (L1) cache per CPU
* Shared 2-MiB level 2 (L2) cache

4.5. BeagleBone Al High Level Specification 177

BeagleBoard Docs, Release 1.0.20230711-wip

48-KiB bootable ROM
Local power, reset, and clock management (PRCM) module
Emulation features

Digital phase-locked loop (DPLL)

DSP Subsystems There are two DSP subsystems in the device. Each DSP subsystem contains the following
submodules:

TMS320C66x™ Floating-Point VLIW DSP core for audio processing, and general-purpose imaging and
video processing. It extends the performance of existing C64x+™ and C647x™ DSPs through enhance-
ments and new features.

- 32-KiB L1D and 32-KiB L1P cache or addressable SRAM
- 288-KiB L2 cache
256-KiB configurable as cache or SRAM
32-KiB SRAM
Enhanced direct memory access (EDMA) engine for video and audio data transfer
Memory management units (MMU) for address management.
Interrupt controller (INTC)
Emulation capabilities

Supported by OpenCL

EVE Subsystems

4 Embedded Vision Engines (EVEs) supported by TIDL machine learning library

Embedded Vision Engine (EVE)

Program
Cache Emulation
32KB

32-bit RISC Vector
Core Coprocessor
(ARP32) (VCOP)

Interconnect

Error

178

Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

The Embedded Vision Engine (EVE) module is a programmable imaging and vision processing engine. Software
support for the EVE module is available through OpenCL Custom Device model with fixed set of functions. More
information is available http://www.ti.com/lit/wp/spry251/spry251.pdf

PRU-ICSS Subsystems

¢ 2x Dual-Core Programmable Real-Time Unit (PRU) subsystems (4 PRUs total) for ultra low-latency control
and software generated peripherals. Access to these powerful subsystems is available through through
the P8 and P9 headers. These are detailed in Section 7.

IPU Subsystems There are two Dual Cortex-M4 IPU subsystems in the device available for general purpose
usage, particularly real-time control. Each IPU subsystem includes the following components:

* Two Cortex-M4 CPUs
* ARMvV7E-M and Thumb-2 instruction set architectures
¢ Hardware division and single-cycle multiplication acceleration
* Dedicated INTC with up to 63 physical interrupt events with 16-level priority
¢ Two-level memory subsystem hierarchy
- L1 (32-KiB shared cache memory)
- L2 ROM + RAM
* 64-KiB RAM
* 16-KiB bootable ROM
* MMU for address translation
* Integrated power management
* Emulation feature embedded in the Cortex-M4
IVA-HD Subsystem

¢ |VA-HD subsystem with support for 4K @ 15fps H.264 encode/decode and other codecs @ 1080p60 The
IVA-HD subsystem is a set of video encoder and decoder hardware accelerators. The list of supported
codecs can be found in the software development kit (SDK) documentation.

BB2D Graphics Accelerator Subsystem The Vivante® GC320 2D graphics accelerator is the 2D BitBIt
(BB2D) graphics accelerator subsystem on the device with the following features:

* API support:
- OpenWF™, DirectFB
- GDI/DirectDraw
* BB2D architecture:
- BitBIt and StretchBIt
- DirectFB hardware acceleration
- ROP2, ROP3, ROP4 full alpha blending and transparency
- Clipping rectangle support
- Alpha blending includes Java 2 Porter-Duff compositing rules
- 90-, 180-, 270-degree rotation on every primitive
- YUV-to-RGB color space conversion
- Programmable display format conversion with 14 source and 7 destination formats
- High-quality, 9-tap, 32-phase filter for image and video scaling at 1080p
- Monochrome expansion for text rendering

- 32K x 32K coordinate system

4.5. BeagleBone Al High Level Specification 179

http://www.ti.com/lit/wp/spry251/spry251.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Dual-Core PowerVR® SGX544™ 3D GPU The 3D graphics processing unit (GPU) subsystem is based on
POWERVR® SGX544 subsystem from Imagination Technologies. It supports general embedded applications.
The GPU can process different data types simultaneously, such as: pixel data, vertex data, video data, and
general-purpose data. The GPU subsystem has the following features:

e Multicore GPU architecture: two SGX544 cores.
¢ Shared system level cache of 128 KiB
* Tile-based deferred rendering architecture

¢ Second-generation universal scalable shader engines (USSE2), multithreaded engines incorporating pixel
and vertex shader functionality

¢ Present and texture load accelerators

- Enables to move, rotate, twiddle, and scale texture surfaces.

Supports RGB, ARGB, YUV422, and YUV420 surface formats.

Supports bilinear upscale.
- Supports source colorkey.
* Fine-grained task switching, load balancing, and power management
* Programmable high-quality image antialiasing
* Bilinear, trilinear, anisotropic texture filtering
¢ Advanced geometry DMA driven operation for minimum CPU interaction

¢ Fully virtualized memory addressing for OS operation in a unified memory architecture (MMU)

4.5.3 Memory
1GB DDR3L
Dual 256M x 16 DDR3L memory devices are used, one on each side of the board, for a total of 1 GB. They will

each operate at a clock frequency of up to 533 MHz yielding an effective rate of 1066Mb/s on the DDR3L bus
allowing for 4GB/s of DDR3L memory bandwidth.

16GB Embedded MMC

A single 16GB embedded MMC (eMMC) device is on the board.

microSD Connector
The board is equipped with a single microSD connector to act as a secondary boot source for the board and, if

selected as such, can be the primary booth source. The connector will support larger capacity microSD cards.
The microSD card is not provided with the board.

4.5.4 Boot Modes

Todo: Need info on BBAI boot mode settings

180 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

4.5.5 Power Management

Todo: Need info on BBAI power management

4.5.6 Connectivity

Todo: Add WiFi/Bluetooth/Ethernet

BeagleBone® Al supports the majority of the functions of the AM5729 SOC through connectors or expansion
header pin accessibility. See section 7 for more information on expansion header pinouts. There are a few
functions that are not accessible which are: (TBD)

Todo: This text needs to go somewhere.

Table 4.1: On-board 12C Devices

Address Identifier Description

0x12 u3 TPS6590379 PMIC DVS

0x41 u78 STMPE811Q ADC and GPIO expander

0x47 ul3 HD3SS53220 USB Type-C DRP port controller
0x50 U9 241LC32 board ID EEPROM

0x58 u3 TPS6590379 PMIC power registers

O0x5a u3 TPS6590379 PMIC interfaces and auxiliaries
0x5¢ u3 TPS6590379 PMIC trimming and test

0x5e U3 TPS6590379 PMIC OTP

4.6 Detailed Hardware Design

This section provides a detailed description of the Hardware design. This can be useful for interfacing, writing
drivers, or using it to help modify specifics of your own design.

The figure below is the high level block diagram of BeagleBone® Al. For those who may be concerned, this is
the same figure found in section 5. It is placed here again for convenience so it is closer to the topics to follow.

4.6. Detailed Hardware Design

181

BeagleBoard Docs, Release 1.0.20230711-wip

PS Connector

wy—_——

MOSFET 1.8/3.3V SEL

USB2 USB HOST
MMC2 . ;

) PMIC N TI

MMC1 microSD
L ITAG JTAG
Header 1x3 (NO_POI_’)
(Debug) iy

RGMII/MDIO RJ45

n UART6/12C/MMCA WiFi/BT

4.6.1 Power Section

Figure ? is the high level block diagram of the power section of the board.

(Block Diagram for Power)

TPS6590379 PMIC

The Texas Instruments TPS6590379ZWSR device is an integrated power-management IC (PMIC) specifically
designed to work well ARM Cortex A15 Processors, such as the AM5729 used on BeagleBone® Al. The datasheet
is located here https://www.ti.com/lit/ds/symlink/tps659037.pdf

The device provides seven configurable step-down converters with up to 6 A of output current for memory,
processor core, input-output (I/0O), or preregulation of LDOs. One of these configurable step-down converters
can be combined with another 3-A regulator to allow up to 9 A of output current. All of the step-down converters
can synchronize to an external clock source between 1.7 MHz and 2.7 MHz, or an internal fallback clock at 2.2
MHz.

The TPS659037 device contains seven LDO regulators for external use. These LDO regulators can be supplied
from either a system supply or a preregulated supply. The power-up and power-down controller is configurable
and supports any power-up and power-down sequences (OTP based). The TPS659037 device includes a 32-
kHz RC oscillator to sequence all resources during power up and power down. In cases where a fast start up is
needed, a 16-MHz crystal oscillator is also included to quickly generate a stable 32-kHz for the system. All LDOs
and SMPS converters can be controlled by the SPI or I12C interface, or by power request signals. In addition,
voltage scaling registers allow transitioning the SMPS to different voltages by SPI, I2C, or roof and floor control.

One dedicated pin in each package can be configured as part of the power-up sequence to control external
resources. General-purpose input-output (GPIO) functionality is available and two GPIOs can be configured
as part of the power-up sequence to control external resources. Power request signals enable power mode

182 Chapter 4. BeagleBone Al

https://www.ti.com/lit/ds/symlink/tps659037.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

control for power optimization. The device includes a general-purpose sigma-delta analog-to-digital converter
(GPADC) with three external input channels.

) coaanac it

§g §. e [v
H

Pt R e

o_RSTOUTR

==l
e | i M
| e I:,.
il o i I om 23F
r—— I 1
gl g[; L ujg_lvlgrun_l)x L
e I Lo
TPS6590377 Loz our ” “’I’u
P E_%l&"plw_ﬂ__ﬂ“;ﬂﬁ_‘%}”:
oL s [4
- - Low
e L™
PMIC 2C1 ADDRESS e Tam
PP PO L
12c1 Wrie read ut el R i}
Powsrregistes | OXB3 | 0XB1 :.’F‘T::,_ e o st [P
e e =
eefacs d suxbiari IXEZ OXE3 :-&' Eﬁg Lol e
Timmngandiest | OXBY | CXES — el B = e
{—y| PWG_GKD - o 80md il
ate mes | o7 — e o M o
— oo mur [L T
R Lew L
PMIC 12C2 ADDRESS —— i T’ L
ez Wrie read
ovs M4 oes = =
USB-C Power
Below image shows how the USB-C power input is connected to the TPS6590379.
Power Button
P9 Header
Power
Button
5 User
LEDs
P8 Header
Reset
Button

4.6. Detailed Hardware Design 183

BeagleBoard Docs, Release 1.0.20230711-wip

4.6.2 eMMC Flash Memory (16GB)
eMMC Device

eMMC Circuit Design

Board ID

A board identifier is placed on the eMMC in the second linear boot partition (/dev/mmcblklbootl). Reserved
bytes up to 32k (0x8000) are filled with “FF".

Table 4.2: Board ID

Name Size (bytes) Contents

Header 4 MSB OXEE3355AA LSB (stored LSB first)

Board Name 8 Name for board in ASCIl “BBONE-AI" =
BeagleBone Al

Version 4 Hardware version code for board in ASCII
“00A1” = rev. Al

Serial Number 14 Serial number of the board. This is a 14

character string which is:
WWYYEMAInnnnnn
where:

« WW = 2 digit week of the year of
production

¢ YY = 2 digit year of production
*« EM = Embest
* Al = BeagleBone Al

e nnnnnn = incrementing board
number

debian@beaglebone:/var/lib/cloud9$ sudo hexdump -C /dev/mmcblklbootl

00000000 aa 55 33 ee 42 42 4f 4e 45 2d 41 49 30 30 41 31 |.U3.BBONE-
—ATIOO0AL|

00000010 31 39 33 33 45 4d 41 49 30 30 30 38 30 33 ff ff |1933EMAIO00803..
|

00000020 ff ff f£f ff f£ff ff f£f ff f£f f£f ff £f £ff £f ff ££ |................

.
*

00008000 00 00 OO 00 00 OO OO OO0 00 OO OO0 00 OO0 00 00 00 Jeweweeeeeeeennnsn

.
*

00400000

4.6.3 Wireless Communication: 802.11 ac & Bluetooth: AzureWave AW-CM256SM

Datasheet https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0Ql/
AW-CM2565SM_DS_Rev%2015_CYW.pdf Wireless connectivity is provided on BeagleBone® Al via the Azure-
Wave Technologies AW-CM256SM IEEE 802.11a/b/g/n/ac Wi-Fi with Bluetooth 4.2 Combo Stamp Module.

This highly integrated wireless local area network (WLAN) solution combines Bluetooth 4.2 and provides a
complete 2.4GHz Bluetooth system which is fully compliant to Bluetooth 4.2 and v2.1 that supports EDR of
2Mbps and 3Mbps for data and audio communications. It enables a high performance, cost effective, low
power, compact solution that easily fits onto the SDIO and UART combo stamp module.

Compliant with the IEEE 802.11a/b/g/n/ac standard, AW-CM256SM uses Direct Sequence Spread Spectrum
(DSSS), Orthogonal Frequency Division Multiplexing (OFDM), BPSK, QPSK, CCK and QAM baseband modulation
technologies. Compare to 802.11n technology, 802.11ac provides a big improvement on speed and range.

184 Chapter 4. BeagleBone Al

https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/AW-CM256SM_DS_Rev%2015_CYW.pdf
https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/AW-CM256SM_DS_Rev%2015_CYW.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

The AW-CM2565M module adopts a Cypress solution. The module design is based on the Cypress CYP43455
single chip.

WLAN on the AzureWave AW-CM256SM

High speed wireless connection up to 433.3Mbps transmit/receive PHY rate using 80MHz bandwidth,
¢ 1 antennas to support 1(Transmit) and 1(Receive) technology and Bluetooth
¢ WCS (Wireless Coexistence System)
* Low power consumption and high performance
* Enhanced wireless security
¢ Fully speed operation with Piconet and Scatternet support
e 12mm(L) x 12mm(W) x1.65mm(H) LGA package
e Dual - band 2.4 GHz and 5GHz 802.11 a/b/g/n/ac

« External Crystal

Bluetooth on the AzureWave AW-CM256S

* 1 antennas to support 1(Transmit) and 1(Receive) technology and Bluetooth
¢ Fully qualified Bluetooth BT4.2
* Enhanced Data Rate(EDR) compliant for both 2Mbps and 3Mbps supported

* High speed UART and PCM for Bluetooth

4.6.4 HDMI
The HDMl interface is aligned with the HDMI TMDS single stream standard v1.4a (720p @60Hz to 1080p @24Hz)
and the HDMI v1.3 (1080p @60Hz): 3 data channels, plus 1 clock channel is supported (differential).

TODO: Verify it isn’t better than this. Doesn’t seem right.

4.6.5 PRU-ICSS
The Texas Instruments AM5729 Sitara™ provides 2 Programmable Real-Time Unit Subsystem and Industrial
Communciation Subsystems. (PRU-ICSS1 and PRU-ICSS2).

Within each PRU-ICSS are dual 32-bit Load / Store RISC CPU cores: Programmable Real-Time Units (PRUO
and PRU1), shared data and instruction memories, internal peripheral modules and an interrupt controller.
Therefore the SoC is providing a total of 4 PRU 32-bit RISC CPU'’s:

* PRU-ICSS1 PRUO
* PRU-ICSS1 PRU1
* PRU-ICSS2 PRUO
* PRU-ICSS2 PRU1

The programmable nature of the PRUs, along with their access to pins, events and all SoC resources, provides
flexibility in implementing fast real-time responses, specialized data handling operations, peripheral interfaces
and in off-loading tasks from the other processor cores of the SoC.

4.6. Detailed Hardware Design 185

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS Features

Each of the 2 PRU-ICSS (PRU-ICSS1 and PRU-ICSS2) includes the following main features:

2 Independent programmable real-time (PRU) cores (PRUO and PRU1)

21x Enhanced GPIs (EGPIs) and 21x Enhanced GPOs (EGPOs) with asynchronous capture and serial sup-
port per each PRU CPU core

One Ethernet MII_RT module (PRU-ICSS_MII_RT) with two MIl ports and configurable connections to PRUs
1 MDIO Port (PRU-ICSS_MII_MDIO)

One Industrial Ethernet Peripheral (IEP) to manage/generate Industrial Ethernet functions

1 x 16550-compatible UART with a dedicated 192 MHz clock to support 12Mbps Profibus

1 Industrial Ethernet timer with 7/9 capture and 8 compare events

1 Enhanced Capture Module (ECAP)

1 Interrupt Controller (PRU-ICSS_INTC)

A flexible power management support

Integrated switched central resource with programmable priority

Parity control supported by all memories

PRU-ICSS Block Diagram

Below is a high level block diagram of one of the PRU-ICSS Subsystems

PRU-ICSS
Drata MemD
) PRUD Core > g [BKE)
bl (BKB Program) 4 Data Mem1
. o EGPI0| | MaC | 2 (BKB)
SPAD % [Shared RAM
3 (12KB)
. PRU1 Core »
+ (8KB Program) [+ E —__eCAPD ¢ v
. s EGP 0] [MaC | = —{ mmworr L >
8 IEP ——
« > INTC . —| uARTD | >
— >

4.6.6 PRU-ICSS Resources and FAQ’s

Resources

* Great resources for PRU and BeagleBone® has been compiled here https://beagleboard.org/pru

* The PRU Cookbook provides examples and getting started information PRU Cookbook

* Detailed specification is available at http://processors.wiki.ti.com/index.php/PRU-1CSS

186

Chapter 4. BeagleBone Al

https://beagleboard.org/pru
http://processors.wiki.ti.com/index.php/PRU-ICSS

BeagleBoard Docs, Release 1.0.20230711-wip

FAQ
¢ Q: Is it possible to configure the Ethernet MIl to be accessed via a PRU MII?

« A: TBD

PRU-ICSS1 Pin Access

The table below shows which PRU-ICSS1 signals can be accessed on BeagleBone® Al and on which connector
and pins they are accessible from. Some signals are accessible on the same pins. Signal Names reveal which
PRU-ICSS Subsystem is being addressed. prl is PRU-ICSS1 and pr2 is PRU-ICSS2

4.6. Detailed Hardware Design 187

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau uo sanuUOd

VN 14V | indu] 8sodind-|eJaua 9 0Nyd c11d6 onud Tud

VN v4V | 1nduj 8sodund-|esaus 9 0NYd z1id6 onud 1ud

VN €4V | 1nduj asodund-|esaus 9 0NYd T11d6 onud T1ud

VN 94V | indu] 8sodind-|eJaua 9 0Nyd 0T1!d6 onud T4d

VN Z4V | nduj 8sodund-|esaus 9 0NYd 6!db6 onud Tud

VN SOV | 1nduj asodund-|esaus 9 0NYd gidb onud 1ud

VN €OV | indu| 8sodind-|eJaua 9 0Nyd £1d6 onud Tud

VN 29V | indu| 8sodind-|eJaua 9 0Ndd 91d6 onud Tud

ZT3IA0OW ST 6d YOV I Induj 8sodind-|elaud 9 0NYd c1d6 onud 1ud
ZT3IAOW 1T 8d YHY I Induj asodind-|eJaud O 0NYd #1d6 onud Tud
ZT3IAOW Z1 8d 99V I induj asodind-|elaud 9 0NYd €1d6 onud 1.d
VN GHV | 1nduj asodund-|esaus 9 0NYd 21d6 onud 1ud

VN EHVY | indu| 8sodind-|elaua 9 oNyd T1d6 onud 1ud

VN 9HV | induj asodind-jelaua 9 oNYd o!1d6 onud Tud

VN cav O | IndinQ 8sodind-jeiaus 9 QNYd ozodb gnud T4d

VN zav O | Indinp asodind-jesaua 9 oNYd 610d6 Qnud T4d

VN 93V O | andinQ asodind-jesaua 9 QNYd gTodb gnid Tud

€T13A0N 97 6d z3av O | IndinQ dsodind-|esdaus 5 ONYdd L10d6 onud T.d
VN 13V O | 1ndinQ 8sodind-jesaus 9 ONYd g10db Qnid T4d

VN G3v O | 1ndinQ asodind-jesaua 9 QNYd grodb onud Tud

VN €3v O | IndinQ asodind-jeiaus 9 ONYd y10odb Qnud T4d

VN 14V O | IndinQ 8sodind-jeiaus 9 ONYd c10odb6 onud T4d

VN v 4V O | 1ndinQ asodind-jesaua 9 0NYd zt1odb onud Tud

VN €4V O | IndinQ 8sodind-jeiaus 9 ONYd T10odb6 Qnud Tud

VN 94V O | 1ndinQ 8sodind-jeiaus 9 ONYd oTodb gnid T4d

VN 24V O | IndinQ asodind-jesaua 9 oNYd 60db onud T4d

VN SOV O | IndinQ asodind-|eiaus 9 ONYd godb onud Tud

VN €OV O | 1ndinQ 8sodind-jeiaus 9 ONYd Lodb6 onud Tud

VN Z9V O | IndinQ asodind-jesaua 9 oNYd 9odb onud Tud

€T13A0ON ST 6d YOV 0O | IndinQ asodind-|esdaus 5 ONYd god6 onud 1.d
€T3A0N 11 8d PHY O | IndinQ dsodind-|esdaus 5 0NYd $0od6 onid T.d
€13AdO0W 2T 8d 99V O | IndinQ 8sodind-|esaus 9 O0NYdd godb onud 14d
VN GHV O | IndinQ ssodind-|esaus 9 ONYd zodb6 gnud Tud

VN EHVY O | IndinQ 8sodingd-|eiaus 9 ONYd T0od6 onud Tud

VN 9HV O | Indino asodind-jesaua 9 oNYd oodb onud Tud

JAOW | NId_H3av 3H JAO | Nid_H43av 3H 004dHd | 3dAL NOILdIHdOS3d JNVYN TYNDIS

SS90V Uld TSSOI-NYdd :€'¥ d19eL

Chapter 4. BeagleBone Al

188

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau uo sanuUOD

VN 94 | indu] 8sodind-|eJaua 9 TNYd gldb tnud Tud

ZT3A0Wn €1 8d €da | indu| 8s0dind-|eJaud 9 TNYd £1d6 Tnid 14d
ZT3IA0ONn 6T 8d 93 I indu| 8sod.ind-|esaua 5 TNYd 91d6” Tnud T.d
ZT3IAOW 81 8d G4 I Induj 8sodind-|eJaud O TNYd Gid6 tnud 1ud
VN v 3 | induj 8sodund-|esaus 9 TNYd p1d6 Tnud 1ud

ZT3IA0OW v 6d 12 I indu| 8sod.ingd-|esaua 5 TNYd €1d6 Tnud 1.d
ZT3IAOW 6T 6d ¥4 I induj 8sodind-|eJaud O TNYd z21d6”tnud 1ud
ZT3A0Nn 072 6d zda I Indu| 8sodind-|eJaud 9 TNYd 11d6 Tnid 14d
VN z13 | i1nduj 8sodund-|eJaus 9 TNYd o!d6 tnud 1ud

VN vV O | Indino asodind-jesaua 9 TNYd ozodb Tnud T4d

VN [ol¥<| O | andinQ asodind-jeiaus 9 TNYd 6T0db Tnud TUd

€ET3IAON 9T 8d v 4 O | IndinQ asodind-|elaus 9 TNYd grodb Tnud T.d
€ET3IAONW 97°8d €4 O | IndinQ asodind-|esdus 9 TNYd LT0d6 Tnud T.d
€T3A0N ST 8d €V O | IndinQ asodind-|esdus 9 TNYd 910d6 Tnud T4d
€ET3IAON 9T 6d SD O | IndinQ asodind-|etaus 9 TNYd grod6 Tnid T.d
€ET3IAONW Y1 6d 9d O | IndinQ asodind-|esdaus 5 TNYd yTod6 Tnud Tud
VN z 4 O | andinQ asodind-jesaua 9 TNYd crodb Tnud Tud

VN 1) O | IndinQ 8sodind-|eiaus 9 TNYd z1odb Tnud Tud

€T3IAON LT6d €D O | IndinQ asodind-|etaus 9 TNYd TT0d6 TNId T.d
€T3A0N v 6d 4o} O | IndinQ asodind-|esdus 9 TNYd 010d6 Tnud T4d
€ET3IAON 1 8d sa O | IndinQ asodind-|etaus 9 TNYd 60d6 Tnid 1.d
VN 94 O | IndinQ 8sodind-jeiaus 9 TNYd godb Tnud Tud

€T3A0MN €1 8d €a O | IndinQ asodind-|esaus 5 TNYd £0d6 Tnid 14d
€T3IAO0ON 6T 8d 913 0O | IndinQ asodind-|esdaus 9 TNYd 90d6 Tnid 1.d
€ET3A0N 81 8d Sd O | IndinQ dsodind-|esdus 5 TNYd god6 Tnid 1ud
VN v 3 O | IndinQ asodind-jesaua 9 TNYd yodb Tnid Tud

€T13A0ON v 6d 10 0O | IndinQ asodind-|esaus 9 TNYd godb Tnid 14d
€T3A0N 6T 6d v d O | IndinQ dsodind-|esdaus 5 TNYd zod6 Tnud 1ud
€ET3IAO0ONW 02 6d za O | IndinQ 9so0dind-|esdus 5 TNYd 1od6 Tnid 1u4d
VN Z13 O | IndinQ ssodind-|eiaus 9 TNYd oodb Tnud Tud

VN cayv | 1nduj asodund-|esaus 9 0NYd o0z!d6 onud 1ud

VN zav | indu] 8sodind-|eJaua 9 0Nyd 6T!d6 onud Tud

VN 93V | nduj 8sodund-|eJaus 9 0NYd g1id6 onud T1ud

ZT3IA0OW 97 6d z3v | Induj 8sodind-|eJaud 9 0NYd £T11d6 onud Tud
VN I3V | indu] 8sodind-|eJaua 9 0NYd 9T11d6 onud T4d

VN G3Iv | induj 8sodund-|esaus 9 0NYd g1id6 onud T1ud

VN €3v | 1nduj 8sodund-|eJaus 9 0NYd p11d6 onud 14d

JAOW | NId_d3av 3H JAOW | NId_H3av 3H 004Hd | 3dAL NOILdIHOS3d JNVYN TYNDIS

abed snoinaid woly panunuod - £ d|qe

189

4.6. Detailed Hardware Design

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau uo sanuUOD

VN z9g I ejeq aA1939Y TIIN €pxJ THw T.d

VN ¥ D I pileA exed TIIN ApXJ THW Tud

IT3AO0OW L76d €D I 32010 ®A1923Y TN N2 W HwTad
IT3IAO0OW W 6d [4e) o} ejeq jywsued] TIIN opPx3 THw T4d
TT3IA0ON 1 8d sda 0 ejeq ywsueld] T(IN Tpxy THw 14d
ITTIAO0ON 6T 8d 93 ¢} ejeq ywsuell TIIN Zpxy THw T
ITIAO0ON 81 8d Sd o} ejeq ywsuedl TIN €pxy THw Tud
VN v 3 0 a|qeus ywsuell Tl usxy THw T.d

IT3IAOW v 6d 12 I 32010 ywsueldl TIIN 39 T3w nwTad
VN an I Ul 3A1929Y OlIN Sulxa-onw 14d

VN TA I 129312@ UoIs1||0D OlIN j03 onw 1.4d

VN 9n I ejeq SA1939Y OlIN opxJ onw 14d

VN 9A I ejeq aA1929Y OlIN Tpxd olw ™ T.d

VN /N | 10443 9A1909Y 011N JaxJ onw Tud

VN LA I 95USS Ja1Ie) 0l s onw Tad

VN 6 A I eyeq aA1929Y OlIN Zpx4 oNw T4d

VN 6 M I ejeq SA1929Y Ol epxJ onw 14d

VN TA I 20|10 SA1933Y 0IIN 1270w Hw Td

VN ZA I plleA eied OlIN ApXJ- oW Td

VN ZM 0 ejeqd jwsued] Ol 0PXxy Qlw TJd

VN ZA o} ejeq ywsuell OllN Tpx3y onw 14d

VN YA ¢} ejeq ywsuell OlliN Zpxy onw Tud

VN SA 0 ejeqd jwsued] Ol €pxy onw 14d

VYN €A 0 d|qeud jlwsued] Ol usxy oHw T.d

VN sn I %201 ywsuell OllN 3127 03w w T

VN vV | indu] 8sodind-|eJaua 9 TNYd ozid6 Tnud T4d

VN sg | induj 8sodund-|eJaus 9 TNYd 6T!d6 Tnud Tud

ZT3IA0OW 91 8d vd I indu| 8sod.ind-|esaud 9 TNYd g1!d6 Tnud Tud
ZT3IA0OW 97 8d €49 I induj 8sod.ingd-jesaus 9 TNYd L1167 Tnud Tud
ZT3A0Wn ST 8d €V I Indu| 8s0dind-|eJaud 9 TNYd 91!1d6 Tnud T4d
ZT3IA0OWn 9T 6d SD I indu| 8sod.ind-|esaua 9 TNYd gTid6 Tnud Tud
ZT3IA0OWn YT 6d 9a I indu| 8sod.ind-jesaua 9 TNYd $11d6 Tnud 1ud
VN z9 | induj 8sodund-|esaus 9 TNYd e1id6 Tnud 1ud

VN vD | induj 8sodund-|esaus 9 TNYd z1id6 1nud 1ud

ZT3IA0OW LT 6d €D I indu| 8sod.ingd-jesaua 9 TNYd T1id6 Tnud Tud
ZT3A0Nn v 6d [4e) I Indu| 8s0dind-|eJaud 9 TNYd 01!d6 Tnud 14d
ZT3IA0ON 1 8d sa I indu| 8sod.ind-|esaud 5 TNYd 6!d6 Tnud T.d
JAOIN | NId_d3av 3H JAOIN | NId_d43av 3H 004dHd | 3dA Ll NOILdIHOS3d JINVN TVYNODIS

abed snoinaid woly panunuod - £ d|qe

Chapter 4. BeagleBone Al

190

-wip

BeagleBoard Docs, Release 1.0.20230711

OTIAONW I 8d | TTIAOW ST 8d 63/10 ol ndinO IWMd/induj ainide) | o wmde uided deds odedd T.d
0OT3IAOW vV 8d | TID/€4 0 eleq Jwsuell 1HvN px3 ouen 1.d

OT3IAOMW €V 8d | TTIAONW 9€8d | 0T4/2A I ejeq 9AI9I9Y [HVN pxJ-ouen Tud
0OT3IAOW 9%y 8d | TTIAONW $€8d | 0ID/99 0 puas-ol-Apeay 19vN u sy owen 1ud
0OT3IAOMW S¥8d | TT4/19 I puas-0l-1e3|D 1YVN u's30 ouen Tud

€T3IA0ON g1 8d | TA/say ¢} IndinQ [e3b1a IpuIsysz £In0 ejep oipa T4 d

VYN | €4/zav 0 ndino |e3b1g BUIBYIT 91n0 ejep oips 1. d

€T3IA0ON 9¢'8d | z4/93V o} Indino |enbia 3puisyiz GIno ejep oipa T4 d

€TIAON ¥€8d | TTIAOMNW 92 6d | 99/23V ¢} Indino [eyb1a Ipuiayiz ¥Ino ejep ojpa T4 d
YN | ID/13V 0 1ndinQ |eybia IpuIsylz €In0 ejep olps T4 d

VYN | LH/S3V o} IndinQ |eybia 3puIsylz Zano ejep oipa T4 d

VYN | 29/€3V o} Indino [eybia Ipuiayiz 1IN0 ejep oipa T4 d

YN | T3/T4V ¢} ndinQ |e3bia wuisyig 0In0 ejep ojpa 14 d

ZT3IA0OW ST 8d | TA/sAyv I induj jeyB1g vulayia Lui"eyep o1ps” T.d

VYN | €4/zaV I induj [eyB1a usdYla 9ul ejep olpa TJd

ZT3IAO0OW 9€'8d | 74/93V I nduj |e3161g 38uiay3lg Gul ejep olpa TJd

ZT3IA0W $€8d | 0OTIAOMNW 92 6d | 99/73V I induj jeyBig utayia Ul ejep olpa TJd
YN | ID/13V I induj [eyB1a vutayYla gui"ejep oipa” 1.d

VN | LH/S3V I nduj |e31b1g 38uiay3lg zul ejep oipa 1.4d

VYN | 29/€3V I induj jeyBi1g utayia Tul ejep oips Tud

YN | T3/T4V I induj [eyB1a vutdYIa Qul ejep olpa TJd

ITIA0ON 616d | vd/vdV 0 sweld JO Hels Jos olpa” 1.d

VYN €4V I induj yozen ul ysje| oipas T.d

VN 94V ¢} INdinO TONAS N0 TouAs dpa Tud

IT3IAON 026d | za/z4dv 0 INdINO 0DNAS N0 QdouAs dpe T.d

VN SOV I T 3nduj ysie ur" Tyole| opa T.d

VYN | 23/€9V I 0 Induj ysze ui"oyoe| opa T.d

VN 94 ol eied OlAW ejep olpw T.d

TT3IAOW €1 8d €a o 320D OIdIN J|opwolpw TJd

VN vV I 95UdS Ja1Ie) TIIN SO W Tad

VN cg I 129312 U0Is!||0D TIIN j02 THw Tud

TT3IAOW 91 8d v 9 I Ul 9A1R3Y TIIN Sulxda Tiw 14d

IT3AO0OW 97°8d €d I 10113 dA1923Y TIIN JoxJ” THw T.4d

IT3IAON ST 8d £V I ejeq aA1929Y TIIN OpxJ THw T.d

ITT3IAOW 9T 6d SO | ejeq SA1923Y TIIN TpxJ THw 14d

ITT3IAONW Y1 6d 94 I ejeq aA1929Y TIIN ZpxJ W Tad

JAOIN | NId_d3av 3H JAOIN | NId_d43av 3H 004dHd | 3dA Ll NOILdIHOS3d JINVN TVYNODIS

abed snoinaid woly panunuod - £ d|qe

191

4.6. Detailed Hardware Design

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS2 Pin Access

The table below shows which PRU-ICSS2 signals can be accessed on BeagleBone® Al and on which connector
and pins they are accessible from. Some signals are accessible on the same pins. Signal Names reveal which
PRU-ICSS Subsystem is being addressed. prl is PRU-ICSS1 and pr2 is PRU-ICSS2

192 Chapter 4. BeagleBone Al

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau uo sanuUOD

ZT3IAONW St 8d GT4/L9 I nduj asodin d-|eJs uso 0NYd €11d6” onud z ud

ZT3AON Z€ 8d 814/1D I Indu| 8s0d.n d-|eJd usH ONYdd z1id6 onud z ud

ZT3A0ON ¥ 8d | Z13AOW 1€ 8d Sgav/8d I ndu| 8s0d.n d-|eJs usn ONYd 1T1d6” onud z ud
ZT3IAONW € 8d | Z13AOW €€ 8d 8dv/9D I anduj asodin d-|eJs uso 0NYd oT!d6” onud z ud
ZT3A0NW 27 8d | ZI3AOW GE 8d 9av/sVv I Indu| 8s0dJn d-|eJd usH ONdd 6!1d6 o nud zad
ZT3A0NW €2°8d | Z13AOW ¥€ 8d 80V/8a I ndu| 8s0d.n d-jess usH ONYd gid6 onid zud
ZT3IAONW 9°8d | Z13AOW 9¢ 8d €ov/La I induj asodin d-|eJs usn 0Nyd £1d6 g nud"zad
ZT3A0N S 8d | ZTIAOW 8¢ 8d 60V/6d I Indu| 8s0dJn d-|e4d usH ONdd 9id6 g nid zad
ZT3A0NW ¥2°8d | Z13AOW L€ 8d 90V/83 I ndu| 8s0d.n d-|ess usH ONYd gid6onid zad
ZT3A0ON GZ 8d | ZI3AOW Ov 8d LOV/L3 I ndu| 8sod.n d-jeJs usH ONYd y1d6 0 nud za d
ZTIA0ONW 02 8d | Z13AOW 6€ 8d ¥Ov/84 I induj 8s0din d-|eJd U9 ONYd gid6 onid zud
ZT3A0N 1Z°8d | ZT3AOW Zv 8d av/64 I ndu| 8s0d.n d-|eJs usoH ONYd zid6onid zud
ZT3AONW 1 8d vav/63 I anduj 8sodin d-|eJs uso 0Nyd 11d6 g nud z4d

ZT13AOnW v 8d | SOV/IT O I Induj 8sod.n d-jeJs usH ONYd 01d6 g nid zad

€13A0N 8 8d | £T3AOW 9% 8d | VTI4/0TV 0O | IndinQ asodin d-|esd us9 ONYd 0zod6 onud z ud
€T3dOW 0€ 8d 81v/69 O | Indino ssod.n d-jets usH ONYd 610d6™ onud z ud

€13A0W 62 8d 6TV/6Y O | IndinQ 9sodin d-|eds us9 ONYd grodb6 onud z ud

€T3AONW 87 8d 91V/6D 0O | IndinQ asodin d-|edd us9 ONYd L10d6 onud z ud

€T3AONW L2 8d S1D/8Y O | IndinQ @sodin d-|eJs us9 ONYd 9tod6 onud z ud

€13A0N €T 6d | €TIAOW LT 8d LTID/LVY O | IndinQ 9sodin d-|eds us9 ONYd grod6 onud z ud
€13A0N IT 6d | €£T3AOW 1T 6d 619/89 0O | IndinQ asodin d-|eJd us9 ONYd y10d6™ Onud z ud
€T3AONW St 8d S14/L9 O | IndinQ asodin d-|eJs us9 ONYd g10d6 onud z ud

€13A0W Z€ 8d 819/LD O | IndinQ 9sodun d-|eds us9 ONYd ztod6™ gnud z ud

€13A0N ¥ 8d | €13A0OW 1€ 8d Sgv/80 0O | IndinQ asodin d-|eJd ud9 ONYd 110d6 onud z ud
€13A0N €8d | €£T3AONW €€ 8d 8dv/9D O | IndinQ asodin d-|eJs us9 ONYd otod6™ onud z ud
€T3A0NW 27 8d | €13A0W S€ 8d 9av/sv O | IndinQ 9sodin d-|eds us9 ONYd 60d6 0 nud zs d
€13A0N €2°8d | €13A0W ¥€ 8d 80v/8d 0O | IndinQ asodin d-|eJd us9 ONYd godb o nud zad
€13A0N 9°8d | £13AOW 9¢ 8d €ov/La O | IndinQ asodin d-|eJs us9 ONYd (od6onud zad
€T3A0NW G 8d | £T3IAOW 8¢ 8d 60V/6d O | IndinQ asodin d-|eds us9 ONYd 90db6 g nud zsd
€13A0N ¥2°8d | €13A0W L€ 8d 90v/83 0O | IndinQ asodin d-|eJd us9 ONYd godb o nud zad
€13A0N GZ 8d | £T3AOW oY 8d LOV/L3 O | IndinQ asodin d-|eJs us9 ONYd yod6 o nid zad
£13A0W 02 8d | €13AOW 6€ 8d ¥ov/84 O | IndinQ asodin d-|eJs uso ONYd godbonud zad
€13A0N 12 8d | £T3AOW Zv 8d Av/64 0O | IndinQ 9sodin d-|etd ud9 ONYd zodb o nud zad
€T3AONW v 8d vav/63 O | IndinQ asodin d-|eds us9 ONYd 10d6 0 nud zad

€T3A0OW ¥ 8d | SOV/IT O O | IndinQ 9sodin d-|ess U ONYd 0odb6 g nid zsd

3JAOW | NId 43 avaH 3JAOW | NId 43 avaH 004dd | 3dAL NOILdI H0S3d JNVN TVYNDIS

SS90V Uld ¢SSOI-NYdd ¥'¥ @19eL

193

4.6. Detailed Hardware Design

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau uo sanuUOd

ZT3IAONW 8T 6d ZI9/LN I induj asodin d-|eJs uso TNYd gidb 1 nid zad

ZT3AON 1€ 6d YID/LA I Indu| 8s0d.n d-|eJd usH TNYd £1d6 T nud zad

ZT3A0ON 6 8d LT3/6A I ndu| 8s0d.n d-|eJs uso TNYd 9id6 T nud za d

ZT3A0on G2 6d 81A/6M I nduj 8sod.n d-jeds usH TNYd gid6 Tnud zad

VN PYV/TA I Indu| 8s0d.n d-|eJd usH TNYd p1d6 T nid zad

VN €av/ZA I Indu| 8s0d.n d-jess uso TNYd gid6 Tnud zud

VN 6dv/En I induj 8sodin d-|eJs uso TNyd zdb 1 nid zad

VN Evv/vn I Indu| 8s0dJn d-je4d usH TNYd T1d6 T nud zud

ZT3A0ON Z€ 8d LTA/TA I Indu| 8s0d.n d-jeJs uso TNYd oid6 T nud zad

€T3AOW €% 8d 014 O | IndinQ 9sodin d-|edd uso TNYd 0zod6™ Tnid z ud

€T3dOW 9% 8d 019 O | IndinQ asodin d-|edd U9 TNYd 610d6 Tnid Zid

€T3AONW St 8d 114 0O | IndinQ asodin d-|etd us9 TNYd grod6 Tnud zud

€13A0W L2 8d 113 O | IndinQ @sodin d-|eds us9 TNYd L10d6” Tnud "z ud

€T3IAONW L 8d PIO/ZM O | IndinQ 9sodin d-|eds us9 TNYd 91odf6 Tnud z.d

€T3AONW 0T 8d E€IV/ZA O | IndinQ asodin d-|esd us9 TNYd grod6 Tnud z.d

€13A0W Zv 6d PTI/EN O | IndinQ asodin d-|eds us9 TNYd y10d6” TnId Z ud

€T3IAOW 9Z 6d ZIVIVA O | IndinQ 9sodin d-|eds us9 TNYd ¢1odb Tnud zud

€T3AONW 0€ 6d €19/SA O | IndinQ asodin d-|edd us9 TNYd zrod6 tnud z ud

€T3AONW 62 6d TIv/sn O | IndinQ asodin d-|eJs us9 TNYd T10d6” Tnud Z ud

€T3IAONW 1€ 6d z1a/9n O | IndinQ 9sodin d-|eds us9 TNYd otod6 Tnud z.d

€T3AONW LT 6d ZT4/9A O | IndinQ asodin d-|esd us9 TNYd 60d6 T nud zad

€T3AONW 81 6d Z19/LN O | IndinQ asodin d-|eJs us9 TNYd godb T nud zud

€T3IAONW 1€ 6d YTD/LA O | IndinQ 9sodin d-|eds us9 TNYd Lod6 T nud zad

€TIA0ONW 6 8d LT3/6A 0O | IndinQ asodin d-|edd ud9 TNYd 9odb 1 nud zad

€T3AONW G2 6d 81A/6M O | IndinQ asodin d-|eJs us9 TNYd god6 T nud zad

VN PYV/TA O | IndinQ asodin d4-jeta uso TNYd yodb T nud zJ4 d

VN €av/zN 0 1ndinQ 9s0dun d4-|eds uao TNYd codb Tnud zud

VN 6dv/EN O | IndinQ asodin ¢-|eda us TNYd zod6 1T nud zad

VN cvYv/vN O | IndinQ asodin d4-jeta uso TNYd Tod6 T nud za d

€TIAONW Z€ 8d LTA/TA 0O | IndinQ 9sodin d-|etd us9 TNYd 0odb 1 nud zad

ZT3A0ONW 878d | Z13AOW 9% 8d | ¥I4/0TV I ndu| 8s0d.n d-jeJs usH ONYd 0z!d6™ pnud "z ud
Z13A0W 0€ 8d 81v/69 I ndu| 8sodin d-jeJs us ONyd 6T1d6 onud z ud

ZT3A0ON 62 8d 61V/6VY I Indu| 8s0d.n d-|esd usH ONdd g11d6™ onid z ud

ZT3A0ON 87 8d 9TV/6D I ndu| 8s0d.n d-jeJs usH ONYd LT!1d6™ onud "z ud

ZT3IAONW 17 8d S1D/8Y I nduj asodin d-|eJs uso 0Nyd 9T11d6 onud z ud

ZT3A0NW €1 6d | ZTIIAOW LT 8d LT1D/LV I Indu| 8s0dJn d-|eJd usH ONdd GT1d6 onud z ud
ZT3A0NW IT 6d | ZT3AOW 1T 6d 6149/849 I ndu| 8s0d.n d-|ess usH ONYd $11d6™ onud "z ud
3JAOW | NId 43 avaH JAOW | NId 43 avaH O0Hdd | 3dALl NOILdI HOS3d JINVN TVYNODIS

abed snoinaid woly panunuod - 'y d|qe

Chapter 4. BeagleBone Al

194

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau uo sanuUOd

TT13A0OW 67 8d 6v 0 ndinQ [exbr g 18Uy 33 GIno e jep ol pa zid
TT3A0OW 87 8d 62 0 IndinQ |eybl g 39Uy 33 #3no e jep ol pa” zid
TT3A0NW L2 8d 8V 0 Indino eyl @ Uy 33 €3no e jep ol pa zid
TTIA0ONW LT 8d LY o IndinQ [eybl @ Uy 33 Zano e jep ol pa zid
TT3A0OW 1T 6d 89 0 IndinQ |eyb! g 39Uy 33 1IN0 e jep o pa gid
TT3A0NW St 8d L9 0 Indino exbl @ Uy 33 0In0" e jep o1 pa z.d
0T3AOW 9% 8d 01V I nduj |eybr g 3ussy 13 Luieyep olp @ zid
0T3AOW 0€ 8d 69 I anduj [eyb1 g 3vuiay 13 gul ey ep oip 8 zid
0T3dOW 62 8d 6V I induj [eyfi g 3ouidy 33 gueyep olp @ gid
0T3A0OW 87 8d 62 I nduj |eybr g 3ussy 13 pul ey ep oip 8 ¢zud
0T3AOW 127 8d 8V I induj [eyb1 g 3vuiay 13 guleyep oip 9 zid
0T3dOW LT 8d LY I induj [eyfi g 3ouiay 13 zureyep olp @ gid
0T3A0OW 1T 6d 89 I nduj |eybr g 3ussy 13 Tui ey ep olp @ zid
0T3A0W Sy 8d JA:| I induj [eyb1 g 3vuiay 13 oul ey ep oip @ zid
0T3IAOW Z€ 8d 1D ol indino WMd/an duj aunide 5 | o wmde “uided “deda odeda” zid
0T3A0OW 1€ 8d 80 0 ejeq Jwsue 4 14vN px1 01den zid
0T3A0W €€ 8d 9D I ejed SAI939 Y 1¥VN pxJ 03 den zid
0T3dOW GE 8d SvY 0 puas-o 1-Apes Y 14vn u sy ouen zud
0T3A0OW ¥€ 8d 8a I puaS-0 1-183| D 1YVN u s ouen zid
0T3AOW 9¢ 8d LA 0 awel4 JO Hels jos ol pa zud
0T3IA0OW 8¢ 8d 64 I nduj yoze uiysy ejoip o zud
0T3dOW L€ 8d 83 0 INdINO TONAS N0 12 UASOp @ zud
0T3AOW 0¥ 8d JE| 0 INdINO 0DNAS N0 02 UAS™dp o zid
0T3AOW 6€ 8d 84 I T Indu| yojen U TyYs3e| op 9 zid
0T3dOW Zv 8d 64 I 0 Induj yoze Ui oyd 3e| dp @ zid
Z13A0OW €% 8d 014 I ndu| 8sodin d-jeJs us TNyd 0z!d6” Tnud z ud
ZT3A0NW 9% 8d 019 I Induj asodin d-|eJd U9 TNYd 6TId6 Tnud z ud
ZT3A0NW Sy 8d 114 I Induj| 8s0din d-|eJd U TNYd gTId6 Tnud z ud
ZT3A0NW 17 8d 113 I induj 8s50din d-|eJd U9 TNYd LT1d6 Tnud z ud
ZT3A0OW L 8d YI9/ZM I Induj asodin d-|eJd U9 TNYd 9TId6 Tnud z ud
ZT3A0NW 0T 8d ETIV/ZA I Induj| 8s0din d-|eJd U TNYd c1id6 Tnid z ud
ZT3A0NW Zv 6d PTI/EN I Induj 8s50din d-|eJd U9 TNYd yT1d6" Tnud z ud
ZT3A0NW 87 6d ZIVIVA I Induj asodin d-|eJd U9 TNYd €T1d6 Tnud z ud
ZT3A0NW 0€ 6d €19/SA I Induj 8s0din d-|eJd U9 TNYd z1db Tnud z ud
ZT3A0NW 67 6d TIVv/SN I induj 850din d-|e4d U9 TNYd 111d6 Tnud z ud
ZT3A0ON 1€ 6d z1d/9n I Induj asodin d-|eJd U9 TNYd oT1d6 Tnud z ud
ZT3A0NW LT 6d ZT4/9A I Induj 8s0din d-|eJd U9 TNYd 6!d6 T nid zsd
3JAOW | NId 43 avaH 3JAOW | NId 43 avaH 004dd | 3dAL NOILdI 40S3d JNVN TYNDIS

abed snoinaid woly panunuod - 'y d|qe

195

4.6. Detailed Hardware Design

-wip

BeagleBoard Docs, Release 1.0.20230711

pua pus pua pus pus pua pus pus
TTIAONW ¥ 8d sgav I ejed dA1933 o TIIW opxJ T llw z4d
TTIAONW € 8d sgav I eleq dAI1939 Y TIIW TpXJ T w zad
TT3IAONW zZ 8d 9av I ejeq 9AI923 o TIIN Zpxd T nw zad
TTIAONW €7 8d 80V I ejed dA1939 o TIIW gpxa T Hw zad
T1T3A0OW 9 8d {50)14 I plleA exed TIIW APXJ T W za d
TT3IAONW S 8d 60V I 320]D 3AI923 Y TIIN A9 T W w” zuad
TT13A0OW ¥2 8d 90V 0 ejeq jiwsue 4 TIN opx3 T Hw zad
TT3AONW G2 8d LDV 0 eleq jwsue Ji TIIN TpX3 T hw zad
TT3IAONW 0Z 8d oV 0 ejeq Jiwsue 4 TIN Py 1w zad
TTIAONW 1Z 8d rav 0 ejeq ywisue Il TIIN €pxy T llw zad
VN rav 0 d|qeud jwsue 4| TIIN usxy T lw zad

VN SOV I >20]D Jwsue Jl TIIN M2 T3 W W zad

TT3AOW €1 6d LTD I JUll 9A1929 Y TIIIN Sulpa " Thw zid
TT3A0OW 1T 6d 614 I 40113 3A1923 Y TIIW X Thw zad
VN GIA I 128319@ UoIis|| [0D OIIIN |0270! lw™ zJd

VN 819 I 9sSUSS JaLe D Ol S1>70! 1w z1d

VN 9TV I Ul 8A1929 Y Ol Sulxs —onw zid

VN GID I ejeq aA1923 Y OlIIN opxJ 0w zad

VN 8TV I ejed aAI923 Y Ol TpxJ 0w z1d

VN 6TV I ejeq 21923 Y Ol Zpxd 0 iw zad

TTIAONW 8 8d ¥14 I eleq dA1929 Y Ol epxa 0w zad
TT3A0OW L 8d 19 I plleA eleqd oIl ApXJQ lw za d
TT3A0OW 0T 8d €IV I 320|D dAI933 Y OIIIN 31204 W W zad
TTIAONW Zv 6d 13 0 eleq jwsue 4i Ol opx3 0w zad
TTIAONW 87 6d v o ejeq ywsue 4l Olin TPx3 0w zad
TTIAONW 0€ 6d €19 0 ejeq jlwsue Ji Ol Zpxy 0w zad
TTIAONW 62 6d v 0 eleq jwsue 4i oIl €px3 0w zad
TT3A0OW 1€ 6d z1d 0 3|geud jiwsue JI Ol usxy o lw zad
TTIAONW LT 6d Z14 I 320D Jwsue 41 Ol 32703 W w zid
TT3A0OW 8T 6d Z19 I 40413 3A1923 Y OIIIN Jexi g lw zad
TTIAONW 62 6d | PYV/¥T A ol eleq OldW ejep o Ipw zid
TT3A0OW 1€ 6d | €9V/¥TD 0 201D OIdI J|opw olpwz Jd
T1T3A0OW 6 8d L13 I 3sUdS JaLe D TN SIOTTHIW zad
TT3IAONW G2 6d 81d I 12919Q UoIs!| [0 TIIN |03 T! jw™ zid
TT3A0OW 9% 8d 0TV 0 IndinQ |eybl g 19Uy 33 £33N0 e jep ol pa zid
TT3AONW 0€ 8d 69 0 Indino [exbl g Uy 33 91n0 e jep ol po zid
3JAOW | NId 43 avaH JAOW | NId 43 avaH O0Hdd | 3dALl NOILdI HOS3d JINVN TVYNODIS

abed snoinaid woly panunuod - 'y d|qe

Chapter 4. BeagleBone Al

196

BeagleBoard Docs, Release 1.0.20230711-wip

4.6.7 User LEDs

There are 5 User Programmable LEDs on BeagleBone® Al. These are connected to GPIO pins on the processor.

USER

LEDs

D2
D3
D4
D5
D8

[se osies
vol ke o [l

C

The table shows the signals used to control the LEDs from the processor. Each LED is user programmable.
However, there is a Default Functions assigned in the device tree for BeagleBone® Al:

LED GPIO SIGNAL DEFAULT FUNCTION

D2 GPIO3_17 Heartbeat When Linux is Running
D3 GPIO5_5 microSD Activity

D4 GPIO3_15 CPU Activity

D5 GPIO3_14 eMMC Activity

D8 GPIO3_7 WiFi/Bluetooth Activity

4.7 Connectors

P9 Header

P8 Header

uUsB 3
Type-C

Gigabit
Ethernet

Coaxial

4.7. Connectors

197

BeagleBoard Docs, Release 1.0.20230711-wip

P8 Header

. .D. Uﬂt 105654 WS
E v a0 v 02 19

uHDMI m‘ ”’g;n _: .
' X “;233'

4.7.1 Expansion Connectors

The expansion interface on the board is comprised of two 46 pin connectors, the P8 and P9 Headers. All signals
on the expansion headers are 3.3V unless otherwise indicated.

Note: Do not connect 5V logic level signals to these pins or the board will be damaged.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Figure ? shows the location of the expansion connectors.

P9 Header

P8 Header

198 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

The location and spacing of the expansion headers are the same as on BeagleBone Black.

Connector P8

The following tables show the pinout of the P8 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.
The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

Note: DO NOT APPLY VOLTAGE TO ANY I/O0 PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT
WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Table 4.5: P8.01-P8.02

P8.01 P8.02
GND GND

Table 4.6: P8.03-P8.05

P8.03 P8.04 P8.05
GPIO 24 25 193
BALL AB8 AB5 AC9
REG 0x179C 0x17A0 0x178C
MODE 0 mmc3_dat6 mmc3_dat7 mmc3_dat2
1 spi4_do0 spi4_cs0 spi3_cs0
2 uartl0_ctsn uartl0_rtsn uart5_ctsn
3
4 vin2b_del vin2b_clkl vin2b_d3
5
6
7
8
9 vin5a_hsync0 vin5a_vsync0 vin5a_d3
10 ehrpwm3_tripzone_input eCAP3_in_PWM3_out eQEP3_index
11 pr2_miil_rxdl pr2_miil_rxd0O pr2_mii_mrl_clk
12 pr2_pru0_gpil0 pr2_pru0_gpill pr2_pru0_gpi6
13 pr2_pru0_gpol0 pr2_pru0_gpoll pr2_pru0_gpo6
14 gpiol_24 gpiol_25 gpio7_1
15 Driver off Driver off Driver off

4.7. Connectors 199

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.7: P8.06-P8.09

P8.06 P8.07 P8.08 P8.09

GPIO 194 165 166 178

BALL AC3 G1l4 F14 E17

REG 0x1790 0x16EC 0x16F0 0x1698

MODEO mmc3_dat3 mcaspl_axrl4 mcaspl_axrl5 xref_clkl

1 spi3_csl mcasp7_aclkx mcasp7_fsx mcasp2_axr9

2 uart5_rtsn mcasp7_aclkr mcasp7_fsr mcaspl_axr5

3 mcasp2_ahclkx

4 vin2b_d2 mcasp6_ahclkx

5

6

7 vin6a_d9 vin6a_d8 vin6a_clk0

8

9 vin5a_d2

10 eQEP3_strobe timerll timerl2 timerl4

11 pr2_miil_rxdv pr2_mii0_rxdv pr2_mii0_rxd3 pr2_miil_crs

12 pr2_pru0_gpi7 pr2_prul_gpil6 pr2_pru0_gpi20 pr2_prul_gpi6

13 pr2_pru0_gpo7 pr2_prul_gpol6 pr2_pru0_gpo20 pr2_prul_gpo6

14 gpio7_2 gpio6_5 gpio6_6 gpio6_18

15 Driver off Driver off Driver off Driver off

Table 4.8: P8.10-P8.13
P8.10 P8.11 P8.12 P8.13

GPIO 164 75 74 107

BALL Al3 AH4 AG6 D3

REG 0x16E8 0x1510 0x150C 0x1590

MODE 0 mcaspl_axrl3 vinla_d7 vinla_d6 vin2a_d10

1 mcasp7_axrl

2

3 vout3_do vout3_dl mdio_mclk

a4 vout3_d16 vout3_d17 vout2_d13

5

6

7 vin6a_d10

8

9 kbd_col7

10 timerl0 eQEP2B_in eQEP2A_in ehrpwm2B

11 pr2_mii_mr0_clk prl_mdio_mdclk

12 pr2_prul_gpil5 prl_pruO_gpi4 prl_pruO_gpi3 prl_prul_gpi7

13 pr2_prul_gpol5 prl_pru0_gpo4 prl_pru0_gpo3 prl_prul_gpo7

14 gpio6_4 gpio3_11 gpio3_10 gpio4_11

15 Driver off Driver off Driver off Driver off

Table 4.9: P8.14-P8.16
P8.14 P8.15 P8.16

GPIO 109 99 125
BALL D5 D1 B4
REG 0x1598 0x1570 0x15BC
MODE 0 vin2a_d12 vin2a_d2 vin2a_d21
1
2 vin2b_d2
3 rgmiil_txc rgmiil_rxd2
4 vout2 d1l1 vout2_d21 vout2_d2
5 emul2 vin3a_fld0
6 vin3a_d13
7
8 miil_rxclk uartl0_rxd miil_col
9 kbd_col8 kbd_row6
10 eCAP2_in_PWM2_out | eCAP1_in_PWM1_out

continues on next page

200

Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.9 - continued from previous page

P8.14 P8.15 P8.16
11 prl_miil_txdl prl_ecap0_ecap_capin_apwm_o | prl_miil_rxlink
12 prl prul gpi9 prl_edio data_ in7 prl prul gpil8
13 prl_prul_gpo9 prl_edio_data_out7 prl_prul _gpol8
14 gpio4 13 gpio4 3 gpio4 29
15 Driver off Driver off Driver off
2nd BALL A3
2nd REG 0x15B4
2nd MODE O vin2a_d19
2nd 1
2nd 2 vin2b_d4
2nd 3 rgmiil_rxctl
2nd 4 vout2_d4
2nd 5
2nd 6 vin3a_dll
2nd 7
2nd 8 miil_txer
2nd 9
2nd 10 ehrpwm3_tripzone_input
2nd 11 prl_miil_rxdO
2nd 12 prl_prul_gpil6
2nd 13 prl prul gpol6
2nd 14 gpio4_27
2nd 15 Driver off
Table 4.10: P8.17-P8.19
P8.17 P8.18 P8.19

GPIO 242 105 106

BALL A7 F5 E6

REG 0x1624 0x1588 0x158C

MODE 0 voutl_d18 vin2a_d8 vin2a_d9

1

2 emué

3 vinda_d2

4 vin3a_d2 vout2_d15 vout2_dl4

5 obsll emuls8 emul9

6 obs27

7

8 miil_rxd3 miil_rxd0

9 kbd_col5 kbd_col6

10 pr2_edio_data_in2 eQEP2_strobe ehrpwm2A

11 pr2_edio_data_out2 prl_miil_txd3 prl_miil_txd2

12 pr2_pru0_gpil5 prl_prul_gpi5 prl_prul_gpi6

13 pr2_pru0_gpol5 prl_prul_gpo5 prl_prul_gpo6

14 gpio8_18 gpio4_9 gpio4_10

15 Driver off Driver off Driver off

4.7. Connectors

201

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.11: P8.20-P8.22

P8.20 P8.21 P8.22
GPIO 190 189 23
BALL AC4 AD4 AD6
REG 0x1780 0x177C 0x1798
MODE 0 mmc3_cmd mmc3_clk mmc3_dat5
1 spi3_sclk spi4_d1
2 uartl0_txd
3
4 vin2b_d6 vin2b_d7 vin2b_d0
5
6
7
8
9 vin5a_d6 vin5a_d7 vin5a_d0
10 eCAP2_in_PWM2_out ehrpwm?2_tripzone_input ehrpwm3B
11 pr2_miil_txd2 pr2_miil_txd3 pr2_miil_rxd2
12 pr2_pru0_gpi3 pr2_pru0_gpi2 pr2_pru0_gpi9
13 pr2_pru0_gpo3 pr2_pru0_gpo2 pr2_pru0_gpo9
14 gpio6_30 gpio6_29 gpiol_23
15 Driver off Driver off Driver off
Table 4.12: P8.23-P8.26
P8.23 P8.24 P8.25 P8.26
GPIO 22 192 191 124
BALL AC8 AC6 AC7 B3
REG 0x1794 0x1788 0x1784 0x15B8
MODE 0 mmc3_dat4 mmc3_datl mmc3_dat0 vin2a_d20
1 spi4_sclk spi3_d0 spi3_dl
2 uartl0_rxd uart5_txd uart5_rxd vin2b_d3
3 rgmiil_rxd3
a4 vin2b_d1 vin2b_d4 vin2b_d5 vout2_d3
5 vin3a_de0
6 vin3a_d12
7
8 miil_rxer
9 vin5a_dl vin5a_d4 vin5a_d5
10 ehrpwm3A eQEP3B_in eQEP3A_in eCAP3_in_PWM3_out
11 pr2_miil_rxd3 pr2_miil_txd0 pr2_miil_txdl prl_miil_rxer
12 pr2_pru0_gpi8 pr2_pru0_gpi5 pr2_pruO_gpi4 prl_prul_gpil7
13 pr2_pru0_gpo8 pr2_pruO_gpo5 pr2_pruO_gpo4 prl_prul_gpol7
14 gpiol_22 gpio7_0 gpio6_31 gpio4_28
15 Driver off Driver off Driver off Driver off
Table 4.13: P8.27-P8.29
P8.27 P8.28 P8.29
GPIO 119 115 118
BALL E11l D11 C1l1
REG 0x15D8 0x15C8 0x15D4
MODE 0 voutl vsync voutl clk voutl hsync
1
2
3 vinda_vsyncO vinda_fld0 vinda_hsyncO
4 vin3a_vsyncO vin3a_fld0 vin3a_hsyncO
5
6
7
8 spi3_sclk spi3_cs0 spi3_do0
9
10

continues on next page

202

Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.13 - continued from previous page

P8.27 P8.28 P8.29
11
12 pr2_prul gpil7
13 pr2_prul_gpol7
14 gpio4 23 gpio4 19 gpiod 22
15 Driver off Driver off Driver off
2nd BALL A8 Cc9 A9
2nd REG 0x1628 0x162C 0x1630
2nd MODEO | voutl_d19 voutl_d20 voutl d21
2nd 1
2nd 2 emul5 emul6 emul?
2nd 3 vinda_d3 vinda_d4 vinda_d5
2nd 4 vin3a_d3 vin3a_d4 vin3a_d5
2nd 5 obs12 obs13 obsl4
2nd 6 obs28 obs29 0bs30
2nd 7
2nd 8
2nd 9
2nd 10 pr2_edio_data_in3 pr2_edio_data_in4 pr2_edio_data_in5
2nd 11 pr2_edio_data out3 | pr2_edio data out4 | pr2_edio data out5
2nd 12 pr2_pru0_gpil6 pr2_pru0_gpil7 pr2_pru0_gpil8
2nd 13 pr2_pru0_gpol6 pr2_pru0_gpol7 pr2_pru0_gpol8
2nd 14 gpio8_19 gpio8_20 gpio8_21
2nd 15 Driver off Driver off Driver off
Table 4.14: P8.30-P8.32
P8.30 P8.31 P8.32
GPIO 116 238 239
BALL B10 C8 Cc7
REG 0x15CC 0x1614 0x1618
MODE 0 voutl_de voutl_d14 voutl_d15
1
2 emul3 emuld
3 vinda_de0 vinda_d14 vinda_d15
4 vin3a_de0 vin3a_d1l4 vin3a_d15
5 obs9 obs10
6 obs25 obs26
7
8 spi3_dl
9
10 pr2_uart0_txd pr2_ecap0_ecap_capin_apwm_o
11
12 pr2_pru0_gpill pr2_pru0_gpil2
13 pr2_pru0_gpoll | pr2_pru0_gpol2
14 gpio4 20 gpio8 14 gpio8 15
15 Driver off Driver off Driver off
2nd BALL B9 G1l6 D17
2nd REG 0x1634 0x173C 0x1740
2nd MODE 0 | voutl_d22 mcasp4_axr0 mcasp4_axrl
2nd 1
2nd 2 emul8 spi3_do0 spi3_cs0
2nd 3 vinda_d6 uart8_ctsn uart8_rtsn
2nd 4 vin3a_d6 uart4 rxd uart4_txd

continues on next page

4.7. Connectors

203

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.14 - continued from previous page

P8.30 P8.31 P8.32
2nd 5 obsl15
2nd 6 obs31 vout2 d18 vout2 d19
2nd 7
2nd 8 vinda_d18 vinda_d19
2nd 9 vin5a_d13 vin5a_d12
2nd 10 pr2_edio_data_in6
2nd 11 pr2_edio_data_out6
2nd 12 pr2_pru0_gpil9 pr2_prul gpi0
2nd 13 pr2_pru0_gpol9 pr2_prul_gpoO
2nd 14 gpio8 22
2nd 15 Driver off Driver off Driver off
Table 4.15: P8.33-P8.35
P8.33 P8.34 P8.35
GPIO 237 235 236
BALL C6 D8 A5
REG 0x1610 0x1608 0x160C
MODE 0 voutl_d13 voutl_d1l1 voutl_d12
1
2 emul2 emulO emull
3 vinda_d13 vinda_d11 vinda_d12
4 vin3a_d13 vin3a_dll vin3a_d12
5 obs8 obs6 obs7
6 obs24 obs22 obs23
7 obs_dmarqg2
8
9
10 pr2_uartO_rxd pr2_uart0_cts_n pr2_uartO_rts_n
11
12 pr2_pru0_gpil0 pr2_pru0_gpi8 pr2_pru0_gpi9
13 pr2_pru0_gpol0 | pr2_pruO_gpo8 pr2_pru0_gpo9
14 gpio8_13 gpio8_11 gpio8_12
15 Driver off Driver off Driver off
2nd BALL AF9 G6 AD9
2nd REG O0x14E8 0x1564 O0x14E4
2nd MODEO | vinla_fldO vin2a_vsyncO vinla_de0
2nd 1 vinlb_vsyncl vinlb_hsyncl
2nd 2
2nd 3 vin2b_vsyncl vout3_d17
2nd 4 vout3_clk vout2_vsync vout3_de
2nd 5 uart7_txd emu9 uart7_rxd
2nd 6
2nd 7 timerl5 uart9_txd timerl6
2nd 8 spi3_dl spi4_d1 spi3_sclk
2nd 9 kbd_rowl kbd_row3 kbd_row0
2nd 10 eQEP1B in ehrpwm1A eQEP1A in
2nd 11 prl_uartO_rts_n
2nd 12 prl_edio_data_in4
2nd 13 prl_edio_data_out4
2nd 14 gpio3_1 gpio4 0 gpio3_ 0
2nd 15 Driver off Driver off Driver off

204 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.16: P8.36-P8.38

P8.36 P8.37 P8.38
GPIO 234 232 233
BALL D7 E8 D9
REG 0x1604 0x15FC 0x1600
MODE 0 voutl d10 voutl d8 voutl d9
1
2 emu3 uart6_rxd uart6_txd
3 vinda_d10 vinda_d8 vinda_d9
4 vin3a_d10 vin3a_d8 vin3a_d9
5 obs5
6 obs21
7 obs_irg2
8
9
10 pr2_edio_sof pr2_edc_syncl _out | pr2_edio_latch_in
11
12 pr2_pru0_gpi7 pr2_pru0_gpi5 pr2_pru0_gpi6
13 pr2_pru0O_gpo7 pr2_pru0_gpo5 pr2_pru0_gpo6
14 gpio8_10 gpio8_8 gpio8_9
15 Driver off Driver off Driver off
2nd BALL F2 A21 C18
2nd REG 0x1568 0x1738 0x1734
2nd MODE O | vin2a_dO mcasp4_fsx mcasp4_aclkx
2nd 1 mcasp4_fsr mcasp4_aclkr
2nd 2 spi3_dl spi3_sclk
2nd 3 uart8_txd uart8 rxd
2nd 4 vout2_d23 i2c4_scl i2c4_sda
2nd 5 emulO
2nd 6 vout2_d17 vout2_d16
2nd 7 uart9_ctsn
2nd 8 spi4_do vinda_d17 vinda_d16
2nd 9 kbd_row4 vin5a_d14 vin5a_d15
2nd 10 ehrpwm1B
2nd 11 prl_uartO_rxd
2nd 12 prl_edio_data_in5
2nd 13 prl_edio_data_out5
2nd 14 gpio4_1
2nd 15 Driver off Driver off Driver off

4.7. Connectors

205

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.17: P8.39-P8.41

P8.39 P8.40 P8.41
GPIO 230 231 228
BALL F8 E7 E9
REG 0x15F4 0x15F8 0x15EC
MODE 0 voutl_d6 voutl_d7 voutl_d4
1
2 emu8 emu9 emu6
3 vinda_d22 vinda_d23 vinda_d20
4 vin3a_d22 vin3a_d23 vin3a_d20
5 obs4 obs2
6 obs20 obs18
7
8
9
10 pr2_edc_latchl_in pr2_edc_syncO_out prl_ecap0_ecap_capin_apwm_o
11
12 pr2_pru0_gpi3 pr2_pru0_gpi4 pr2_pru0_gpil
13 pr2_pru0_gpo3 pr2_pru0_gpo4 pr2_pru0_gpol
14 gpio8_6 gpio8_7 gpio8_4
15 Driver off Driver off Driver off
Table 4.18: P8.42-P8.44
P8.42 P8.43 P8.44
GPIO 229 226 227
BALL F9 F10 G1l1
REG 0x15F0 Ox15E4 Ox15E8
MODE 0 voutl_d5 voutl_d2 voutl_d3
1
2 emu7 emu?2 emu5
3 vinda_d21 vinda_d18 vinda_d19
a4 vin3a_d21 vin3a_d18 vin3a_d19
5 obs3 obs0 obsl
6 obs19 obs16 obs17
7 obs_irql obs_dmarql
8
9
10 pr2_edc_latchO_in prl_uartO_rxd prl_uartO_txd
11
12 pr2_pru0_gpi2 pr2_prul_gpi20 pr2_pru0_gpi0
13 pr2_pru0_gpo2 pr2_prul_gpo20 pr2_pru0_gpo0
14 gpio8_5 gpio8_2 gpio8_3
15 Driver off Driver off Driver off
Table 4.19: P8.45-P8.46
P8.45 P8.46
GPIO 224 225
BALL F11 G10
REG 0x15DC Ox15EQ0
MODE 0 voutl_dO voutl _dl
1
2 uart5_rxd uart5_txd
3 vinda_d16 vinda_d17
4 vin3a_dl6 vin3a_d17
5
6
7
8 spi3_cs2
9
10 prl_uartO_cts n prl_uartO_rts_n

continues on next page

206

Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.19 - continued from previous page

P8.45 P8.46
11
12 pr2_prul gpil8 pr2_prul gpil9
13 pr2_prul _gpol8 pr2_prul_gpol9
14 gpio8 0 gpio8 1
15 Driver off Driver off
2nd BALL B7 Al0
2nd REG 0x161C 0x1638
2nd MODE 0 | voutl_d16 voutl_d23
2nd 1
2nd 2 uart7_rxd emul9
2nd 3 vinda_d0 vinda_d7
2nd 4 vin3a_d0 vin3a_d7
2nd 5
2nd 6
2nd 7
2nd 8 spi3_cs3
2nd 9
2nd 10 pr2_edio_data_in0 pr2_edio_data_in7
2nd 11 pr2_edio data outO | pr2_edio data out7
2nd 12 pr2_pru0_gpil3 pr2_pru0_gpi20
2nd 13 pr2_pru0_gpol3 pr2_pru0_gpo20
2nd 14 gpio8_16 gpio8_23
2nd 15 Driver off Driver off

TODO: Notes regarding the resistors on muxed pins.

Connector P9

The following tables show the pinout of the P9 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.
The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY 1/O0 PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.
In the table are the following notations:

PWR_BUT is a 5V level as pulled up internally by the TPS6590379. It is activated by pulling the signal to GND.

4.7. Connectors 207

BeagleBoard Docs, Release 1.0.20230711-wip

TODO: (Actually, on BeagleBone Al, | believe PWR_BUT is pulled to 3.3V, but activation is still done by pulling
the signal to GND. Also, a quick grounding of PWR_BUT will trigger a system event where shutdown can occur,
but there is no hardware power-off function like on BeagleBone Black via this signal. It does, however, act as

a hardware power-on.)

TODO: (On BeagleBone Black, SYS_RESET was a bi-directional signal, but it is only an output from BeagleBone
Al to capes on BeagleBone Al.)

Table 4.20: P9.01-P9.05

P9.07T [P9.02 | P9.03 P9.04 P9.05
GND GND VOUT_3V3 VOUT_3V3 VIN
Table 4.21: P9.06-P9.10
P9.06 | P9.07[P9.08P9.09]P9.10
VIN VOUT SYS [VOUT SYS [RESET# | RESET#
Table 4.22: P9.11-P9.13
P9.11 P9.12 P9.13

GPIO 241 128 172
BALL B19 B14 C17
REG 0x172C 0x16AC 0x1730
MODE 0 mcasp3_axr0 mcaspl_aclkr | mcasp3_axrl
1 mcasp7_axr2
2 mcasp2_axrl4 mcasp2_axrl5
3 uart7_ctsn uart7_rtsn
4 uart5_rxd uart5_txd
5
6 vout2_d0
7 vin6a_dl vin6a_d0
8 vinda_d0
9 vin5a_fld0
10 i2c4 sda
11 pr2_miil_rxer pr2_miil_rxlink
12 pr2_pru0_gpil4d pr2_pru0_gpil5
13 pr2_pru0_gpol4 pr2_pru0_gpol5
14 gpio5 0
15 Driver off Driver off Driver off
2nd BALL B8 AB10O**
2nd REG 0x1620 0x1680
2nd MODE 0 | voutl_d17 usbl_drvvbus
2nd 1
2nd 2 uart7_txd
2nd 3 vinda_dl
2nd 4 vin3a_dl
2nd 5
2nd 6
2nd 7 timerl6
2nd 8
2nd 9
2nd 10 pr2_edio_data_inl
2nd 11 pr2_edio_data_outl
2nd 12 pr2_pru0_gpil4d
2nd 13 pr2_pru0_gpol4
2nd 14 gpio8_17 gpio6_12

continues on next page

208

Chapter 4.

BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.22 - continued from previous page

P9.11 P9.12 P9.13
2nd 15 Driver off Driver off
Table 4.23: P9.14-P9.16
P9.14 P9.15 P9.16
GPIO 121 76 122
BALL D6 AG4 C5
REG 0x15AC 0x1514 0x15B0
MODE 0 vin2a_d17 vinla_d8 vin2a_d18
1 vinlb_d7
2 vin2b_d6 vin2b_d5
3 rgmiil_txd0 rgmiil_rxc
4 vout2_d6 vout3_d15 vout2_d5
5
6 vin3a_d9 vin3a_d10
7
8 miil_txd2 miil_txd3
9 kbd_row2
10 ehrpwm3A eQEP2_index ehrpwm3B
11 prl_miil_rxd2 prl_miil_rxdl
12 prl_prul_gpil4 prl_pruO_gpi5 prl_prul_gpil5
13 prl_prul_gpol4 prl_pruO_gpo5 prl_prul_gpol5
14 gpio4_25 gpio3_12 gpio4_26
15 Driver off Driver off Driver off
Table 4.24: P9.17-P9.19
P9.17 P9.18 P9.19
GPIO 209 208 195
BALL B24 G17 R6
REG 0x17CC 0x17C8 0x1440
MODE 0 spi2_cs0 spi2_do gpmc_a0
1 uart3_rtsn uart3_ctsn
2 uart5_txd uart5_rxd vin3a_d16
3 vout3_d16
4 vinda_do0
5
6 vindb_d0
7 i2c4_scl
8 uart5_rxd
9
10
11
12
13
14 gpio7_17 gpio7_16 gpio7_3
15 Driver off Driver off Driver off
2nd BALL F12 G12 F4
2nd REG 0x16B8 0x16B4 0x157C
2nd MODE 0 | mcaspl_axrl mcaspl_axr0 vin2a_d5
2nd 1
2nd 2
2nd 3 uart6_txd uart6_rxd
2nd 4 vout2_d18
2nd 5 emul5
2nd 6
2nd 7 vin6a_hsyncO vin6a_vsyncO

continues on next page

4.7. Connectors

209

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.24 - continued from previous page

P9.17 P9.18 P9.19
2nd 8 uartlO_rtsn
2nd 9 kbd_col2
2nd 10 i2c5_scl i2c5_sda eQEP2A_in
2nd 11 pr2_mii_mt0_clk | pr2_miiO_rxer prl_edio_sof
2nd 12 pr2_prul_gpi9 pr2_prul_gpi8 prl_prul_gpi2
2nd 13 pr2_prul gpo9 pr2_prul gpo8 | prl_prul _gpo2
2nd 14 gpio5_3 gpio5_2 gpio4_6
2nd 15 Driver off Driver off Driver off
Table 4.25: P9.20-P9.22
P9.20 P9.21 P9.22
GPIO 196 67 179
BALL T9 AF8 B26
REG 0x1444 0x14F0 0x169C
MODE 0 gpmc_al vinla_vsyncO | xref _clk2
1 vinlb_del mcasp2_axrl0
2 vin3a_d1l7 mcaspl_axr6
3 vout3_d17 mcasp3_ahclkx
4 vinda_dl vout3_vsync mcasp7_ahclkx
5 uart7_rtsn
6 vindb_d1 vout2_clk
7 i2c4_sda timerl3
8 uart5_txd spi3_cs0 vinda_clkO
9
10 eQEP1_strobe | timerl5
11
12
13
14 gpio7_4 gpio3 3 gpio6_19
15 Driver off Driver off Driver off
2nd BALL D2 B22 A26
2nd REG 0x1578 0x17C4 0x17C0
2nd MODE 0 | vin2a_d4 spi2_dl spi2_sclk
2nd 1 uart3_txd uart3_rxd
2nd 2
2nd 3
2nd 4 vout2_d19
2nd 5 emuls
2nd 6
2nd 7
2nd 8 uartlO_ctsn
2nd 9 kbd coll
2nd 10 ehrpwm1l_synco
2nd 11 prl _edc_syncO out
2nd 12 prl_prul_gpil
2nd 13 prl prul gpol
2nd 14 gpio4 5 gpio7_15 gpio7_14
2nd 15 Driver off Driver off Driver off

210

Chapter 4.

BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.26: P9.23-P9.25

P9.23 P9.24 P9.25

GPIO 203 175 177

BALL A22 F20 D18

REG 0x17B4 0x168C 0x1694

MODE 0 spil_csl gpio6_15 xref_clk0

1 mcaspl_axr9 mcasp2_axr8

2 satal_led dcan2_rx mcaspl_axrd

3 spi2_csl uartl0_txd mcaspl_ahclkx

4 mcasp5_ahclkx

5

6 vout2_vsync

7 vin6a_d0

8 vinda_vsyncO hdq0

9 i2c3_scl clkout2

10 timer2 timerl3

11 pr2_miil_col

12 pr2_prul_gpi5

13 pr2_prul_gpo5

14 gpio7_11 gpio6_15 gpio6_17

15 Driver off Driver off Driver off

Table 4.27: P9.26-P9.29
P9.26 P9.27 P9.28 P9.29

GPIO 174 111 113 139
BALL E21 C3 Al2 All
REG 0x1688 0x15A0 0x16EO 0x16D8
MODE 0 gpio6_14 vin2a_d14 mcaspl_axrll mcaspl_axr9
1 mcaspl_axr8 mcasp6_fsx mcasp6_axrl
2 dcan2_tx mcasp6_fsr
3 uartl0_rxd rgmiil_txd3 spi3_cs0 spi3_dl
4 vout2_d9
5
6 vout2_hsync
7 vinba_d12 vinba_d14
8 vinda_hsyncO miil_txclk
9 i2c3_sda
10 timerl eQEP3B_in timer8 timer6
11 prl_mii_mrl_clk | pr2_mii0_txdl pr2_mii0_txd3
12 prl_prul_gpill pr2_prul_gpil3 pr2_prul_gpill
13 prl prul gpoll | pr2_prul_gpol3 | pr2_prul gpoll
14 gpio6_14 gpio4_15 gpio4_17 gpio5_11
15 Driver off Driver off Driver off Driver off
2nd BALL AE2]14 D14
2nd REG 0x1544 0x16B0 0x16A8
2nd MODE 0 | vinla_d20 mcaspl_fsr mcaspl_fsx
2nd 1 vinlb_d3 mcasp7_axr3
2nd 2
2nd 3
2nd 4 vout3_d3
2nd 5
2nd 6 vin3a_d4 vout2_d1l
2nd 7 vin6a_de0
2nd 8 vinda_dl
2nd 9 kbd_col5
2nd 10 prl_edio_data_in4 i2c4_scl i2c3_scl
2nd 11 prl_edio_data_out4 pr2_mdio_data

continues on next page

4.7. Connectors

211

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.27 - continued from previous page

P9.26 P9.27 P9.28 P9.29
2nd 12 prl_pru0_gpil7
2nd 13 prl pru0 _gpol7
2nd 14 gpio3_24 gpio5_1 gpio7_30
2nd 15 Driver off Driver off Driveroff
Table 4.28: P9.30-P9.31
P9.30 P9.31

GPIO 140 138

BALL B13 B12

REG 0x16DC 0x16D4

MODE 0 mcaspl_axrl0 mcaspl_axr8

1 mcasp6_aclkx mcasp6_axr0

2 mcasp6_aclkr

3 spi3_do spi3_sclk

q

5

6

7 vin6a_d13 vin6a_d15

8

9

10 timer7 timer5

11 pr2_mii0_txd2 pr2_mii0_txen

12 pr2_prul_gpil2 pr2_prul_gpil0O

13 pr2_prul _gpol2 | pr2_prul_gpolO

14 gpio5_12 gpio5_10

15 Driver off Driver off

2nd BALL Cl4

2nd REG 0x16A4

2nd MODE 0 mcaspl_aclkx

2nd 1

2nd 2

2nd 3

2nd 4

2nd 5

2nd 6

2nd 7 vin6a_fld0

2nd 8

2nd 9

2nd 10 i2c3_sda

2nd 11 pr2_mdio_mdclk

2nd 12 pr2_prul_gpi7

2nd 13 pr2_prul_gpo7

2nd 14 gpio7_31

2nd 15 Driver off

Todo: This table needs entries
Table 4.29: P9.32-P9.40
P9.32 [P933 [P9.34 | P9.35 [P9.36 | P9.37 | P9.38 | P9.39 [P9.40
Row 1 P9.32 P9.33 P9.34 P9.35 P9.36 P9.37 P9.38 P9.39 P9.40

212 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.30: P9.41-P9.42

P9.41 P9.42
GPIO 180 114
BALL Cc23 El4
REG 0x16A0 Ox16E4
MODE 0 xref_clk3 mcaspl_axrl2
1 mcasp2_axrll mcasp7_axr0
2 mcaspl_axr7
3 mcasp4_ahclkx spi3_csl
4 mcasp8_ahclkx
5
6 vout2_de
7 hdq0 vinba_d11
8 vinda_de0
9 clkout3
10 timerl6 timer9
11 pr2_mii0_txd0
12 pr2_prul_gpil4d
13 pr2_prul_gpol4
14 gpio6_20 gpio4_18
15 Driver off Driver off
2nd BALL Cl Cc2
2nd REG 0x1580 0x159C
2nd MODE 0 | vin2a_d6 vin2a_d13
2nd 1
2nd 2
2nd 3 rgmiil_txctl
2nd 4 vout2_d17 vout2_d10
2nd 5 emul6
2nd 6
2nd 7
2nd 8 miil_rxdl miil_rxdv
2nd 9 kbd_col3 kbd_row8
2nd 10 eQEP2B_in eQEP3A_in
2nd 11 prl_mii_mtl _clk | prl_miil_txdO
2nd 12 prl_prul_gpi3 prl_prul_gpil0O
2nd 13 prl_prul_gpo3 prl_prul_gpolO
2nd 14 gpiod_7 gpio4_14
2nd 15 Driver off Driver off

Todo: Table entries needed

Table 4.31: P9.43-P9.46

P9.43 P9.44 P9.45 P9.46

Row 1

P9.43 P9.44 P9.45 P9.46

4.7.2 Serial Debug

Todo: Need info on BealgeBone Al serial debug

4.7. Connectors

213

BeagleBoard Docs, Release 1.0.20230711-wip

4.7.3 USB 3 Type-C

Todo: Need info on BealgeBone Al USB Type-C connection

4.7.4 USB 2 Type-A

Todo: Need info on BealgeBone Al USB Type-A connection

4.7.5 Gigabit Ethernet

Todo: Need info on BealgeBone Al USB Gigabit Ethernet connection

4.7.6 Coaxial

Todo: Need info on BealgeBone Al u.FL antenna connection

4.7.7 microSD Memory

Todo: Need info on BealgeBone Al uSD card slot

4.7.8 microHDMI

Todo: Need info on BealgeBone Al uHDMI connection

4.8 Cape Board Support

There is a Cape Headers Google Spreadsheet which has a lot of detail regarding various boards and cape add-on
boards.

See also https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

TODO

4.8.1 BeagleBone® Black Cape Compatibility

TODO

See https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec for now.

214 Chapter 4. BeagleBone Al

https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

BeagleBoard Docs, Release 1.0.20230711-wip

4.8.2 EEPROM

TODO

4.8.3 Pin Usage Consideration

TODO

4.8.4 GPIO
TODO

4.8.5 12C
TODO

4.8.6 UART or PRU UART

This section is about both UART pins on the header and PRU UART pins on the headers we will include a chart
and later some code

Table 4.32: UART

Function Pin ABC Ball Pinctrl Register Mode
uart3_txd P9.21 B22 0x17C4 1
uart3_rxd P9.22 A26 0x17C0 1
uart5_txd P9.13 C17 0x1730 4
uart5_rxd P9.11 B19 0x172C 4
uart5_ctsn P8.05 AC9 0x178C 2
uart5_rtsn P8.06 AC3 0x1790 2
uart8_txd P8.37 A21 0x1738 3
uart8_rxd P8.38 C18 0x1734 3
uart8_ctsn P8.31 G16 0x173C 3
uart8_rtsn P8.32 D17 0x1740 3
uartl0_txd P9.24 F20 0x168C 3
uartl0_rxd P9.26 E21 0x1688 3
uartl0_ctsn P8.03 AB8 0x179C 2
uartlO_rtsn P8.04 AB5 0x17A0 2
uartl0_txd P9.24 F20 0x168C 3
uart10_rxd P9.26 E21 0x1688 3
uartl0_ctsn P9.20 D2 0x1578 8
uartlO_rtsn P9.19 F4 0x157C 8

Table 4.33: PRU UART

Function Pin ABC Ball Pinctrl Register Mode
pr2_uart0_txd P8.31 Cc8 0x1614 10
pr2_uart0_rxd P8.33 C6 0x1610 10
pr2_uartO_cts_n P8.34 D8 0x1608 10
pr2_uartO_rts_n P8.35 A5 0x160C 10
prl_uartO_rxd P8.43 F10 Ox15E4 10
prl_uartO_txd P8.44 G11 0x15E8 10
prl_uartO_cts_n P8.45 F11 0x15DC 10
prl_uartO_rts_n P8.46 G10 O0x15EOQ 10

TODO

4.8. Cape Board Support 215

BeagleBoard Docs, Release 1.0.20230711-wip

4.8.7 SPI

TODO

4.8.8 Analog

TODO

4.8.9 PWM, TIMER, eCAP or PRU PWM/eCAP

TODO

4.8.10 eQEP

TODO

4.8.11 CAN

TODO

4.8.12 McASP (audio serial like 12S and AC97)

TODO

4.8.13 MMC

TODO

4.8.14 LCD

TODO

4.8.15 PRU GPIO

TODO

4.8.16 CLKOUT

TODO

4.8.17 Expansion Connector Headers

TODO: discuss header options for working with the expansion connectors per https://git.beagleboard.org/
beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1

4.8.18 Signal Usage

TODO

216 Chapter 4. BeagleBone Al

https://git.beagleboard.org/beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1
https://git.beagleboard.org/beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1

BeagleBoard Docs, Release 1.0.20230711-wip

4.8.19 Cape Power

TODO

4.8.20 Mechanical

TODO

4.9 Mechanical Information

* Board Dimensions: 8.9cm x 5.4cm x 1.5cm

* Board Net Weight 48g

* Packaging Dimensions: 13.8cm x 10cm x 4cm

¢ Gross Weight (including packaging): 110g

« 3D STEP model: https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/Mechanical

4.10 Pictures

BeagleBone Al Back of Board Image

4.9. Mechanical Information 217

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/Mechanical

BeagleBoard Docs, Release 1.0.20230711-wip

.ﬂ_,_-—"'-'-'-'-'-'-'_. 2
. ¥
nP ™
m P
w8 X
g &% &¢&@ %&5* :
s00° ge® BOpesnde .
= L] -
. u'J‘_"I @ £ - _'_'_'__,_.-;-"2"'" -

e
LS
R

4.11 Support Information

TODO: Reference https://docs.beagleboard.org/latest/intro/support/index.html and https://beagleboard.org/
resources

Related Tl documentation: http://www.ti.com/tool/BEAGLE-3P-BBONE-AI

4.12 Terms and Conditions

4.12.1 REGULATORY, COMPLIANCE, AND EXPORT INFORMATION

e Country of origin: PRC

* FCC: 2ATUT-BBONE-AI

* CE: TBD

* CNHTS: 8543909000

* USHTS: 8473301180

e MXHTS: 84733001

* TARIC: 8473302000

» ECCN: 5A992.C

» CCATS: Z1613110/G180570
* ROoHS/REACH: TBD

218 Chapter 4. BeagleBone Al

https://docs.beagleboard.org/latest/intro/support/index.html
https://beagleboard.org/resources
https://beagleboard.org/resources
http://www.ti.com/tool/BEAGLE-3P-BBONE-AI
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/regulatory/Validation_Z1613110.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

« Volatility: TBD

BeagleBone Al is annotated to comply with Part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation. Changes or modifications
not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly
approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Cet appareil numérique de la classe A ou B est conforme a la norme NMB-003 du Canada. Les changements ou
les modifications pas expressément approuvés par la partie responsible de la conformité ont pu vider I'autorité
de I'utilisateur pour actionner I'équipement.

4.12.2 WARRANTY AND DISCLAIMERS

The design materials referred to in this document are *NOT SUPPORTED* and DO NOT constitute a reference
design. Support of the open source developer community is provided through the resources defined at https:
//docs.beagleboard.org/latest/intro/support/index.html.

THERE IS NO WARRANTY FOR THE DESIGN MATERIALS, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
DESIGN MATERIALS “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE DESIGN MATERIALS IS WITH YOU.
SHOULD THE DESIGN MATERIALS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

This board was designed as an evaluation and development tool. It was not designed with any other application
in mind. As such, the design materials that are provided which include schematic, BOM, and PCB files, may
or may not be suitable for any other purposes. If used, the design material becomes your responsibility as
to whether or not it meets your specific needs or your specific applications and may require changes to meet
your requirements.

Additional terms

BeagleBoard.org Foundation and logo-licensed manufacturers (together, henceforth identified as “Supplier”)
provide BeagleBone Al under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user
indemnifies Supplier from all claims arising from the handling or use of the goods.

Should BeagleBone Al not meet the specifications indicated in the System Reference Manual, BeagleBone
Al may be returned within 90 days from the date of delivery to the distributor of purchase for a full refund.
THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN
LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET
FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.

Please read the System Reference Manual and, specifically, the Warnings and Restrictions notice in the Sys-
tems Reference Manual prior to handling the product. This notice contains important safety information about
temperatures and voltages.

No license is granted under any patent right or other intellectual property right of Supplier covering or relating
to any machine, process, or combination in which such Supplier products or services might be or are used.
The Supplier currently deals with a variety of customers for products, and therefore our arrangement with the
user is not exclusive. The Supplier assume no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.

4.12. Terms and Conditions 219

https://docs.beagleboard.org/latest/intro/support/index.html
https://docs.beagleboard.org/latest/intro/support/index.html

BeagleBoard Docs, Release 1.0.20230711-wip

4.12.3 Warnings and Restrictions
For Feasibility Evaluation Only, in Laboratory/Development Environments

BeagleBone Al is not a complete product. It is intended solely for use for preliminary feasibility evaluation
in laboratory/development environments by technically qualified electronics experts who are familiar with the
dangers and application risks associated with handling electrical mechanical components, systems and sub-
systems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk

You acknowledge, represent, and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but
not limited to Food and Drug Administration regulations, if applicable) which relate to your products
and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of
BeagleBone Al for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all
such laws and other applicable regulatory requirements, and also to assure the safety of any activities to
be conducted by you and/or your employees, affiliates, contractors or designees, using BeagleBone Al.
Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between Bea-
gleBone Al and any human body are designed with suitable isolation and means to safely limit accessible
leakage currents to minimize the risk of electrical shock hazard.

3. Since BeagleBone Al is not a completed product, it may not meet all applicable regulatory and safety
compliance standards which may normally be associated with similar items. You assume full responsi-
bility to determine and/or assure compliance with any such standards and related certifications as may
be applicable. You will employ reasonable safeguards to ensure that your use of BeagleBone Al will not
result in any property damage, injury or death, even if BeagleBone Al should fail to perform as described
or expected.

Certain Instructions

It is important to operate BeagleBone Al within Supplier's recommended specifications and environmental con-
siderations per the user guidelines. Exceeding the specified BeagleBone Al ratings (including but not limited
to input and output voltage, current, power, and environmental ranges) may cause property damage, personal
injury or death. If there are questions concerning these ratings please contact the Supplier representative
prior to connecting interface electronics including input power and intended loads. Any loads applied outside
of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent
damage to BeagleBone Al and/or interface electronics. Please consult the System Reference Manual prior to
connecting any load to BeagleBone Al output. If there is uncertainty as to the load specification, please contact
the Supplier representative. During normal operation, some circuit components may have case temperatures
greater than 60 C as long as the input and output are maintained at a normal ambient operating temperature.
These components include but are not limited to linear regulators, switching transistors, pass transistors, and
current sense resistors which can be identified using BeagleBone Al’s schematic located at the link in Beagle-
Bone Al's System Reference Manual. When placing measurement probes near these devices during normal
operation, please be aware that these devices may be very warm to the touch. As with all electronic evalua-
tion tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found
in development environments should use BeagleBone Al.

Agreement to Defend, Indemnify and Hold Harmless

You agree to defend, indemnify and hold Supplier, its licensors and their representatives harmless from and
against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out
of or in connection with any use of BeagleBone Al that is not in accordance with the terms of the agreement.

220 Chapter 4. BeagleBone Al

BeagleBoard Docs, Release 1.0.20230711-wip

This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and
even if BeagleBone Al fails to perform as described or expected.

Safety-Critical or Life-Critical Applications

If you intend to evaluate the components for possible use in safety critical applications (such as life support)
where a failure of the Supplier's product would reasonably be expected to cause severe personal injury or
death, such as devices which are classified as FDA Class lll or similar classification, then you must specifically
notify Supplier of such intent and enter into a separate Assurance and Indemnity Agreement.

4.12. Terms and Conditions 221

BeagleBoard Docs, Release 1.0.20230711-wip

222 Chapter 4. BeagleBone Al

Chapter 5

BeagleBone Black

BeagleBone Black is a low-cost, community-supported development platform for developers and hobbyists.
Boot Linux in under 10 seconds and get started on development in less than 5 minutes with just a single USB
cable.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

223

http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230711-wip

5.1

This document is the System Reference Manual for the BeagleBone Black and covers its use and design. The
board will primarily be referred to in the remainder of this document simply as the board, although it may also
be referred to as the BeagleBone Black as a reminder. There are also references to the original BeagleBone as

Introduction

well, and will be referenced as simply BeagleBone.

This design is subject to change without notice as we will work to keep improving the design as the product
matures based on feedback and experience. Software updates will be frequent and will be independent of the

hardware revisions and as such not result in a change in the revision number.

Make sure you check the docs repository frequently for the most up to date information.

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/beaglebone-black

5.2 Change History

This section describes the change history of this document and board. Document changes are not always a

result of a board change. A board change will always result in a document change.

5.2.1 Document Change History

Table 5.1: AsciiDoc Change History

Rev | Changes Date By
A4 Preliminary January 4, 2013 GC
A5 Production release January 8.2013 GC
A5.1 April 1 2013 GC
1. Added information on Power button and the battery ac-
cess points.
2. Final production released version.
A5.2 April 23 2013 GC
1. Edited version.
2. Added numerous pictures of the Rev A5A board.
A5.3 April 30, 2013 GC
1. Updated serial number locations.
2. Corrected the feature table for 4 UARTS
3. Corrected eMMC pin table to match other tables in the
manual.
A5.4 May 12, 2013 GC
1. Corrected revision listed in section 2. Rev A5Ais the initial
production release.
2. Added all the locations of the serial numbers
3. Made additions to the compatibility list.
4. Corrected «table-7» for LED GPIO pins.
5. Fixed several typos.
6. Added some additional information about LDOs and Step-
Down converters.
7. Added short section on HDMI.
continues on next page
224 Chapter 5. BeagleBone Black

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/beaglebone-black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.1 - continued from previous page
Rev | Changes Date By
A5.5 May 20, 2013 GC
1. Release of the A5B version.
The LEDS were dimmed by changing the resistors.
3. The serial termination mode was incorporated into the
PCB.

N

A5.6 June 16, 2013 GC
Added information on Rev A5C

Added PRU/ICSS options to tables for P8 and P9.

Added section on USB Host Correct modes on «table-15».
Fixed a few typos

R

A5.7 August 9, 2013 GC

Updated assembly revision to A6.

2. PCB change to add buffer to the reset line and ground the
oscillator GND pin.

3. Added resistor on PCB for connection of OSC_GND to
board GND.

=

A6 October 11, 2013 GC
1. Added Rev A6 changes.

AGA December 17, 2013 GC
1. Added Rev A6A changes

B January 20, 2013 GC
1. Changed the processor to the AM3358BZCZ

C March 21,2014 GC
1. Changed the eMMC from 2GB to 4GB.
2. Added additional supplier to DDR2 and eMMC.

C.1 March 22, 2014 GC
1. Added note to recommend powering off the board with
the power
C.2 Numerous community edits and format changes to asciidoc. May 6, 2020 JK
C.3 Added information for board rev C3. August 24, 2021 JK

5.2.2 Board Changes
Rev C3a
PCB revision C.

* New USB Type-A connector.
Rev C3

PCB revision C.

¢ Updated microSD card cage due to availability. See https://git.beagleboard.org/beagleboard/
beaglebone-black/-/issues/6. Added series resistors and depopulated C5.

5.2. Change History 225

https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/6
https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/6

BeagleBoard Docs, Release 1.0.20230711-wip

* Added reset option (GPIO1_8) for Ethernet PHY to avoid possible start-up issue. See https://git.
beagleboard.org/beagleboard/beaglebone-black/-/issues/4.

* Added series resistors to MMC1 lines and depopulated C24.
¢ Connected pin A6 of J5 on U13 (eMMC IC) to DGND.

* Changed USB1_VBUS series resistor to 0 ohm.

¢ Change required PCB revision to C.

Initial boxes mistakenly say rev C1.

Rev C2

PCB revision B6.

* Update memories based on availability. See https://github.com/beagleboard/beaglebone-black/commit/
74914bd01efeb61376ec3ddadbf9143ad2bb635c.

- DDR3:

* Kingston D2516EC4BXGGB-U
- eMMC:

* Kingston MMC04G-M627-X02U

Rev C1

PCB revision B6.

¢ Update memories based on availability. See https://github.com/beagleboard/beaglebone-black/commit/
5787736d816832cc8cc9629d19f334b6al2e67f9.

- DDR3:
* Micron MT41K256M16TW-107:P
- eMMC:
* Micron MTFC4GACAJCN-1M WT
* Kingston EMMC04G-5S100-A08U

Rev C

¢ Changed the eMMC from 2GB to 4GB.

2GB devices are getting harder to get as they are being phased out. This required us to move to 4GB. We now
have two sources for the device. This will however, require an increase in the price of the board.

Rev B

¢ Changed the processor to the AM3358BZCZ100.

Rev AGA

* Added connection from 32KHz OSC_GND to system ground and changed C106 to 1uF.

¢ Changes C25 to 2.2uF. This resolved an issue we were seeing in a few boards where the board would not
boot in 1 in 20 tries.

* Change required PCB revision to B6.

226 Chapter 5. BeagleBone Black

https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/4
https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/4
https://github.com/beagleboard/beaglebone-black/commit/74914bd01efeb61376ec3dda4bf9143ad2bb635c
https://github.com/beagleboard/beaglebone-black/commit/74914bd01efeb61376ec3dda4bf9143ad2bb635c
https://github.com/beagleboard/beaglebone-black/commit/5787736d816832cc8cc9629d19f334b6a12e67f9
https://github.com/beagleboard/beaglebone-black/commit/5787736d816832cc8cc9629d19f334b6a12e67f9

BeagleBoard Docs, Release 1.0.20230711-wip

Rev A6

* In random instances there could be a glitch in the SYS RESETn signal from the processor where the
SYS_RESETn signal was taken high for a momentary amount of time before it was supposed to. To
prevent this, the signal was ORed with the PORZn (Power On reset).

* Noise issues were observed in other design where the clock oscillator was getting hit due to a suspected
issue in ground bounce. A zero ohm resistor was added to connect the OSC_GND to the system ground.

There are no new features added as a result of these changes.

Rev A5C

We were seeing some fallout in production test where we were seeing some jitter on the HDMI display test. It
started showing up on our second production run. R46, R47, R48 were changed to 0 ohm from 33 ohm. R45
was taken from 330 ohm to 22 ohm.

We do not know of any boards that were shipped with this issue as this issue was caught in production test.
No impact on features or functionality resulted from this change.

Rev A5B
There is no operational difference between the Rev A5A and the Rev A5B. There were two changes made to
the A5B version.

¢ Due to complaints about the brightness of the LEDs keeping people awake at night, the LEDs were
dimmed. Resistors were changed from 820 ohms to 4.75K ohmes.

* The PCB revision was updated to incorporate the hand mod that was being done on the board during
manufacturing. The resistor was incorporated into the next revision of the PCB.

The highest supported resolution is now listed as 1920x1080@24Hz. This was not a result of any hardware
changes but only updated software. The A5A version also supports this resolution.

Rev A5A

This is the initial production release of the board. We will be tracking changes from this point forward.

5.3 Connecting Up Your BeagleBone Black

This section provides instructions on how to hook up your board. Two scenarios will be discussed:
1. Tethered to a PC and

2. As a standalone development platform in a desktop PC configuration.

5.3.1 What’s In the Box

In the box you will find three main items as shown in «figure-1».
* BeagleBone Black
*« miniUSB to USB Type A Cable
 Instruction card with link to the support WIKI address.

This is sufficient for the tethered scenario and creates an out of box experience where the board can be used
immediately with no other equipment needed.

5.3. Connecting Up Your BeagleBone Black 227

mailto:1920x1080@24Hz

BeagleBoard Docs, Release 1.0.20230711-wip

b

2D Oard .Ol’g

> beaglebone

o’

Fig. 5.1: In the Box

5.3.2 Main Connection Scenarios

This section will describe how to connect the board for use. This section is basically a slightly more detailed
description of the Quick Start Guide that came in the box. There is also a Quick Start Guide document on the
board that should also be referred to. The intent here is that someone looking to purchase the board will be
able to read this section and get a good idea as to what the initial set up will be like.

The board can be configured in several different ways, but we will discuss the two most common scenarios as
described in the Quick Start Guide card that comes in the box.

» Tethered to a PC via the USB cable
- Board is accessed as a storage drive
- Or a RNDIS Ethernet connection.

» Standalone desktop
- Display
- Keyboard and mouse
- External 5V power supply

Each of these configurations is discussed in general terms in the following sections.

For an up-to-date list of confirmed working accessories please go to BeagleBone_Black _Accessories

5.3.3 Tethered To A PC

In this configuration, the board is powered by the PC via the provided USB cable-no other cables are required.
The board is accessed either as a USB storage drive or via the browser on the PC. You need to use either Firefox
or Chrome on the PC, Internet Explorer will not work properly. «figure-2» shows this configuration.

All the power for the board is provided by the PC via the USB cable. In some instances, the PC may not be able
to supply sufficient power for the board. In that case, an external 5VDC power supply can be used, but this
should rarely be necessary.

228 Chapter 5. BeagleBone Black

https://elinux.org/Beagleboard:BeagleBone_Black_Accessories

BeagleBoard Docs, Release 1.0.20230711-wip

Provided USB Cable

Fig. 5.2: Tethered Configuration

Connect the Cable to the Board

1.

Connect the small connector on the USB cable to the board as shown in figure-3. The connector is on
the bottom side of the board.

Fig. 5.3: USB Connection to the Board

Connect the large connector of the USB cable to your PC or laptop USB port.
The board will power on and the power LED will be on as shown in figure below.

When the board starts to the booting process started by the process of applying power, the LEDs will
come on in sequence as shown in figure-5 below. It will take a few seconds for the status LEDs to come
on, so be patient. The LEDs will be flashing in an erratic manner as it begins to boot the Linux kernel.

Accessing the Board as a Storage Drive

The board will appear around a USB Storage drive on your PC after the kernel has booted, which will take around
10 seconds. The kernel on the board needs to boot before the port gets enumerated. Once the board appears
as a storage drive, do the following:

1.
2.

Open the USB Drive folder.
Click on the file named start.htm

The file will be opened by your browser on the PC and you should get a display showing the Quick Start
Guide.

Your board is now operational! Follow the instructions on your PC screen.

5.3.

Connecting Up Your BeagleBone Black 229

BeagleBoard Docs, Release 1.0.20230711-wip

POWER LED

..---_._._ull‘ .
10/100 Ethernet

=< [l CAlLALLEg
M e e
= =
T J -
QLT AITRELE -fn
-

R =
'; L_-n_-J Eypmnn?

Fig. 5.4: Board Power LED

POWER LED

-
10/100 Ethernet

= [T—l Rl
| - -

W

¢
7]
-
*
A

0-A¥FE D&

2n

el 3

|
annm R

i s, 4
c';;Ei;] o
T

Fig. 5.5: Board Boot Status

230 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

5.3.4 Standalone w/Display and Keyboard/Mouse

In this configuration, the board works more like a PC, totally free from any connection to a PC as shown in
«figure-6». It allows you to create your code to make the board do whatever you need it to do. It will however
require certain common PC accessories. These accessories and instructions are described in the following
section.

Fig. 5.6: Desktop Configuration

Optionally an Ethernet cable can also be used for network access.

Required Accessories

In order to use the board in this configuration, you will need the following accessories:
* 1 x5VDC 1A power supply
* 1 x HDMI monitor or a DVI-D monitor. (NOTE: Only HDMI will give you audio capability).
¢ 1 x Micro HDMI to HDMI cable or a Micro HDMI to DVI-D adapter.
¢ 1 x USB wireless keyboard and mouse combo.

* 1 x USB HUB (OPTIONAL). The board has only one USB host port, so you may need to use a USB Hub if
your keyboard and mouse requires two ports.

For an up-to-date list of confirmed working accessories please go to BeagleBone Black Accessories

Connecting Up the Board

1. Connect the big end of the HDMI cable as shown in figure-7 to your HDMI monitor. Refer to your monitor
Owner’s Manual for the location of your HDMI port. If you have a DVI-D Monitor go to Step 3, otherwise
proceed to Step 4 .

5.3. Connecting Up Your BeagleBone Black 231

https://elinux.org/Beagleboard:BeagleBone_Black_Accessories

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.7: Connect microHDMI Cable to the Monitor

2. If you have a DVI-D monitor you must use a DVI-D to HDMI adapter in addition to your HDMI cable. An
example is shown in figure-8 below from two perspectives. If you use this configuration, you will not
have audio support.

Fig. 5.8: DVI-D to HDMI Adapter

3. If you have a single wireless keyboard and mouse combination such as seen in figure-9 below, you need
to plug the receiver in the USB host port of the board as shown in figure-10 .

&
Fig. 5.9: Wireless Keyboard and Mouse Combo

If you have a wired USB keyboard requiring two USB ports, you will need a HUB similar to the ones shown in
figure below . You may want to have more than one port for other devices. Note that the board can only supply
up to 500maA, so if you plan to load it down, it will need to be externally powered.

4. Connect the Ethernet Cable

If you decide you want to connect to your local area network, an Ethernet cable can be used. Connect the
Ethernet Cable to the Ethernet port as shown in figure below . Any standard 100M Ethernet cable should work.

5. The final step is to plug in the DC power supply to the DC power jack as shown in figure below.

6. The cable needed to connect to your display is a microHDMI to HDMI. Connect the microHDMI connector
end to the board at this time. The connector is on the bottom side of the board as shown in figure-14
below.

The connector is fairly robust, but we suggest that you not use the cable as a leash for your Beagle. Take
proper care not to put too much stress on the connector or cable.

232 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

[—
Receiver — .

Fig. 5.10: Connect Keyboard and Mouse Receiver to the Board

Fig. 5.11: Keyboard and Mouse Hubs

Ethernet Cable
———""" Connection

Fig. 5.12: Ethernet Cable Connection

5.3. Connecting Up Your BeagleBone Black 233

BeagleBoard Docs, Release 1.0.20230711-wip

=L

Fig. 5.13: External DC Power

microHDMI fo HDMI Cable

-~

Fig. 5.14: Connect microHDMI Cable to the Board

234 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

7. Booting the Board

As soon as the power is applied to the board, it will start the booting up process. When the board starts to boot
the LEDs will come on in sequence as shown in figure-15 below. It will take a few seconds for the status LEDs
to come on, so be patient. The LEDs will be flashing in an erratic manner as it boots the Linux kernel.

POWER LED

1513BBBK 0001

__- =y = .
10/100 Ethernet
= [l ALy

s ek 3= Ec

-2 -t
v =

R
R4l
Cails

L = =
5 =
L_-_-J i
; Tor Ty

Fig. 5.15: Board Boot Status

While the four user LEDs can be overwritten and used as desired, they do have specific meanings in the image
that is shipped with the board once the Linux kernel has booted.

* USERO is the heartbeat indicator from the Linux kernel.

e USERI1 turns on when the microSD card is being accessed

e USERZ2 is an activity indicator. It turns on when the kernel is not in the idle loop.

e USER3 turns on when the onboard eMMC is being accessed.

8. A Booted System

a. The board will have a mouse pointer appear on the screen as it enters the Linux boot step. You may
have to move the physical mouse to get the mouse pointer to appear. The system can come up in
the suspend mode with the HDMI port in a sleep mode.

b. After a minute or two a login screen will appear. You do not have to do anything at this point.

c. After a minute or two the desktop will appear. It should be similar to the one shown in figure-1.
HOWEVER, it will change from one release to the next, so do not expect your system to look exactly
like the one in the figure, but it will be very similar.

d. And at this point you are ready to go! figure-16 shows the desktop after booting.
9. Powering Down

A. Press the power button momentarily.

B. The system will power down automatically.

C. Remove the power jack.

5.4 BeagleBone Black Overview

The BeagleBone Black is the latest addition to the BeagleBoard.org family and like its predecessors, is designed
to address the Open Source Community, early adopters, and anyone interested in a low cost ARM Cortex-A8
based processor.

5.4. BeagleBone Black Overview 235

BeagleBoard Docs, Release 1.0.20230711-wip

& Aoplications Places System £ satfan 1, L11AM [
€ ool ‘ ystem ()

BEAGLEBONE

Fig. 5.16: Desktop Screen

It has been equipped with a minimum set of features to allow the user to experience the power of the processor
and is not intended as a full development platform as many of the features and interfaces supplied by the
processor are not accessible from the BeagleBone Black via onboard support of some interfaces. It is not a
complete product designed to do any particular function. It is a foundation for experimentation and learning
how to program the processor and to access the peripherals by the creation of your own software and hardware.

It also offers access to many of the interfaces and allows for the use of add-on boards called capes, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

BeagleBone Black is manufactured and warranted by partners listed at https://beagleboard.org/logo for the
benefit of the community and its supporters.

Jason Kridner of Texas Instruments handles the community promotions and is the spokesman for Beagle-
Board.org.

The board is designed by Gerald Coley of EmProDesign, a charter member of the BeagleBoard.org community.

The PCB layout up through PCB revision B was done by Circuitco and Circuitco is the sole funder of its devel-
opment and transition to production. Later PCB revisions have been made by Embest, a subsidiary of Avent.

The Software is written and supported by the thousands of community members, including Jason Kridner,
employee of Texas Instruments, and Robert Nelson, employee of DigiKey.

The board is intended to be compatible with the original BeagleBone as much as possible. There are several
areas where there are differences between the two designs. These differences are listed below, along with the
reasons for the differences.

» Sitara AM3358BZCZ100, 1GHZ, processor.
- Sorry, we just had to make it faster.
e 512MB DDR3L

Cost reduction

Performance boost

Memory size increase

Lower power

236 Chapter 5. BeagleBone Black

https://beagleboard.org/logo

BeagleBoard Docs, Release 1.0.20230711-wip

* No Serial port by default
- Cost reduction
- Can be added by buying a TTL to USB Cable that is widely available
- Single largest cost reduction action taken
* No JTAG emulation over USB
- Cost reduction JTAG header is not populated, but can easily be mounted.
- EEPROM Reduced from 32KB to 4KB
- Cost Reduction
¢ Onboard Managed NAND (eMMC)
- 4GB

Cost reduction

Performance boost x8 vs. x4 bits

- Performance boost due to deterministic properties vs. microSD card
* GPMC bus may not be accessible from the expansion headers in some cases
- Result of eMMC on the main board
- Signals are still routed to the expansion connector
- If eMMC is not used, signals can be used via expansion if eMMC is held in reset
* There may be 10 less GPIO pins available
- Result of eMMC
- If eMMC is not used, could still be used
* The power expansion header, for battery and backlight, has been removed
- _*Cost reduction* , space reduction
- Four pins were added to provide access to the battery charger function.
¢ HDMI interface onboard
- Feature addition
- Audio and video capable
- Micro HDMI
* No three function USB cable
- Cost reduction
* GPIO3_21 has a 24.576 MHZ clock on it.

- This is required by the HDMI Framer for Audio purposes. We needed to run a clock into the processor
to generate the correct clock frequency. The pin on the processor was already routed to the expan-
sion header. In order not to remove this feature on the expansion header, it was left connected. In
order to use the pin as a GPIO pin, you need to disable the clock. While this disables audio to the
HDMI, the fact that you want to use this pin for something else, does the same thing.

5.4.2 BeagleBone Black Features and Specification

This section covers the specifications and features of the board and provides a high level description of the
major components and interfaces that make up the board. table below provides a list of the features.

5.4. BeagleBone Black Overview 237

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.2: BeagleBone Black Features

Feature

Processor

Sitara AM3358BZCZ100 1GHz, 2000 MIPS

Graphics Engine

SGX530 3D, 20M Polygons/S

SDRAM Memory

512MB DDR3L 800MHZ

Onboard Flash

4GB, 8bit Embedded MMC

PMIC

TPS65217C PMIC regulator and one additional LDO.

Debug Support

Optional Onboard 20-pin CTI JTAG, Serial Header

Power Source

miniUSB USB or DC Jack

PCB 3.4" x2.1"

Indicators 1-Power, 2-Ethernet, 4-User Controllable LEDs
HS USB 2.0 | Access to USBO, Client mode via miniUSB
Client Port

HS USB 2.0 Host
Port

Access to USB1, Type A Socket, 500mA LS/FS/HS

Serial Port

UARTO access via 6 pin 3.3V TTL Header. Header is populated

Ethernet

10/100, RJ45

SD/MMC Connec-
tor

microSD , 3.3V

User Input

1. Reset Button

2. Boot Button

3. Power Button
Video Out

1. 16b HDMI, 1280x1024 (MAX)

2. 1024x768,1280x720,1440x900 ,1920x1080@24Hz w/EDID Support
Audio Via HDMI Interface, Stereo

Expansion Con-
nectors

Power 5V, 3.3V, VDD_ADC(1.8V)

3.3V 1/O on all signals

McASPOQ, SPI1, I2C, GPIO(69 max), LCD, GPMC, MMC1, MMC2, 7
AIN (1.8V MAX) _, 4 Timers, 4 Serial Ports, CANO,

ke wnhH

be stacked)

Weight

1.4 0z (39.68 grams)

Power

Refer to section-6-1-7

5.4.3 Board Component Locations

EHRPWM(0,2),XDMA Interrupt, Power button, Expansion Board ID (Up to 4 can

This section describes the key components on the board. It provides information on their location and function.

Familiarize yourself with the various components on the board.

Connectors, LEDs, and Switches

figure below shows the locations of the connectors, LEDs, and switches on the PCB layout of the board.

e DC Power is the main DC input that accepts 5V power.

e Power Button alerts the processor to initiate the power down sequence and is used to power down the

board.
e 10/100 Ethernet is the connection to the LAN.

» Serial Debug is the serial debug port.

238

Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Debug Serial

User LEDs

Fig. 5.17: Connectors, LEDs and Switches

e USB Client is a miniUSB connection to a PC that can also power the board.

e BOOT switch can be used to force a boot from the microSD card if the power is cycled on the board,
removing power and reapplying the power to the board..

* There are four blue LED’s that can be used by the user.

* Reset Button allows the user to reset the processor.

* microSD slot is where a microSD card can be installed.

* microHDMI connector is where the display is connected to.

e USB Host can be connected different USB interfaces such as Wi-Fi, BT, Keyboard, etc.

Key Components

figure below shows the locations of the key components on the PCB layout of the board.
e Sitara AM3358BZCZ100 is the processor for the board.
* Micron 512MB DDR3L or**Kingston 512mB DDR3** is the Dual Data Rate RAM memory.
e TPS65217C PMIC provides the power rails to the various components on the board.
* SMSC Ethernet PHY is the physical interface to the network.
e Micron eMMC is an onboard MMC chip that holds up to 4GB of data.

* HDMI Framer provides control for an HDMI or DVI-D display with an adapter.

5.5 BeagleBone Black High Level Specification

This section provides the high level specification of the BeagleBone Black.

5.5. BeagleBone Black High Level Specification 239

BeagleBoard Docs, Release 1.0.20230711-wip

TPS85217C

AM3358BZCZ100
Processor

DDR3
Ethernet PHY

HDMI Framer

Fig. 5.18: Key Components

5.5.1 Block Diagram

5.5.2 Processor

The revision B and later boards have moved to the Sitara AM3358BZCZ100 device.

5.5.3 Memory

Described in the following sections are the three memory devices found on the board.

512MB DDR3L

A single 256Mb x16 DDR3L 4Gb (512MB) memory device is used. The memory used is one of two devices:
¢ MT41K256M16HA-125 from Micron
¢ D2516EC4BXGGB from Kingston

It will operate at a clock frequency of 400MHz yielding an effective rate of 800MHZ on the DDR3L bus allowing
for 1.6GB/S of DDR3L memory bandwidth.

4KB EEPROM

A single 4KB EEPROM is provided on 12C0 that holds the board information. This information includes board
name, serial number, and revision information. This is the not the same as the one used on the original
BeagleBone. The device was changed for cost reduction reasons. It has a test point to allow the device to be
programmed and otherwise to provide write protection when not grounded.

240 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

EXPANSION

use1 USBHOST

USB Client =60 MKCT

TPS65217C " il

JTAG
{No POP)

Ethernet

LCD

McASP

EXPANSION

Fig. 5.19: BeagleBone Black Key Components

5.5. BeagleBone Black High Level Specification 241

BeagleBoard Docs, Release 1.0.20230711-wip

4GB Embedded MMC

A single 4GB embedded MMC (eMMC) device is on the board. The device connects to the MMC1 port of the
processor, allowing for 8bit wide access. Default boot mode for the board will be MMC1 with an option to
change it to MMCO, the SD card slot, for booting from the SD card as a result of removing and reapplying the
power to the board. Simply pressing the reset button will not change the boot mode. MMCO cannot be used
in 8Bit mode because the lower data pins are located on the pins used by the Ethernet port. This does not
interfere with SD card operation but it does make it unsuitable for use as an eMMC port if the 8 bit feature is
needed.

MicroSD Connector

The board is equipped with a single microSD connector to act as the secondary boot source for the board and,
if selected as such, can be the primary boot source. The connector will support larger capacity microSD cards.
The microSD card is not provided with the board. Booting from MMCO will be used to flash the eMMC in the
production environment or can be used by the user to update the SW as needed.

Boot Modes

As mentioned earlier, there are four boot modes:

* eMMC Boot: This is the default boot mode and will allow for the fastest boot time and will enable the
board to boot out of the box using the pre-flashed OS image without having to purchase an microSD card
or an microSD card writer.

* SD Boot: This mode will boot from the microSD slot. This mode can be used to override what is on the
eMMC device and can be used to program the eMMC when used in the manufacturing process or for field
updates.

¢ Serial BooT: This mode will use the serial port to allow downloading of the software direct. A separate
USB to serial cable is required to use this port.

* USB Boot: This mode supports booting over the USB port.

Software to support USB and serial boot modes is not provided by beagleboard.org.Please contact Tl for support
of this feature.

A switch is provided to allow switching between the modes.

* Holding the boot switch down during a removal and reapplication of power without a microSD card in-
serted will force the boot source to be the USB port and if nothing is detected on the USB client port, it
will go to the serial port for download.

* Without holding the switch, the board will boot try to boot from the eMMC. If it is empty, then it will try
booting from the microSD slot, followed by the serial port, and then the USB port.

¢ If you hold the boot switch down during the removal and reapplication of power to the board, and you
have a microSD card inserted with a bootable image, the board will boot from the microSD card.

NOTE: Pressing the RESET button on the board will NOT result in a change of the_ _boot mode. You MUST
remove power and reapply power to change the boot mode.The boot pins are sampled during power on reset
from the PMIC to the processor.The reset button on the board is a warm reset only and will not force a boot
mode change.

5.5.4 Power Management

The TPS65217C power management device is used along with a separate LDO to provide power to the system.
The**TPS65217C** version provides for the proper voltages required for the DDR3L. This is the same device
as used on the original BeagleBone with the exception of the power rail configuration settings which will be
changed in the internal EEPROM to the TPS65217C to support the new voltages.

242 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

DDR3L requires 1.5V instead of 1.8V on the DDR2 as is the case on the original BeagleBone. The 1.8V regulator
setting has been changed to 1.5V for the DDR3L. The LDO3 3.3V rail has been changed to 1.8V to support those
rails on the processor. LDO4 is still 3.3V for the 3.3V rails on the processor. An external LDOTLV70233 provides
the 3.3V rail for the rest of the board.

5.5.5 PC USB Interface

The board has a miniUSB connector that connects the USBO port to the processor. This is the same connector
as used on the original BeagleBone.

5.5.6 Serial Debug Port

Serial debug is provided via UARTO on the processor via a single 1x6 pin header. In order to use the interface
a USB to TTL adapter will be required. The header is compatible with the one provided by FTDI and can
be purchased for about $$12 to $$20 from various sources. Signals supported are TX and RX. None of the
handshake signals are supported.

5.5.7 USB1 Host Port

On the board is a single USB Type A female connector with full LS/FS/HS Host support that connects to USB1 on
the processor. The port can provide power on/off control and up to 500mA of current at 5V. Under USB power,
the board will not be able to supply the full 500mA, but should be sufficient to supply enough current for a
lower power USB device supplying power between 50 to 100mA.

You can use a wireless keyboard/mouse configuration or you can add a HUB for standard keyboard and mouse
interfacing.

5.5.8 Power Sources

The board can be powered from four different sources:
* AUSB portonaPC
e A 5VDC 1A power supply plugged into the DC connector.
¢ A power supply with a USB connector.
» Expansion connectors

The USB cable is shipped with each board. This port is limited to 500mA by the Power Management IC. It is
possible to change the settings in the TPS65217C to increase this current, but only after the initial boot. And,
at that point the PC most likely will complain, but you can also use a dual connector USB cable to the PC to get
to 1A.

The power supply is not provided with the board but can be easily obtained from numerous sources. A 1A
supply is sufficient to power the board, but if there is a cape plugged into the board or you have a power
hungry device or hub plugged into the host port, then more current may needed from the DC supply.

Power routed to the board via the expansion header could be provided from power derived on a cape. The DC
supply should be well regulated and 5V +/-.25V.

5.5.9 Reset Button

When pressed and released, causes a reset of the board. The reset button used on the BeagleBone Black is a
little larger than the one used on the original BeagleBone. It has also been moved out to the edge of the board
so that it is more accessible.

5.5. BeagleBone Black High Level Specification 243

BeagleBoard Docs, Release 1.0.20230711-wip

5.5.10 Power Button

A power button is provided near the reset button close to the Ethernet connector. This button takes advantage
of the input to the PMIC for power down features. While a lot of capes have a button, it was decided to add this
feature to the board to ensure everyone had access to some new features. These features include:

* Interrupt is sent to the processor to facilitate an orderly shutdown to save files and to un-mount drives.
* Provides ability to let processor put board into a sleep mode to save power.
e Can alert processor to wake up from sleep mode and restore state before sleep was entered.

If you hold the button down longer than 8 seconds, the board will power off if you release the button when the
power LED turns off. If you continue to hold it, the board will power back up completing a power cycle.

We recommend that you use this method to power down the board. It will also help prevent contamination of
the SD card or the eMMC.

If you do not remove the power jack, you can press the button again and the board will power up.

5.5.11 Indicators

There are a total of five blue LEDs on the board.

* One blue power LED indicates that power is applied and the power management IC is up. If this LED
flashes when applying power, it means that an excess current flow was detected and the PMIC has shut
down.

* Four blue LEDs that can be controlled via the SW by setting GPIO pins.

In addition, there are two LEDs on the R)45 to provide Ethernet status indication. One is yellow (100M Link up
if on) and the other is green (Indicating traffic when flashing).

5.5.12 CTI JTAG Header

A place for an optional 20 pin CTI JTAG header is provided on the board to facilitate the SW development and
debugging of the board by using various JTAG emulators. This header is not supplied standard on the board.
To use this, a connector will need to be soldered onto the board.

If you need the JTAG connector you can solder it on yourself. No other components are needed. The connector is
made by Samtec and the part number is FTR-110-03-G-D-06. You can purchase it from http://www.digikey.com/

5.5.13 HDMI Interface

A single HDMI interface is connected to the 16 bit LCD interface on the processor. The 16b interface was used
to preserve as many expansion pins as possible to allow for use by the user. The NXP TDA19988BHN is used
to convert the LCD interface to HDMI and convert the audio as well. The signals are still connected to the
expansion headers to enable the use of LCD expansion boards or access to other functions on the board as
needed.

The HDMI device does not support HDCP copy protection. Support is provided via EDID to allow the SW to
identify the compatible resolutions. Currently the following resolutions are supported via the software:

* 1280 x 1024
* 1440 x 900
* 1024 x 768
* 1280 x 720

244 Chapter 5. BeagleBone Black

http://www.digikey.com

BeagleBoard Docs, Release 1.0.20230711-wip

5.5.14 Cape Board Support

The BeagleBone Black has the ability to accept up to four expansion boards or capes that can be stacked onto
the expansion headers. The word cape comes from the shape of the board as it is fitted around the Ethernet
connector on the main board. This notch acts as a key to ensure proper orientation of the cape.

The majority of capes designed for the original BeagleBone will work on the BeagleBone Black. The two main
expansion headers will be populated on the board. There are a few exceptions where certain capabilities may
not be present or are limited to the BeagleBone Black. These include:

¢ GPMC bus may NOT be available due to the use of those signals by the eMMC. If the eMMC is used for
booting only and the file system is on the microSD card, then these signals could be used.

¢ Another option is to use the microSD or serial boot modes and not use the eMMC.
¢ The power expansion header is not on the BeagleBone Black so those functions are not supported.

For more information on cape support refer to BeagleBone Black Mechanical section.

5.6 Detailed Hardware Design

This section provides a detailed description of the Hardware design. This can be useful for interfacing, writing
drivers, or using it to help modify specifics of your own design.

EXPANSION

USB HOST

USB Client UsB0

POWER S Ita ra hANCD uspD
AM3358BZCZ S—

ITAG ITAG
UARTO (NoPOP)

TP565217C

DC

Ethernet y v RJ45

LCD

MCASP

Fig. 5.20: BeagleBone Black Block Diagram

5.6. Detailed Hardware Design 245

BeagleBoard Docs, Release 1.0.20230711-wip

DCIN > RTC POEZ
SYS RESET

P 12C0 .
TPS65217C —BlSlupl,
PWR EN -~
- Power Rai!s
PWR BUT
LDO
3V3

Fig. 5.21: High Level Power Block Diagram

5.6.1 Power Section

This section describes the power section of the design and all the functions performed by the TPS65217C.

TPS65217C PMIC

The main Power Management IC (PMIC) in the system is the TPS65217C which is a single chip power man-
agement IC consisting of a linear dual-input power path, three step-down converters, and four LDOs. LDO
stands for Low Drop Out. If you want to know more about an LDO, you can go to http://en.wikipedia.org/wiki/
Low-dropout_regulator .If you want to learn more about step-down converters, you can go to

http://en.wikipedia.org/wiki/DC-to-DC_converter

The system is supplied by a USB port or DC adapter. Three high-efficiency 2.25MHz step-down converters are
targeted at providing the core voltage, MPU, and memory voltage for the board.

The step-down converters enter a low power mode at light load for maximum efficiency across the widest
possible range of load currents. For low-noise applications the devices can be forced into fixed frequency PWM
using the 12C interface. The step-down converters allow the use of small inductors and capacitors to achieve
a small footprint solution size.

LDO1 and LDO2 are intended to support system standby mode. In normal operation, they can support up to
100mA each. LDO3 and LDO4 can support up to 285mA each.

By default only LDO1 is always ON but any rail can be configured to remain up in SLEEP state. In particular the
DCDC converters can remain up in a low-power PFM mode to support processor suspend mode. The TPS65217C
offers flexible power-up and power-down sequencing and several house-keeping functions such as power-good
output, pushbutton monitor, hardware reset function and temperature sensor to protect the battery.

For more information on the TPS65217C, refer to http://www.ti.com/product/tps65217C

DC Input

A 5VDC supply can be used to provide power to the board. The power supply current depends on how many
and what type of add-on boards are connected to the board. For typical use, a 5VDC supply rated at 1A should
be sufficient. If heavier use of the expansion headers or USB host port is expected, then a higher current supply
will be required.

246 Chapter 5. BeagleBone Black

http://en.wikipedia.org/wiki/Low-dropout_regulator
http://en.wikipedia.org/wiki/Low-dropout_regulator
http://en.wikipedia.org/wiki/DC-to-DC_converter
http://www.ti.com/product/tps65217C

BeagleBoard Docs, Release 1.0.20230711-wip

o

from U T Lj;ﬁs
from U USBI [_ 1,311 T > Ip system load
4F% [Z2F
ATuF - I
MUX_OUT -l Lin Charger & BAT
to systom hast /G MUx [Sihese | powsrpan [T (4]
+— VTS
] |—I MGMT T
" MUXIN .—| —
from systom) BAT SENSE [
&
TS
tlc-mr BYPASS BIAS wTE
104F
- Vo {7 4O Voitage
from system host /uC b= 5GOOD
[tosystem host / uC
ey LDO_PGOOD
Momentatary Push Button e — {> tosystem host / uC
1 Pe8mN| T DIGITAL I WAKEUP o gpin
S, n)
-_!—_. u....,.‘:. - {" > tosystem host / uC
g I . -
= o
nRESET T L o [{ > tosystem host / uC
from system host /uC !
10pF
vo
AT I
from system host /uC Y seLl MIN_DCDC '_(=) svs
o
AT SDAI 12c
from system host /uC r‘\V\
1 P
L 1 > bsystem
s> L4 DCDCH Lﬂococw | f our
L owe =
FB_WLED =
2V A mooce (Y
Upto2x 10 LEDs g ¥ S=ans f WLED |
P B Driver L2 5220
h oo
1 ¥ ISINK1 peocz VDCDC2 L,
ISINK2 b T
| ISETI T L 0w =
H ISET2] vin_pcocs [—svs
t tn |
3 > b system
ot DCDC3 VDCDC3 [L.
o
eve — VINDO T
VLDO1I LS1_IN
to system & T LDO1 —] fom 1.8V-58V supply
22uF I I
L LOAD SW1/ LS1_OUT . .
to system _f——1— YLD0z LDO2 LDO3 T .. {0 tosystem load
thjj]j
- L52_IN <] fom 1.8V-58V supply
LOAD SW2 / ILSZ,C}UT i
| LDOs — { > tosystem load

HH

|

anNod
{
aNoY

Fig. 5.22: TPS65217C Block Diagram

5.6. Detailed Hardware Design 247

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_5V
T u2
P1 o ,
g AC sYst g
USB DCl-= 12 SYS2
_DCh UsB
—c2 l
2 10UF, 10V c1
g; 10UF, 10V
PJ-200A < s)
pSp o VIN_DCDCH
2
VIN_DCDC2
32
VIN_DCDC3
39
LDO3_IN
42
LDO4_IN
2
VINLDO
TPS65217C
VDD_3V3A
U4
Hin T
T Fr—
c17 59 EN ADJ [(g—H
f— 71 GND1 GND3 [g—
2.2UF 6.3V GND2 GND4 [——
L5200
DEND DEND

Fig. 5.23: TPS65217 DC Connection

The connector used is a 2.1MM center positive x 5.5mm outer barrel. The 5VDC rail is connected to the
expansion header. It is possible to power the board via the expansion headers from an add-on card. The 5VDC
is also available for use by the add-on cards when the power is supplied by the 5VDC jack on the board.

USB Power

The board can also be powered from the USB port. A typical USB port is limited to 500mA max. When powering
from the USB port, the VDD_5V rail is not provided to the expansion headers, so capes that require the 5V rail
to supply the cape direct, bypassing the TPS65217C, will not have that rail available for use. The 5VDC supply
from the USB port is provided on the SYS 5V, the one that comes from the**TPS65217C**, rail of the expansion
header for use by a cape. Figure 24 is the connection of the USB power input on the PMIC.

Power Selection

The selection of either the 5VDC or the USB as the power source is handled internally to the TPS65217C and
automatically switches to 5VDC power if both are connected. SW can change the power configuration via the
12C interface from the processor. In addition, the SW can read the**TPS65217C** and determine if the board
is running on the 5VDC input or the USB input. This can be beneficial to know the capability of the board to
supply current for things like operating frequency and expansion cards.

It is possible to power the board from the USB input and then connect the DC power supply. The board will
switch over automatically to the DC input.

Power Button

A power button is connected to the input of the TPS65217C. This is a momentary switch, the same type of
switch used for reset and boot selection on the board.

248 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

U2
12
3 UsB
TPS65217C
—— C1
10uF, 10V
N/
DGND
—
o) co
<t O
5 O O
7 | G1
%11D
D+
D-
T VB o
<7 o O
36 DGND P4_| | mipiUSB-B
0.1uf 6.3V d 4
N/

DGND /] 7/

Fig. 5.24: USB Power Connections

5.6. Detailed Hardware Design 249

BeagleBoard Docs, Release 1.0.20230711-wip

If you push the button the TPS65217C will send an interrupt to the processor. It is up to the processor to then
pull the**PMIC_POWER_EN** pin low at the correct time to power down the board. At this point, the PMIC is
still active, assuming that the power input was not removed. Pressing the power button will cause the board
to power up again if the processor puts the board in the power off mode.

In power off mode, the RTC rail is still active, keeping the RTC powered and running off the main power input. If
you remove that power, then the RTC will not be powered. You also have the option of using the battery holes
on the board to connect a battery if desired as discussed in the next section.

If you push and hold the button for greater than 8 seconds, the PMIC will power down. But you must release
the button when the power LED turns off. Holding the button past that point will cause the board to power
cycle.

Battery Access Pads
Four pads are provided on the board to allow access to the battery pins on the TPS65217C. The pads can be

loaded with a 4x4 header or you may just wire a battery into the pads. In addition they could provide access
via a cape if desired. The four signals are listed below in table-3 .

Table 5.3: BeagleBone Black Battery Pins

PIN DESIGNA- FUNCTION
TION

BAT TP5 Battery connection point

SENSE TP6 Battery voltage sense input, connect to BAT directly at the battery termi-
nal.

TS TP7 Temperature sense input. Connect to NTC thermistor to sense battery tem-
perature.

GND TP8 System ground.

There is no fuel gauge function provided by the TPS65217C. That would need to be added if that function was
required. If you want to add a fuel gauge, an option is to use 1-wire SPI or I2C device. You will need to add this
using the expansion headers and place it on an expansion board.

NOTE: Refer to the TPS65217C documentation + before connecting anything to these pins.

Power Consumption
The power consumption of the board varies based on power scenarios and the board boot processes. Measure-
ments were taken with the board in the following configuration:

* DC powered and USB powered

* HDMI monitor connected

* USB HUB

* 4GB USB flash drive

¢ Ethernet connected @ 100M

* Serial debug cable connected

Table 5.4: BeagleBone Black Power Consumption(mA®@5V)

MODE uSB DC DC+USB
Reset TBD TBD TBD
Idling @ UBoot 210 210 210
Kernel Booting (Peak) 460 460 460
Kernel Idling 350 350 350
Kernel Idling Display Blank 280 280 280

continues on next page

250 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.4 - continued from previous page
MODE USB DC DC+USB
Loading a Webpage 430 430 430

The current will fluctuate as various activates occur, such as the LEDs on and microSD/eMMC accesses.

Processor Interfaces

The processor interacts with the TPS65217C via several different signals. Each of these signals is described
below.

12Co

12CO0 is the control interface between the processor and the TPS65217C. It allows the processor to control the
registers inside the TPS65217C for such things as voltage scaling and switching of the input rails.

PMIC_POWR_EN

On power up the VDD_RTC rail activates first. After the RTC circuitry in the processor has activated it instructs
the**TPS65217C** to initiate a full power up cycle by activating the PMIC_POWR_EN signal by taking it HI. When
powering down, the processor can take this pin low to start the power down process.

LDO_GOOD

This signal connects to the RTC_PORZn signal, RTC power on reset. The small n indicates that the signal is an
active low signal. Word processors seem to be unable to put a bar over a word so the **n* is commonly used
in electronics. As the RTC circuitry comes up first, this signal indicates that the LDOs, the 1.8V VRTC rail, is up
and stable. This starts the power up process.

PMIC_PGOOD

Once all the rails are up, the PMIC_PGOOD signal goes high. This releases the PORZn signal on the processor
which was holding the processor reset.

WAKEUP

The WAKEUP signal from the TPS65217C is connected to the EXT_WAKEUP signal on the processor. This is
used to wake up the processor when it is in a sleep mode. When an event is detected by the TPS65217C, such
as the power button being pressed, it generates this signal.

PMIC_INT

The PMIC_INT signal is an interrupt signal to the processor. Pressing the power button will send an interrupt to
the processor allowing it to implement a power down mode in an orderly fashion, go into sleep mode, or cause
it to wake up from a sleep mode. All of these require SW support.

Power Rails

VRTC Rail

The VRTC rail is a 1.8V rail that is the first rail to come up in the power sequencing. It provides power to the
RTC domain on the processor and the I/O rail of the TPS65217C. It can deliver up to 250mA maximum.

VDD_3V3A Rail

The VDD_3V3A rail is supplied by the TPS65217C and provides the 3.3V for the processor rails and can provide
up to 400mA.

VDD_3V3B Rail

The current supplied by the VDD_3V3A rail is not sufficient to power all of the 3.3V rails on the board. So a
second LDO is supplied, U4, a TL5209A, which sources the VDD _3V3B rail. It is powered up just after the
VDD_3V3A rail.

VDD_1V8 Rail

5.6. Detailed Hardware Design 251

BeagleBoard Docs, Release 1.0.20230711-wip

uz
VDOS_DDR
ol 1.5V T
.| 1 ey 2 R -
L1 LDMEHFNZHZ’[ﬂGDL i v
10 vDCDCt
VDCDC1 VDD_MPU
12 B Pz 1 - T
szﬂnuzﬁzrnsm
e S VDD_CORE
vocoes |2 vDooncs i 1
K3 P L3 1~ —|_
L CaEreN ZRErﬁG':IL E ez =]
20 vDeocs WDD_tve e ==
VDCDC3 R A rfm OuF.10v [I0uF.10v [I0uF 10w
40
D33 IO
T VDD _3V3A IE
43 iy
LDO4 B DuF, 10V
T1% VH_IT_C 15
3 wvipDo] Rs
VLDO1 il v T 1DUF, 10V
1 RE
VLooz IO CiE <
2IUFEIV DEND DEND G
2 o g VDD _3IV3AUX ~
= E = =
282 POWER LED -
TPEESZITC) D1 g % PWR_LEDR
T B ¥ p- TN
13 LTST-C191TEKT Rz
DGND
2 IUFE AV
.
DGEND
DGND
VDD _IV3E
VDD_3V3AUX i
ATOK, 1% 2BO0K, 1% R11
i) DGNﬂ'q LAV
% IN ouT 3
£ EN ADJ fig
$ GMD1 GNDA 3
GNOZ GHD4 —cis —cao
TLEZE ROOmA 4TDpF 5.3V RITE
DEND DEND DGND DGND DGND
Fig. 5.25: Power Rails

252

Chapter 5.

BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

The VDD_1V8 rail can deliver up to 400mA and provides the power required for the 1.8V rails on the processor
and the HDMI framer. This rail is not accessible for use anywhere else on the board.

VDD_CORE Rail

The VDD_CORE rail can deliver up to 1.2A at 1.1V. This rail is not accessible for use anywhere else on the board
and connects only to the processor. This rail is fixed at 1.1V and should not be adjusted by SW using the PMIC.
If you do, then the processor will no longer work.

VDD_MPU Rail

The VDD_MPU rail can deliver up to 1.2A. This rail is not accessible for use anywhere else on the board and
connects only to the processor. This rail defaults to 1.1V and can be scaled up to allow for higher frequency
operation. Changing of the voltage is set via the I12C interface from the processor.

VDDS_DDR Rail

The VDDS_DDR rail defaults to**1.5V** to support the DDR3L rails and can deliver up to 1.2A. It is possible to
adjust this voltage rail down to 1.35V for lower power operation of the DDR3L device. Only DDR3L devices can
support this voltage setting of 1.35V.

Power Sequencing

The power up process is consists of several stages and events. figure-26 describes the events that make up
the power up process for the processor from the PMIC. This diagram is used elsewhere to convey additional
information. | saw no need to bust it up into smaller diagrams. It is from the processor datasheet supplied by
Texas Instruments.

PORZ N\

sys_clk

S
(LT

sys_32khz

| | |
Do ! ! ! 1.8V
VDDS_RTC / : : :
| | ! ! 1.8V
[} | | |
RTC_PORZ L A |
| |
: : | | | 1.8V
T T T
PMIC_POWER_EN [! ! !
: : | | | 1.8V
All 1.8V Supplies [/: : :
1 | | |
H ! ! ! 1.8VA.5V
VDDS_DDR 4 } }
| | |
1 | | | 3.3v
[| T
10 3.3V Supplies Lol 4 : :
VDDA3P3V_USBO/1 L ! !
Lo | . 1.4V
VDD_CORE /VDD_MPU b : A
T 1 T |
| ! : ! 3.3V
| | |
| | |
| |
| |
| |
| |
| |
| |
| |
: |
|
|
T
|

Fig. 5.26: Power Rail Power Up Sequencing

figure-27 the voltage rail sequencing for the TPS65217C as it powers up and the voltages on each rail. The
power sequencing starts at 15 and then goes to one. That is the way the TPS65217C is configured. You can
refer to the TPS65217C datasheet for more information.

5.6. Detailed Hardware Design 253

BeagleBoard Docs, Release 1.0.20230711-wip

TPS65217C
(Targeted at AM335x - ZCZ)
VOLTAGE (V) Sé?ggggf
15 1
1.1 5
1.1 5
18 15
33
1.8 (LDO, 400 mA)
3.3(LDO, 400 mA)

Fig. 5.27: TPS65217C Power Sequencing Timing

Power LED

The power LED is a blue LED that will turn on once the TPS65217C has finished the power up procedure. If you
ever see the LED flash once, that means that the**TPS65217C** started the process and encountered an issue
that caused it to shut down. The connection of the LED is shown in figure-25.

TPS65217C Power Up Process

Figure below shows the interface between the TPS65217C and the processor. It is a cut from the PDF form of
the schematic and reflects what is on the schematic.

VDD_3V3A
VDD_3V3A =+
. RI
14
]
[
X gvg w2 100K, 1%
% [~ WAKEUP {13 (%i WAKEUP
PMIC_POWR_EN Yy——1 22 piREN [PIC_INT
2C0_SCL {00 S sCL PGOOD (g% PMC_PGOOD
2 LD0_PGOOD

12C0_SDA SDA LDO_PGOQD

Fig. 5.28: Power Processor Interfaces

When voltage is applied, DC or USB, the TPS65217C connects the power to the SYS output pin which drives
the switchers and LDOs in the TPS65217C.

At power up all switchers and LDOs are off except for the VRTC LDO (1.8V), which provides power to the VRTC
rail and controls the RTC_PORZn input pin to the processor, which starts the power up process of the processor.
Once the RTC rail powers up, the RTC_PORZn pin, driven by the LDO_PGOOD signal from the TPS65217C, of
the processor is released.

Once the RTC_PORZn reset is released, the processor starts the initialization process. After the RTC stabilizes,
the processor launches the rest of the power up process by activating the PMIC_POWER_EN signal that is
connected to the TPS65217C which starts the TPS65217C power up process.

The LDO_PGOOD signal is provided by the**TPS65217C** to the processor. As this signal is 1.8V from the
TPS65217C by virtue of the TPS65217C VIO rail being set to 1.8V, and the RTC_PORZ signal on the processor
is 3.3V, a voltage level shifter, U4, is used. Once the LDOs and switchers are up on the TPS65217C, this signal
goes active releasing the processor. The LDOs on the TPS65217C are used to power the VRTC rail on the
processor.

254 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Processor Control Interface

figure-28 above shows two interfaces between the processor and the TPS65217C used for control after the
power up sequence has completed.

The first is the /12C0 bus. This allows the processor to turn on and off rails and to set the voltage levels of each
regulator to supports such things as voltage scaling.

The second is the interrupt signal. This allows the TPS65217C to alert the processor when there is an event,
such as when the power button is pressed. The interrupt is an open drain output which makes it easy to
interface to 3.3V of the processor.

Low Power Mode Support

This section covers three general power down modes that are available. These modes are only described from
a Hardware perspective as it relates to the HW design.

RTC Only

In this mode all rails are turned off except the VDD_RTC. The processor will need to turn off all the rails to
enter this mode. The VDD_RTC staying on will keep the RTC active and provide for the wakeup interfaces to
be active to respond to a wake up event.

RTC Plus DDR

In this mode all rails are turned off except the VDD_RTC and the VDDS_DDR, which powers the DDR3L memory.
The processor will need to turn off all the rails to enter this mode. The VDD RTC staying on will keep the RTC
active and provide for the wakeup interfaces to be active to respond to a wake up event.

The VDDS_DDR rail to the DDR3L is provided by the 1.5V rail of the TPS65217C and with VDDS_DDR active,
the DDR3L can be placed in a self refresh mode by the processor prior to power down which allows the memory
data to be saved.

Currently, this feature is not included in the standard software release. The plan is to include it in future
releases.

Voltage Scaling

For a mode where the lowest power is possible without going to sleep, this mode allows the voltage on the ARM
processor to be lowered along with slowing the processor frequency down. The I12CO0 bus is used to control the
voltage scaling function in the TPS65217C.

5.6.2 Sitara AM3358BZCZ100 Processor

The board is designed to use the Sitara AM3358BZCZ100 processor in the 15 x 15 package. Earlier revisions
of the board used the XM3359AZCZ100 processor.

Description

Figure below shows is a high level block diagram of the processor. For more information on the processor, go
to http://www.ti.com/product/am3358

High Level Features

5.6. Detailed Hardware Design 255

http://www.ti.com/product/am3358

BeagleBoard Docs, Release 1.0.20230711-wip

I
I ARM Graphics Display I
: Cortex-A8 PowerVR 24-bit LCD controller (WXGA) :
I 250/650/720 BDS%)IEX Touch screen controller |
: MHz [+ 2 L= = - | I
| 32rm2K L1 wiseD Crypto PRPSUZ su DSYSESHAM |
X
I 256K 12 wiECL BaK 200 MHz w/SED :
snhare
: 176K ROM| 64K RAM RAM 8K/8K w/SED Peripherals | | |
I
I :
|I L3/L4 interconnect :
' |
: Serial System AP Parallel I
X I
I UART x6 eDMA MMC/SD/ I
| SPIx2 Timersx7_| vy oimateell | spioxa ||
| FC x3 WDT GPIO I
| [McasP 2 RTC | efw/ers |
| (4 channel) cHRPWM x3 |
I CAN x2 Crystal
il | (ver. 2A and B) eQEP x3 Osdillator x2 :
Il USB 20Hs PRCM , |
: OTG + PHY x2 Memory interface I
LPDDR1/ DDR2 I
| EMAC (2-port) 10M/100MM G , ‘
I (MII, RMII, RGMIT) NAND/NOR (16-bit ECC) |
' |
e —————————————————= a

Fig. 5.29: Sitara AM3358BZCZ Block Diagram

256 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.5: Processor Features

Operating Systems Linux, Android, Win- | MMC/SD 3
dows Embedded
CE,QNX,ThreadX
Standby Power 7 mW CAN 2
ARM CPU 1 ARM Cortex-A8 UART (SCI) 6
ARM MHz (Max.) 275,500,600,800,1000 ADC 8-ch 12-bit
ARM MIPS (Max.) 1000,1200,2000 PWM (Ch) 3
Graphics Acceleration | 1 3D eCAP 3
Other Hardware Ac- | 2 PRU-ICSS,Crypto Accelera- | eQEP 3
celeration tor
On-Chip L1 Cache 64 KB (ARM Cortex-A8) RTC 1
On-Chip L2 Cache 256 KB (ARM Cortex- A8) 12C 3
Other On-Chip Mem- | 128 KB McASP 2
ory
Display Options LCD SPI 2
General Purpose | 1 16-bit (GPMC, NAND flash, | DMA (Ch) 64-Ch EDMA
Memory NOR Flash, SRAM)
DRAM 1 16-bit (LPDDR-400,DDR2- | 10 Supply (V) 1.8V(ADC), 3.3V
532, DDR3-400)
USB Ports 2 Operating Tempera- | 40 to 90
ture Range (C)

Documentation

Full documentation for the processor can be found on the Tl website at http://www.ti.com/product/am3358 for
the current processor used on the board. Make sure that you always use the latest datasheets and Technical
Reference Manuals (TRM).

Crystal Circuitry

c21

e

18pF,50V

c22 ¥
|_osct outf gt

I 1 I

18pF. 5DV 35 768KHz MC-306)

Y2
NJ_ 24MH% R17
1M.1%
L O
hepF,50v™ Josco_outh UsA
0SCO_IN V10
c26 0SCO_IN
18pF,50 0sCo_OUT U1t
GND OSCO VAT | OSCO_OUT .
2 VSS_0SCO SubArctic AM335x
0SC1_IN A6
R150 OSC1_IN
NV 0,1% 0sC1_0oUT A4
GND_0SC0 GND OSC1 A5—| OSC1_OUT 15mm x 15mm
a VSS_RTC Package

DGND

Fig. 5.30: Processor Crystals

Reset Circuitry

figure-31 is the board reset circuitry. The initial power on reset is generated by the TPS65217C power man-
agement IC. It also handles the reset for the Real Time Clock.

5.6. Detailed Hardware Design 257

http://www.ti.com/product/am3358

BeagleBoard Docs, Release 1.0.20230711-wip

The board reset is the SYS_RESETn signal. This is connected to the NRESET_INOUT pin of the processor. This
pin can act as an input or an output. When the reset button is pressed, it sends a warm reset to the processor
and to the system.

On the revision A5D board, a change was made. On power up, the NRESET_INOUT signal can act as an output.
In this instance it can cause the SYS_RESETn line to go high prematurely. In order to prevent this, the PORZn
signal from the TPS65217C is connected to the SYS_RESETn line using an open drain buffer. These ensure that
the line does not momentarily go high on power up.

VDD_3V3A
3 3V R14
. 10K, 1%
s1
MR231GLFS
L] L] 2
VIO . l
3 o4 C24
1uF, 10V

NG %eRESET |5

A
P4
© SN74LVC1G07DCK

X ™

u2

DGND
26
PGOOD
46
LDO_PGOOD
oA B15
- PORZn ¢x710
TPSE5217C SubArctic AM335X NRESET INOUT g5 P> SYS_RESETn 911
18V RTC_PORZn
15mm x 15mm -
Package

AM3359

Fig. 5.31: Board Reset Circuitry

This change is also in all revisions after A5D.
DDR3L Memory

The BeagleBone Black uses a single MT41K256M16HA-125 512MB DDR3L device from Micron that interfaces
to the processor over 16 data lines, 16 address lines, and 14 control lines. On rev C we added the Kingston
KE4CN2H5A-A58 device as a source for the DDR3L device**.**

The following sections provide more details on the design.

Memory Device

The design supports the standard DDR3 and DDR3L x16 devices and is built using the DDR3L. A single x16
device is used on the board and there is no support for two x8 devices. The DDR3 devices work at 1.5V and
the DDR3L devices can work down to

1.35V to achieve lower power. The DDR3L comes in a 96-BALL FBGA package with 0.8 mil pitch. Other standard
DDR3 devices can also be supported, but the DDR3L is the lower power device and was chosen for its ability
to work at 1.5V or 1.35V. The standard frequency that the DDR3L is run at on the board is 400MHZ.

DDR3L Memory Design
figure-32 is the schematic for the DDR3L memory device. Each of the groups of signals is described in the
following lines.

Address Lines: Provide the row address for ACTIVATE commands, and the column address and auto pre-
charge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective

258 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank
(A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code
during a LOAD MODE command. Address inputs are referenced to VREFCA. A12/BC#: When enabled in the
mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop
(on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop).

Bank Address Lines: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command
is being applied. BA[2:0] define which mode register (MRO, MR1, MR2, or MR3) is loaded during the LOAD
MODE command. BA[2:0] are referenced to VREFCA.

CK and CK# Lines: are differential clock inputs. All address and control input signals are sampled on the
crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced
to the crossings of CK and CK#.

Clock Enable Line: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks
on the DRAM. The specific circuitry that is enabled/disabled is dependent upon the DDR3 SDRAM configuration
and operating mode. Taking CKE LOW provides PRECHARGE power-down and SELF REFRESH operations (all
banks idle) or active power-down (row active in any bank). CKE is synchronous for powerdown entry and exit
and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE,
RESET#, and ODT) are disabled during powerdown. Input buffers (excluding CKE and RESET#) are disabled
during SELF REFRESH. CKE is referenced to VREFCA.

< 9
DGND KK(_OKA%

9
VDDS_DDR 5K 1% U12
i)
3 DDR_RESETn RESET# DDR_A[15..0
. 97 N3 DDR_AQ Pl (< DDR_Al15.0) 3
3 DDRpLK% R7H CK A0 [p7 DDR A1
3 DDR_CLKn, Rg¥ CKn Al [p3 DDRAZ
3 DDR_CKE) T2 CKE A2 [DR AS
3 DDR_CSn T3 CSn A3 [pg DBR AL
3 DDR_RAS g3 A RASH A4 Py DDRAE
3 DDR_CASN; T34 CASn A5 #RB DDR A6
3 DDR_WER . WEn A6 [R7 DDR A7
3 DDR_D[15..0]<K)), mm— DDR DO E3 A7 [b1g Ly
F7-1 DQO A8 #R3 X
FZ | bat A9 7 ATO
F5-{ DQ2 A0 [¢R7 ATT
7 H3 | DQ3 A1 (N7 ATD
5 A8 | DQ4 A12 T3 DDR_AT3
5 G2 ‘ggg 212 T7 DDR_AT4
A7 7 DDR BA[2..0
—D7 Dar A15 [z — - — < DDR_BA2.0] 3
53| DQ8 BAO [E DDR_BAT
—_ DDR Di0__C8 | bQ9 BA1 (w13 DDR _BA.
\WWZ— DQ10 BA2
—BpR BT A7 DAt K1
———BBRB A7 Q12 obT — K DDR_ODT 3
— DDR D14 B8 | bQ13 B2
PR3 Dat VD1 [G7 }/DDs_DDR
DQ15 VDD2 [RY
c7 VDD3 /g7
3 DDR_DQS1 28(B7-1 UDQS VDD4 | KB
3 DDR_DQSN1 uDaQsn VDD5 [NT
F3 VDD6 [-Ng
3 DDR_DQS0 §8< &3 LDQs VDD7 [RT
3 DDR_DQSNO LDQsn VDD8 [py
D3 VDD9
3 DDR_DQM1 §< £7% UDM A9
3 DDR_DQMO LDM VSS1 B3
VSS2 T
A1 VSS3 [-op—
VDDS_DDR} Ag—{ VDDQ1 VsS4 [J7
T VDDQ2 VSS5 8
Tg-{ VvDDQ3 VSS6 [t
p7{ VDDQ4 VSS7 i
Fg—{ VDDQ5 VSS8 pT
Fr{ vDDQ7 VSS9 Py
7| VDDQ8 VSS10 [T
Fg—{ VDDQ9 VSs11 [T
vDDQ10 VSS12
HJ;— NC1 vssaQ1t o
BY
XTT{NC2 VSSQ2 o DGND
XTo{NC3 VSSQ3 D8
DDR_VREF X——Nc4 VSSQ4 [E7
VSSQ5 [E8
VSSQ6 [Fg
M8 VSSQ7 &7
VDDS_DDR} R9 —s VREF_CA VssQ8 oy
Nk VSSQ9
H1 L8
R100 VREF_DQ zQ — ke)
10K1% 124
c123 f——
D.1uf,6.3V MT41K256M16HA -125:E
0.001ut,50v 4Gb (512MB) DDR3L
DGND
DGND DGND

Fig. 5.32: DDR3L Memory Design

Chip Select Line: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All
commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with

5.6. Detailed Hardware Design 259

BeagleBoard Docs, Release 1.0.20230711-wip

multiple ranks. CS# is considered part of the command code. CS# is referenced to VREFCA.

Input Data Mask Line: DM is an input mask signal for write data. Input data is masked when DM is sampled
HIGH along with the input data during a write access. Although the DM ball is input-only, the DM loading is
designed to match that of the DQ and DQS balls. DM is referenced to VREFDQ.

On-die Termination Line: ODT enables (registered HIGH) and disables (registered LOW) termination resis-
tance internal to the DDR3L SDRAM. When enabled in normal operation, ODT is only applied to each of the
following balls: DQ[7:0], DQS, DQS#, and DM for the x8; DQ[3:0], DQS, DQS#, and DM for the x4. The ODT
input is ignored if disabled via the LOAD MODE command. ODT is referenced to VREFCA.

Power Rails

The DDR3L memory device and the DDR3 rails on the processor are supplied by the**TPS65217C**, Default
voltage is 1.5V but can be scaled down to 1.35V if desired.

VREF

The VREF signal is generated from a voltage divider on the**VDDS_DDR** rail that powers the processor DDR
rail and the DDR3L device itself. Figure 33 below shows the configuration of this signal and the connection to
the DDR3L memory device and the processor.

VDDS_0O =1—'_‘7’v\/\,; T T Rl RPN

15%mm ¢ 1 5%mm

Fig. 5.33: DDR3L VREF Design

5.6.3 4GB eMMC Memory

The eMMC is a communication and mass data storage device that includes a Multi-MediaCard (MMC) interface,
a NAND Flash component, and a controller on an advanced 11-signal bus, which is compliant with the MMC
system specification. The nonvolatile eMMC draws no power to maintain stored data, delivers high performance
across a wide range of operating temperatures, and resists shock and vibration disruption.

One of the issues faced with SD cards is that across the different brands and even within the same brand, per-
formance can vary. Cards use different controllers and different memories, all of which can have bad locations
that the controller handles. But the controllers may be optimized for reads or writes. You never know what you
will be getting. This can lead to varying rates of performance. The eMMC card is a known controller and when
coupled with the 8bit mode, 8 bits of data instead of 4, you get double the performance which should result in
quicker boot times.

The following sections describe the design and device that is used on the board to implement this interface.

260 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

eMMC Device

The device used is one of two different devices:
e Micron MTFC4GLDEA OM WT
* Kingston KE4CN2H5A-A58
The package is a 153 ball WFBGA device on both devices.

eMMC Circuit Design

figure-34 is the design of the eMMC circuitry. The eMMC device is connected to the MMC1 port on the processor.
MMCO is still used for the microSD card as is currently done on the original BeagleBone. The size of the eMMC
supplied is now 4GB.

The device runs at 3.3V both internally and the external I/O rails. The VCCI is an internal voltage rail to the
device. The manufacturer recommends that a 1uF capacitor be attached to this rail, but a 2.2uF was chosen
to provide a little margin.

Pullup resistors are used to increase the rise time on the signals to compensate for any capacitance on the
board.

VDD_3V3B
VDD_3V3B
—|N < |WD|©| O|D|O|— T
I] S e
(e 2 12 1 2 2 %
c12
2.2uF,6.3V
o DGND b
to I ol Elolo o
ven 13 SRRRRRERS SerBBLERE R} DGND
u7 A3 = = = = —
MMC1_DATO [y7 A DAT0 350030333 5383 0RRHB o]
M AT RIDATI 900089988 333322222 S
MMC1_DAT2 [Tg B7| DAT2 2R 553>
MMC1_DAT3 [-UB B3| DAT3
MMC1_DAT4 [-vg 52| DAT4
MMC1_DAT5 [-RY g5 DATS
MMC1_DAT6 [~Tg 55| DAT6
MMC1_DAT7 "o V5| DAT7
MMC1_CMD [-Ug V6| CMD
MMC1_CLK [FT13 R162 K5 | CLK
GPIO2_0 0.1% DN RST
AM3358_ZCZ MEM_MNAND_2GB
Fig. 5.34: eMMC Memory Design
The pins used by the eMMC1 in the boot mode are listed below in Table 6.
Signal name Pin Used in Device
clk gpmec_csnl
cmd gpmec_csn2
dat0 gpmc_ad0
dat1 gpmc_ad1
dat2 gpmc_ad2
dat3 gpmc_ad3

Fig. 5.35: eMMC Boot Pins

For eMMC devices the ROM will only support raw mode. The ROM Code reads out raw sectors from image or
the booting file within the file system and boots from it. In raw mode the booting image can be located at
one of the four consecutive locations in the main area: offset 0x0 / 0x20000 (128 KB) / 0x40000 (256 KB) /
0x60000 (384 KB). For this reason, a booting image shall not exceed 128KB in size. However it is possible to
flash a device with an image greater than 128KB starting at one of the aforementioned locations. Therefore
the ROM Code does not check the image size. The only drawback is that the image will cross the subsequent
image boundary. The raw mode is detected by reading sectors #0, #256, #512, #768. The content of these
sectors is then verified for presence of a TOC structure. In the case of a GP Device, a Configuration Header

5.6. Detailed Hardware Design 261

BeagleBoard Docs, Release 1.0.20230711-wip

(CH)*must* be located in the first sector followed by a GP header. The CH might be void (only containing a
CHSETTINGS item for which the Valid field is zero).

The ROM only supports the 4-bit mode. After the initial boot, the switch can be made to 8-bit mode for increasing
the overall performance of the eMMC interface.

5.6.4 Board ID EEPROM

The BeagleBone is equipped with a single 32Kbit(4KB) 24LC32AT-I/OT EEPROM to allow the SW to identify the
board. Table 7 below defined the contents of the EEPROM.

Table 5.6: EEPROM Contents

Name Size (bytes) | Contents

Header 4 OxAA, 0x55, 0x33, EE

Board Name 8 Name for board in ASCIl: A335BNLT

Version 4 Hardware version code for board in ASCIl: 00A3 for Rev A3, 00A4
for Rev A4, 00A5 for Rev A5, 00A6 for Rev A6,00B0 for Rev B,
and 00CO for Rev C.

Serial Number 12 Serial number of the board. This is a 12 character string which is:
WWYY4P1l6nnnn where, WW = 2 digit week of the year of produc-
tion YY = 2 digit year of production BBBK = BeagleBone Black nnnn
= incrementing board number

Configuration Op- | 32 Codes to show the configuration setup on this board. All FF

tion

RSVD 6 FF FF FF FF FF FF

RSVD 6 FF FF FF FF FF FF

RSVD 6 FF FF FF FF FF FF

Available 4018 Available space for other non-volatile codes/data

VDD_3V3A
v Board ID T
aa . 1 - 4
2440 - N ;gh /ec k=2
vss 2 —Euf.ﬁ.iﬁ'
Wp : .;55 (i i
241 C324 j DGND
256KX8 O
P4
TESTPTH

Fig. 5.36: EEPROM Design Rev A5

The EEPROM is accessed by the processor using the I12C 0 bus. The WP pin is enabled by default. By grounding
the test point, the write protection is removed.

The first 48 locations should not be written to if you choose to use the extras storage space in the EEPROM for
other purposes. If you do, it could prevent the board from booting properly as the SW uses this information to
determine how to set up the board.

5.6.5 Micro Secure Digital

The microSD connector on the board will support a microSD card that can be used for booting or file storage
on the BeagleBone Black.

262

Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

microSD Design

VDD_3V3B
L153 E154
=3 ~— [N 52 <t {Ie]
LD LD LD LD ol LD
g(“ o ¥ OuF,10V D.1uf,6.3V
DGND
2R [R R R
N S P N A N
USA SRR IR [7
F18 1 9
MMCO_DAT2 [FF17 7 DAT2 GND GND
MMCO_DAT3 [~GT8 3| CD/DAT3 GND1 =77 SD kD
A Vi
MMCO_CMD 7| CMD CD |7 —\/DD_3V3B
G17 5 VDD GND2 |73 SEA ST
MMCO_CLK £ CLOCK GND3 17
G16 71 vss GND4
MMCO_DATO [GT5 3| DATO __.
MMCO_DAT1 paT1 microSD /77
c15 X
MMCO_SDCD MOLEX 502570-001
AM3358_ZCZ DGND

Fig. 5.37: microSD Design

The signals MMCO-3 are the data lines for the transfer of data between the processor and the microSD connector.
The MMCO_CLK signal clocks the data in and out of the microSD card.
The MMCO_CMD signal indicates that a command versus data is being sent.

There is no separate card detect pin in the microSD specification. It uses MMCO_DAT3 for that function. How-
ever, most microSD connectors still supply a CD function on the connectors. In the BeagleBone Black design,
this pin is connected to the MMCO_SDCD pin for use by the processor. You can also change the pin to GPIOO0_6,
which is able to wake up the processor from a sleep mode when an microSD card is inserted into the connector.

Pullup resistors are provided on the signals to increase the rise times of the signals to overcome PCB capaci-
tance.

Power is provided from the VDD 3V3B rail and a 10uF capacitor is provided for filtering.

5.6.6 6.6 User LEDs

There are four user LEDs on the BeagleBone Black. These are connected to GPIO pins on the processor. Figure
37 shows the interfaces for the user LEDs.

Resistors R71-R74 were changed to 4.75K on the revision A5B and later boards.

Table 5.7: User LED Control Signals/Pins

LED | GPIO SIGNAL | PROC PIN
USRO | GPIO1_21 V15
USR1 | GPIO1_22 u15
USR2 | GPIO1_23 T15
USR3 | GPIO1_24 V16

A logic level of “1” will cause the LEDs to turn on.

5.6.7 Boot Configuration

The design supports two groups of boot options on the board. The user can switch between these modes via
the Boot button. The primary boot source is the onboard eMMC device. By holding the Boot button, the user
can force the board to boot from the microSD slot. This enables the eMMC to be overwritten when needed or
to just boot an alternate image. The following sections describe how the boot configuration works.

In most applications, including those that use the provided demo distributions available from beagleboard.org

5.6. Detailed Hardware Design 263

http://beagleboard.org/

BeagleBoard Docs, Release 1.0.20230711-wip

SYs_sv
3 S & R71
2 S R74 S> 820,5%
R72 5 R73 5 820,5% 4
820,5% 820,5%
z
u
D2 LTST-C191TBKT D3 LTST-C191TBKT D4 LTST-C191TBKT D5 LTST-C191TBKT
9 %) G é!
< = N O R
=) [a) o p}
w w w
- - -
3] © (3]
©
3 Q1B 3 QA 3 Q2B
S Q1A . 5T . 2 |7 - 57
2[R DMC5640# D-[_;_t: DMC564 :'EE DMC56404
3 USRO) -El-l_E_K DMC564014
3 3 3
3 = =
R76 = R77 < R78 "
100K, 1% — 100K, 1% 100K, 1% R79
100K, 1%
DEND DEND DEND
DEND DGND
DGND DGND DEND
3 USR1 >
3 USR2 &%
3 USR3

Fig. 5.38: User LEDs

the processor-external boot code is composed of two stages. After the primary boot code in the processor ROM
passes control, a secondary stage (secondary program loader - “SPL’ or “MLO”) takes over. The SPL stage
initializes only the required devices to continue the boot process, and then control is transferred to the third
stage “U-boot”. Based on the settings of the boot pins, the ROM knows where to go and get the SPL and UBoot
code. In the case of the BeagleBone Black, that is either eMMC or microSD based on the position of the boot
switch.

Boot Configuration Design

figure-38 shows the circuitry that is involved in the boot configuration process. On power up, these pins are
read by the processor to determine the boot order. S2 is used to change the level of one bit from HI to LO which
changes the boot order.

It is possible to override these setting via the expansion headers. But be careful not to add too much load such
that it could interfere with the operation of the HDMI interface or LCD panels. If you choose to override these
settings, it is strongly recommended that you gate these signals with the SYS_RESETn signal. This ensures that
after coming out of reset these signals are removed from the expansion pins.

5.6.8 Default Boot Options

Based on the selected option found in figure-39 below, each of the boot sequences for each of the two settings
is shown.

The first row in «figure-39» is the default setting. On boot, the processor will look for the eMMC on the MMC1
port first, followed by the microSD slot on MMCO, USBO and UARTO. In the event there is no microSD card and
the eMMC is empty, UARTO or USBO could be used as the board source.

If you have a microSD card from which you need to boot from, hold the boot button down. On boot, the
processor will look for the SPIOO port first, then microSD on the MMCO port, followed by USBO and UARTO. In
the event there is no microSD card and the eMMC is empty, USBO or UARTO could be used as the board source.

5.6.9 10/100 Ethernet

The BeagleBone Black is equipped with a 10/100 Ethernet interface. It uses the same PHY as is used on the
original BeagleBone. The design is described in the following sections.

264 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_3V3A

=) [a)[a)[a)([a)([a][a][a]([a) DQ
B s2
BN NN ; R75 100 MR231GLFS
=== == = = = = = =) = =) (- (- 1 3
EEEEEEEEEEEE . .
2 l' \ 4
-—M—Bm—g_ LCD_DATA0 4,10,11
SYS BOOTH LCD_DATA1 410,11 uSD BOOT
SYS"BOQT?2 2,
= LCD_DATA2 4,10,11 A4
SYS BOQT3 2, -~
= LCD_DATA3 4,10,11
SYS"BOQT4 2, - DGND
= LCD_DATA4 4,10,11
SYS BOOT5 2, -
= LCD_DATA5 4,10,11
SYSTBROQTHK 2, -
= LCD_DATA6 4,10,11
SYSTBOQT7 2, -
LCD_DATA7 4,10,11
SYS BOQT8 2, -
LCD_DATA8 4,10,11
SYSBOQTA 2, o
= LCD_DATA9 4,10,11
SYSTBOQT10?, T
= LCD_DATA10 4,10,11
SYS BOQT112, —)
= LCD_DATA11 4,10,11
SYSTBOQT127,
LCD_DATA12 4,10,11
SYSBOQT132, -
LCD_DATA13 4,10,11
SYS ROQT14., LCD DATA14 4,10,11
SYSTBOQT157, o ‘10,
| LCD_DATA15 4,10,11
F=d bt I8N f5ed oy ed [y feed fo2] (= N < |0

[0 V4 [[0 [0 [[3 ¢4 [[0 [s [0 [[+ [[+

K.
K
K.
K
K.
K
K.
K
K.

[T00K
00K
00K
00K
00K
00K

DGND
Fig. 5.39: Processor Boot Configuration Design
SYSBOOT[15:14] | SYSBOOT[13:12] | SYSBOOT[11:10] | SYSBOOT[9] |SYSBOOT[B] | SYSBOOT[7:6] | SYSBOOT[5] | SYSBOOT[4:0] Boot Sequence
00k = 19.2MHz 00k Don't care for ROM | Don't care for Don't care for | Don't care for 0= 11100b MMC1 MMCO |UARTO | USBO[S]
i (all other values code ROM code ROM code ROM code CLKOUT1
01b = 24MHz
reserved) disabled
10b = 25MHz 5
11b = 26MHz CI:KOUT1
enabled
00k = 19.2MHz 00k Don't care for ROM | Don't care for Don't care for | Don't care for 0= 11000k SPID MMCO |USBO[S | UARTD
. (all other values code ROM code ROM code ROM code CLKOUT1
01k = 24MHz reserved) st
10b = 25MHz 1"”“
11b = 26MHz CI:KOUT1
enabled

Fig. 5.40: Processor Boot Configuration

5.6. Detailed Hardware Design 265

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.1 Ethernet Processor Interface

VDD_3V3B
o
e
v
usB 0
M17 -J 16
MDIO_DATA VT8 17| MDIO
MDIO_CLK [T717 7 YAD? 8% MDC
GMIl1_RXD3 R12 HHTSEL U] RXO3/PHYAD2
GMII1_RXD2 [T78 Rz DSV DET 10| RXD2/RMIISEL
GMII1_RXD1 R158 G/ MODED—TT| RXD1/MODEH
GMII1_RXDO [RIA 5 RXDO/MODEO
GMIlI1 RXDV Rz i —— 7 ROV
GMII1_RXCLK R133 NEBUREADD T3] RXCLK/PHY AD1
GMII1 RXERR RXER/RXD4/PHY ADO
K18 20
GMII_TXCLK [J75 RIS A0 71 TXCLK
GMIIM_TXEN 'RT7 77 % TXEN
GMIIM_TXDO [RT6 73 TXDO U14
GMIIM_TXD1 [RT5 779 TXD1
GMII1_TXD2 [~J718 75 % TXD2
GMII_TXD3 6 — =¥ TXD3 LAN8710A
GMIIT COL [r—BREEAAMINEZ 2} (017cRS DV/MODE2
GMII1 CRS SUREN NN CRS
AM3358 ZCZ

QFN32_5X5MM_EP3P3MM

Fig. 5.41: Ethernet Processor Interface

This is the same interface as is used on the BeagleBone. No changes were made in this design for the board.

Ethernet Connector Interface

The off board side of the PHY connections are shown in Figure 41 below.

This is the same interface as is used on the BeagleBone. No changes were made in this design for the board.

Ethernet PHY Power, Reset, and Clocks

VDD_3V3B Rail

The VDD_3V3B rail is the main power rail for the LAN8710A. It originates at the VD_3V3B regulator and is the
primary rail that supports all of the peripherals on the board. This rail also supplies the VDDIO rails which set
the voltage levels for all of the 1/O signals between the processor and the**LAN8710A**,

VDD_PHYA Rail

A filtered version of VDD_3V3B rail is connected to the VDD rails of the LAN8710 and the termination resistors
on the Ethernet signals. It is labeled as VDD_PHYA. The filtering inductor helps block transients that may be
seen on the VDD_3V3B rail.

PHY_VDDCR Rail

The PHY _VDDCR rail originates inside the LAN8710A. Filter and bypass capacitors are used to filter the rail.
Only circuitry inside the LAN8710A uses this rail.

SYS_RESET
The reset of the LAN8710A is controlled via the SYS_RESETn signal, the main board reset line.
Clock Signals

A crystal is used to create the clock for the LAN8710A. The processor uses the RMII_RXCLK signal to provide
the clocking for the data between the processor and the LAN8710A.

266 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_PHYA

P5
5
¢ |55 ne 3] 10T
78 5| 1D+
N P XN T TD- 7
71 RD+ NC [—X
31 RXP I 7| RD- 8
RXP |30 N | RCT GND
RXN
R130470,5% _ YEU 13)
137 lg 38 139 140 R 12| YELCSHD1 ™17
e e e RIALEE GF?N;‘ éEm)SHDZ DGND
u14 5pF,DNI fI5pF,DNI GRNA
WE_7499010211A
DGND DGN DGN DGND R135 d TCT RCT R136
LAN8710A 10K,1% R137 ESD_RING
c141 0,1%
DGND = 1,0805
0.022uF, 10V
s SEREMEEEO
. DGND
LED1/REGOFF
EINTREL ACTIVE WHEN AT 100MB DGND
18 ETH_TXD4
nINT/TXER/TXD4
32 RBIAS
RBIAS
R145
QFN32_5X5MM_EP3P3MM R144 10K, 1%
12.1K,1%
DGND DGND
Fig. 5.42: Ethernet Connector Interface
VDD_PHYA
VDD_3v3B —Lcm J-0132 J— C133
]’ ;) 0.1uf,6.3V 0.1uf,6.3V 10uF, 10V
V¢
T500HMBOOMA ~ FB4
135
0.1uf,6.3V DGND DGND DGND
PHY_VDDCR
c136
o - © 470pF,63C134
DGND 1uF, 10V
0 <] e &
4 RMIM_REFCLK <O>—9 %,DNI 3 a5 8
> >5 8 AV
DGND
u14
100,1% REFCLKO 7 xCLKPHY AD1
LAN8710A
R140 QUANI
3,11 sYS_RESETn< nRST
PHY_XTAL1 9 JRCLK!N
R AGrTns R142_~\A XTAL1/CLKIN o
PHY_XTAL2 4 A
XTAL2 S
[©}
R143 -
10,1% ©
Y3
IPHYX 2 M, 1
1 r
25.000MHz DGND
_[142 XTAL150SMD_125X196 (143
0pF, 50V 0pF,50V
DGND DGND

Fig. 5.43: Ethernet PHY, Power, Reset, and Clocks

5.6. Detailed Hardware Design 267

BeagleBoard Docs, Release 1.0.20230711-wip

5.6.10 LAN8710A Mode Pins

There are mode pins on the LAN8710A that sets the operational mode for the PHY when coming out of reset.
These signals are also used to communicate between the processor and the LAN8710A. As a result, these
signals can be driven by the processor which can cause the PHY not to be initialized correctly. To ensure that
this does not happen, three low value pull up resistors are used. Figure 43 below shows the three mode pin
resistors.

vDD_3V3B
)
< .lf—r =
T L <
MODE2 l ‘
RXD1/MODE"1
RXD0O/MODEOQO

Fig. 5.44: Ethernet PHY Mode Pins

This will set the mode to be 111, which enables all modes and enables auto-negotiation.

5.6.11 HDMI Interface

The BeagleBone Black has an onboard HDMI framer that converts the LCD signals and audio signals to drive a
HDMI monitor. The design uses an NXP TDA19988 HDMI Framer.

The following sections provide more detail into the design of this interface.

Supported Resolutions

The maximum resolution supported by the BeagleBone Black is 1280x1024 @ 60Hz. Table 9 below shows the
supported resolutions. Not all resolutions may work on all monitors, but these have been tested and shown to
work on at least one monitor. EDID is supported on the BeagleBone Black. Based on the EDID reading from
the connected monitor, the highest compatible resolution is selected.

Table 5.8: HDMI Supported Monitor Resolutions

RESOLUTION AUDIO
800 x 600 @60Hz
800 x 600 @56Hz
640 x 480 @75Hz
640 x 480 @60Hz YES
continues on next page

268 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.8 - continued from previous page
RESOLUTION AUDIO
720 x 400 @70Hz
1280 x 1024 @75Hz
1024 x 768 @75Hz
1024 x 768 @70Hz
1024 x 768 @60Hz
800 x 600 @75Hz
800 x 600 @72Hz
720 x 480 @60Hz YES
1280 x 720 @60Hz | YES
1920 x 1080 @24Hz | YES

NOTE: The updated software image used on the Rev A5B and later boards added support for 1920x1080@24HZ.

Audio is limited to CEA supported resolutions. LCD panels only activate the audio in CEA modes. This is a
function of the specification and is not something that can be fixed on the board via a hardware change or a
software change.

HDMI Framer

The TDA19988 is a High-Definition Multimedia Interface (HDMI) 1.4a transmitter. It is backward compatible
with DVI 1.0 and can be connected to any DVI 1.0 or HDMI sink. The HDCP mode is not used in the design. The
non-HDCP version of the device is used in the BeagleBone Black design.

This device provides additional embedded features like CEC (Consumer Electronic Control). CEC is a single
bidirectional bus that transmits CEC over the home appliance network connected through this bus. This elimi-
nates the need of any additional device to handle this feature. While this feature is supported in this device, as
of this point, the SW to support this feature has not been implemented and is not a feature that is considered
critical. It can be switched to very low power Standby or Sleep modes to save power when HDMI is not used.
TDA19988 embeds I~2~C-bus master interface for DDC-bus communication to read EDID. This device can be
controlled or configured via I~2~C-bus interface.

HDMI Video Processor Interface

The Figure 44 shows the connections between the processor and the HDMI framer device. There are 16 bits of
display data, 5-6-5 that is used to drive the framer. The reason for 16 bits is that allows for compatibility with
display and LCD capes already available on the original BeagleBone. The unused bits on the TDA19988 are
tied low. In addition to the data signals are the VSYNC, HSYNC, DE, and PCLK signals that round out the video
interface from the processor.

HDMI Control Processor Interface

In order to use the TDA19988, the processor needs to setup the device. This is done via the 12C interface
between the processor and the TDA19988. There are two signals on the TDA19988 that could be used to set
the address of the TDA19988. In this design they are both tied low. The I12C interface supports both 400kHz
and 100KhZ operation. Table 10 shows the 12C address.

Interrupt Signal

There is a HDMI_INT signal that connects from the TDA19988 to the processor. This signal can be used to alert
the processor in a state change on the HDMI interface.

5.6. Detailed Hardware Design 269

mailto:1920x1080@24HZ

BeagleBoard Docs, Release 1.0.20230711-wip

u11
63
57 VPAD |
usB SZ) vea1 O
U4 R40 50 Y VPA2
LCD_DATA11 vz = 5% VPA3 [o
LCD_DATA12 |-v3 RA2 5g ¥ VPA4 (2
LCD_DATA13 |vz =7 574 VPA5
LCD_DATA14 |15 A 55% VPAG
LCD_DATA15 g VPA7_ |,
g VPBO
T2 R34 7Y VPB1
LCD_DATAS (T3 AT 59 VPB2
LCD_DATA6 [Tz R36 % VPB3 =
LCD_DATA7 [T Y] 7% VPB4 | &
LCD_DATA8 [O7 R3S T VPB5
LCD_DATA9 [U3 R3S 57 VPBG |,
LCD_DATA10 8% VPB7
17 VPCFBO
169 VPC1
R1 R 3 T59 VPC2 (w
LCD_DATAO [Rz RO A~B3.0%0 T VPC3 |2
LCD_DATA1 [R3 R3T N\ S3050 7% VPC4
LCD_DATA2 [R7 RS X 1% VPC5
LCD_DATA3 [T RN ARENT 0% VPCE |,
LCD_DATA4 [-U% RAG 55050 71 VPCT_|
LCD_VSYNC [R5 RiT NV M53050 77% VSYNC/VREF
LCD_HSYNC [R® Ris - M53050 204 HSYNC/VREF
LCD_AC_BIAS_EN [v5 Riz NV M53050 7% DE/VREF
LCD_PCLK 2% % PCLK
c17 51
12C0_SDA TT6 57| CSDA
12C0_SCL 7 531 CSCL
VDD_3v3B—R158 10K 1% =2 A0_I2C
U16 50| A1_I12C
GPIO1_25 INT
A13 23
SPI1_SCLK K 78 ACLK
X—75{ AP3
SPI1_CS0 e DATA QUT ﬁgf
- BT3 24
SPI1_D0O HWORD SYNG APO
VDD_3V3A N 27
A15 T DGND OSC_IN
CLKoUT1 TDA19988
us
1 8
AMB3358_ZCZ T etkvee
[3|2 PRETT®
71Q CLR 5—oWHz_sR
o s R21 330201
SN74AUCTG74 _p2r
. 1uf,6.3V
DGND
DGND
Fig. 5.45: HDMI Framer Processor Interface
HDMI core address
1 1 1 0 0 XUl XUl 0/

Fig. 5.46: TDA19988 12C Address

270

Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Audio Interface

Thereis an I12S audio interface between the processor and the TDA19988. Stereo audio can be transported over
the HDMI interface to an audio equipped display. In order to create the required clock frequencies, an external
24.576MHz oscillator,*Y4*, is used. From this clock, the processor generates the required clock frequencies for
the TDA19988.

There are three signals used to pass data from the processor to the TDA19988. SCLK is the serial clock.
SPI1_CSO0 is the data pin to the TDA199888. SPI1_DO is the word sync pin. These signals are configured as
12S interfaces.

Audio is limited to CEA supported resolutions. LCD panels only activate the audio in CEA modes. This is a
function of the specification and is not something that can be fixed on the board via a hardware change or a
software change.

In order to create the correct clock frequencies, we had to add an external 24.576MHZz oscillator. Unfortunately
this had to be input into the processor using the pin previously used for GP103_21. In order to keep GPIO3_21
functionality, we provided a way to disable the oscillator if the need was there to use the pin on the expansion
header. Figure 45 shows the oscillator circuitry.

_IE _rﬂi J LI WA R 1

g —m—&\c EHRPWMIB 11

A T

:25 T 7

2 e - :

24 . : VOO_3V3A

25 g é\‘_ HOMLNT 10 v -

2 o ¢ USBTLOGT 4 L \

g = HOMIGLK Dren e vl Extemal dock to the

- McASPQ interface.

o 1 Hewo o RIET,, o o2 B oeM0Iat EALH

E h 11 ; . i -

:%; el <$09 MMCODATD 11 ZLETERIRT _[eias Dscillator can be disabled via SW

- ni S MwcnpAaTl 1] —F'UI'.E.EU for power down modes or if

: NGO DA

e il 2%5 CODATS 1) GPI03 21 needs to be used.
DEND DEND

Fig. 5.47: 24.576MHZ Oscillator

Power Connections

figure-46 shows the power connections to the TDA19988 device. All voltage rails for the device are at 1.8V. A
filter is provided to minimize any noise from the 1.8V rail getting back into the device.

All of the interfaces between the processor and the TDA19988 are 3.3V tolerant allowing for direct connection.
HDMI Connector Interface

figure-47 shows the design of the interface between the HDMI Framer and the connector.

The connector for the HDMI interface is a microHDMI. It should be noted that this connector has a different
pinout than the standard or mini HDMI connectors. D6 and D7 are ESD protection devices.

5.6.12 USB Host

The board is equipped with a single USB host interface accessible from a single USB Type A female connector.
«figure-48» is the design of the USB Host circuitry.

Power Switch

U8 is a switch that allows the power to the connector to be turned on or off by the processor. It also has an
over current detection that can alert the processor if the current gets too high via the**USB1_OC** signal. The
power is controlled by the USB1_DRVBUS signal from the processor.

5.6. Detailed Hardware Design 271

BeagleBoard Docs, Release 1.0.20230711-wip

HDMI_1V8
u11 i
47 _
VDDA(PLLO)(1.8V) |78
VDDA(PLL1)(1.8V) LN
35
VDDAO(1.8V)
36
VDDA1(TX)(1.8V) 27
VDDA2(TX)(1.8V) [75
VDDA3(TX)(1.8V)
5 - VDD_1V8
VDDDCO(1.8V) |79 1
VDDDC1(1.8V) FB5
VDDIOA(1.8V) s - 1 2
. 55 =
VDDIOB(1.8V) |ag—— s e e k & 2 | 1500HM800mA
TEST 70 - - — - - = w o jo
VPP "85 e
i s B kR B B R BB
TDA19988 s 2l R B B B
S A A
o =} o o o o S
R
DGND
Fig. 5.48: HDMI Power Connections
DVI_+5V N
T
(v (1
SRS
¥ [Sys sv °
~ |- [__Rmt DVI_+5V
o PTC_RXEF010 P6
Txo- |ad DMI_TX2- CH
X2+ il HDMI TX2+ Z DATo:
33 HDMI_DSCL HDMI_DSCL T7 | DAT2_S
DSCL SCL
Daox 2 HDMI_DSDA HDMI_DSDA TSCL et 122
ez 2
42 HDMI_TX1- 8
TXI- DATI-
X = HOM TR 5] DAT!: N
31 HDMI_HPD DAT1_S MTG3
HPD [~30HDMI_CEC
CEC ” ”
16| +9V MTG4
HPMI_HPD T agﬁ/;CEc GN{
39 HDMI_TX0- I
DO- 770 HDMI [TX0+ g DATO- 777
X0+ 0| DATO+
DATO_S
EXT_SWING 34 HDMI[SWING R148 10K1%I>DGND HDNI CEC E cec
38 CLK_S 2
TXC+ 737 ADMI Txg-DMI — T ClK+ NC [0
e CLK-
DG:;ND microHDMI
TDA19988
Q 1 Ny P} 5 - I o P P 5| D7
Y H
= =
N N
9 9
9 &
kS ol
5] g
XKk kK XK kK || X %
DGND DGND

Fig. 5.49: Connector Interface Circuitry

272

Chapter 5.

BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_3V3A

FB8
R52, USB1_VBUS 1 2
0.10hm,0805 P3
SYS 5v us 10K, 1 FB7 USB-A Conn. - 87520-xx1xx
T 2 8 USB1_PWR 1 2 1 5
3 ‘IN1OUT1 7 USBT DM 15mmA > E—US SHIELD
USBT_DRVVBUS IN20UT2 USB1_DP EH B
T4 EN OUTS 5 7 6
c34 GND OC [ug GND SHIELD
R53 PAD 1 6
100uF 6.3V 10K,1% TPS2051 (DGN) D+ VBUS ka5
DGND 2], == pEND 777
DGND - L% . 1uf,6.3V
DGND 3 NC
DGND X—1 1D 4
GND
TPD4S012
USB HOST
> USB1_OCn 3

Figure 48. USB Host Circuitry

Fig. 5.50: USB Host circuit

ESD Protection

U9 is the ESD protection for the signals that go to the connector.

Filter Options

FB7 and**FB8** were added to assist in passing the FCC emissions test. The USB1_VBUS signal is used by the
processor to detect that the 5V is present on the connector. FB7 is populated and FB8 is replaced with a .1
ohm resistor.

5.6.13 PRU-ICSS

The PRU-ICSS module is located inside the AM3358 processor. Access to these pins is provided by the expansion
headers and is multiplexed with other functions on the board. Access is not provided to all of the available
pins.

All documentation is located at http://github.com/beagleboard/am335x_pru_package_

This feature is not supported by Texas Instruments.

PRU-ICSS Features

The features of the PRU-ICSS include:
Two independent programmable real-time (PRU) cores:
» 32-Bit Load/Store RISC architecture
* 8K Byte instruction RAM (2K instructions) per core
* 8K Bytes data RAM per core
¢ 12K Bytes shared RAM
¢ Operating frequency of 200 MHz
* PRU operation is little endian similar to ARM processor
e All memories within PRU-ICSS support parity
¢ Includes Interrupt Controller for system event handling
» Fast I/O interface

16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the BeagleBone Black).

5.6. Detailed Hardware Design 273

http://github.com/beagleboard/am335x_pru_package

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS Block Diagram

PRU-ICSS
Data Mem0
PRUD Core
(8KE Program) (8KB)
EGP % Data Mem 1
a (BKB)
S Shared RAM
PRU1 Core @
(8KE Program) g (12KE)

e | s — e bt
= MIlD_RT .
=

INTC g -
UARTD —
CFG —

Fig. 5.51: PRU-ICSS Block Diagram

PRU-ICSS Pin Access

Both PRU 0 and PRU1 are accessible from the expansion headers. Some may not be usable without first
disabling functions on the board like LCD for example. Listed below is what ports can be accessed on each
PRU.

e 8 outputs or 9 inputs
¢ 13 outputs or 14 inputs
¢ UARTO_TXD, UARTO_RXD, UARTO_CTS, UARTO_RTS

Table 5.9: P8 PRUO and PRU1 Access

PIN PROC| NAME
11 | R12 GPIO1_13 prl_pruO_pru_r30_15
(Output)
12 | T12 GPIO1_12 prl_pruO_pru_r30_14
(Output)
15 | Ul13 GPIO1_15 prl_pru0_pru r31_15
(Input)
16 | V13 GPIO1_14 prl_pruO_pru_r31_14
(Input)
20 | V9 GPIO1_31 prl_prul_pru_r30_13 prl_prul_pru_r31_13
(Output) (INPUT)
21 | U9 GPIO1_30 prl_prul pru_r30_12 prl_prul pru_r31_12
(Output) (INPUT)
27 | U5 GPI02_22 prl _prul pru r30_ 8 prl prul pru r31 8
(Output) (INPUT)
28 | V5 GPIO2_24 prl_prul_pru_r30_10 prl_prul_pru_r31_10
(Output) (INPUT)
29 | R5 GPIO2_23 prl_prul_pru_r30 9 prl_prul pru_r31_9
(Output) (INPUT)
39 | T3 GPIO2_12 prl_prul pru r30_6 prl_prul _pru r3l 6
(Output) (INPUT)
continues on next page
274 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.9 - continued from previous page

PIN PROC| NAME

40 | T4 GPIO2_13 prl_prul_pru_r30_7 prl_prul pru_r31_7
(Output) (INPUT)

41 | T1 GPIO2_10 prl_prul pru r30 4 prl_prul _pru r31 4
(Output) (INPUT)

42 | T2 GPIO2_11 prl_prul_pru_r30_5 prl_prul_pru_r31_5
(Output) (INPUT)

43 | R3 GPIO2_8 prl_prul_pru_r30_2 prl_prul_pru_r31_2
(Output) (INPUT)

44 | R4 GPIO2_9 prl_prul_pru_r30_3 prl_prul_pru_r31_3
(Output) (INPUT)

45 | R1 GPIO2_6 prl _prul pru r30 0 prl prul pru r31 0
(Output) (INPUT)

46 | R2 GPIO2_7 prl_prul_pru_r30_1 prl_prul_pru_r31_1
(Output) (INPUT)

Table 5.10: P9 PRUO and PRU1 Access

PIN PROC| NAME

17 | Al6 12C1_SCL prl_uartO_txd

18 | B16 12C1_SDA prl_uartO_rxd

19 | D17 12C2_SCL prl_uartO_rts_n

20 | D18 12C2_SDA prl_uartO_cts n

21 | B17 UART2_TXD prl_uartO_rts_n

22 | Al7 UART2_RXD prl_uartO_cts_n

24 | D15 UART1_TXD prl_uartO_txd prl_pru0_pru_r31_16

(Input)

25 | Al4 GPIO3_21 prl_pruO_pru_r30_5 prl_pruO_pru_r31_5
(Output) (Input)

26 | D16 UART1_RXD prl_uartO_rxd prl_prul pru_r31_16

27 | C13 GPIO3_19 prl _pruO_pru r30 7 prl _pru0 _pru r31 7
(Output) (Input)

28 | C12 SPI1_CSO eCAP2_in_PWM2_out prl_pruO_pru_r30_3 prl_pru0O_pru_r31_3

(Output) (Input)

29 | B13 SPI1_DO prl_pruO_pru_r30_1 prl_pru0_pru_r31_1
(Output) (Input)

30 | D12 SPI1_D1 prl_pruO_pru_r30_ 2 prl_pru0_pru_r31 2
(Output) (Input)

31 | A13 SPI1_SCLK prl_pruO_pru_r30_0 prl_pru0_pru_r31_0
(Output) (Input)

Note: GPIO3 21 is also the 24.576MHZ clock input to the processor to enable HDMI audio. To use this pin the
oscillator must be disabled.

5.7 Connectors

This section describes each of the connectors on the board.

5.7. Connectors

275

BeagleBoard Docs, Release 1.0.20230711-wip

5.7.1 Expansion Connectors

The expansion interface on the board is comprised of two 46 pin connectors. All signals on the expansion
headers are _3.3V_ unless otherwise indicated.

NOTE: Do not connect 5V logic level signals to these pins or the board will be damaged.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Lo R

-[;.ENE c;i | |_-—-j ;t'ilil.ll

P?

ZETreOmO®

"‘ii.* EL-EI:H :??
microSD Curd

Fig. 5.52: Expansion Connector Location

The location and spacing of the expansion headers are the same as on the original BeagleBone.

Connector P8

table-12 shows the pinout of the P8 expansion header. Other signals can be connected to this connector based
on setting the pin mux on the processor, but this is the default settings on power up. The SW is responsible
for setting the default function of each pin. There are some signals that have not been listed here. Refer to
the processor documentation for more information on these pins and detailed descriptions of all of the pins
listed. In some cases there may not be enough signals to complete a group of signals that may be required to
implement a total interface.

276 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

The PROC column is the pin number on the processor.
The PIN column is the pin number on the expansion header.

The MODE columns are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

5.7. Connectors 277

-wip

BeagleBoard Docs, Release 1.0.20230711

[£]zo1db T 1€ nud Tnud Tud T 0ed nud Tnid Tad gzwmdiys T Owdb Teiep po| 17 Z0IdD 2d 9%
[9]zoidb 0 Ted nud Tnid Tad 0 0gd nud Tnid Tud yzwmdiya oe bwdb oeiep po| 9 ZOIdD ™ St
[6]zo1db € 1ed nud Tnud Tad € 0ed nud Tnud Tud 00uAs oumdiys ce bwdb geyep po| 6 Z0IdD vy vy
[8]zoidb Z 1ed nud Tnud Tud Z 0oed nud Tnid 1ud ul auozduy zwmdiya ze bwdb zZeyep po| 8 Z0IdD €y 34
[TT]z0IdB G 1€ nud Tnud Tud S 0gd nud Tnud ud ur_gzd3oe ge dbwdb gejep pd| TT ZOId9 ZL [4%
[oT]zoIdb v 1€4 nud Tnid 1ud v 0¢4 nud tnud 1ud urvzd3oa e dwdb yelep pd| 0T ZOId9 TL Tt
[€1]zoidb £ 1€4 nud Tnud Tud £ 0€4 nud Tnud Tud £3n0_ejep ojpa T.d 2q0J3s zd30? £e dwdb Le3ep pd| €1 _20Id9 [of
[z1]z01dB 9 1€ nud Tnid 1ud 9 0gd nudTnud ud xapul_zd303 9e dwdb 9elep po| 21 20IdD €1 6€
[gT1]zo1dB usy_zuen pxa-guen Xsjodseow 0dUASs gumdiya c1e >wdb 6eiep po| axyd sidvn Zn 8¢
[v1]zo1db usyd zuen pXy guen Xx3j|oe” pdseow ulauozduy Twmdiya z1e >wdb geyep po| axyl sidvn n L€
[91]z01db usy_guen 0Jxe”gdseow viwmdiys pTe dwdb 0TeIepP PO| | NSLO €1dVN [} 9€
[8]ooidb usy pyen zixe_pdseow Bjjoe”pdsesw ul v1d30° 91e dwdb ZIeiep pd| | NSLD vidvn ZA 13
[£1]zo1db usy_guden zixe_pdseow j|pye”pdsedw grwmdiys g1e dwdb TIBIep Pl | NSIY €14vN N vE
[61001dB usy puen €axe_pdseow Jsy_pdseow ur g1430° L1e dwdb €183ep Pd| | NSLY v.1dvn €A €€
[t1]o0Idb usy_guen gaxe”pdseow x3{|2ye”odseow 2903 14302 61 dwdb s1eIep P NS1Y_ S1HVN SL 43
[0T]oo1db us3_guen pxJd_gyen Tixe_pdseow x3apul_ 14302 gre dwdb pTe3ep pd| | NSLD SLuvn A 1€
[sz]zoldb 112 dwdb udselq oe po| SZ 20Id9 9y o€
[€z]zoidb 6 1€l nud Tnid Tad 6 0€d nud Tnud Tud 6e owdb JuAsy po| €2 20I1d9 Y] 62C
[¥zlzodb | oT 1€ nud Tnud 14d | o1 0€d nud Tnud 1ud ote dwdb 12d po)| ¥Z 20Id9 GA 8¢
[zz]lzoidb g 14 nud Tnud Tud 8 0gJ nud Tnud Tud ge bwdb JUASA pD| 22 Z0Ido sn 12
[6z]T01db ousd> dwdb 62 10149 9A 9z
[o]T01dB 03ep_ToWw ope bwdb 0 I0Id9 LN 14
[t]toIdb T3ep_Toww 1pe dwdb 1_10IdD LA |44
[v]ToIdb viep Toww vpe dwdb ¥ 10Id9 8N [X4
[g]T01db Giep Toww Gpe dwdb S 10Id9 8A 44
[og]To1dB 21 14 nud Tnud Tud 21 0€4 nud Tnud Tud NPT ToWW NP >wdb Tusd> owdb 0€ TOIdD 6N 12
[1€]T0IdB €T 1€4 nud Tnud Tud €T 0g4 nud Tnud Tud pwd ToWwW uTaq >wdb zus> >wdb 1€ 10IdD [N 0z
[zz]ooldb vzwmdiys viep zoww 03ep”ToWw £zeiep po| gpe bwdb VZWMdJYHI otn 6T
[T]zo1db 1s)-pdseow D Zoww TyHem >wdb 32 Adowsw po| oxnw > dwdb 1 Z0IdO ZIA 8T
[£z]ooidb 0duAs_gumdiys L3ep_zoww €3ep_Toww 0zeiep poj T1pe dwdb L2 00149 zin LT
[1]T0id6 | $T 1€ nid onid 1ud x3apul_zd30d z3ep_zoww 9jep Toww L1e38p Pd| y1pe dwdb ¥1_10IdD €IA 91
[sT]Toidb | ST 1€l nud onid 1ud 9q0J3s zd30d €3ep_zoww £3ep_Toww 9tTeIep po| stpe dwdb ST _10Id9 €1N ST
[9z]ooldb ur-suozduy zwmdiya 93ep zoww Zaep Toww Tzeiep po| otpe dwdb 97 001d9 TIL 4y
[€z]ooldb gzwmdiya Slep zoww T3ep ToWw zzeep po| 6pe dwdb 9ZINMdYHI 0Tl €1
[z1]T01db | 1 0gd nud onud 1ud ur_ezd302 03ep”_ZoWW viep Toww 61e3ep pd| Z1pe dwdb 21 10Id9D ZIL 48
[€T]Toidb | ST 0gd nud gnud Tud ur_gzd3de Tiep goww glep Toww g1eIep PI| g1pe dwdb €1 10149 [4%Y) 11
[¥]zoidb 9Jawny uam dwdb 9YIWIL an 01
[s]zoidb Glawiy 3]>_upaq dwdb SYIWIL 9L 6
[g]zoidb L1dwy uaJ_ua0 dwdb LY3NIL LL 8
[2]zoidb plawn de_uape dwdb HIWIL 14 L
[g]T01db €3ep_TowWw epe dwdb € 10I1d9 8l 9
[z]101d6 Zaep Toww zpe dwdb Z 10IdD 8y S
[£]101dB £3ep” TowWw Lpe >wdb L 10Id9 61 2
[9]101dB 93ep” Toww gpe bwdb 9 10Id9 64 €
ano 4

/3d0ONW 93d0ON S3dON ¥Y3A0ON €3d0On 23don [=[a[e] 03dOn JNVYN 204d NId

Inould 8d JapeaH uoisuedx3 :TT'G d|qeL

Chapter 5. BeagleBone Black

278

BeagleBoard Docs, Release 1.0.20230711-wip

Connector P9

Table-13 lists the signals on connector P9. Other signals can be connected to this connector based on setting
the pin mux on the processor, but this is the default settings on power up.

There are some signals that have not been listed here. Refer to the processor documentation for more infor-
mation on these pins and detailed descriptions of all of the pins listed. In some cases there may not be enough
signals to complete a group of signals that may be required to implement a total interface.

The PROC column is the pin number on the processor.
The PIN column is the pin number on the expansion header.

The MODE columns are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTES:
In the table are the following notations:
PWR_BUT is a 5V level as pulled up internally by the TPS65217C. It is activated by pulling the signal to GND.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/0 PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

» Both of these signals connect to pin 41 of P11. Resistors are installed that allow for the GPIO3_20 con-
nection to be removed by removing R221. The intent is to allow the SW to use either of these signals,
one or the other, on pin 41. SW should set the unused pin in input mode when using the other pin. This
allowed us to get an extra signal out to the expansion header.

» Both of these signals connect to pin 42 of P11. Resistors are installed that allow for the GPIO3_18 con-
nection to be removed by removing R202. The intent is to allow the SW to use either of these signals,
on pin 42. SW should set the unused pin in input mode when using the other pin. This allowed us to get
an extra signal out to the expansion header.

5.7. Connectors 279

-wip

BeagleBoard Docs, Release 1.0.20230711

ano Iv-€V
[gT]co1db $ 1€l nud gnud Tad ¥ 0g4 niud onud Tad xyjpe” Tdseow Zixe pdseow ur yodide Djjpe pdseow 8T €0IdD FAT:]
[£]001d6 ZJ3Ul JUBAD ewIPX dmps poww 3PS Tids o wmde uided deds pdeds T.d 1s> 1Ids px3 £3en N0 OWMd Ul 0dVDd L7 001dD 81D [47
[oz]€o1db 9 14 nud onud Tud 9 0gJ4 nud onud Tud £nwa 0Jxe Tdseow Xapul_ 0d3dd Tixe gdseow 0Z €0IdD €1d
[ozlooid6 oxnw enwW3 | 9T Ted nud onud Tud TXNW™ZI3wn 2an0X|d unn T43UI JUSAS_BWPX Z1nod1d via v
INIV LD ov
ONIV 94 6E
ENIV LY 8€
ZNIV L9 LE
SNIV 8d 9€
9NIV 8V SE
ANODV VE
VNIV 8] €€
JAavA [43
[¥T1]€01db 0 1€ nud gnud Tud 0 0g4 nud onud Tad TXNW pops Qoww 3PS TIds vowmdiys x3j|oe” pdseow M1DS TIdS €IV 1€
[9T]co1db Z 1ed nud gnud Tud Z 0€d nud onud 1ud TXNW pIps goww 1p TIds suozduy gwmdays 0Jxe”pdseow 1d TIdS zZ1a 0€
[sT]co1db T 1€l nud gnud Tad T 0gd nud gnud Tud IXNW™ pops Toww op TIds gowmdays xs)_odseow 0da TIdS €19 62
[LT]€01db € 14 nud onud Tud € 0gd nud gnud 1ud N0 ZWMd Ul ZdvD® 0sd Tlds Zixe pdseow 1DUAS” guimdiys jpye gdseow 0SD TIdS F4 o) :Y4
[6T]€01db G 1€d nud onud Tud S 0g4 nud onud 1ud ZXnW zning xsy Tdseow cixe gdseow ul godaoe 1s)-pdseow 6T £0IdD €10 Lz
[v1]o 9T 1€ nud Tnud 1ud pxJ_ouen Tud vas 12zl Xy Tuesp dmps”Toww pxJ_Tuen axy T.iuvn 91a 9z
[TZ]€0! £ 1€ nud onud 1ud £~ 04 nud gnud 1ud ZXnw yNiNg TJxe Tdseow €ixe gdseow 970435 0430 x3j|oye”gdseow 1Z €0IdD vIv (14
[ST]oo1d6 91 1€4 nud onud 1ud px3_omen 1ud 10S 122 XJ"Tuedp dmps zoww px3_THENn ax.i Ti¥vn s1d ve
[L1]T01d6 0duAs guimdiys L1 >wdb 03ep ZOWW APXJ~Zllwbl APXJ~ Zllwb 12 >wdb LT TOIdD PIA €2
[z]ooidb TXNW ZNW3 u"s1 ouen Tud vowmdiys vas 2ozl pxJ_zuen M5 01ds axy ziyvn LIV zz
[€]ooidb TXNW_ENWI u sy ouen Tud gowmdiya 12S 2ozl pxy_zuen op_0!ds axl zi¥vn L18 12
[z1]o01d6 u"s3> ouen Tud 052 11ds vas zozl X3 Quesp 94w us1>_THen vas zozl 81d oz
[eT]ooid6 u“sy ouen 1ud 152 1ds 125 2ozl x1"guesp Giawn usu Tyen 13s 2ol L1d 61
[v]ooid6 pxJ_ouen Tud auozduy gwmdiys vas 1ozl dmps_Toww 1P _0lds vas 1ozi 918 81
[G]ooid6 px3_ouen Tud 1DUAs”ouimdiya 1S 1021 dmps zoww 0s2_0!ds 10S 1221 91V LT
[61]T01d6 TXNW-gTwmdiys 612 dwdb 23ep zoww 2Py zliwby ZpXy_Ziiw €2 dwdb STWMdJYHI vl 91
[9T]T01d6 Indui suozduy Twmdiys 91e dwdb usxy gliw 1323 2wl uaxy Zliwb oe bwdb 9T TOIdD €TY ST
[g1]T0Id6 TXNW yTwmdiys g1e dwdb T1ep Zoww €P1 ZNwbl €px1 gl zedwdb | VIWMJYHI vIn v
[T€]lo01db ZXnw px3 pyen pops zoww 219Xzl gusd> >wdb udm HOwdb ax.yi vidvn LIN €1
[gz]TO1db £xnwj|oe” gdseow Jip d>wdb £3ep Zoww 9usd> >wdb 103" zliw utaq owdb 82 TOIdD 81N k4%
[og]oo1db ZXNwpxJ_ pyen pops” Toww AP SJD”Zliw yusd> owdb s1 ziw oyem d>wdb axy vidvn LTL 1T
ul3S3IY SAS o1V ot
1ng ¥md 6
NS SAS 8‘L
AS_ddAn 9‘s
AE'E DA v'E
dno 't
/3Ad0ON 93d0ON S3A0ON Y3A0ON €3d0on ¢3don 13AON 03dOn JNVN o04dd Nid
Inould 6d JopesH uolsuedx3 :zT1'G d|geL

Chapter 5. BeagleBone Black

280

BeagleBoard Docs, Release 1.0.20230711-wip

5.7.2 Power Jack

The DC power jack is located next to the RJ45 Ethernet connector as shown in «figure-51». This uses the same
power connector as is used on the original BeagleBone. The connector has a 2.1mm diameter center post
(5VDC) and a 5.5mm diameter outer dimension on the barrel (GND).

Fig. 5.53: 5VDC Power Jack

The board requires a regulated 5VDC +/-.25V supply at 1A. A higher current rating may be needed if capes are
plugged into the expansion headers. Using a higher current power supply will not damage the board.

5.7.3 USB Client

The USB Client connector is accessible on the bottom side of the board under the row of four LEDs as shown
in «figure-52». It uses a 5 pin MiniUSB cable, the same as is used on the original BeagleBone. The cable is
provided with the board. The cable can also be used to power the board.

This port is a USB Client only interface and is intended for connection to a PC.

5.7.4 USB Host

There is a single USB Host connector on the board and is shown in Figure 53 below.

The port is USB 2.0 HS compatible and can supply up to 500mA of current. If more current or ports is needed,
then a HUB can be used.

5.7.5 Serial Header

Each board has a debug serial interface that can be accessed by using a special serial cable that is plugged
into the serial header as shown in Figure 54 below.

5.7. Connectors 281

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.54: USB Client

Fig. 5.55: USB Host Connector

Chapter 5. BeagleBone Black

282

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.56: Serial Debug Header

Todo: Make all figure references actual references

Two signals are provided, TX and RX on this connector. The levels on these signals are 3.3V. In order to access
these signals, a FTDI USB to Serial cable is recommended as shown in Figure 55 below.

Fig. 5.57: PRU-ICSS Block Diagram

The cable can be purchased from several different places and must be the 3.3V version TTL-232R-3V3. Infor-
mation on the cable itself can be found direct from FTDI at: pdf

Todo: move accessory links to a single common document for all boards.

Pin 1 of the cable is the black wire. That must align with the pin 1 on the board which is designated by the
white dot next to the connector on the board.

Refer to the support WIKI http://elinux.org/BeagleBoneBlack for more sources of this cable and other options
that will work.

Todo: We should include all support information in docs.beagleboard.org now and leave elLinux to others,

5.7. Connectors 283

https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf
http://elinux.org/BeagleBoneBlack

BeagleBoard Docs, Release 1.0.20230711-wip

freeing it as much as possible

Table is the pinout of the connector as reflected in the schematic. It is the same as the FTDI cable which can
be found at https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf with the exception
that only three pins are used on the board. The pin numbers are defined in Table 14. The signals are from the
perspective of the board.

Table 5.13: J1 Serial Header Pins

PIN NUMBER | SIGNAL
1 Ground
4 Receive
5 Transmit

£22
o T WP

-
el

ey

Fig. 5.58: Serial Header

5.7.6 HDMI
Access to the HDMI interface is through the HDMI connector that is located on the bottom side of the board as
shown in Figure 57 below.

The connector is microHDMI connector. This was done due to the space limitations we had in finding a place
to fit the connector. It requires a microHDMI to HDMI cable as shown in Figure 58 below. The cable can be
purchased from several different sources.

5.7.7 microSD

A microSD connector is located on the back or bottom side of the board as shown in Figure 59 below. The
microSD card is not supplied with the board.

284 Chapter 5. BeagleBone Black

https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.59: HDMI Connector

Fig. 5.60: HDMI Cable

5.7. Connectors 285

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.61: microSD Connector

Chapter 5. BeagleBone Black

286

BeagleBoard Docs, Release 1.0.20230711-wip

When plugging in the SD card, the writing on the card should be up. Align the card with the connector and
push to insert. Then release. There should be a click and the card will start to eject slightly, but it then should
latch into the connector. To eject the card, push the SD card in and then remove your finger. The SD card will
be ejected from the connector.

Do not pull the SD card out or you could damage the connector.

5.7.8 Ethernet

The board comes with a single 10/100 Ethernet interface located next to the power jack as shown in Figure
below.

Fig. 5.62: Ethernet Connector

The PHY supports AutoMDX which means either a straight or a swap cable can be used.

5.7.9 JTAG Connector

A place for an optional 20 pin CTI JTAG header is provided on the board to facilitate the SW development and
debugging of the board by using various JTAG emulators. This header is not supplied standard on the board.
To use this, a connector will need to be soldered onto the board.

If you need the JTAG connector you can solder it on yourself. No other components are needed. The connector is
made by Samtec and the part number is FTR-110-03-G-D-06. You can purchase it from http://www.digikey.com/

5.8 Cape Board Support

The BeagleBone Black has the ability to accept up to four expansion boards or capes that can be stacked onto
the expansion headers. The word cape comes from the shape of the board as it is fitted around the Ethernet
connector on the main board. This notch acts as a key to ensure proper orientation of the cape.

5.8. Cape Board Support 287

https://www.digikey.com

BeagleBoard Docs, Release 1.0.20230711-wip

This section describes the rules for creating capes to ensure proper operation with the BeagleBone Black and
proper interoperability with other capes that are intended to coexist with each other. Co-existence is not a
requirement and is in itself, something that is impossible to control or administer. But, people will be able to
create capes that operate with other capes that are already available based on public information as it pertains
to what pins and features each cape uses. This information will be able to be read from the EEPROM on each
cape.

This section is intended as a guideline for those wanting to create their own capes. Its intent is not to put limits
on the creation of capes and what they can do, but to set a few basic rules that will allow the SW to administer
their operation with the BeagleBone Black. For this reason there is a lot of flexibility in the specification that we
hope most people will find liberating and in the spirit of Open Source Hardware. | am sure there are others that
would like to see tighter control, more details, more rules and much more order to the way capes are handled.

Over time, this specification will change and be updated, so please refer to the latest version of this manual
prior to designing your own capes to get the latest information.

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN
POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.
NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

5.8.1 BeagleBone Black Cape Compatibility

The main expansion headers are the same between the BeagleBone and BeagleBone Black. While the pins are
the same, some of these pins are now used on the BeagleBone Black. The following sections discuss these
pins.

The Power Expansion header was removed from the BeagleBone Black and is not available.
PAY VERY CLOSE ATTENTION TO THIS SECTION AND READ CAREFULLY!!

LCD Pins

The LCD pins are used on the BeagleBone Black to drive the HDMI framer. These signals are listed in Table 15
below.

Table 5.14: P8 LCD Conflict Pins

PIN | PROC | NAME MODEO
27 u5 GPI102_22 lcd_vsync
28 V5 GP102_24 lcd_pclk
29 R5 GPIO2 23 lcd_hsync
30 R6 GPIO2_25 Icd_ac_bias_en
31 \Z: UART5_CTSN | Icd_datal4
32 T5 UART5_RTSN | lcd_datal5
33 V3 UART4_RTSN | lcd_datal3
34 u4 UART3_RTSN | lcd_datall
35 V2 UART4_CTSN | lcd_datal2
36 u3 UART3_CTSN | lcd_datalO
37 Ul UART5_TXD lcd_data8
38 u2 UART5_RXD Icd_data9
39 T3 GPI02_12 Icd_data6
40 T4 GPIO2_13 lcd_data7
41 Tl GPI02_10 Icd_datad
42 T2 GPI02_11 lcd_data5
43 R3 GP102_8 Icd_data2
44 R4 GPIO2_9 lcd_data3
45 R1 GPl02_6 Icd_data0

continues on next page

288 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.14 - continued from previous page
PIN | PROC | NAME MODEO
46 R2 GPI02_7 lcd_datal

If you are using these pins for other functions, there are a few things to keep in mind:
¢ On the HDMI Framer, these signals are all inputs so the framer will not be driving these pins.
e The HDMI framer will add a load onto these pins.

¢ There are small filter caps on these signals which could also change the operation of these pins if used
for other functions.

¢ When used for other functions, the HDMI framer cannot be used.

e There is no way to power off the framer as this would result in the framer being powered through these
input pins which would not a be a good idea.

* These pins are also the SYSBOOT pins. DO NOT drive them before the SYS_RESETN signal goes high. If
you do, the board may not boot because you would be changing the boot order of the processor.

In order to use these pins, the SW will need to reconfigure them to whatever function you need the pins to do.
To keep power low, the HDMI framer should be put in a low power mode via the SW using the /12C0 interface.

eMMC Pins

The BeagleBone Black uses 10 pins to connect to the processor that also connect to the P8 expansion connector.
These signals are listed below in Table 16. The proper mode is MODE2.

Table 5.15: P8 eMMC Conflict Pins

PIN | PROC | SIGNAL MODE
22 | v8 MMC1_DAT5 | 1
23 | U8 MMC1_DAT4 | 1
24 | V7 MMCI_DAT1 | 1
5 R8 MMC1_DAT2 | 1
4 T9 MMC1_DAT7 | 1
3 R9 MMC1_DAT6 | 1
6 T8 MMC1_DAT3 | 1
25 | U7 MMC1_DATO | 1
20 | Vo MMC1_CMD | 2
21 | U9 MMCL_CLK | 2

If using these pins, several things need to be kept in mind when doing so:
¢ On the eMMC device, these signals are inputs and outputs.
¢ The eMMC device will add a load onto these pins.

¢ When used for other functions, the eMMC cannot be used. This means you must boot from the microSD
slot.

 If using these pins, you need to put the eMMC into reset. This requires that the eMMC be accessible from
the processor in order to set the eMMC to accept the eMMC pins.

* DO NOT drive the eMMC pins until the eMMC has been put into reset. This means that if you choose to
use these pins, they must not drive any signal until enabled via Software. This requires a buffer or some
other form of hold off function enabled by a GPIO pin on the expansion header.

On power up, the eMMC is NOT reset. If you hold the Boot button down, this will force a boot from the microSD.
This is not convenient when a cape is plugged into the board. There are two solutions to this issue:

1. Wipe the eMMC clean. This will cause the board to default to microSD boot. If you want to use the eMMC
later, it can be reprogrammed. 2. You can also tie LCD_DATA2 low on the cape during boot. This will be the

5.8. Cape Board Support 289

BeagleBoard Docs, Release 1.0.20230711-wip

same as if you were holding the boot button. However, in order to prevent unforeseen issues, you need to gate
this signal with RESET, when the data is sampled. After set goes high, the signal should be removed from the

pin.

BEFORE the SW reinitializes the pins, it MUST put the eMMC in reset. This is done by taking eMMC_RSTn
(GPIO1_20) LOW after the eMMC has been put into a mode to enable the reset line. This pin does not connect
to the expansion header and is accessible only on the board.

DO NOT automatically drive any conflicting pins until the SW enables it. This puts the SW in control to ensure
that the eMMC is in reset before the signals are used from the cape. You can use a GPIO pin for this. No, we
will not designate a pin for this function. It will be determined on a cape by cape basis by the designer of the
respective cape.

5.8.2 EEPROM

Each cape must have its own EEPROM containing information that will allow the SW to identify the board and to
configure the expansion headers pins as needed. The one exception is proto boards intended for prototyping.
They may or may not have an EEPROM on them. An EEPROM is required for all capes sold in order for them
operate correctly when plugged into the BeagleBone Black.

The address of the EEPROM will be set via either jumpers or a dipswitch on each expansion board. Figure 61
below is the design of the EEPROM circuit.

The EEPROM used is the same one as is used on the BeagleBone and the BeagleBone Black, a CAT24C256. The
CAT24C256 is a 256 kb Serial CMOS EEPROM, internally organized as 32,768 words of 8 bits each. It features
a 64-byte page write buffer and supports the Standard (100 kHz), Fast (400 kHz) and Fast-Plus (1 MHz) 12C
protocol.

VDD_3V3
NN
AN [9V] [o0] o)
orfer IS
oy
%\c’
) el VDD_3V3
3|5 e e u18 T
2,46 12C2_SCL e il 5 :
4, 5 5% SCL VCC
2,4,6 12C2_SDA «}, W SDA —L C130
— sw1 A0 1 vss 014
= SWI AT 2 A0
—T T Al
SW1_A3
A2 wp [—X DGND
SW DIP-2 CAT24C256W

DGND

Fig. 5.63: Expansion Board EEPROM Without Write Protect

The addressing of this device requires two bytes for the address which is not used on smaller size EEPROMs,
which only require only one byte. Other compatible devices may be used as well. Make sure the device you
select supports 16 bit addressing. The part package used is at the discretion of the cape designer.

EEPROM Address

In order for each cape to have a unique address, a board ID scheme is used that sets the address to be different
depending on the setting of the dipswitch or jumpers on the capes. A two position dipswitch or jumpers is used
to set the address pins of the EEPROM.

It is the responsibility of the user to set the proper address for each board and the position in the stack that the
board occupies has nothing to do with which board gets first choice on the usage of the expansion bus signals.
The process for making that determination and resolving conflicts is left up to the SW and, as of this moment

290 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

in time, this method is a something of a mystery due to the new Device Tree methodology introduced in the
3.8 kernel.

Address line A2 is always tied high. This sets the allowable address range for the expansion cards to 0x54
to**0x57**. All other I12C addresses can be used by the user in the design of their capes. But, these addresses
must not be used other than for the board EEPROM information. This also allows for the inclusion of EEPROM
devices on the cape if needed without interfering with this EEPROM. It requires that A2 be grounded on the
EEPROM not used for cape identification.

I12C Bus

The EEPROMs on each expansion board are connected to 12C2 on connector P9 pins 19 and 20. For this reason
12C2 must always be left connected and should not be changed by SW to remove it from the expansion header
pin mux settings. If this is done, the system will be unable to detect the capes.

The 12C signals require pullup resistors. Each board must have a 5.6K resistor on these signals. With four capes
installed this will result in an effective resistance of 1.4K if all capes were installed and all the resistors used
were exactly 5.6K. As more capes are added the resistance is reduced to overcome capacitance added to the
signals. When no capes are installed the internal pullup resistors must be activated inside the processor to
prevent 12C timeouts on the 12C bus.

The 12C2 bus may also be used by capes for other functions such as 1/O expansion or other 12C compatible
devices that do not share the same address as the cape EEPROM.

EEPROM

The design in Figure 62 has the write protect disabled. If the write protect is not enabled, this does expose
the EEPROM to being corrupted if the 12C2 bus is used on the cape and the wrong address written to. It is
recommended that a write protection function be implemented and a Test Point be added that when grounded,
will allow the EEPROM to be written to. To enable write operation, Pin 7 of the EEPROM must be tied to ground.

When not grounded, the pin is HI via pullup resistor R210 and therefore write protected. Whether or not Write
Protect is provided is at the discretion of the cape designer.

Variable & MAC Memory VDD_3V3B

u7
- 6 8
2,4 [2C0_SCL_>»> 5% SCL VCC
2,4 12C0_SDA <> SDA 102
4
1 VSS 0.1uf 16V
7% A0
3 Al WP <N
A2 WP R210 YORY% DGND
<L CAT24C256W
DEND 256K X8
P2
TESTPT1

Fig. 5.64: Expansion Board EEPROM Write Protect

EEPROM Data Format

Table below shows the format of the contents of the expansion board EEPROM. Data is stored in Big Endian
with the least significant value on the right. All addresses read as a single byte data from the EEPROM, but two
byte addressing is used. ASCII values are intended to be easily read by the user when the EEPROM contents
are dumped.

5.8. Cape Board Support 291

BeagleBoard Docs, Release 1.0.20230711-wip

Name Offset | Size (bytes) | Contents

Header 0 4 OxAA, 0x55, 0x33, OxEE

EEPROM Revision 4 2 Revision number of the overall format of this EEPROM in ASCII =Al

Board Name 6 32 Name of board in ASCII so user can read it when the EEPROM is dumped. Up to

Version 38 4 Hardware version code for board in ASCII.Version format is up to the developer.

Manufacturer 42 16 ASCII name of the manufacturer. Company or individual’s name.

Part Number 58 16 ASCII Characters for the part number. Up to maker of the board.

Number of Pins 74 2 Number of pins used by the daughter board including the power pins used. De

Serial Number 76 12 Serial number of the board. This is a 12 character string which is: WWYY&&&

Pin Usage 88 148 Two bytes for each configurable pins of the 74 pins on the expansion connectol

VDD_3V3B Current | 236 2 Maximum current in milliamps. This is HEX value of the current in decimal 150f

VDD_5V Current 238 2 Maximum current in milliamps. This is HEX value of the current in decimal 150(

SYS_5V Current 240 2 Maximum current in milliamps. This is HEX value of the current in decimal 150f

DC Supplied 242 2 Indicates whether or not the board is supplying voltage on the VDD_5V rail and

Available 244 32543 Available space for other non-volatile codes/data to be used as needed by the |
Pin Usage

Table 18 is the locations in the EEPROM to set the I/O pin usage for the cape. It contains the value to be written
to the Pad Control Registers. Details on this can be found in section 9.2.2 of the AM3358 Technical Reference
Manual, The table is left blank as a convenience and can be printed out and used as a template for creating a
custom setting for each cape. The 16 bit integers and all 16 bit fields are to be stored in Big Endian format.

Bit 15 PIN USAGE is an indicator and should be a 1 if the pin is used or 0 if it is unused.

Bits 14-7 RESERVED is not to be used and left as 0.

Bit 6 SLEW CONTROL O=Fast 1=Slow

Bit 5 RX Enabled 0=Disabled 1=Enabled

Bit 4 PU/PD 0=Pulldown 1=Pullup.

Bit 3 PULLUP/DN 0=Pullup/pulldown enabled 1= Pullup/pulldown disabled

Bit 2-0 MUX MODE SELECT Mode 0-7. (refer to TRM)

Refer to the TRM for proper settings of the pin MUX mode based on the signal selection to be used.

The AINO-6 pins do not have a pin mux setting, but they need to be set to indicate if each of the pins is used
on the cape. Only bit 15 is used for the AIN signals.

292 Chapter 5. BeagleBone Black

-wip

BeagleBoard Docs, Release 1.0.20230711

+ + + + + + + + + + + 9T 10IdD | ST-6d (43
+ + + + + + + + + + + ST 1I0IdD | ST-8d 0ST
+ + + + + + + + + + + 1 101dD | 91-8d 14
+ + + + + + + + + + + €T TOIdD | TI-8d 1A
+ + + + + + + + + + + 2T TOIdD | 2I-8d ja4%
+ + + + + + + + + + + L 101dD v-8d (449
+ + + + + + + + + + + 9 TOIdD €-8d ovT
+ + + + + + + + + + + S TOIdD | zz-8d 8€T
+ + + + + + + + + + + v 10IdD | €z-8d 9€T
+ + + + + + + + + + + € 101dD 9-8d PEL
+ + + + + + + + + + + Z T0I1dD S-8d TET
+ + + + + + + + + + + T 10I1dD | vz-8d O€T
+ + + + + + + + + + + 0 TOIdD | sZ-8d 8zt
+ + + + + + + + + + + axl vi¥vn | €1-6d 9zt
+ + + + + + + + + + + axy vidvn | TI-6d rz1
+ + + + + + + + + + + L2 001dD | LI-8d 2zt
+ + + + + + + + + + + 92 001dD | ¥I-8d 0z1
+ + + + + + + + + + + GZWMdJYHI | €1-8d 8TT
+ + + + + + + + + + + VZWMdHH3 61-8d 91T
+ + + + + + + + + + + ZLNOMT1D | Tv-6d YIL
+ + + + + + + + + + + axl Tidvn | v2-6d (499
+ + + + + + + + + + + axy T.L«dvn 92-6d 0TT
+ + + + + + + + + + + vas zdzl | 0z-6d 80T
+ + + + + + + + + + + 10S 22l | 6T-6d 90T
+ + + + + + + + + + + | Nsl¥ si¥vn | z€-8d ot
+ + + + + + + + + + + NSLD SL1uvn T€-8d 201
+ + + + + + + + + + + NSLH vLdvNn €£€-8d 00T
+ + + + + + + + + + + | NSLD vidvn | s€-8d 86
+ + + + + + + + + + + L 001dD Zv-6d 926
+ + + + + + + + + + + 10S 122 L1-6d v6
+ + + + + + + + + + + vas 1d21 | 8I-6d z6
+ + + + + + + + + + + axl zi¥vn | T2-6d 06
+ + + + + + + + + + + axy ziuvn | zz-6d 88
apo XN N3Id/nd | ad-nd | Xy Mm3is + + paniasay + adAL | abesn uid swenN uuo) | 3I9s o
] 9 L 8 6 11§ L cl €l 43 Gl + + +

abesn uld INOYd3T LT’ dl9eL

293

5.8. Cape Board Support

-wip

BeagleBoard Docs, Release 1.0.20230711

+ + + + + + + + + + + INIV GE-6d [4X4
+ + + + + + + + + + + SNIV 9€-6d [434
+ + + + + + + + + + + VNIV £€-6d 0€C
+ + + + + + + + + + + ENIV 8€-6d 8¢¢C
+ + + + + + + + + + + ZNIV LE-6d 9z¢
+ + + + + + + + + + + INIV | Ov-6d 22
+ + + + + —+ —+ + + + + ONIV 6£-6d [444
0 0 0 0 0 0] 0 0 0 + + + +
Spow XN N3Ia/Nd ad-nd | x4 | m3is BAI95Y adAL | abesn uld awen uuod | 19s Yo
S 9 L 8 6 0T It [45 €1 V1 ST + + +
+ + + + + + + + + + + 12 €01dD | GZ-6d 0zz
+ + + + + + + + + + + MIDS TIdS | T€-6d 81¢
+ + + + + + + + + + + 6T £0IdD L2-6d 91Z
+ + + + + + + + + + + 0SD TIdS | 8Z-6d 4%
+ + + + + + + + + + + 1A TIdS | 0€-6d [4%4
+ + + + + + + + + + + 04 TIdS | 62-6d 012
+ + + + + + + + + + + GZ°Z0ldO | 0€-8d 802
+ + + + + + + + + + + ¥2 20IdD | 8z-8d 90z
+ + + + + + + + + + + €2201d9 | 6Z-8d ¥0z
+ + + + + + + + + + + 222019 | Lz-8d 20z
+ + + + + + + + + + + NSLY £14VN €-8d 00Z
+ + + + + + + + + + + NSLD €14VN 9€-8d 86T
+ + + + + + + + + + + | +.XYSl¥vn | 8e-8d 961
+ + + + + + + + + + + | XL SIMvN | LE-8d ¥6T
+ + + + + + + + + + + €T 20IdD | 0p-8d z61
+ + + + + + + + + + + 21 201d9 | 6€-8d 061
+ + + + + + + + + + + 1T 20Id9 | Zv-8d 881
+ + + + + + + + + + + 0T 2ZOId9 | T+-8d 981
+ + + + + + + + + + + 6 20IdD | t¥-8d 81
+ + + + + + + + + + + 8 2Z0IdD | €¥-8d z81
+ + + + + + + + + + + L7Z0Id9 | 9+-8d 08t
+ + + + + + + + + + + 9 20I1d9 | S¥-8d 8.1
+ + + + + + + + + + + LYFWIL 8-8d 9.1
+ + + + + + + + + + + 9YIWIL 0T-8d VLT
+ + + + + + + + + + + SYIWIL 6-8d LT
PYIWIL L-8d 0L1
120D | 81-8d 891
1€ 10I1d9 02-8d 991
0€ 10Id9 1Z-8d V9T
62 10Id9 9¢-8d 291
8¢ 10IdD ¢1-6d 09T
GTINMdYHI 91-6d 8ST
VINMdYHI v1-6d 9ST
LT TOId9D | €2Z-6d vST
PO XNy N3Id/Nd ad-nd X d M3ITS + + 9AI9SBY + 9dAL abesn uld [weN uuo)d 189S 4O
°] 9 L 8 6 | 0 3 ¢l | €1 vl Sl

Chapter 5. BeagleBone Black

294

BeagleBoard Docs, Release 1.0.20230711-wip

5.8.3 Pin Usage Consideration

This section covers things to watch for when hooking up to certain pins on the expansion headers.

Boot PIN

There are 16 pins that control the boot mode of the processor that are exposed on the expansion headers.
Figure 63 below shows those signals as they appear on the BeagleBone Black.:

VDD_3V3A
82
I 9% 92 9 1% 1% 1% 1% 1% % 92 94 194 ¥4 14 14 R75 100 MR231GLFS
=== EEEEEEEEE EE 1 3
O|O0O|O|0O|O0|O|0|0|0|0|0|O) taniliantiant L] L]
gy
2 4
SYS BOOTO (055 | cp DATAO 4,10,11 M
b A > —) 3y
SYS BOQT1 LCD_DATA1 4,10,11 uSD BOOT
SYS _BOOT? LCD_DATA2 4,10,11 A4
SYS BOOT3 (2SS | CD DATA3 4,10,11 DEND
SYS BOQOT4 > LCD_DATA4 4,10,11
SYS BOOTS LCD_DATA5 4,10,11
SYSTBOOTB XS [GppATAG 410,11
SYS BOQTZ 2S5 (CD_DATA7 410,11
SYSTBOOTB XS [CpDATAS 410,11
SYS BOOT9 LCD_DATA9 4,10,11
SYS BOOTI0ZSS | cp DATA10 4,10,11
SYS BOOT11 LCD_DATA11 4,10,11
SYS BOQT12 LCD_DATA12 4,10,11
SYS BOOT13 LCD_DATA13 4,10,11
SYS_BOOT14 LCD_DATA14 4,10,11
SYS BOOT1505S [CD DATA15 4,10,11
O | N[OOI O DO | N < |
] [co] [= o] [s o] [e o] [vo] [75] [+ o] [s'6] [22] (2] [>][e>] [e)] [e>]
[0d [0 [0 [0d 24 [0 [0'd [0 [s'4 [0d[0'd[s'd [ad[n's
3 35954
Ol o= &)=
S s S S S S S S A S B B
[1 19 194 19 [[194 194 194 1 ¥ 194 194 14 9
o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o
O|0|0O|0|0|O|0O|0|0|O|O|0|O|o|o|O0
DGND

Figure 63. Expansion Boot Pins
Fig. 5.65: Boot signals

If you plan to use any of these signals, then on power up, these pins should not be driven. If you do, it can
affect the boot mode of the processor and could keep the processor from booting or working correctly.

If you are designing a cape that is intended to be used as a boot source, such as a NAND board, then you should
drive the pins to reconfigure the boot mode, but only at reset. After the reset phase, the signals should not
be driven to allow them to be used for the other functions found on those pins. You will need to override the
resistor values in order to change the settings. The DC pull-up requirement should be based on the AM3358
Vih min voltage of 2 volts and AM3358 maximum input leakage current of 18uA. Also take into account any
other current leakage paths on these signals which could be caused by your specific cape design.

The DC pull-down requirement should be based on the AM3358 Vil max voltage of 0.8 volts and AM3358
maximum input leakage current of 18uA plus any other current leakage paths on these signals.

5.8. Cape Board Support 295

BeagleBoard Docs, Release 1.0.20230711-wip

5.8.4 Expansion Connectors
A combination of male and female headers is used for access to the expansion headers on the main board.
There are three possible mounting configurations for the expansion headers:

* Single no board stacking but can be used on the top of the stack.

e Stacking-up to four boards can be stacked on top of each other.

e Stacking with signal stealing-up to three boards can be stacked on top of each other, but certain boards
will not pass on the signals they are using to prevent signal loading or use by other cards in the stack.

The following sections describe how the connectors are to be implemented and used for each of the different
configurations.

Non-Stacking Headers-Single Cape
For non-stacking capes single configurations or where the cape can be the last board on the stack, the two 46

pin expansion headers use the same connectors. Figure 64 is a picture of the connector. These are dual row
23 position 2.54mm x 2.54mm connectors.

Fig. 5.66: Single Expansion Connector
The connector is typically mounted on the bottom side of the board as shown in Figure 65. These are very
common connectors and should be easily located. You can also use two single row 23 pin headers for each of

the dual row headers.

Fig. 5.67: Single Cape Expansion Connector

It is allowed to only populate the pins you need. As this is a non-stacking configuration, there is no need for
all headers to be populated. This can also reduce the overall cost of the cape. This decision is up to the cape
designer.

For convenience listed in Table 19 are some possible choices for part numbers on this connector. They have
varying pin lengths and some may be more suitable than others for your use. It should be noted, that the longer
the pin and the further it is inserted into the BeagleBone Black connector, the harder it will be to remove due
to the tension on 92 pins. This can be minimized by using shorter pins or removing those pins that are not
used by your particular design. The first item in**Table 18** is on the edge and may not be the best solution.
Overhang is the amount of the pin that goes past the contact point of the connector on the BeagleBone Black

Table 5.19: Single Cape Connectors

SUPPLIER PARTNUMBER LENGTH(in) | OVERHANG(in)
Major League | TSHC-123-D-03-145-G-LF | .145 .004
Major League | TSHC-123-D-03-240-G-LF | .240 .099
Major League | TSHC-123-D-03-255-G-LF | .255 114

The G in the part number is a plating option. Other options may be used as well as long as the contact area is
gold. Other possible sources are Sullins and Samtec for these connectors. You will need to ensure the depth

296 Chapter 5. BeagleBone Black

http://www.mlelectronics.com/
http://www.mlelectronics.com/
http://www.mlelectronics.com/

BeagleBoard Docs, Release 1.0.20230711-wip

into the connector is sufficient

Main Expansion Headers-Stacking

For stacking configuration, the two 46 pin expansion headers use the same connectors. Figure 66 is a picture
of the connector. These are dual row 23 position 2.54mm x 2.54mm connectors.

Fig. 5.68: Expansion Connector

The connector is mounted on the top side of the board with longer tails to allow insertion into the BeagleBone
Black. Figure 67 is the connector configuration for the connector.

. | |
T

Fig. 5.69: Stacked Cape Expansion Connector

For convenience listed in Table 18 are some possible choices for part numbers on this connector. They have
varying pin lengths and some may be more suitable than others for your use. It should be noted, that the longer
the pin and the further it is inserted into the BeagleBone Black connector, the harder it will be to remove due
to the tension on 92 pins. This can be minimized by using shorter pins. There are most likely other suppliers
out there that will work for this connector as well. If anyone finds other suppliers of compatible connectors
that work, let us know and they will be added to this document. The first item in**Table 19** is on the edge
and may not be the best solution. Overhang is the amount of the pin that goes past the contact point of the
connector on the BeagleBone Black.

The third part listed in Table 20 will have insertion force issues.

Table 5.20: Stacked Cape Connectors

SUPPLIER PARTNUMBER TAIL LENGTH(in) | OVERHANG(in)
Major League | SSHQ-123-D-06-G-LF | .190 0.049
Major League | SSHQ-123-D-08-G-LF | .390 0.249
Major League | SSHQ-123-D-10-G-LF | .560 0.419

There are also different plating options on each of the connectors above. Gold plating on the contacts is the
minimum requirement. If you choose to use a different part number for plating or availability purposes, make
sure you do not select the “LT” option.

Other possible sources are Sullins and Samtec but make sure you select one that has the correct mating depth.

StackedStealing

Figure 68 is the connector configuration for stackable capes that does not provide all of the signals upwards
for use by other boards. This is useful if there is an expectation that other boards could interfere with the
operation of your board by exposing those signals for expansion. This configuration consists of a combination
of the stacking and nonstacking style connectors.

5.8. Cape Board Support 297

http://www.mlelectronics.com/
http://www.mlelectronics.com/
http://www.mlelectronics.com/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.70: Stacked w/Signal Stealing Expansion Connector

Retention Force

The length of the pins on the expansion header has a direct relationship to the amount of force that is used
to remove a cape from the BeagleBone Black. The longer the pins extend into the connector the harder it is
to remove. There is no rule that says that if longer pins are used, that the connector pins have to extend all
the way into the mating connector on the BeagleBone Black, but this is controlled by the user and therefore is

hard to control. We have also found that if you use gold pins, while more expensive, it makes for a smoother
finish which reduces the friction.

This section will attempt to describe the tradeoffs and things to consider when selecting a connector and its
pin length.

Figure 69 shows the key measurements used in calculating how much the pin extends past the contact point
on the connector, what we call overhang.

MATING PIN

MATING CONNECTOR

PCE 0.62

AT TR U

Point of Contact
.079] (2,00)

““'\\-\\'\\'\}Y\\\\\m
N

AR

Max. Insertion
Depth
.250 (6,35)

I

MAJOR LEAGUE ELECTRONICS CONNECTOR

Fig. 5.71: Connector Pin Insertion Depth

To calculate the amount of the pin that extends past the Point of Contact, use the following formula:
Overhang=Total Pin Length- PCB thickness (.062) - contact point (.079)

The longer the pin extends past the contact point, the more force it will take to insert and remove the board.
Removal is a greater issue than the insertion.

5.8.5 8.5 Signal Usage

Based on the pin muxing capabilities of the processor, each expansion pin can be configured for different
functions. When in the stacking mode, it will be up to the user to ensure that any conflicts are resolved
between multiple stacked cards. When stacked, the first card detected will be used to set the pin muxing of

298 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

each pin. This will prevent other modes from being supported on stacked cards and may result in them being
inoperative.

In «section-7-1» of this document, the functions of the pins are defined as well as the pin muxing options.
Refer to this section for more information on what each pin is. To simplify things, if you use the default name as
the function for each pin and use those functions, it will simplify board design and reduce conflicts with other
boards.

Interoperability is up to the board suppliers and the user. This specification does not specify a fixed function on
any pin and any pin can be used to the full extent of the functionality of that pin as enabled by the processor.

DO NOT APPLY VOLTAGE TO ANY I/0O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE
PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

5.8.6 8.6 Cape Power

This section describes the power rails for the capes and their usage.

Main Board Power

The Table 1 describes the voltages from the main board that are available on the expansion connectors and
their ratings. All voltages are supplied by connector**P9**, The current ratings listed are per pin.

Table 5.21: Expansion Voltages

Current | Name P9 | P9 | Name Current
250mA | VDD 3V3B | 3 4 VDD _3V3B | 250mA
1000mA | VDD _5V 5 6 VDD _5V 1000mA
250mA | SYS 5V 7 8 SYS 5V 250mA

The VDD_3V3B rail is supplied by the LDO on the BeagleBone Black and is the primary power rail for expansion
boards. If the power requirement for the capes exceeds the current rating, then locally generated voltage rail
can be used. It is recommended that this rail be used to power any buffers or level translators that may be
used.

VDD _5V is the main power supply from the DC input jack. This voltage is not present when the board is powered
via USB. The amount of current supplied by this rail is dependent upon the amount of current available. Based
on the board design, this rail is limited to 1A per pin from the main board.

The SYS_5V rail is the main rail for the regulators on the main board. When powered from a DC supply or USB,
this rail will be 5V. The available current from this rail depends on the current available from the USB and DC
external supplies.

Power

A cape can have a jack or terminals to bring in whatever voltages may be needed by that board. Care should
be taken not to let this voltage be fed back into any of the expansion header pins.

It is possible to provide 5V to the main board from an expansion board. By supplying a 5V signal into the
VDD _5V rail, the main board can be supplied. This voltage must not exceed 5V. You should not supply any
voltage into any other pin of the expansion connectors. Based on the board design, this rail is limited to 1A
per pin to the BeagleBone Black.

There are several precautions that need to be taken when working with the expansion headers to prevent
damage to the board.

1. Do not apply any voltages to any I/O pins when the board is not powered on. 2. Do not drive any external
signals into the I/O pins until after the VDD_3V3B rail is up. 3. Do not apply any voltages that are generated

5.8. Cape Board Support 299

BeagleBoard Docs, Release 1.0.20230711-wip

from external sources. 4. If voltages are generated from the VDD_5V signal, those supplies must not become
active until after the VDD _3V3B rail is up. 5. If you are applying signals from other boards into the expansion
headers, make sure you power the board up after you power up the BeagleBone Black or make the connections
after power is applied on both boards.

Powering the processor via its I/O pins can cause damage to the processor.

5.8.7 8.7 Mechanical

This section provides the guidelines for the creation of expansion boards from a mechanical standpoint. Defined
is a standard board size that is the same profile as the BeagleBone Black. It is expected that the majority of
expansion boards created will be of standard size. It is possible to create boards of other sizes and in some
cases this is required, as in the case of an LCD larger than the BeagleBone Black board.

Standard Cape Size

=575
/%.500 2X
| .'_} U(_:*'—'. e a5 O CDOODOOOOOOOOOOOOODOOOOH
& = AWODOOOOOOOOO O‘ 1 900
Pih1 | | R
450 |
1.525
=) o
0 275 <
. i
N ges | LM - — 126 3X
I OOt O Tp)
e
2 Pin " [_ ood_| ; C/,
o B N ,I_II i _-"I— e
% i 125 X A00Gee8800000000000000 7 Euo
| #C‘ /aoooooooooooooooooc-c:-oc:-o_,/[/
/ Pin 1 + /
R.250 (
0 n oo N O
M~ O = g
uy o =l <}
M M
= 3.400 e

Fig. 5.72: Cape Board Dimensions

A slot is provided for the Ethernet connector to stick up higher than the cape when mounted. This also acts as
a key function to ensure that the cape is oriented correctly. Space is also provided to allow access to the user
LEDs and reset button on the main board.

Some people have inquired as to the difference in the radius of the corners of the BeagleBone Black and why
they are different. This is a result of having the BeagleBone fit into the Altoids style tin.

It is not required that the cape be exactly like the BeagleBone Black board in this respect.

Extended Cape Size

Capes larger than the standard board size are also allowed. A good example would be an LCD panel. There
is no practical limit to the sizes of these types of boards. The notch for the key is also not required, but it is
up to the supplier of these boards to ensure that the BeagleBone Black is not plugged in incorrectly in such a

300 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

manner that damage would be caused to the BeagleBone Black or any other capes that may be installed. Any
such damage will be the responsibility of the supplier of such a cape to repair.

As with all capes, the EEPROM is required and compliance with the power requirements must be adhered to.

Enclosures
There are numerous enclosures being created in all different sizes and styles. The mechanical design of these
enclosures is not being defined by this specification.

The ability of these designs to handle all shapes and sizes of capes, especially when you consider up to four can
be mounted with all sorts of interface connectors, it is difficult to define a standard enclosure that will handle
all capes already made and those yet to be defined.

If cape designers want to work together and align with one enclosure and work around it that is certainly
acceptable. But we will not pick winners and we will not do anything that impedes the openness of the platform
and the ability of enclosure designers and cape designers to innovate and create new concepts.

5.9 BeagleBone Black Mechanical

5.9.1 Dimensions and Weight

Size: 3.5" x 2.15” (86.36mm x 53.34mm)
Max height: .187” (4.76mm)

PCB Layers: 6

PCB thickness: .062”

RoHS Compliant: Yes

Weight: 1.4 oz

5.9.2 Silkscreen and Component Locations

5.10 Pictures

5.11 Support Information

All support for this design is through the BeagleBoard.org community at: beagleboard@googlegroups.com or
http://beagleboard.org/discuss

5.11.1 Hardware Design
Design documentation can be found on the eMMC of the board under the documents/hardware directory when
connected using the USB cable. Provided there is:

* Schematic in PDF

¢ Schematic in OrCAD (Cadence Design Entry CIS 16.3)

* PCB Gerber

* PCB Layout (Allegro)

* Bill of Material

¢ System Reference Manual (This document).

5.9. BeagleBone Black Mechanical 301

mailto:beagleboard@googlegroups.com
http://beagleboard.org/discuss

BeagleBoard Docs, Release 1.0.20230711-wip

b o
™ g o
[ofe } * w3
L0
o
./-: + 4+ + ’ ¢ - 00:& E—:‘I‘_
+ oot o
<> I o4+ It T +++’“
/ + o+ St e .
oo, + i[] 0 ool SLT ¢
oo oo
DD% ? 0O
oof oo
oo} oo
oo* oo
DD%} nlin
oo = 4% oad
+ 4y
oo+ oo
oo + oo
oo+ <+ oo
|:|I:|+ iy oad
I:II:I+ 1+ oo (e}
OO+ + oo -
oo §F oo -
oo, s+ oo y
DD% 0 H “
oo+ &5, VAT TR - +¢DD
BB L7 auppees 80 50 T 00
DD: I“E:m % HI +++ oo
og+ =+ * Tioep £ w wt & B[
+ ++ + $ + 0k
oo + e T P +# %00
o0 “ *+pog
ooho TTEWTo 4
L A W
<> + ; +3+ ONONON@! + . oo 0'7 SLG'
T = = =
H R + 'KI—\I I_/- & +++ 1
. -+ A\, s ++ [1
\ - r + [|
) OQ +OJ o, / w
+ W
S P o
(o |
bt OLO -l
N L i
—O 1
O . . "
LO NN
(]
o ST "2

Fig. 5.73: Board Dimensions

302 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

o wRBe8BeR g
. (5] =
TP4 &
£ = w (OOjayca
A 0O &5 5 o@
\\,/%l C\ g 75 \ ~ Ojo|jgjd) & Y
=) e \
= soOooeg OO |
0o o m@mu@@m
L O @) 2 !E%EE;H g
% ==}
1 e ®C OO
m |) \ = Q2 =
] S S P o 9o ey
o BB
Y Y = f
Il O ED D o &5 \ /
LIy
0" Sy N O T - O \\, ,,.-/
e 2k W T3] e %)
-~
10/100 Ethernet =) 1O
3 =)
= = I:I 0000000, (AR
= Sd 5 1
= = LS oy
2 DO = = Saidaisasanens B lspme
=) =] 2 N
208 [] T R O O
coo o o ooo -
4 [[[£ gis 1 0O O
ol o o i o T 950 000005 0500
0co 00a0 2
N Sassassasassas O O
o o R ceocaccocsaaas [N N
EOSCEEEEER 2
S gQERRSEDE N
N N
TN Ty DT DIgog g = =0 |~ M
(_,/ >, 25 R23 R24 RS0 o U
_ n ©|0000000C0000C0C000CO a o« L] _ _
Y () 000000000000 00OCO0O [Y ()
/’ ') O 000000000 DO0OOODO0DO Ry v
—C‘ caz2 CO00000O0000O0O0DDOO0O
il V al (]| 0000000000000 00O00O0 9 (165 ™ Y
--K_/ '\)--D =y 31 EII% 00000000000 CO0D0000 = =2 P -(\,/ k/--
- - ety O 00000000000 CODO00Q L2/ -
7N i c3 E"@:';} 000DDO000DD0O0OO0O0D0O0O R81 —~
) \) _/ Lo [l [] 000000000000000000 R48 R80 _/ (1‘
- - c27 c33 000000000 DOOOODODOO0OO R4T R45 RB4 }
—~ - R-N-N-N-N-N-N-N-N-N-N-N.-N-N-N-N-] - R&2
\'/\ O \./\. ﬁ Q00000000000 QO0O0O00QQCO0O LIBE 24’6 R83 f-\ O
e 7 — =, s 000000000000000000 | 0187 Cié RS 3
= ccoocoooco0OoOOOOROO|W ClE0 €167 = .
(M \f\ C\ u u w coooooooooocooooco (W [OT DO L @) (\\
S 4 ~ ocoonoooopnoocooooco|d] Ra7 s N
“a o —~ it cocoooooconoocoooooco (Pt [T DO Res —~ o~
00000000000 COO00CO R8S Y !
Q/ \,) () D D : = = D Do R90 J (,/
- - i g Od ke B B
Ly Sy Ly U
0 On0] , DU Reloaegfabens & a3 2 5279 Y
= R DO DO s DA |
@ E Da |y)
OO, A"y ==cwona w @ .o DO O
W) g . DDDI]I]I]DI]I]DDI]I]I]DD"IJ\
w _// = O [[l _ _
(_\ /_) = %i// i - oo:;nocoonocooo:up o= = [[) (\
R DOD0ODOOO0ODOO000D =2 =2 B A ~
‘/_\I (_)_‘_ \\ w| 0000000000000 000 SSE E E"D; (_\ (‘
L = SR [] R N vy
I Ve = B9
i | ocooooooococooDOCOOD o3 | ™
L, _) \ '| cccoocs00n0000600 E E oo |\
o w| 000000000000 O00D0 w2 DADID:
LY ()= 3 - S T° =) (-
f_/ () N, a fl:lDI]I:II]I:IEII]I:IDI]I:II]I:IEII]P[‘2 %E:) 3
NG Ty i R = ro3 DO Y
R LAJ i+ beaglebeondonc s 9 5 D@y O O
- i C 0 B3 .Das -
A 8 N, NPT ey T q cEg ooy O
) U 0O 1 KAL) Equ DU M HUUHH HHUHH 00 og |~
|~ ™ AR 2 E75 ~ ||
O O] = | sod | O O
\® @5 S o OO0} 0o -k
\FB% _ g O [I F3&
l/ \m C153
|
\ =S k14 Dujl L] O
. /8 as EIHEIjvss
3 ot ~ % ~ RL52 Elm:lj [COEgcise [EE] rist
= | g
e) ‘_,-‘ _ ,l microSD Card B

Fig. 5.74: Component Side Silkscreen

5.11. Support Information 303

BeagleBoard Docs, Release 1.0.20230711-wip

noooC_F

/

Fig. 5.75: Circuit Side Silkscreen

| O
o o o Rl48 .
m] D@E od, 0O Dog
a0 u o] ([
[L p i)
147 cue o
C146 R0
RE9
RES
—~ s o o i 145 c144 ol
(Y 0 0OF @ ciggs @g og Do
B 1 i ey ey R)
155 2 ome g c172 RE3
C> 1 (] m] o Elj 2 OGs g *& llil é"@ R62
— c103 O ¢
| 102 ENCD [‘E 88 oo OO l;:at
() e i cis2 O] RE8
= c2 OO EHE ;&;‘1 clel O RS7
O e " DO Bar: gegegeged: ™ T2 09 ek |an |O (
- Rzl Rl164 OO [COOdciod =S e e e = EI"EI S c16a e e N~ s
~ DOk Dgcs: o @,H oo Rse SO
) 2 I 2 20 » m] Bl | 5
~ o AN g BRee = B3 *n v BAa| || pg|Y Y
o8 & @.@,Zi DOoDODOD aoaoa m] - s
—/ g csg C88 C12 048 o % 0 o O3 () ()

HHHH l!'“ csx OO EI:: O ese @ug o |:| o) - -
[]o Oo0:0:000: DaEg oa |~)

e R = S R Sy =

o v T
Rl P2 22223322 2 B o RIET (158 | o~ I
B s s o ., s = Ddcss DO |\ S
[Dn3l r160 —~
gty == O O
Rlsel
—
o e ot s s i) (_/ L
cl30 C125 s
850 O
R R €129 2162 - =
' U o]| Elljl If-—a,_(\
E*Z ¢ 0o D £ g ! D3 DT |~
[0o = . g c128 Flﬁq:I:'! Y
C15s oo 008 5 |)
o[- &[] [0 ba Dog-Oog® “g w Dok
I:l 1 o] im] -~ s 1 = o [L Do i
— |:||| D”D 3 R156 T e I;l w0 |_|u 2 e Sl N
l:l DO g = D @m o D i |_| E”j D'@ st o
as (L] = g =7 |00
R141 &@@@E‘@ EEEEEE Vel
E— D'j D@ e ~DODOD DERBES [1O
R A O 10 142 = =
‘_ / \.r‘ (..J —

" N
Cyi) f \
(AR DiTr77 |)

Bz 74 \,_ __,_/
7 ~
N O&lr7e
OOk 7e
- b |
A J /

fd

-

304

Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

USER LEDS R
02 &
0

(-

@

DQQ]HE;N

=l LE1Y

- @I‘] 11%]

INE T ec1d
. 9E0)

&

eI

==/

PIRIPIIN P G Gt
B~ S

i)
]

- [
il
R

B EL AL AR e
. :?_Jrihl-U(

Fig. 5.76: Top Side

-
gl Bl

RER

Fig. 5.77: Bottom Side

5.11. Support Information

305

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.78: 45 Degree Top

306 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

This directory is not always kept up to date in every SW release due to the frequency of changes of the SW.
The best solution is to download the files from http://www.beagleboard.org/distros

We do not track SW revision of what is in the eMMC. SW is tracked separately from the HW due to the frequency
of changes which would require massive relabeling of boards due to the frequent SW changes. You should
always use the latest SW revision.

To see what SW revision is loaded into the eMMC follow the instructions at https://elinux.org/Beagleboard:
Updating_The_Software#Checking_The_Angstrom_Image_Version

5.11.2 Software Updates
It is a good idea to always use the latest software. Instructions for how to update your software to the latest
version can be found at:

http://elinux.org/BeagleBoneBlack#Updating the eMMC_Software

5.11.3 RMA Support

If you feel your board is defective or has issues, request an RMA by filling out the form at http://beagleboard.
org/support/rma . You will need the serial number and revision of the board. The serial numbers and revisions
keep moving. Different boards can have different locations depending on when they were made. The following
figures show the three locations of the serial and revision number.

Fig. 5.79: Initial Serial Number and Revision Locations

5.11.4 Trouble Shooting HDMI Issues

Many people are having issues with getting HDMI to work on their TV/Display. Unfortunately, we do not have
the resources to buy all the TVs and Monitors on the market today nor go to eBay and buy all of the TVs and
monitors made over the last five years to thoroughly test each and every one. We are depending on community
members to help us get these tested and information provided on how to get them to work.

One would think that if it worked on a lot of different TVs and monitors it would work on most if not all of them,
assuming they meet the specification. However, there are other issues that could also result in these various
TVs and monitors not working. The intent is that this page will be useful in navigating some of these issues.
As others also find solutions, as long as we know about them, they will be added here as well. For access to

5.11. Support Information 307

http://www.beagleboard.org/distros
https://elinux.org/Beagleboard:Updating_The_Software#Checking_The_Angstrom_Image_Version
https://elinux.org/Beagleboard:Updating_The_Software#Checking_The_Angstrom_Image_Version
http://elinux.org/BeagleBoneBlack#Updating_the_eMMC_Software
http://beagleboard.org/support/rma
http://beagleboard.org/support/rma

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.80: Second Phase Serial Number and Revision Location

re= g I -
i)

T T

Fig. 5.81: Third Phase Serial Number and Revision Location

Chapter 5. BeagleBone Black

308

BeagleBoard Docs, Release 1.0.20230711-wip

the most up to date troubleshooting capabilities, go to the support wiki at http://www.elinux.org/Beagleboard:
BeagleBoneBlack_HDMI

The early release of the Software had some issues in the HDMI driver. Be sure and use the latest SW to take
advantage of the improvements.

http://www.elinux.org/Beagleboard:BeagleBoneBlack#Software Resources

EDID

EDID is the way the board requests information from the display and determines all the resolutions that it
can support. The driver on the board will then look at these timings and find the highest resolution that is
compatible with the board and uses that resolution for the display. For more information on EDID, you can take
a look at http://en.wikipedia.org/wiki/Extended_display_identification_data

If the board is not able to read the EDID, for whatever reason, it does not have this information. A few possible
reasons for this are:

e Bad cable
¢ Cable not plugged in all the way on both ends

* Display not powered on. (It should still work powered off, but some displays do not).

DISPLAY SOURCE SELECTION

One easy thing to overlook is that you need to select the display source that matches the port you are using
on the TV. Some displays may auto select, so you may need to disconnect the other inputs until you are sure
the display works with the board.

OUT OF SEQUENCE

Sometimes the display and the board can get confused. One way to prevent this is after everything is cabled
up and running, you can power cycle the display, with the board still running. You can also try resetting the
board and let it reboot to resync with the TV.

OVERSCAN

Some displays use what is called overscan. This can be seen in TVs and not so much on Monitors. It causes
the image to be missing on the edges, such that you cannot see them displayed. Some higher end displays
allow you to disable overscan.

Most TVs have a mode that allows you to adjust the image. These are options like Normal, Wide, Zoom, or Fit.
Normal seems to be the best option as it does not chop of the edges. The other ones will crop of the edges.

Taking a Nap

In some cases the board can come up in a power down/screen save mode. No display will be present. This is
due to the board believing that it is asleep. To come out of this, you will need to hit the keyboard or move the
mouse.

Once working, the board will time out and go back to sleep again. This can cause the display to go into a power
down mode as well. You may need to turn the display back on again. Sometimes, it may take a minute or so
for the display to catch up and show the image.

5.11. Support Information 309

http://www.elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://www.elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://www.elinux.org/Beagleboard:BeagleBoneBlack#Software_Resources
http://en.wikipedia.org/wiki/Extended_display_identification_data

BeagleBoard Docs, Release 1.0.20230711-wip

AUDIO

Audio will only work on TV resolutions. This is due to the way the specification was written. Some displays have
built in speakers and others require external. Make sure you have a TV resolution and speakers are connected
if they are not built in. The SW should default to a TV resolution giving audio support. The HDMI driver should
default to the highest audio supported resolution.

Getting Help

If you need some up to date troubleshooting techniques, we have a Wiki set up at http://elinux.org/Beagleboard:
BeagleBoneBlack_HDMI

310 Chapter 5. BeagleBone Black

http://elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://elinux.org/Beagleboard:BeagleBoneBlack_HDMI

Chapter 6

BeagleBone Blue

To optimize BeagleBone for education, BeagleBone Blue was created that integrates many components for
robotics and machine control, including connectors for off-the-shelf robotic components. For education, this
means you can quickly start talking about topics such as programming and control theory, without needing
to spend so much time on electronics. The goal is to still be very hackable for learning electronics as well,
including being fully open hardware.

BeagleBone Blue’s legacy is primarily from contributions to BeagleBone Black robotics by UCSD Flow Control
and Coordinated Robotics Lab, Strawson Design, Octavo Systems, WowWee, National Instruments LabVIEW
and of course the BeagleBoard.org Foundation.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

311

http://robotics.ucsd.edu/
http://robotics.ucsd.edu/
http://www.strawsondesign.com/
http://octavosystems.com/
http://www.wowwee.com/mip/
http://www.ni.com/labview/
https://beagleboard.org/about
http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230711-wip

6.1 BeagleBone Blue Pinouts

Bottom side 9 axis IMU and A BAHEr lovetEDS
HUSB client barometer (POwer LED

uSD slot ‘ Charger LED
4GB eMMC flash | 9-18Y DC input =

2 cell LiPo battery
Tl WiLink™ 8 connector
802.11b/g/n
Bluetooth 4.1/BLE

8 servo motor
2 antennas - #8 Sig, 6V Grd (brown)

outputs
USB host
Boot seiect
Power button

Reset button 0 el ; o ; #1 sig, 6v grd

2 user buttons g AN A ond
' ; p . f 3.3y
G user LEDs KL ¥ ik

4 quadrature

serial JST ct r / i
GPIO and serial JST connectors encoder inputs

4 DC motor
drivers

Octavo Sy stems O1iD3358 System-in-Package
1-GHz Tl ARM® Cortex®-A8 512-MB DDR3, power management

sda,scl,3.3,gnd

5v 3.3v gnd gnd

3.3v gnd Uart4 Rx

adc0, adcl, adc2, adc4, DCJack, Battery

312 Chapter 6. BeagleBone Blue

BeagleBoard Docs, Release 1.0.20230711-wip

0000

sV
3v3
GND
GND

AN O
AIN2 O

AINO

an: Q

[+]
(ve) ©
e O

VDD_ADC

Q |enD
O [sva

O |[signal A
O |signals

4 Quadrature
encoder inputs

LED_GREEN
LED_RED
GPIO3_1
GPI03_2

(=]
(o]
[«]
o
o
(o]

3v3
GND

GPIO3_20

SPI1.2
SPI11

GPIO3_17
GPIOL_25

UARTL UARTS
UARTO

coo
°°°°°J [°°° 0000
o 3 2

P
BEE 2 g% 2

& H -

]

UART GPS

enof @

Slave Select
MISO

¢ Connector pinout details from schematic(s)

¢ Pin Table with some Blue : Black corelation.

6.1.1 UT1

UART (/dev/ttyS1)
config-pin P9.24 uart
config-pin P9.26 uart
6.1.2 GPS

UART (/dev/ttyS2)

config-pin P9.21 uart
config-pin P9.22 uart

6.2 SSH

If you don’t have ssh installed, install it. (google is your friend) Then ssh debian@192.168.7.2 The board will
tell you what the password is, on my it was temppwd.

To change your password use the command password it will ask you what your current password is, then ask
for the replacement. Then it will say it was too simple and you have to do it again. Normal stuff.

If you want to insist on using your simple password, try this.

6.2. SSH 313

https://git.beagleboard.org/beagleboard/beaglebone-blue/-/blob/master/BeagleBone_Blue_sch.pdf
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/blob/master/BeagleBone_Blue_Pin_Table.csv

BeagleBoard Docs, Release 1.0.20230711-wip

sudo -s
(become superuser/root)
enter your password
password debian
(put your simple password in)
exit
(exit from superuser/root)

When you are running as root, password is more compliant and will accept simple password

6.3 WiFi Setup

On my network, I'm set up as ip 192.168.1.*%. To turn your wifi on, do the following.

sudo -s

(become superuser/root)

cd /etc/network/

ifconfig

(Note the wifi inet address, if it is already set, you are done!)
connmanctl

tether wifi off

enable wifi

scan wifi

services

(at this point you should see your network appear along with other stuff, in.
—my case it was "AR Crystal wifi_f45eab2fleel 6372797774616c_managed_psk”)
nano interfaces

(or whatever editor you like)

remove the comment # from the wifi lines so it now appears like
##connman: WiFi

#

connmanctl

connmanctl> tether wifi off

connmanctl> enable wifi

connmanctl> scan wifi

connmanctl> services

connmanctl> agent on

connmanctl> connect wifi_f45eab2fleel_6372797774616c_managed_psk
connmanctl> quit

exit

note that you will need to fill in your own network data

6.4 IP settings

You will usually want to have a fixed ip if you are doing robotics, so you have a standard ip to connect to. If you
are already connected in dhcp you can borrow some of the settings from that to use in your new configurations.

route

make a note of the default one, (in the example below 192.168.1.1)

cat /etc/resolv.conf

make a note of the nameserver, (in the example below 8.8.8.8)

In my case | wanted 192.168.1.7 to do this,

314 Chapter 6. BeagleBone Blue

BeagleBoard Docs, Release 1.0.20230711-wip

sudo -s

connmanctl config wifi_f45eab2fleel_6372797774616c_managed_psk —-—-ipv4 manual.
~192.168.1.7 255.255.255.0 192.168.1.1 —-—-nameservers 8.8.8.8

exit

the -ipv4 says to use ipv4 settings (as opposed to ipv6), the manual means we are setting the values.
192.168.1.7 is the ip address we want. (use your own of course). 255.255.255.0 is the network mask
192.168.1.1 is the route to the internet. (You're might be different, but this is common). -nameservers 8.8.8.8
says where to find the ip address for a given domain name. the 8.8.8.8 says use’s googles

6.5 Flashing Firmware

6.5.1 Overview

Most Beaglebones have a built in 4 GB SD card known as a eMMC (embedded MMC). When the boards are made
the eMMC is “flashed” with some version of the BeagleBone OS that is usually outdated. Therefore, whenever
receiving the BeagleBone it is recommend that you update the eMMC with the last version of the BeagleBone
OS or a specific version of it if someone tells you otherwise.

6.5.2 Required Items

1. Micro sd card. 4 GB minimum
Micro sd card reader or a built in sd card reader for your PC

BeagleBone image you want to flash.

p W N

Etcher utility for your PC’s OS.

6.5.3 Steps Overview

1. Burn the image you want to flash onto a micro sd card using the Etcher utility.
Boot the BeagleBone like normal and place the micro sd card into the board once booted.
Update the micro sd card image so its in “flashing” mode.

Insert micro sd card, remove power from the BeagleBone, hold sd card select button, power up board

v~ W N

Let the board flash

6.5.4 Windows PCs

1. Download the BeagleBone OS image you want to use.

2. Use the Etcher utility to burn the BeagleBone image you want to use on the micro sd card you plan on
using.

Make sure you don’t have the micro sd card plugged into your board.

Boot the board

Connect to the board via serial or ssh so that your on the command prompt.
Plug the micro sd card into the board.

Type dmesg in the terminal window

© N o v~ w

The last line from the output should say something like (the numbering may differ slightly):

« [2805.442940] mmcblk0O: pl”

6.5. Flashing Firmware 315

https://etcher.io/
https://www.beagleboard.org/distros
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230711-wip

9. You want to take the above and combine it together by removing the : and space. For the above example
it will change to “mmcblkOpl”

10. In the terminal window enter the following commands:

mkdir sd_tmp
sudo mount /dev/mmcblkOpl sd_tmp
sudo su
echo "cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh” >> sd_
—tmp/boot/uEnv.txt
exit
sudo umount sd_tmp
11. Now power off your board
12. Hold the update button labeled SD (the one by itself) to boot off the sdcard.
13. Restart (RST button) or power up (while still pushing SD button).

Flashing can take some minutes. ## Linux/Mac PCs 1. Download the BeagleBone OS image you want to
use. 1. Use the Etcher utility to burn the BeagleBone image you want to use on the micro sd card you
plan on using. 1. On the SD card edit the file /boot /uEnv.txt in order for the SD card contents to
be flashed onto the firmware eMMC. (Otherwise the BBBL will do no more than boot the SD image.) Un-
comment the line containing init-eMMC-flasher—-v<number>. sh either manually or using these
commands substituting X with what your SD card shows in /dev/: * sudo mount /dev/emmcblkXpl
/mnt * cd /mnt *sed -1 's_#[]1*\(cmdline=init=/opt/scripts/tools/eMMC/
init-eMMC-flasher-v[0-9]\+.*\.sh\)_\1_' boot/uEnv.txt

1. Eject the sdcard from your computer.

2. Put it into your BeagleBoneBlue.

3. If your board was already powered on then power it off

4. Hold the update button labeled SD (the one by itself) to boot off the sdcard.
5. Restart (RST button) or power up (while still pushing SD button).

Flashing can take some minutes.

How to tell if it is flashing?

At first a blue heartbeat is shown indicating the image is booted. On flash procedure start, the blue user LEDs
light up in a “larson scanner” or “cylon” pattern (back and forth).

When finished, either all blue LEDs are on or the board is already switched off.

If the LEDs are on for a long time then it may indicate failure e.g. wrong image. Can be verified if boot fails,
i.e. board turns off again shortly after power up.

6.6 Play with the code

The board has some code built in to the system that can allow you to try out the various options. They all start
with rc

rc_balance rc_dsm_passthrough rc_test_encoders
rc_battery_monitor rc_kill rc_test_filters
rc_benchmark_algebra rc_spi_loopback rc_test_imu
rc_bind_dsm rc_startup_routine rc_test_motors
rc_blink rc_test_adc rc_test_polynomial
rc_calibrate_dsm rc_test_algebra rc_test_servos
rc_calibrate_escs rc_test_barometer rc_test_time
rc_calibrate_gyro rc_test_buttons rc_test_vector

(continues on next page)

316 Chapter 6. BeagleBone Blue

https://www.beagleboard.org/distros
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

rc_calibrate_mag rc_test_cape rc_uart_loopback
rc_check_battery rc_test_dmp rc_version
rc_check_model rc_test_drivers

rc_cpu_freqg rc_test_dsm

Try them out to try out the various functions of the board. The source code for these tests and demos is at
Robotics cape installer at github

6.7 BeagleBone Blue tests

6.7.1 ADC

* Grove Rotary Angle Sensor See output on adc_1 source

rc_test_adc

6.7.2 GPO

e Grove single GPIO output modules like LED Socket Kit

cd /sys/class/gpio;echo 49 >export;cd gpiod9;echo out >direction;while sleep.
—~1;do echo 0 >value;sleep 1l;echo 1 >value;done

* Grove single GPIO input modules like IR Distance Interrupter or Touch Sensor

cd /sys/class/gpioj;echo 49 >export;cd gpiod9;echo in >direction;watch -nO.
—cat value

6.7.3 GP1

* Grove single GPIO output modules like LED Socket Kit

cd /sys/class/gpioj;echo 97 >export;cd gpio97;echo out >direction;while sleep..
—1;do echo 0 >value;sleep l;echo 1 >value;done

* Grove single GPIO input modules like IR Distance Interrupter or Touch Sensor

cd /sys/class/gpioj;echo 97 >export;cd gpio97;echo in >direction;watch -nO.
—cat value
6.7.4 UT1

* Grove GPS

tio /dev/ttyOl —b 9600

6.7.5 GPS

* GPS Receiver - EM-506

tio /dev/tty02 -b 4800

6.7. BeagleBone Blue tests 317

https://github.com/StrawsonDesign/Robotics_Cape_Installer
http://wiki.seeed.cc/Grove-Rotary_Angle_Sensor/
https://git.beagleboard.org/beagleboard/librobotcontrol/-/blob/v1.1/examples/src/rc_test_adc.c
http://wiki.seeed.cc/Grove-LED_Socket_Kit/
http://wiki.seeed.cc/Grove-IR_Distance_Interrupter_v1.2/
http://wiki.seeed.cc/Grove-Touch_Sensor/
http://wiki.seeed.cc/Grove-LED_Socket_Kit/
http://wiki.seeed.cc/Grove-IR_Distance_Interrupter_v1.2/
http://wiki.seeed.cc/Grove-Touch_Sensor/
http://wiki.seeed.cc/Grove-GPS/
https://www.sparkfun.com/products/12751

BeagleBoard Docs, Release 1.0.20230711-wip

6.7.6 12C
Grove 12C modules

The Linux kernel source has some basic IO SYSFS interface documentation which might provide a little help
for understanding reading these entries. The ELC2017 conference also had an IlO presentation.

» Digital Light Sensor

cd /sys/bus/i2c/devices/i2c-1;echo tsl12561 0x29 >new_device;watch —-n0 cat 1-
—0029/1iio\:devicel0/in_illuminanceO_input

* Temperature & Humidity Sensor

cd /sys/bus/i2c/devices/i2c-1;echo th02 0x40 >new_device;watch -n0 cat 1-
—0040/1iio\:device0/in_temp_raw

6.7.7 Motors

rc_test_motors

6.8 Accessories

Todo: We are going to work on a unified accessories page for all the boards and it should replace this.

6.8.1 Chassis and kits

* EduMIP

¢ Pololu Romi Chassis with geared motors
- Wheel encoders
- Chassis - Black

* Sprout Runt Rover

6.8.2 Cases

6.8.3 Cable assemblies and sub-assemblies

Beware; purchased pre-made connector assembly wire colors may not reflect true pin designations. These
assemblies are readily available from Digi-Key, SparkFun, Hobby King, Pololu and Cables and Connectors.

JST Connector Bundle

Renaissance Robotics JST Jumper Bundle

Four of the 2-pin JST ZH (1.5mm pitch) connectors, with 150mm 28AWG wires, for motors,

Eight of the 4-pin JST SH (1mm pitch) connectors, with 150mm 28AWG wires, for encoders, UART, 12C, CAN,
PWR, and

Four of the 6-pin JST SH (1mm pitch) connectors, with 150mm 28AWG wires, for SPI, GPS, GPIO, ADC.
Renaissance Robotics JST Jumper Bundle

318 Chapter 6. BeagleBone Blue

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-iio
http://elinux.org/images/b/ba/ELC_2017_-_Industrial_IO_and_You-_Nonsense_Hacks%21.pdf
http://wiki.seeed.cc/Grove-Digital_Light_Sensor/
http://wiki.seeed.cc/Grove-TemptureAndHumidity_Sensor-High-Accuracy_AndMini-v1.0/
https://www.renaissancerobotics.com/edumip.html
https://www.pololu.com/category/202/romi-chassis-and-accessories
https://www.pololu.com/product/3542
https://www.pololu.com/product/3500
https://www.servocity.com/sprout
https://www.digikey.com
https://sparkfun.com
https://hobbyking.com
https://www.pololu.com
http://cablesandconnectors.com
https://www.renaissancerobotics.com/JST_Jumper_Bundle.html

BeagleBoard Docs, Release 1.0.20230711-wip

Conrad BeagleBoard Kabel BB-Blue-Kabelset

10x 4-Pin JST-SH

6x 6-Pin JST-SH

4x 2-Pin JST-ZH

1x 3-Pin JST-ZH

BeagleBoard Kabel BB-Blue-Kabelset (Conrad.de)

6.8.4 UART, I12C, CAN, Quadrature encoders, PWR

4-wire JST-SH (1mm pitch)
¢ 4-wire Grove cable (Digi-Key)
* Hobby King SKU 258000190-0
e SparkFun PN 10359

Cables and Connectors 4” ribbon PN #4904
* Digi-Key wires

* Digi-Key housings

6.8.5 SPI, GPIO, ADC

6-wire JST-SH (1mm pitch)
* Hobby King SKU 258000192-0
e SparkFun PN 10361
e Cables and Connectors 50cm length PN #49406
* Digi-Key wires
¢ Digi-Key housings

e 6-wire Grove cable (4 populated) (Digi-Key)

6.8.6 Motors
2-wire JST-ZH (1.5mm pitch)
* Digi-Key wires
¢ Digi-Key receptacle
6.8.7 DSM
3-wire JST-ZH (1.5mm pitch)
e Pololu PN# 2411
microUSB

standard

6.8. Accessories 319

https://www.conrad.de/de/beagleboard-kabel-bb-blue-kabelset-1606596.html
https://www.seeedstudio.com/Grove-Universal-4-Pin-to-BeagleBone-Blue-4-Pin-Female-JST-SH-Convertion-Cable-(10-pcs-pack)-p-3026.html
https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/114991495/1597-1622-ND/8558386
https://hobbyking.com/en_us/jst-sh-4pin-male-with-pig-tail.html
https://www.sparkfun.com/products/10359
http://www.cablesandconnectors.com/search/search.php?k=49404
https://www.digikey.com/products/en?keywords=ASSHSSH28K305
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-04V-S-B/455-1379-ND/759868
https://hobbyking.com/en_us/jst-sh-6pin-male-with-pig-tail.html
https://www.sparkfun.com/products/10361
http://www.cablesandconnectors.com/search/search.php?k=49406
https://www.digikey.com/products/en?keywords=ASSHSSH28K305
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-06V-S-B/455-1381-ND/759870
https://www.seeedstudio.com/Grove-Universal-4-Pin-to-BeagleBone-Blue-6-Pin-Female-JST-SH-Convertion-Cable-(10-pcs-pack)-p-3027.html
https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/114991496/1597-1623-ND/8558387
http://www.digikey.com/product-detail/en/jst-sales-america-inc/ASZHSZH28K152/455-3079-ND/6009455
http://www.digikey.com/product-detail/en/jst-sales-america-inc/ZHR-2/455-1366-ND/566476
https://www.pololu.com/product/2411

BeagleBoard Docs, Release 1.0.20230711-wip

Batteries

2S1P LiPo with 3-wire JST-XH (2.5mm pitch) charge connection

e Hobby King 1000mAh 2S 20C LiPo
* Hobby King 1600mAh 2S 20C LiPo

6.8.8 Power supplies

12V with 5.5mm/2.1mm center positive
* Jameco: supply and power cord

* Hobby King 12V 3A supply

6.8.9 Motors
Servo motors

6V DC
¢ Parallax Inc. 900-00005 Standard Servo
¢ Hobby King SKU HD-1900A

* TowerPro SG92R-7

DC motors

6V, typically geared
e SparkFun Hobby Gearmotor - 200 RPM (Pair)
e SparkFun Hobby Motor - Gear

6.8.10 Radio remotes
* Hobby King OrangeRX satellite receiver

* Spektrum DSM2 Remote Receiver

6.8.11 GPS

Sparkfun GPS Receiver - EM-506 (48 Channel)

Adafruit Ultimate GPS breakout
* Ublox Neo-M8N GPS with Compass

¢ SeeedStudio Grove - GPS

6.8.12 Replacement antennas

LSR PIFA

LSR Dipole: antenna and cable
* Anaren U.FL 2.4GHz 6MM Antenna

e Tl approved antennas

320

Chapter 6. BeagleBone Blue

https://hobbyking.com/en_us/turnigy-1000mah-2s-20c-lipo-pack.html
https://hobbyking.com/en_us/turnigy-1600mah-2s-20c-losi-mini-sct-pack-part-losb1212.html
http://www.jameco.com/z/TR9CE4100LCP-A-Globtek-50W-12V-4-16A-AC-to-DC-Regulated-Switching-Wall-Adapter_2229247.html?CID=GOOG&gclid=CL-2js2-n9ICFQQdaQodMgsLMA
http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?search_type=jamecoall&catalogId=10001&freeText=38050&langId=-1&productId=38050&storeId=10001&ddkey=http:StoreCatalogDrillDownView
https://hobbyking.com/en_us/12v-3a-interchangeable-plug-adapter.html
http://www.digikey.com/product-detail/en/900-00005/900-00005-ND/361277?WT.mc_id=IQ_7595_G_pla361277&wt.srch=1&wt.medium=cpc&WT.srch=1&gclid=CJz-qdC9n9ICFRO4wAodOjYLuQ
https://hobbyking.com/en_us/power-hd-1900a-servo-1-7kg-0-08sec-9g.html
http://www.towerpro.com.tw/product/sg92r-7/
https://www.sparkfun.com/products/13302
https://www.sparkfun.com/products/11696
https://hobbyking.com/en_us/orangerx-r110x-dsmx-dsm2-compatible-satellite-receiver.html
https://www.spektrumrc.com/Products/Default.aspx?ProdID=SPM9545
https://www.sparkfun.com/products/12751
https://www.adafruit.com/product/746
https://hobbyking.com/en_us/ublox-neo-m8n-gps-with-compass.html
https://www.seeedstudio.com/Grove-GPS-p-959.html
https://www.digikey.com/product-detail/en/laird-wireless-thermal-systems/001-0014/001-0014-ND/4732758
https://www.digikey.com/product-detail/en/laird-wireless-thermal-systems/001-0001/001-0001-ND/2696493
https://www.digikey.com/product-detail/en/lsr/080-0001/080-0001-ND/2696495
http://www.digikey.com/product-detail/en/anaren/66089-2406/1173-1024-ND/3069146
http://www.ti.com/lit/ug/swru437/swru437.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

6.8.13 USB devices
USB cameras

e Logitech C270
* Logitech C920

6.8.14 SPI devices
SPI TFT displays

e Adafruit 2.4"” LCD breakout

6.8.15 12C devices

e See One Liner Module Tests

e See Using 12C with Linux drivers

6.8.16 UART devices
Computer serial adapters

e Sparkfun FTDI Cable 5V VCC-3.3V I/O
e Adafruit FTDI Serial TTL-232 USB Cable

6.8.17 Bluetooth devices

* WowWee Groove Cube Speaker

6.9 Frequently Asked Questions (FAQs)

6.9.1 Are there any books to help me get started?
The book BeagleBone Robotic Projects, Second Edition specifically covers how to get started building robots
with BeagleBone Blue.

For more general books on BeagleBone, Linux and other related topics, see https://beagleboard.org/books.

6.9.2 What system firmware should | use for starting to explore my BeagleBone
Blue?

Download the latest ‘loT’ image from https://www.beagleboard.org/distros. As of this writing, that image is
https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz.
Use http://etcher.io for writing that image to a 4GB or larger microSD card.

Power-up your BeagleBone Blue with the newly created microSD card to run this firmware image.

6.9. Frequently Asked Questions (FAQs) 321

https://www.amazon.com/Logitech-Desktop-Widescreen-Calling-Recording/dp/B004FHO5Y6
https://www.amazon.com/Logitech-Widescreen-Calling-Recording-Desktop/dp/B006JH8T3S
https://www.adafruit.com/products/2478
https://www.sparkfun.com/products/9717
https://www.adafruit.com/product/70
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/One-Liner-Module-Tests#grove-i2c-modules
https://github.com/jadonk/BeagleBone-Robotic-Projects-Second-Edition
https://beagleboard.org/books
https://www.beagleboard.org/distros
https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz
http://etcher.io

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.3 What is the name of the access point SSID and password default on Bea-
gleBone Blue?

SSID: BeagleBone-XXXX where XXXX is based upon the board’s assigned unique hardware address
Password: BeagleBone

6.9.4 I’ve connected to BeagleBone Blue’s access point. How do | get logged into
the board?

Browse to http://192.168.8.1:3000 to open the Cloud9 IDE and get access to the Linux command prompt.

If you've connected via USB instead, the address will be either http://192.168.6.2:3000 or http://192.168.7.2:
3000, depending on the USB networking drivers provided by your operating system.

6.9.5 How do | connect BeagleBone Blue to my own WiFi network?

From the bash command prompt in Linux:

sudo -s (become superuser/root)

connmanctl
connmanctl> tether wifi off (not really necessary on latest images)
connmanctl> enable wifi (not really necessary)
connmanctl> scan wifi
connmanctl> services (at this point you should see your network
appear along with other stuff, in my case it was ”AR Crystal wifi_
—~fd45eab2fleel _6372797774616c_managed_psk”)
connmanctl> agent on
connmanctl> connect wifi_f45eab2fleel_6372797774616c_managed_psk
connmanctl> quit

6.9.6 Where can | find examples and APIs for programming BeagleBone Blue?

Programming in C: http://www.strawsondesign.com/#!manual-install
Programming in Python: https://github.com/mcdeoliveira/rcpy

Programming in Simulink: https://www.mathworks.com/hardware-support/beaglebone-blue.html

6.9.7 My BeagleBone Blue fails to run successful tests

You've tried to run rc_test drivers to ensure your board is working for DOA warranty tests, but it errors.
You should first look to fixing your bootloader as described http://strawsondesign.com/docs/librobotcontrol/
installation.html#installation_s5

6.9.8 I’m running an image off of a microSD card. How do | write it to the on-board
eMMC flash?

Refer to the “Flashing Firmware” page: https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/
Flashing-firmware

Meanwhile, as root, run the /opt/scripts/tools/eMMC/bbb-eMMC-flasher-eewiki-ext4.sh script which will create
a copy of the system in your microSD to a new single ext4 partition on the on-board eMMC.

322 Chapter 6. BeagleBone Blue

http://192.168.8.1:3000
http://192.168.6.2:3000
http://192.168.7.2:3000
http://192.168.7.2:3000
http://www.strawsondesign.com/#!manual-install
https://github.com/mcdeoliveira/rcpy
https://www.mathworks.com/hardware-support/beaglebone-blue.html
http://strawsondesign.com/docs/librobotcontrol/installation.html#installation_s5
http://strawsondesign.com/docs/librobotcontrol/installation.html#installation_s5
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Flashing-firmware
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Flashing-firmware

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.9 [I've written the latest image to a uSD card, but some features aren’t work-
ing. How do | make it run properly?

It is possible you are running an old bootloader off of the eMMC. While power is completely off, hold the SD
button (near the servo headers) while applying power. You can release the button as soon the power LED
comes on. This will make sure the bootloader is loaded from microSD and not eMMC.

Verify the running image using version.sh via:

sudo /opt/scripts/tools/version.sh
The version.sh output will tell you which version of bootloader is on the eMMC or microSD. Future versions of
version.sh might further inform you if the SD button was properly asserted on power-up.

One you've booted the latest image, you can update the bootloader on the eMMC using
Jopt/scripts/tools/developers/update_bootloader.sh. Better yet, read the above FAQ on flashing firmware.

6.9.10 I’ve got my on-board eMMC flash configured in a nice way. How do | copy
that to other BeagleBone Blue boards?

As root, run the /opt/scripts/tools/eMMC/beaglebone-black-make-microSD-flasher-from-eMMC.sh script with a
blank 4GB or larger microSD card installed and wait for the script to complete execution.
Remove the microSD card.

Boot your other BeagleBone Blue boards off of this newly updated microSD card and wait for the flashing
process to complete. You'll know it successfully started when you see the “larson scanner” running on the
LEDs. You'll know it successfully completed when it shuts off the board.

Remove the microSD card.

Reboot your newly flashed board.

6.9.11 | have some low-latency I/O tasks. How do | get started programming the
BeagleBone PRUs?

There is a “Hello, World” app at https://gist.github.com/jadonk/2ecf864e1b3f250bad82c0eael2b7b64 that will
get you blinking the USRx LEDS.

The libroboticscape software provides examples that are pre-built and included in the BeagleBone Blue soft-
ware images for running the servo/ESC outputs and fourth quadrature encoder input. You can use those
firmware images as a basis for building your own: https://github.com/StrawsonDesign/Robotics_Cape_Installer/
tree/master/pru_firmware

You can find some more at https://beagleboard.org/pru

6.9.12 Are there available mechanical models?

A community contributed model is available at https://grabcad.com/library/beaglebone-blue-1

6.9.13 What is the operating temperature range?

‘0..70" due to processor, else ‘-20..70*

6.9. Frequently Asked Questions (FAQs) 323

https://github.com/RobertCNelson/boot-scripts/blob/master/tools/version.sh
https://github.com/RobertCNelson/boot-scripts/issues/93
https://github.com/RobertCNelson/boot-scripts/blob/master/tools/developers/update_bootloader.sh
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Frequently-Asked-Questions-(FAQ)#Im_running_an_image_off_of_a_microSD_card_How_do_I_write_it_to_the_onboard_eMMC_flash
https://github.com/RobertCNelson/boot-scripts/blob/master/tools/eMMC/beaglebone-black-make-microSD-flasher-from-eMMC.sh
https://gist.github.com/jadonk/2ecf864e1b3f250bad82c0eae12b7b64
https://github.com/StrawsonDesign/Robotics_Cape_Installer
https://github.com/StrawsonDesign/Robotics_Cape_Installer/tree/master/pru_firmware
https://github.com/StrawsonDesign/Robotics_Cape_Installer/tree/master/pru_firmware
https://beagleboard.org/pru
https://grabcad.com/library/beaglebone-blue-1

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.14 What is the DC motor drive strength?

This is dictated by the 2 cell LiPo battery input, the TB6612FNG motor drivers and the JST-ZH connectors
* Voltage: 6V-8.4V (typical)

e Current: 1A (maximum for connectors) / 1.2A (maximum average from drivers) / 3.2A (peak from drivers)
per channel

324 Chapter 6. BeagleBone Blue

http://www.pololu.com/file/0J86/TB6612FNG.pdf
http://www.jst-mfg.com/product/detail_e.php?series=287

Chapter 7

BeagleBone (all)

BeagleBone boards are intended to be bare-bones, with a balance of features to enable rapid prototyping and
provide a solid reference for building end products.

The most popular design is BeagleBone Black, a staple reference for an open hardware embedded Linux single
board computer.

BeagleBone Al-64 is our most powerful design with tremendous machine learning inference performance, 64-bit
processing and a mixture of microcontrollers for various types of highly-reliable and low-latency control.

For simplicity of developing small, mobile robotics, check out BeagleBone Blue, a highly integrated board with
motor drivers, battery support, altimeter, gyroscope, accelerometer, and much more to get started developing
quickly.

The System Reference Manual for each BeagleBone board is below. Older boards are supported with links to
their latest PDF-formatted System Reference Manual and the latest boards are included both here and in the
downloadable beagleboard-docs.pdf linked on the bottom-left of your screen.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

All boards received without RMA approval will not be worked on.
* BeagleBone (original)
* BeagleBone Black
* BeagleBone Blue
e BeagleBone Al

* BeagleBone Al-64

325

http://creativecommons.org/licenses/by-sa/4.0/
https://git.beagleboard.org/beagleboard/beaglebone/-/blob/master/BeagleBone_SRM_A6_0_1.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

326 Chapter 7. BeagleBone (all)

Chapter 8

Capes

Note: This page is under development.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

Capes are add-on boards for BeagleBone or PocketBeagle families of boards. Using a Cape add-on board, you
can easily add sensors, communication peripherals, and more.

Please visit BeagleBoard.org - Cape for the list of currently available Cape add-on boards.

In the BeagleBone board family, there are many variants, such as BeagleBone Black, BeagleBone Al, Beagle-
Bone Al-64 and compatibles such as SeeedStudio BeagleBone Green, SeeedStudio BeagleBone Green Wireless,
SeeedStudio BeagleBone Green Gateway and more.

The BeagleBone cape interface spec enables a common set of device tree overlays and software to be utilized
on each of these different BeagleBone boards.

Each hardware has different internal pin assignments and the number of peripherals in the SoC, but the device
tree overlay absorbs these differences.

The user of the Cape add-on boards are essentially able to use it across the corresponding Boards without
changing any code at all.

Find the instructions below on using each cape:

e BeagleBoard.org BeagleBone Relay Cape

8.1 BeagleBone cape interface spec

This page is a fork of BeagleBone cape interface spec page on elinux. This is the new official home.

327

http://creativecommons.org/licenses/by-sa/4.0/
https://beagleboard.org/capes
https://beagleboard.org/green
https://beagleboard.org/green-wireless
https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.1 Background and overview

Important: Resources

See Device Tree: Supporting Similar Boards - The BeagleBone Example blog post on BeagleBoard.org

See spreadsheet with pin header details

See elinux.org Cape Expansion Headers for BeagleBone page

See BeagleBone Black System Reference Manual Connectors section

See BeagleBone Al System Reference Manual Connectors section

See BeagleBone Al-64 System Reference Manual Connectors section

Note: Below, when mentioning “Black”, this is true for all AM3358-based BeagleBone boards. “Al” is AM5729-
based. “Al-64" is TDA4VM-based.

The device tree symbols for the BeagleBone Cape Compatibility Layer are provided in BeagleBoard-DeviceTrees

at:

Black: bbb-bone-buses.dtsi
Al: bbai-bone-buses.dtsi

Al-64: k3-j721e-beagleboneai-64-bone-buses.dtsi

The udev rules used to create the userspace symlinks for the BeagleBone Cape Compatibility Layer are provided
in usr-customizations at:

More details can be found in Methodology.

Note: Legend

D : Digital general purpose input and output (GPIO)

| : Inter-integrated circuit bus (1*c) ports

: Serial peripheral interface (SPI) ports

: Universal asynchronous reciever/transmitter (UART) serial ports
: CAN

: Analog inputs

: PWM

: Capture/EQEP

: MMC/SD/SDIO

W T O M > O C Wu

: 12S/audio serial ports

~

: LCD

Rv]

: PRU
Y : ECAP

328

Chapter 8. Capes

https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm/bbb-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm/bbai-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm64/k3-j721e-beagleboneai64-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/usr-customizations

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.1: Overall

P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1l E2 USB D-
5V OuT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT DM 3 4 DM
5V IN 5 6 5V IN DMC 5 6 DMC
5V OuUT 7 8 5V OUT DC 7 8 DC
PWR BUT 9 10 RESET DC 9 10 DC
DU 11 12 D DP 11 12 DQP
DU 13 14 DE DE 13 14 D
D 15 16 DE DP 15 16 DP
DIS 17 18 DIS D 17 18 D
DIC 19 20 DIC DE 19 20 DMP
DESU 21 22 DESU DMP 21 22 DMQ
DS 23 24 DIUC DM 23 24 DM
DP 25 26 DIUC DM 25 26 D
DPQ 27 28 DSP DLP 27 28 DLPU
DESP 29 30 DSP DLPU 29 30 DLP
DESP 31 32 ADC VDD DL 31 32 DL
REF OUT
A 33 34 ADC GND DLQ 33 34 DEL
A 35 36 A DLQ 35 36 DEL
A 37 38 A DLU 37 38 DLU
A 39 40 A DLP 39 40 DLP
DP 41 42 DQSUP DLP 41 42 DLP
GND 43 44 GND DLP 43 44 DLP
GND 45 46 GND DELP 45 46 DELP
8.1.2 Digital GPIO

The compatibility layer comes with simple reference nodes for attaching the Linuuux gpio-leds or gpio-keys to
any cape header GPIO pin. This provides simple userspace general purpose input or output with various trigger

modes.

The format followed for the gpio-leds nodes is bone_led_P8_## / bone_led_P9_##. The gpio-leds driver is
used by these reference nodes internally and allows users to easily create compatible led nodes in overlays for

Black, Al and Al-64.

8.1. BeagleBone cape interface spec

329

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 8.1: Example device tree overlay to enable LED driver on header

P8 pin 3

/dts-v1/;
/plugin/;

&bone_led_P8_03 {

}

status = "okay”;

In Example device tree overlay to enable LED driver on header P8 pin 3, it is possible to redefine the default
label and other properties defined in the gpio-leds schema.

Table 8.2: GPIO pins

P9 P8
Functions odd even Functions Functions odd even Functions
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT DM 3 4 DM
5V IN 5 6 5V IN D M Cat 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P00 11 12 D Q2a POo
D U4t 13 14 D Ela D E2b 13 14 D
D 15 16 D Elb D POi 15 16 D POi
D I1c S00 17 18 D 11d SO0 D 17 18 D
COr D I2¢ 19 20 COot D I12d D E2a 19 20 DM P1
D EOb SOi | 21 22 D EOa SOc DM P1 21 22 DM Q2b
u2t u2r
D S01 23 24 Clr D I3c DM 23 24 DM
Ult
D PO 25 26 Clt D 13d DM 25 26 D
Ulr
D PO QOb 27 28 D PO 510 DLP1 27 28 DL P1U6r
D E S1i PO 29 30 D PO Slo DLPLU6t | 29 30 DLP1
DESIcPO | 31 32 ADC VDD DL 31 32 DL
A4 33 34 ADC GND DLQlb 33 34 DEL
A6 35 36 A5 DLQla 35 36 DEL
A2 37 38 A3 D L U5t 37 38 DL USr
A0 39 40 Al DLP1 39 40 DLP1
D PO 41 42 D QOa S11 DLP1 41 42 DLP1
U3t PO
GND 43 44 GND DLP1 43 44 DLPL
GND 45 46 GND DELP1 45 46 DELP1L
Table 8.3: Bone GPIO LEDs interface
LED SYSFS Header pin | Black Al Al-64
/sys/class/leds/P8_03 | P8_03 gpiol_6 gpiol_24 | gpio0_20
/sys/class/leds/P8_04 | P8_04 gpiol_7 gpiol 25 | gpio0_48
/sys/class/leds/P8_05 | P8_05 gpiol_2 gpio7_1 gpio0_33
/sys/class/leds/P8_06 | P8_06 gpiol_3 gpio7_2 gpio0_34
/sys/class/leds/P8_07 | P8_07 gpio2_2 gpio6_5 gpio0_15
/sys/class/leds/P8_08 | P8 _08 gpio2_3 gpio6_6 gpio0_14
/sys/class/leds/P8 09 | P8 09 gpio2 5 gpio6_18 | gpio0_17
/sys/class/leds/P8_10 | P8_10 gpio2_4 gpio6_4 gpio0_16
/sys/class/leds/P8 11 | P8 11 gpiol 13 | gpio3_11 | gpio0_60
/sys/class/leds/P8_12 | P8_12 gpiol_12 | gpio3_10 | gpio0_59
/sys/class/leds/P8 13 | P8 13 gpio0_23 | gpio4 11 | gpio0_89
/sys/class/leds/P8_14 | P8_14 gpio0_26 | gpio4_13 | gpio0_75
/sys/class/leds/P8 15 | P8 15 gpiol 15 | gpio4 3 gpio0_61
/sys/class/leds/P8_16 | P8_16 gpiol_14 | gpio4_29 | gpio0_62
continues on next page
330 Chapter 8. Capes

https://elixir.bootlin.com/linux/v5.10/source/Documentation/devicetree/bindings/leds/leds-gpio.yaml

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.3 - continued from previous page

LED SYSFS Header pin | Black Al Al-64
/sys/class/leds/P8_17 | P8_17 gpio0_27 | gpio8_18 | gpio0_3
/sys/class/leds/P8 18 | P8 18 gpio2_1 gpio4 9 gpio0_4
/sys/class/leds/P8_19 | P8_19 gpio0_22 | gpio4_10 | gpio0_88
/sys/class/leds/P8 20 | P8 20 gpiol 31 | gpio6_30 | gpio0 76
/sys/class/leds/P8_21 | P8_21 gpiol_30 | gpio6_29 | gpio0_30
/sys/class/leds/P8 22 | P8 22 gpiol 5 gpiol 23 | gpio0_ 5
/sys/class/leds/P8_23 | P8_23 gpiol_4 gpiol_22 | gpio0_31
/sys/class/leds/P8 24 | P8 24 gpiol 1 gpio7_0 gpio0_6
/sys/class/leds/P8_25 | P8_25 gpiol_0 gpio6_31 | gpio0_35
/sys/class/leds/P8 26 | P8 26 gpiol 29 | gpio4 28 | gpio0 51
/sys/class/leds/P8_27 | P8_27 gpio2_22 | gpio4_23 | gpio0_71
/sys/class/leds/P8 28 | P8 28 gpio2_24 | gpio4_19 | gpio0_72
/sys/class/leds/P8_29 | P8_29 gpio2_23 | gpio4_22 | gpio0_73
/sys/class/leds/P8_30 | P8 30 gpio2_25 | gpio4_20 | gpio0_74
/sys/class/leds/P8_31 | P8_31 gpio0_10 | gpio8_14 | gpio0_32
/sys/class/leds/P8_32 | P8_32 gpio0_11 | gpio8_15 | gpio0_26
/sys/class/leds/P8_33 | P8 33 gpio0_9 gpio8_13 | gpio0_25
/sys/class/leds/P8_34 | P8_34 gpio2_17 | gpio8_11 | gpio0_7
/sys/class/leds/P8_35 | P8_35 gpio0_8 gpio8 12 | gpio0_24
/sys/class/leds/P8_36 | P8_36 gpio2_16 | gpio8_10 | gpio0_8
/sys/class/leds/P8 37 | P8 37 gpio2_14 | gpio8_8 gpio0_106
/sys/class/leds/P8_38 | P8_38 gpio2_15 | gpio8_9 gpio0_105
/sys/class/leds/P8 39 | P8 39 gpio2_12 | gpio8_6 gpio0_69
/sys/class/leds/P8_40 | P8_40 gpio2_13 | gpio8_7 gpio0_70
/sys/class/leds/P8 41 | P8 41 gpio2_10 | gpio8 4 gpio0_67
/sys/class/leds/P8_42 | P8_42 gpio2_11 | gpio8_5 gpio0_68
/sys/class/leds/P8_43 | P8 43 gpio2_8 gpio8 2 gpio0_65
/sys/class/leds/P8_44 | P8_44 gpio2_9 gpio8_3 gpio0_66
/sys/class/leds/P8_45 | P8 45 gpio2_6 gpio8 0 gpio0_79
/sys/class/leds/P8_46 | P8_46 gpio2_7 gpio8_1 gpio0_80
/sys/class/leds/P9 11 | P9 11 gpio0_30 | gpio8_17 | gpio0_1
/sys/class/leds/P9_12 | P9_12 gpiol 28 | gpio5_0 gpio0_45
/sys/class/leds/P9_13 | P9 13 gpio0_31 | gpio6_12 | gpio0_2
/sys/class/leds/P9_14 | P9_14 gpiol_18 | gpio4_25 | gpio0_93
/sys/class/leds/P9_15 | P9_15 gpiol_16 | gpio3_12 | gpio0_47
/sys/class/leds/P9_16 | P9_16 gpiol_19 | gpio4_26 | gpio0_94
/sys/class/leds/P9_17 | P9_17 gpio0_5 gpio7_17 | gpio0_28
/sys/class/leds/P9_18 | P9 _18 gpio0_4 gpio7_16 | gpio0_40
/sys/class/leds/P9_19 | P9_19 gpio0_13 | gpio7_3 gpio0_78
/sys/class/leds/P9 20 | P9 20 gpio0_12 | gpio7 4 gpio0_77
/sys/class/leds/P9_21 | P9 21 gpio0_3 gpio3_3 gpio0_39
/sys/class/leds/P9 22 | P9 22 gpio0_2 gpio6_19 | gpio0_38
/sys/class/leds/P9_23 | P9_23 gpiol_17 | gpio7_11 | gpio0_10
/sys/class/leds/P9 24 | P9 24 gpio0_15 | gpio6_15 | gpio0 13
/sys/class/leds/P9_25 | P9_25 gpio3_21 | gpio6_17 | gpio0_127
/sys/class/leds/P9 26 | P9 26 gpio0_14 | gpio6_14 | gpio0_12
/sys/class/leds/P9_27 | P9_27 gpio3_19 | gpio4_15 | gpio0_46
/sys/class/leds/P9 28 | P9 28 gpio3_17 | gpio4_17 | gpiol 11
/sys/class/leds/P9_29 | P9_29 gpio3_15 | gpio5_11 | gpio0_53
/sys/class/leds/P9 30 | P9 30 gpio3_16 | gpio5_12 | gpio0_44
/sys/class/leds/P9_31 | P9_31 gpio3_14 | gpio5_10 | gpio0_52
/sys/class/leds/P9_33 | P9_33 n/a n/a gpio0_50
/sys/class/leds/P9_35 | P9_35 n/a n/a gpio0_55

continues on next page

8.1. BeagleBone cape interface spec 331

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.3

Compatibility layer provides simple 12C bone bus nodes for creating compatible overlays for Black, Al and Al-64.

Table 8.3 - continued from previous page

LED SYSFS Header pin | Black Al Al-64
/sys/class/leds/P9_36 | P9_36 n/a n/a gpio0_56
/sys/class/leds/P9 37 | P9 37 n/a n/a gpio0_57
/sys/class/leds/P9_38 | P9_38 n/a n/a gpio0_58
/sys/class/leds/P9_39 | P9 _39 n/a n/a gpio0_54
/sys/class/leds/P9_40 | P9 _40 n/a n/a gpio0_81
/sys/class/leds/P9 41 | P9 41 gpio0 20 | gpio6 20 | gpiol O
/sys/class/leds/P9_42 | P9_42 gpio0_7 gpio4_18 | gpio0_123
/sys/class/leds/Al15 Al5 gpio0_19 | NA NA

1°C

The format followed for these nodes is bone_i2c_#.

Table 8.4: 12C pins
P9
Functions odd even Functions
1SCL 17 18 1 SDA
2 SCL 19 20 2 SDA
4SCL™ 21 22 4 SDA™
23 24 3scL’
25 26 3 SDA’
Table 8.5: 12C port mapping
SYSFS DT symbol Black Al Al-64 SCL [SDA [Overlay
/dev/bone/i2c/0 bone_i2c_0 12C0 12C1 TBD On-board
/dev/bone/i2c/1 bone_i2c_1 12C1 12C5 MAIN_I2C6 P9.17 P9.18 BONE-12C1
/dev/bone/i2c/2 bone_i2c_2 12C2 12C4 MAIN_I2C3 P9.19 P9.20 BONE-12C2
/dev/bone/i2c/3 bone_i2c_3 12C1 12C3 MAIN_I2C4 P9.24 P9.26 BONE-12C3
/dev/bone/i2c/4 bone_i2c_4 12C2 n/a MAIN_I2C3 P9.21 P9.22 BONE-12C4
Important: In the case the same controller is used for 2 different bone bus nodes, usage of those nodes is

mutually-exclusive.

Note: The provided pre-compiled overlays enable the 12C bus driver only, not a specific device driver. Either
a custom overlay is required to load the device driver or usermode device driver loading can be performed,
depending on the driver. See Using I2C with Linux drivers for information on loading 1°C drivers from userspace.

Listing 8.2: Example device tree overlay to enable 12C driver

/dts-vl/;
/plugin/;

&bone_i2c_1 |
status = "okay”;
accel@lc {
compatible = "fsl,mma8453";
reg = <0xlc>;

}i

4 Mutually exclusive with port 2 on Black
5> On Black and Al-64 only
3 Mutually exclusive with port 1 on Black

332 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

In Example device tree overlay to enable I2C driver, you can specify what driver you want to load and provide
any properties it might need.

¢ https://www.kernel.org/doc/html/v5.10/i2c/summary.html

* https://www.kernel.org/doc/html/v5.10/i2c/instantiating-devices.htmI#method-1-declare-the-i2c-devices-statically

* https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/

8.1.4 SPI

SPI bone bus nodes allow creating compatible overlays for Black, Al and Al-64.

Table 8.6: SPI pins
P9
Functions odd even Functions
0 CSO 17 18 0 SDO
19 20
0 sDI 21 22 0 CLK
0CS1 23 24
25 26
27 28 1 CSO
1SDI 29 30 1 SDO
1 CLK 31 32
33 34
35 36
37 38
39 40
41 42 1cs1’
Table 8.7: SPI port mapping
Bone bus DT symbol | Black | Al Al-64 SDO | SDI CLK CS Overlay
/dev/bone/spi/0.0 | bone_spi_0 | SPIO SPI2 | MAIN_SPI6 | P9.18 | P9.21 | P9.22 | P9.17 (CSO) BONE-
SPIO_0
/dev/bone/spi/0.1 P9.23 (CS1) BONE-
SPIO_1
/dev/bone/spi/1.0 bone_spi_1 SPI1 SPI3 MAIN_SPI7 P9.30 P9.29 P9.31 P9.28 (CS0) BONE-
—_— SPI1_0
/dev/bone/spi/1.1 P9.42 (CS1) BONE-
SPI1_1
Note: The provided pre-compiled overlays enable the “spidev” driver using the
“rohm,dh2228fv” compatible string. See https://stackoverflow.com/questions/53634892/

linux-spidev-why-it-shouldnt-be-directly-in-devicetree for more background. A custom overlay is required to
overload the compatible string to load a non-spidev driver.

Todo: figure out if BONE-SPIO_0 and BONE-SPIO_1 can be loaded at the same time

Listing 8.3: Example device tree overlay to enable SPI driver

/dts-v1/;
/plugin/;

&bone_spi_0 {
status = "okay”;
pressure@0 {
(continues on next page)

2 Only available on Al and Al-64

8.1. BeagleBone cape interface spec 333

https://www.kernel.org/doc/html/v5.10/i2c/summary.html
https://www.kernel.org/doc/html/v5.10/i2c/instantiating-devices.html#method-1-declare-the-i2c-devices-statically
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/
https://stackoverflow.com/questions/53634892/linux-spidev-why-it-shouldnt-be-directly-in-devicetree
https://stackoverflow.com/questions/53634892/linux-spidev-why-it-shouldnt-be-directly-in-devicetree

10

11

BeagleBoard Docs, Release 1.0.20230711-wip

}i

(continued from previous page)

compatible = "bosch,bmp280”;

reg =

spi-max—-frequency =

<0>; /* CSO */

<5000000>;

In Example device tree overlay to enable SPI driver, you can specify what driver you want to load and provide
any properties it might need.

* https://www.kernel.org/doc/html/v5.10/spi/spi-summary.html

* https://www.kernel.org/doc/Documentation/devicetree/bindings/spi/

8.1.5 UART

UART bone bus nodes allow creating compatible overlays for Black, Al and Al-64.

Table 8.8: UART pins

P9 P8
Functions odd even Functions Functions odd even Functions
4RX 11 12 11 12
4 e | 13 14 13 14
X
15 16 15 16
17 18 17 18
19 20 19 20
2TX 21 22 2 RX 21 22
23 24 17X 23 24
25 26 1 RX 25 26
27 28 27 28 6 RX
29 30 6 TX 29 30
31 32 31 32
33 34 33 34 7TX
35 36 35 36
37 38 5 TX 37 38 5 RX
39 40 39 40
41 42 3TX 41 42
Important: RTSn and CTSn mappings are not compatible across boards in the family and are therefore not

part of the cape specification.

Table 8.9: UART port mapping

Bone bus DT symbol Black Al Al-64 TX [RX | Overlay
/dev/bone/uart/0 bone_uart_0 UARTO UART1 MAIN_UARTO Console debug header pins

/dev/bone/uart/1 bone_uart_1 UART1 UART10 MAIN_UART2 P9.24 P9.26 BONE-UART1
/dev/bone/uart/2 bone_uart_2 UART2 UART3 n/a P9.21 P9.22 BONE-UART2
/dev/bone/uart/3 bone_uart_3 UART3 n/a n/a P9.42 n/a BONE-UART3
/dev/bone/uart/4 bone_uart_4 UART4 UART5 MAIN_UARTO6 P9.13 P9.11 BONE-UART4
/dev/bone/uart/5 bone_uart_5 UART5 UART8 MAIN_UART5 P8.37 P8.38 BONE-UART5
/dev/bone/uart/6 bone_uart_6 n/a n/a MAIN_UART8 P8.29 P8.28 BONE-UART6
/dev/bone/uart/7 bone_uart_7 n/a n/a MAIN_UART2 P8.34 P8.22 BONE-UART7

Important: In the case the same controller is used for 2 different bone bus nodes, usage of those nodes is

mutually-exclusive.

6 This port is shared with the console UART on Al-64

334

Chapter 8. Capes

https://www.kernel.org/doc/html/v5.10/spi/spi-summary.html
https://www.kernel.org/doc/Documentation/devicetree/bindings/spi/

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.6 CAN

CAN bone bus nodes allow creating compatible overlays for Black, Al and Al-64.

Table 8.10: CAN pins

P9 P8

Functions odd even Functions Functions odd even Functions
5 6 4TX 5 6 4 RX
7 8 2 RX 7 8 2TX
9 10 3 RX 9 10 37X
11 12 11 12
13 14 13 14
15 16 15 16
17 18 17 18

0 RX 19 20 0TX 19 20
21 22 21 22
23 24 1 RX 23 24
25 26 1TX 25 26

Table 8.11: CAN port mapping
Bone bus Black Al Al-64 TX RX Overlays
/dev/bone/can/0 CANO n/a MAIN_MCANO P9.20 P9.19 BONE-CANO
/dev/bone/can/1 CAN1 CAN2 MAIN_MCAN4 P9.26 P9.24 BONE-CAN1
/dev/bone/can/2 n/a CANL MAIN_MCAN5 P8.08 P8.07 BONE-CAN2
/dev/bone/can/3 n/a n/a MAIN_MCANG6 P8.10 P8.09 BONE-CAN3
/dev/bone/can/4 n/a n/a MAIN_MCAN7 P8.05 P8.06 BONE-CAN4
8.1.7 ADC
Todo: We need a udev rule to make sure the ADC shows up at /dev/bone/adc! There’s nothing for sure that

110 devices will show up in the same place.

Todo:

do /dev/bone/adc/Px_y

| think we can also create symlinks for each channel based on which device is there, such that we can

Todo:

| believe a multiplexing 110 driver is the future solution

! BeagleBone Al rev A2 and later only

8.1. BeagleBone cape interface spec

335

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.12: ADC pins

P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1l E2 USB D-
5V OuT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT DM 3 4 DM
5V IN 5 6 5V IN D M C4t 5 6 D M Cé4r
5V OuUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D POo 11 12 D Q2a P0Oo
D U4t 13 14 D Ela D E2b 13 14 D
D 15 16 D Elb D POi 15 16 D POi
D I1c S00 17 18 D 11d SOo D 17 18 D
COrD I2c 19 20 Cot D I12d D E2a 19 20 D MP1
D EOb SOi 21 22 D EOa SOc D MP1 21 22 D M Q2b
u2t u2r
D S01 23 24 Clr D I13c DM 23 24 DM
Ult
D PO 25 26 Clt D 13d DM 25 26 D
Ulr
D PO QOb 27 28 D PO S10 DLP1 27 28 D L P1 U6r
D E S1i PO 29 30 D PO Slo D L P1 U6t 29 30 DLP1
D E S1c PO 31 32 ADC VDD DL 31 32 DL
A4 33 34 ADC GND DLQlb 33 34 DEL
A6 35 36 A5 DLQla 35 36 DEL
A2 37 38 A3 D L U5t 37 38 D L U5r
A0 39 40 Al DLP1 39 40 DLP1
D PO 41 42 D QOa S11 DLP1 41 42 DLP1
U3t PO
GND 43 44 GND DLP1 43 44 DLP1
GND 45 46 GND DELP1 45 46 DELP1

Table 8.13: Bone ADC

Index Header pin Black/Al-64 Al

0 P9_39 in_voltage0_raw in_voltage0_raw
1 P9_40 in_voltagel_raw in_voltagel_raw
2 P9 37 in_voltage2_raw in_voltage3_raw
3 P9_38 in_voltage3_raw in_voltage2_raw
4 P9_33 in_voltage4_raw in_voltage7_raw
5 P9_36 in_voltage5_raw in_voltage6_raw
6 P9_35 in_voltage6_raw in_voltage4_raw

Table 8.14: Bone ADC Overlay

Black Al Al-64 overlay
Internal External (STMPE811) TBD BONE-ADC.dts

8.1.8 PWM

Todo: remove deep references to git trees

PWM bone bus nodes allow creating compatible overlays for Black, Al and Al-64. For the definitions, you can
see bbai-bone-buses.dtsi#L415 & bbb-bone-buses.dtsi#L432

336 Chapter 8. Capes

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-ADC.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L415
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L432

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.15: PWM pins

P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ El E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT DM 3 4 DM
5V IN 5 6 5V IN D M C4t 5 6 D M Cé4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D POo 11 12 D Q2a POo
D U4t 13 14 D Ela D E2b 13 14 D
D 15 16 D Elb D POi 15 16 D POi
D I1c SO0 17 18 D I1d SOo D 17 18 D
COr D I2c 19 20 Cot D I12d D E2a 19 20 D MP1
D EOb SOi 21 22 D EOa SOc D MP1L 21 22 D M Q2b
U2t u2r
D S01 23 24 Clr D 13c DM 23 24 DM
Ult
D PO 25 26 Clt D 13d DM 25 26 D
Ulr
D PO QOb 27 28 D PO S10 DLP1 27 28 D L P1 U6r
D E S1i PO 29 30 D PO Slo D L P1 U6t 29 30 DLP1
D E S1c PO 31 32 ADC VDD DL 31 32 DL
A4 33 34 ADC GND DLQlb 33 34 DEL
A6 35 36 A5 DLQla 35 36 DEL
A2 37 38 A3 D L U5t 37 38 D LU5r
AO 39 40 Al DLP1 39 40 DLP1
D PO 41 42 D QOa S11 DLP1 41 42 DLP1
U3t PO
GND 43 44 GND DLP1 43 44 DLP1
GND 45 46 GND DELP1 45 46 DELP1
Table 8.16: Bone bus PWM
Bone bus Black Al Al-64 A B Overlay
/dev/bone/pwm/0| PWMO PWM1 P9.22 P9.21 BONE-
: PWMO.dts
/dev/bone/pwm/1| PWM1 PWM3 PWM?2 P9.14 P9.16 BONE-
PWM1.dts
/dev/bone/pwm/2| PWM2 PWM2 PWMO P8.19 P8.13 BONE-
PWM2.dts

8.1.9 TIMER PWM

TIMER PWM bone bus uses ti,omap-dmtimer-pwm driver, and timer nodes that allow creating compatible over-
lays for Black, Al and Al-64. For the timer node definitions, you can see bbai-bone-buses.dtsi#L449 & bbb-
bone-buses.dtsi#L466.

Table 8.17: Bone TIMER PWMs

Bone bus Header pin Black Al overlay
/sys/bus/platform/devices/bB8d @imer_pwm_0/ timer6 timerl0 BONE-
TIMER_PWM_0.dts
/sys/bus/platform/devices/bB8&timer_pwm_1/ timer4d timerll BONE-
TIMER_PWM_1.dts
/sys/bus/platform/devices/bBa8®&imer_pwm_2/ timer7 timerl2 BONE-
TIMER_PWM_2.dts
/sys/bus/platform/devices/bBB timer_pwm_3/ timerl3 BONE-
‘ TIMER_PWM_3.dts
/sys/bus/platform/devices/bB8&3imer_pwm_4/ timer5 timerl4 BONE-
TIMER_PWM_4.dts
/sys/bus/platform/devices/bBa&2imer_pwm_5/ timerl5 BONE-
‘ TIMER_PWM_5.dts

8.1. BeagleBone cape interface spec

337

https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L449
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L466
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L466
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.10 eQEP

Table 8.18: eQEP pins

P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ El E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT DM 3 4 DM
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V ouT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D POo 11 12 D Q2a POo
D U4t 13 14 D Ela D E2b 13 14 D
D 15 16 D Elb D POi 15 16 D POi
D I1c S00 17 18 D 11d SOo D 17 18 D
COr D 12c 19 20 Cot D 12d D E2a 19 20 DM P1
D EOb SOi 21 22 D EOa SOc DM P1 21 22 D M Q2b
U2t u2r
D S01 23 24 Clr D 13c DM 23 24 DM
Ult
D PO 25 26 Clt D I3d DM 25 26 D
Ulr
D PO QOb 27 28 D PO S10 DLP1 27 28 D L P1 U6r
D E S1i PO 29 30 D PO Slo D L P1 U6t 29 30 DLP1
D E S1c PO 31 32 ADC VDD DL 31 32 DL
A4 33 34 ADC GND DLQlb 33 34 DEL
A6 35 36 A5 DLQla 35 36 DEL
A2 37 38 A3 D L U5t 37 38 D L U5r
A0 39 40 Al DLP1 39 40 DLP1
D PO 41 42 D QOa S11 DLP1 41 42 DLP1
U3t PO
GND 43 44 GND DLP1 43 44 DLP1
GND 45 46 GND DELPL 45 46 DELP1

On BeagleBone's without an eQEP on specific pins, consider using the PRU to perform a software counter
function.

Table 8.19: Bone eQEP

Bone bus Black Al Al-64 A B strobe index overlay
/dev/bone/count:QFP0 eQEP2 eQEPO P9.42 P9.27
Black/Al- Black/fAl-
64: 64:
P9.25 P9.41
e Al e Al
P8.06 P8.05
/dev/bone/coune¢@¥P1 eQEPO eQEP1 P8.35 P8.33
Black/fAl- Black/{Al-
64: 64:
P8.32 P8.31
e Al o Al
P9.21 -
/dev/bone/coune&FP2 eQEP1 - P8.12 P8.22
Black Black
P8.15 P8.16|
e Al e Al
P8.18 P9.15

338 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.11 eCAP

Todo: This doesn’t include any abstraction yet.

Table 8.20: ECAP pins

P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ El E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 ouUT 3 4 3v3 OUT DM 3 4 DM
5VIN 5 6 5VIN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D POo 11 12 D Q2a POo
D U4t 13 14 D Ela D E2b 13 14 D
D 15 16 D Elb D POi 15 16 D POi
D 11c S00 17 18 D 11d SOo D 17 18 D
COrD I12c 19 20 Ccot D I2d D E2a 19 20 D MP1
D EOb SOi 21 22 D EOa SOc D MP1L 21 22 D M Q2b
U2t u2r
D S01 23 24 Clr D 13c DM 23 24 DM
Ult
D PO 25 26 Clt D 13d DM 25 26 D
Ulr
D PO QOb 27 28 D PO S10 DLP1 27 28 D L P1 U6r
D E S1i PO 29 30 D PO Slo D L P1 U6t 29 30 DLP1
D E S1c PO 31 32 ADC VDD DL 31 32 DL
A4 33 34 ADC GND DLQlb 33 34 DEL
A6 35 36 A5 DLQla 35 36 DEL
A2 37 38 A3 D L U5t 37 38 D L U5r
A0 39 40 Al DLP1 39 40 DLP1
D PO 41 42 D QOa S11 DLP1 41 42 DLP1
U3t PO
GND 43 44 GND DLP1 43 44 DLP1
GND 45 46 GND DELP1 45 46 DELP1
Table 8.21: Black eCAP PWMs
Bone bus Header pin peripheral overlay
/sys/bus/platform/drivers/ecap/48302100.ecap P9.42 eCAPO_in_PWMO_out BBB-ECAPO.dts
/sys/bus/platform/drivers/ecap/48304100.ecap P9.28 eCAP2_in_PWM2_out BBB-ECAP2.dts

Table 8.22: Al eCAP PWMs

Bone bus Header pin peripheral overlay
/sys/bus/platform/drivers/ecap/4843e100.ecap P8.15 eCAP1_in_PWM1_out BBAI-ECAP1.dts
/sys/bus/platform/drivers/ecap/48440100.ecap P8.14 eCAP2_in_PWM2_out BBAI-ECAP2.dts
/sys/bus/platform/drivers/ecap/48440100.ecap P8.20 eCAP2_in_PWM2_out BBAI-ECAP2A.dts
/sys/bus/platform/drivers/ecap/48442100.ecap P8.04 eCAP3_in_PWM3_out BBAI-ECAP3.dts
/sys/bus/platform/drivers/ecap/48442100.ecap P8.26 eCAP3_in_PWM3_out BBAI-ECAP3A.dts

8.1. BeagleBone cape interface spec

339

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP0.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP1.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2A.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3A.dts

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.12 MMC/SDIO

8.1.13 LCD

8.1.14 McASP

Table 8.23: Bone eMMC

Header pin Description
P8.3 DAT6
P8.4 DAT7
P8.5 DAT2
P8.6 DAT3
P8.20 CMD
P8.21 CLK
P8.22 DAT5
P8.23 DAT4
P8.24 DAT1
P8.25 DATO

Table 8.24: Bone eMMC Overlay

©

lack Al

overlay

MMC2 MMC3

BONE-eMMC.dts

Table 8.25: 16bit LCD interface

Header pin Description
P8_45 lcd_data0
P8_46 lcd_datal
P8_43 lcd_data2
P8_44 lcd_data3
P8_41 lcd_datad
P8_42 lcd_data5
P8_39 lcd_data6
P8_40 lcd_data7
P8_37 lcd_data8
P8_38 lcd_data9
P8_36 lcd_datalO
P8_34 lcd_datall
P8_35 lcd_datal2
P8_33 lcd_datal3
P8_31 lcd_datal4
P8_32 lcd_datal5
P8_27 lcd_vsync
P8_29 lcd_hsync
P8_28 lcd_pclk
P8_30 lcd_ac_bias_en

Table 8.26: 16bit LCD interface Overlay

Black

Al overlay

lcdc

dss

Table 8.27: Bone McASPO

Header pin Description

P9.12 aclkr

P9.25 ahclkx

P9.27 fsr

P9.28 Black: axr2 Al: axr9
P9.29 fsx

P9.30 Black: axr0 Al: axrl0
P9.31 aclkx

340

Chapter 8. Capes

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-eMMC.dts

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.15 PRU

The overlay situation for PRUs is a bit more complex than with other peripherals.
starting and stopping the PRUs can go through either [https://www.kernel.org/doc/html/

for loading,

Table 8.28: Bone McASPO Overlay

Black Al
McASPO McASP1

overlay

The mechanism

latest/driver-api/uio-howto.html UIO] or [https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/
Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.htm| RemoteProc].

¢ /dev/remoteproc/prussX-coreY (AM3358 X = “”, other x = “1|2")

Table 8.29: Bone PRU eCAP

Header Pin Black Al
P8.15 prl_ecap0 prl_ecapO
P8.32 pr2_ecap0
P9.42 prl_ecap0
Table 8.30: Al PRU UART

UART TX RX RTSn CTSn Overlays

PRU1 UARTO P8 31 P8_33 P8_34 P8_35

PRU2 UARTO P8 43 P8 44 P8 45 P8 46

Table 8.31: Bone PRU

Header Pin Black Al
P8.03 pr2_pru0 10
P8.04 pr2_pru0 11
P8.05 pr2_pru0 06
P8.06 pr2_pru0 07
P8.07 pr2_prul 16
P8.08 pr2_pru0 20
P8.09 pr2_prul 06
P8.10 pr2_prul 15
P8.11 prl_pruO 15 (Out) prl_pruO 04

continues on next page

8.1. BeagleBone cape interface spec

341

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.31 - continued from previous page

Header Pin Black Al

P8.12 prl_pruO 14 (Out) prl_pru0 03
P8.13 prl prul 07
P8.14 prl_prul 09
P8.15 prl_pru0O 15 (In) prl_prul 16
P8.16 prl_pru0O 14 (In) prl_prul 18
P8.17 pr2_pru0 15
P8.18 prl_prul 05
P8.19 prl_prul 06
P8.20 pr2_pru0 03
P8.21 pr2_pru0 02
P8.22 pr2_pru0 09
P8.23 pr2_pru0 08
P8.24 pr2_pru0 05
P8.25 pr2_pru0 04
P8.26 prl_prul 17
P8.27 pr2_prul 17
P8.28 pr2_pru0 17
P8.29 pr2_pru0 18
P8.30 pr2_pru0 19
P8.31 pr2_pru0 11

continues on next page
342 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.31 - continued from previous page

Header Pin Black Al

P8.32 pr2_prul 00
P8.33 pr2_pru0 10
P8.34 pr2_pru0 08
P8.35 pr2_pru0 09
P8.36 pr2_pru0 07
P8.37 pr2_pru0O 05
P8.38 pr2_pru0 06
P8.39 pr2_pru0 03
P8.40 pr2_pru0 04
P8.41 pr2_pru0 01
P8.42 pr2_pru0 02
P8.43 pr2_prul 20
P8.44 pr2_pru0 00
P8.45 pr2_prul 18
P8.46 pr2_prul 19
P9.11 pr2_pru0 14
P9.13 pr2_pru0 15
P9.14 prl_prul 14

continues on next page

8.1. BeagleBone cape interface spec

343

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.31 - continued from previous page

Header Pin Black Al

P9.15 prl_pru0 5
P9.16 prl_prul 15
P9.17 pr2_prul 09
P9.18 pr2_prul 08
P9.19 prl _prul 02
P9.20 prl prul 01
P9.24 prl_pru0O 16 (In)

P9.25 prl_pru0 07 pr2_prul 05
P9.26 prl_prul 16 (In) prl_pruO 17
P9.27 prl_pruO 05 prl_prul 11
P9.28 prl_pruO 03 pr2_prul 13
P9.29 prl_pruO 01 pr2_prul 11
P9.30 prl_pru0O 02 pr2_prul 12
P9.31 prl pruO 00 pr2_prul 10
P9.41 prl_pruO 06 prl_prul 03
P9.42 prl pruO 04 prl prul 10

8.1.16 GPIO

Todo: For each of the pins with a GPIO, there should be a symlink that comes from the names

8.1.17 Methodology

The methodology for applied in the kernel and software images to expose the software interfaces is to be
documented here. The most fundamental elements are the device tree entries, including overlays, and udev
rules.

Device Trees

Todo: Describe how the Device Trees expose symbols for reuse across boards

udev rules

10-of-symlink.rules

344 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

#From: https://github.com/mvduin/py-uio/blob/master/etc/udev/rules.d/10-of—
—symlink.rules
allow declaring a symlink for a device in DT
ATTR{device/of_node/symlink}!="", \
ENV{OF_SYMLINK}="%s{device/of_node/symlink}”

ENV{OF_SYMLINK}!="", ENV{DEVNAME}!="", \
SYMLINK+="%E{OF SYMLINK}"”, \
TAG+="systemd”, ENV{SYSTEMD_ALIAS}+="/dev/SE{OF SYMLINK}"

TBD

Also courtesy of mvduin
create symlinks for gpios exported to sysfs by DT
SUBSYSTEM=="gpio”, ACTION=="add”, TEST=="value”, ATTR{label}!="sysfs”, \
RUN+="/bin/mkdir -p /dev/bone/gpio”, \
RUN+="/bin/1ln -sT '/sys/class/gpio/%$k' /dev/bone/gpio/$%s
—~{label}”

Verification

Todo: The steps used to verify all of these configurations is to be documented here. It will serve to document
what has been tested, how to reproduce the configurations, and how to verify each major triannual release.
All faults will be documented in the issue tracker.

8.1.18 References

* Device Tree: Supporting Similar Boards - The BeagleBone Example
* Google drive with summary of expansion signals on various BeagleBoard.org designs

* Beagleboard:Cape Expansion Headers

8.2 BeagleBoard.org BeagleBone Relay Cape

Relay Cape, as the name suggests, is a simple Cape with relays on it. It contains four relays, each of which can
be operated independently from the BeagleBone.

8.2. BeagleBoard.org BeagleBone Relay Cape 345

https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers

BeagleBoard Docs, Release 1.0.20230711-wip

¢ Order page

¢ Schematic

Note: The following describes how to use the device tree overlay under development. The description may
not be suitable for those using older firmware.

8.2.1 Installation

No special configuration is required. When you plug Cape into your BeagleBoard, it is automatically recognized
by the Cape Universal function.

You can check to see if the Relay Cape is recognized with the following command.

ls /proc/device-tree/chosen/overlay

A list of currently loaded device tree overlays is displayed here. If you see BBORG_RELAY-00A2.kernel in this
list, it has been loaded correctly.

If it is not loaded correctly, you can also load it directly by adding the following to the U-Boot options (which
can be reflected by changing /boot/uEnv.txt).

uboot_overlay_addr0=BBORG_RELAY-00AZ2.dtbo

8.2.2 Usage

ls /sys/class/leds

The directory “relayl”, for instance, exists in the following directory. The LEDs can be controlled by modifying
the files in its directory.

echo 1 > relayl/brightness

346 Chapter 8. Capes

https://beagleboard.org/capes#relay
https://git.beagleboard.org/beagleboard/capes/-/tree/master/beaglebone/Relay

BeagleBoard Docs, Release 1.0.20230711-wip

This allows you to adjust the brightness; entering 1 for brightness turns it ON, and entering 0 for OFF.

The four relays can be changed individually by changing the number after “relay” in /sys/class/leds/relay.

8.2.3 Code to Get Started

Currently, using sysfs in .c files, libgpiod-dev/gpiod in .c files, and python3 files with the Relay Cape work well!
¢ For instance, a kernel that | found to work is kernel: 5.10.140-ti-r52
¢ Anotheridea, animage | found that works is BeagleBoard.org Debian Bullseye Minimal Image 2022-11-01

There are newer images and kernels if you want to update and there are older ones in case you would like to
go back in time to use older kernels and images for the Relay Cape. Please remember that older firmware will
work differently on the BeagleBone Black or other related am335x SBC.

8.2.4 C Source with File Descriptors

You can name this file GPIO.c and use gcc to handle compiling the source into a binary like so:

gcc GPIO.c -0 GPIO
/ *

This is an example of programming GPIO from C using the sysfs interface on
a BeagleBone Black/BeagleBone Black Wireless or other am335x board with the.
—Relay Cape.

Use the Relay Cape attached to the BeagleBone Black for a change in seconds.
—and then exit with CTRL-C.

The original source can be found here by Mr. Tranter: https://github.com/
—tranter/blogs/blob/master/gpio/part5/demol.c

Jeff Tranter <jtranter@ics.com>

and...Seth. I changed the source a bit to fit the BeagleBone Black and Relay.
—~Cape while using sysfs.

*/

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main ()

{
// Export the desired pin by writing to /sys/class/leds/relayl/brightness

int fd = open(”/sys/class/leds/relayl/brightness”, O_WRONLY) ;

if (fd == -1) {
perror ("Unable to open /sys/class/leds/relayl/brightness”);
exit (1);

}

fd = open(”/sys/class/leds/relayl/brightness”, O_WRONLY) ;
if (fd == -1) {
(continues on next page)

8.2. BeagleBoard.org BeagleBone Relay Cape 347

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

perror ("Unable to open /sys/class/leds/relayl/brightness”);
exit (1);
}

// Toggle LED 50 ms on, 50ms off, 100 times (10 seconds)

for (int i = 0; i < 100; i++) {

if (write(fd, 7”1”7, 1) !'= 1) {
perror ("Error writing to /sys/class/leds/relayl/brightness”);
exit (1) ;

}

usleep (50000) ;

if (write(fd, ”07, 1) '= 1) {
perror ("Error writing to /sys/class/leds/relayl/brightness”);
exit (1) ;

}

usleep (50000) ;
}

close (fd) ;

// And exit
return 0;

8.2.5 C Source with LibGPlOd-dev and File Descriptors

Also...if you are looking to dive into the new interface, libgpiod-dev/gpiod.h, here is another form of source that
can toggle the same GPIO listed from the file descriptor.

One thing to note: sudo apt install cmake
1. mkdir GPIOd && cd GPIOd
2. nano LibGPIO.c

3. add the below source into the file LibGPIO.c

/*
Simple gpiod example of toggling a LED connected to a gpio line from
the BeagleBone Black Wireless and Relay Cape.

Exits with or without CTRL-C.

*/

// This source can be found here: https://github.com/tranter/blogs/blob/
—master/gpio/part9/example.c

// It has been changed by me, Seth, to handle the RelayCape and BBBW Linux.
—based SiP SBC.

// kernel: 5.10.140-ti-r52
// image : BeagleBoard.org Debian Bullseye Minimal Image 2022-11-01

// type gpioinfo and look for this line: line 20: "P9_41B” "relayl” output.
—active-high [used]

// That line shows us the info. we need to make an educated decision on what.
—~fd we will use, i.e. relayl.

// We will also need to locate which chipname is being utilized. For.
—~instance: gpiochipO - 32 lines:

// #include <linux/gpio.h>
(continues on next page)

348 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

#include <gpiod.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)

{
const char *chipname = "gpiochip0”;
struct gpiod_chip *chip;
struct gpiod_line *1ineLED;

int i, ret;

// Open GPIO chip
chip = gpiod_chip_open_by_name (chipname) ;
if (!chip) {

perror ("Open chip failed\n”);

return 1;

}

// Open GPIO lines
linelED = gpiod_chip_get_1line(chip, 20);
if (!lineLED) {

perror ("Get line failed\n”);

return 1;

}

// Open LED lines for output
ret = gpiod_line_request_output (1inelLED, "relayl”, O0);
if (ret < 0) {

perror ("Request line as output failed\n”);

return 1;

}

// Blink a LED
i = 0;
while (true) {
ret = gpiod_line_set_value(lineLED, (i & 1) != 0);
if (ret < 0) {
perror (”"Set line output failed\n”);
return 1;

¥
usleep (1000000) ;
a4k

}

// Release lines and chip
gpiod_line_release (linelED) ;
gpiod_chip_close (chip);
return 0;

}

4. mkdir build && touch CMakelLists.txt

5. In CMakelLists.txt, add these values and text

cmake_minimum_required (VERSION 3.22)
project (gpiod LANGUAGES C)
add_executable (LibGPIO LibGPIO.c)

target_link_libraries (LibGPIO gpiod)

8.2. BeagleBoard.org BeagleBone Relay Cape 349

BeagleBoard Docs, Release 1.0.20230711-wip

6. cd build && cmake ..
7. make
8. ./LibGPIO

These are a few examples on how to use the RelayCape and am335x supported BeagleBone Black Wire-
less/BeagleBone Black SBCs.

350 Chapter 8. Capes

Chapter 9

PocketBeagle

Contributors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
¢ Maintaining author: Jason Kridner

¢ Contributing Editor: Cathy Wicks

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

PocketBeagle is an ultra-tiny-yet-complete open-source USB-key-fob computer. PocketBeagle features an in-
credible low cost, slick design and simple usage, making PocketBeagle the ideal development board for begin-
ners and professionals alike.

351

http://creativecommons.org/licenses/by-sa/4.0/
mailto:jkridner@beagleboard.org
mailto:cathy@beagleboard.org

BeagleBoard Docs, Release 1.0.20230711-wip

jay20d buio'piecgalbeag

PocketBeagle®

Le -;n,’.l;

S O DO ¥ i sNaNoNallaNaNaN ol o ERF
QOO0 0 000000000
Zy Aay arbeagiayoog ed

9.1 Introduction

This document is the System Reference Manual for PocketBeagle and covers its use and design. PocketBea-
gle is an ultra-tiny-yet-complete Linux-enabled, community-supported, open-source USB-key-fob-computer.
PocketBeagle features an incredible low cost, slick design and simple usage, making it the ideal develop-
ment board for beginners and professionals alike. Simply develop directly in a web browser providing you with
a playground for programming and electronics. Exploring is made easy with several available libraries and
tutorials with many more coming.

PocketBeagle will boot directly from a microSD card. Load a Linux distribution onto your card, plug your board
into your computer and get started. PocketBeagle runs GNU.Linux, so you can leverage many different high-
level programming languages and a large body of drivers that prevent you from needing to write a lot of your
own software.

This design will keep improving as the product matures based on feedback and experience. Software updates
will be frequent and will be independent of the hardware revisions and as such not result in a change in the
revision number of the board. A great place to find out the latest news and projects for PocketBeagle is on the
home page beagleboard.org/pocket

Important: Make sure you check the BeagleBoard.org docs repository for the most up to date information.

9.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

352 Chapter 9. PocketBeagle

https://beagleboard.org/pocket
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

tps/beagleboard.org

Gume

Starty Discover Boards § Leam s Explore § Colaborate §

PocketBeagle

Fig. 9.1: PocketBeagle Home Page

9.2.1 Document Change History

Table 9.1: Change History

Rev Changes Date By
A.x Production Document December 7, 2017 JK
0.0.5 Converted to .rst and gitlab hosting July 21, 2022 DK

9.2.2 Board Changes

Table 9.2: Board History

Rev Changes Date By

Al Preliminary February 14, 2017 JK

A2 Production. Fixed mikroBUS Click reset pins (made GPIO). September 22, 2017 JK
PocketBone

Upon the creation of the first, 27mm-by-27mm, Octavo Systems OSD3358 SIP, Jason did a hack two-layer board
in EAGLE called “PocketBone” to drop the Beagle name as this was a totally unofficial effort not geared at being
a BeagleBoard.org Foundation project. The board never worked because the 32kHz and 24MHz crystals were
backwards and Michael Welling decided to pick it up and redo the design in KiCad as a four-layer board. Jason
paid for some prototypes and this resulted in the first successful “PocketBone”, a fully-open-source 1-GHz Linux
computer in a fitting into a mini-mint tin.

Rev Al

The Rev Al of PocketBeagle was a prototype not released to production. A few lines were wrong to be able to
control mikroBUS Click add-on board reset lines and they were adjusted.

Rev A2

The Rev A2 of PocketBeagle was released to production and [https://www.prnewswire.com/news-releases/small-
in-size-cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-
300519950.htmllaunched at World MakerFaire 2017].

Known issues in rev A2:

Issue Link
GPIO44 is incorrectly labelled as GP1048 github .com/beagleboard/pocketbeagle/is sues/4

9.2. Change History 353

https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://github.com/beagleboard/pocketbeagle/issues/4

BeagleBoard Docs, Release 1.0.20230711-wip

9.3 Connecting Up PocketBeagle

This section provides instructions on how to hook up your board. The most common scenario is tethering
PocketBeagle to your PC for local development.

9.3.1 What’s In the Package

In the package you will find two items as shown in figures below.
¢ PocketBeagle

* Getting Started instruction card with link to the support URL.

PocketBeagle®
bow oipat RGHE Linu companer
wnleash your imagmaticn
b inspared and leam fom the

Fig. 9.2: PocketBeagle Package

9.3.2 Connecting the board
This section will describe how to connect to the board. Information can also be found on the Quick Start Guide
that came in the box. Detailed information is also available at beagleboard.org/getting-started

The board can be configured in several different ways, but we will discuss the most common scenario. Future
revisions of this document may include additional configurations.

9.3.3 Tethered to a PC using Debian Images

In this configuration, you will need the following additional items:
* microUSB to USB Type A Cable
* microSD card (>=4GB and <128GB)

354 Chapter 9. PocketBeagle

https://beagleboard.org/getting-started

BeagleBoard Docs, Release 1.0.20230711-wip

PocketBeagle®

low cost 1GHz Linux computer
unleash yvour imagination

be inspired and learn from the
best online community

open source design

beagleboard.org/pocket

Getting Started

1. Dowrilod |vtest irmage ak BHEULaDest
L Transter the image to micraS0 cand

3. bngert the microSD card into board

4, Connect the board to your Linux, Mac
or Windows PC using a USB cabie, The
baard will show as a drive

5. Opstsny thee drinve ansd click START.HTM

Fig. 9.3: PocketBeagle Package Insert front

9.3. Connecting Up PocketBeagle

355

BeagleBoard Docs, Release 1.0.20230711-wip

PocketBeagle®

S,

30 PRINTER
a |2

|
ol

ROBATS GAMES

Specifications:
AMITSE 1GHE2 ARM® Cortex-AS
SIZME DAY RAM
1D graphics accelerator
HECHN Ngating-paint accalerator
I% PRU 3X:bit micrecantralloris

beaglebonrd oig/ pockat

L

elpcironics

|]

Fig. 9.4: PocketBeagle Package Insert back

356

Chapter 9.

PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

The board is powered by the PC via the USB cable, no other cables are required. The board is accessed either
as a USB storage drive or via a web browser on the PC. You need to use either Firefox or Chrome on the PC, |IE
will not work properly. Figure below shows this configuration.

In some instances, such as when additional add-on boards, or PocketCapes are connected, the PC may not be
able to supply sufficient power for the full system. In that case, review the power requirements for the add-on
board/cape; additional power may need to be supplied via the 5v input, but rarely is this the case.

Getting Started

The following steps will guide you to quickly download a PocketBeagle software image onto your microSD card
and get started writing code.

1. Navigate to the Getting Started Page beagleboard.org/getting-started Follow along with the instructions and
click on the link noted in Figure 5 below www.beagleboard.org/distros. You can also get to this page directly by
going to bbb.io/latest

1. Download the latest image onto your computer by following the link to the latest image and click on the
Debian image for Stretch 10T (non-GUI) for BeagleBone and PocketBeagle via microSD card. See Figure 6 below.
This will download a .img.xz file into the downloads folder of your computer.

1. Transfer the image to a microSD card.

Download and install an SD card programming utility if you do not already have one. We like https://etcher.io/
for new users and so we show that one in the steps below. Go to your downloads folder and doubleclick on the
.exe file and follow the on-screen prompts. See figure 7.

Insert a new microSD card into a card reader/writer and attach it via the USB connection to your computer.
Follow the instructions on the screen for selecting the .img file and burning the image from your computer to
the microSD card. Eject the SD card reader when prompted and remove the card. See Figures 8 and 9.

1. Insert the microSD card into the board - you'll hear a satisfying click when it seats properly into the slot. It
is important that your microSD card is fully inserted prior to powering the system.

1. Connect the micro USB connector on your cable to the board as shown in Figure 11. The microUSB connector
is fairly robust, but we suggest that you not use the cable as a leash for your PocketBeagle. Take proper care
not to put too much stress on the connector or cable.

1. Connect the large connector of the USB cable to your Linux, Mac or Windows PC USB port as shown in Figure
12. The board will power on and the power LED will be on as shown in Figure 13 below.

1. As soon as you apply power, the board will begin the booting process and the userLEDs Figure 14 will
come on in sequence as shown below. It will take a few seconds for the status LEDs to come on, like teaching
PocketBeagle to ‘stay’. The LEDs will be flashing as it begins to boot the Linux kernel. While the four user LEDS
can be over written and used as desired, they do have specific meanings in the image that you’ve initially
placed on your microSD card once the Linux kernel has booted.

* USERO is the heartbeat indicator from the Linux kernel.
¢ USER1 turns on when the microSD card is being accessed
¢ USER2 is an activity indicator. It turns on when the kernel is not in the idle loop.

* USER3 idle

Accessing the Board and Getting Started with Coding

The board will appear as a USB Storage drive on your PC after the kernel has booted, which will take approxi-
mately 10 seconds. The kernel on the board needs to boot before the port gets enumerated. Once the board
appears as a storage drive, do the following:

1. Open the USB Drive folder to view the files on your PocketBeagle.

2. Launch Interactive Quick Start Guide.

9.3. Connecting Up PocketBeagle 357

https://beagleboard.org/getting-started
https://www.beagleboard.org/distros
https://bbb.io/latest
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230711-wip

i geboarton 553
« >+ 06

]

Fig. 9.5: Tethered Configuration

358 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

. ___|

https//beagleboard.org/g:

§? beagleboard.org® GUD: B

daed

Starts cover Boards § Leam 3 Collsborate §
Getting Started
Step 0:Update ima Beagles are tiny computers with the capabilty of moder systems, without the bulk, expense, or noise. Read the step
= by-step geting started tutoial below to begin developing wih your Beagle in minutes.
B For user supplied tips on getting started, visit the eLinux (or other) community wiki pages:
step2
step 3 . e
e to web server . xis®
.)
. @
. @
s @
s @
a . @

Update board with latest software '

Download the lastest Debian image hmvmhe 10T" images provide more free disk
space if you don't need to use graphicaT GSST TAIEAEE (G

Fig. 9.6: Getting Started Page

%f beagleboard.org” umea

BeagleBoard.org Latest Firmware Images

Download the latest fiware for your BeagleBoard, BeagleBoard-xM, BeagleBoard
Bea

reen iStudio BeagleBone G
element14 BeagleBone Black Ind

ial, Mentorel BeagleBone uSomQ, Neuromeka
Beagle

Ses the Geting Started guide and the commg & for ints on loading these images
Recommended Debian \mages‘

BeagleBone Al or Pocl

Shasaeum Sasgiobons Cleck skt Arou 1

dStudio loT image for one Green
8a1a134670M324eacc 160b4aloI2c0abib6AATEb32Ne 112904041

Fig. 9.7: Download Latest Software Image

“FETCHER

Ropostory Changelog CLI Chat Maling List Halp.

Burn. Bette

Burn images to SD cards & USB drives, safely and easily.
Downiood for Windows 164+

‘oxporimental CLI
Soo whats nowt

A B ooasnozin A o | x

Fig. 9.8: Download Etcher SD Card Utility

- x
® = 1 8 » ThisPC » Downloads » v o »
Organize = New folder = . I @
- “
4% Favorites Name Type
Bl Desktop KeysightHandheldMeterLogger_3_1_5113... File folder
18 Downloads . Mobalterm Installer 104 10/30/2017 10:4 File folder
o % Dropbox 3 bone-debian-9.2-iot-ammhf-2017-10-10-.. 11/2/2017 525PM WinRAR archive
B Recent plac 1 KeysightHandheldMeterLogger 3 15113.. 10/12/2017 10:4¢ d (zipp
1) Mobaitterm_Installer_v10.4 10 71038 d (zipp
& OneD:
Select image nemme
& Homegroup
™ This PC
it Deskiop
Documents
. v < >
FETCHER I8 Downloads
File name: v | 0SImages v
Open Cancel
B bone-debizn9ziot.. ~ B bonedebizn-gziot... A

Fig. 9.9: Select the PocketBeagle Image

9.3. Connecting Up PocketBeagle 359

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.10: Burn the Image to the SD Card

P VT L AT gy
5B)
aor ® ol Pl

L afwe ®

Fig. 9.11: Insert the microSD Card into PocketBeagle

360 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

PocketBeagle®
PETANG

17374

Fig. 9.12: Insert the micro USB Connector into PocketBeagle

9.3. Connecting Up PocketBeagle 361

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.13: Insert the USB connector into PC

Fig. 9.14: Board Power LED

User LEDs

USR3
USR2
USR1
USRO

Fig. 9.15: User LEDs

362

Chapter 9.

PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Right Click on the file named START.HTM and open it in Chrome or Firefox. This will use your browser to open
a file running on PocketBeagle via the microSD card. You will see file:///Volumes/BEAGLEBONE/START.htm in
the url bar of the browser. See Figure 15 below. This action displays an interactive Quick Start Guide from
PocketBeagle.

Fig. 9.16: Interactive Quick Start Guide Launch

1. Enable a Network Connection.

Click on ‘Step 2’ of the Interactive Quick Start Guide page to follow instructions to “Enable a Network Con-
nection” (pointing to the DHCP server that is running on PocketBeagle). Copy the appropriate IP Address from
the chart (according to your PC operating system type) and paste into your browser then add a :3000 to the
end of it. See example in Figure 16 below. This will launch from PocketBeagle one of it's favorite Web Based
Development Environments, Cloud9 IDE, (Figure 17) so that you can teach your beagle new tricks!

> 19216862

Fig. 9.17: Enable a Network Connection

Fig. 9.18: Launch Cloud9 IDE

1. Get Started Coding with Cloud9 IDE - blinking USR3 LED in JavaScript using the BoneScript library example

1. Create a new text file

9.3. Connecting Up PocketBeagle 363

file:///Volumes/BEAGLEBONE/START.htm

BeagleBoard Docs, Release 1.0.20230711-wip

& cloud? - Cloudd x

< C | ® 192.168.7.2:3000/ide.htm

Cloud9 Fle Edit Find View Goto Run Tools Window Preview ©

vim Nelcome Lo
v New From Template »

New Plugin

- 6 Welcome

‘elcome to Cloud9. Use this welcome screen to tweak the look & feel of the Cloud9 user interface.

Workspace

Upload Local Files... hoose a Preset

Download Project

Line Endings »

Close File AW

Close All Files Alt-Shift-W on - "beaglebon mm

o -
debian@beaglebone: /var/1ib/cloud9$

> i examples
B ucense
8 pumpkinBlinky.py
R README.md

Copy and paste the below code into the editor

var b = require ('bonescript');
var state = b.LOW;
b.pinMode ("USR3”, b.OUTPUT) ;
setInterval (toggle, 250); // toggle 4 times a second,
function toggle () {
if (state == b.LOW) state = b.HIGH;
else state = b.LOW;
b.digitalWrite ("USR3”, state);

& clouds - Cloudd

< C | ® 192.168.7.2:3000/ide.htm

x ¥ () System Reference Manu: X

Cloud9 File Edit Find View Goto Run Tools Window Preview ©Run

v i doud9 o A Untitied
v im Adafruit_Python_WS2801:
v @ Adafruit_Python_WS28

v i Adafruit WS2801

*bonescript');

Workspace

de("USR3", b
setInterval(toggle, 250); // toggle 4 times a second,
function toggle() [{
if(state == b.LOW) state = b.HIGH;
else state = b.LOW;
i Adafruit_WS2801.eq: b.digitalWrite("USR3", state);
i build
i dist
examples
4 rainbow.py
4 simpletest.py
A ez setup.py
B ucense
R README.md

CoNONAWNE

A setup.py
> im autorun

python - "beaglebon nmediate

> B examples debian@beaglebone: /var/1ib/cloud9$

R uicense
B pumpkinBlinky.py
R README.md

The Cloud9 Blog
>ud9 Terminal like a

Since the dark ages when the green on
black screens were the only interface to a
machine, the terminal has been a coder's
best friend.

This has been especially true with the

advent of command line driven ecosystems
like the Ruby and the Node js communities

Rl

every 250ms

@l

6:31PM
12/14/2017

6:43 PM
12/14/2017

364

Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

& cloud? - Cloudd

&

Workspace

Save the new text file as blinkusr3.js within the default directory

x V) System Reference Manu. X

C | ® Notsecure | 192.168.7.2:3000/ide.htr

v i doud9
v @ Adafruit_Python_WS2801
v i Adafruit_Python_WS28
v i Adafruit_Ws2801

> i Adafruit_WS2801.eg:
> i build

R README.md
A setup.py
> im autorun
> i examples
4 blinkusr3.js
B UICENsE
8 pumpkinBlinky.py
B README.md

Cloud9 File Edit Find View Goto Run Tools Window Preview @ Run

biinkus3 js

= require(

tate
-pinMode(s
setInterval(toggle, 250);
fu 12() [

e()
tate == b.LOW) state = b.HIGH;
tate = b.LOW;

allirite("USR3", state);

python - "beaglebon: mm
debian@beaglebone: /var/1ib/cloud9s node blinkusr3.jsl]

Execute .. code-block:

node blinkusr3.]s

within the default (/var/lib/cloud9) directory

&

Workspace

C | ® Notsecure | 192.168.7.2:3000/ide.htm

v @ Adafruit_Python_WS2801:
v i Adafruit_Python_Ws28
v i Adafruit_Ws2801

> i Adafruit_WS2801.eg
> i build

> i examples
4 blinkusr3.js
B ucense
8 pumpkinBlinky.py
R README.md

€l a

Type CTRL+C to stop the program running

Powering Down

require(
a tate =
b.pinMode(
terval N
to |
tat b.LOW) state = b.HIGH;
b.LOW

e at
b.digitalWrite(, state);

node - "beaglebone” mmediate
debian@beaglebone: /var/1ib/cloud9$ node blinkusr3.js
4:9:63-ti-r79

88 &

_— . T2PM
P Bl €y

& cloud9 - Cloudd x ¥) System Reference Manu: X

€]

4

7:14PM
e 5
B @l o

1. Standard Power Down Press the power button momentarily with a tap. The system will power down
automatically. This will shut down your software with grace. Software routines will run to completion.

The Standard Power Down can also be invoked from the Linux command shell via “sudo shutdown -h now”.

9.3. Connecting Up PocketBeagle

365

BeagleBoard Docs, Release 1.0.20230711-wip

2. Hard Power Down Press the power button for 10 seconds. This will force an immediate shut down of the
software. For example you may lose any items you have written to the memory. Holding the button longer
than 10 seconds will perform a power reset and the system will power back on.

1. Remove the USB cable Remember to hold your board firmly at the USB connection while you remove the
cable to prevent damage to the USB connector.

4. Powering up again. If you'd like to power up again without removing the USB cable follow these instructions:

1. If you used Step 1 above to power down, to power back up, hold the power button for 10 seconds, release
then tap it once and the system will boot normally.

2. If you used Step 2 above to power down, to power back up, simply tap the power button and the system
will boot normally.

Fig. 9.19: Power Button

9.3.4 Other ways to Connect up to your PocketBeagle

The board can be configured in several different ways. Future revisions of this document may include additional
configurations.

As other examples become documented, we’ll update them on the Wiki for PocketBeagle PocketBeagle WiKi
See also the on-line discussion.

9.4 PocketBeagle Overview

PocketBeagle is built around Octavo Systems’ OSD335x-SM System-In-Package that integrates a high-
performance Texas Instruments AM3358 processor, 512MB of DDR3, power management, nonvolatile serial
memory and over 100 passive components into a single package. This integration saves board space by elimi-
nating several packages that would otherwise need to be placed on the board, but more notably simplifies our
board design so we can focus on the user experience.

The compact PocketBeagle design also offers access through the expansion headers to many of the interfaces
and allows for the use of add-on boards called PocketCapes and Click Boards from MikroElektronika, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

9.4.1 PocketBeagle Features and Specification

This section covers the specifications and features of the board in a chart and provides a high level description
of the major components and interfaces that make up the board.

366 Chapter 9. PocketBeagle

https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/home
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/beagleboard/JtOGZb-FH2A/9GVu7I6kAQAJ

BeagleBoard Docs, Release 1.0.20230711-wip

Table 9.3: PocketBeagle Features

Feature
System-In-Package Octavo Systems OSD335x-SM in 256 Ball BGA (21mm x 21mm)
SiP Incorporates

Processor Texas Instruments 1GHz Sitara™ AM3358 ARM® Cortex®-A8 with NEON floating-point accelerator

Graphics Engine Imagination Technologies PowerVR SGX530 Graphics Accelerator

Real-Time Units 2x programmable real-time unit (PRU) 32-bit 200MHz microcontrollers with single-cycle I/O latency

Coprocessor ARM® Cortex®-M3 for power management functions

SDRAM Memory 512MB DDR3 800MHz RAM

Non-Volatile Mem- 4KB 12C EEPROM for board configuration information

ory

Power Management | TPS65217C PMIC along with TL5209 LDO to provide power to the system with integrated 1-cell LiPo battery
support

Connectivity

SD/MMC Bootable microSD card slot

USB High speed USB 2.0 OTG (host/client) micro-B connector

Debug Support JTAG test points and gdb/other monitor-mode debug possible

Power Source microUSB connector, also expansion header options (battery, VIN or USB-VIN)

User I/O Power Button with press detection interrupt via TPS65217C PMIC

Expansion Header

usB High speed USB 2.0 OTG (host/client) control signals

Analog Inputs 8 analog inputs with 6 @ 1.8V and 2 @ 3.3V along with 1.8V references

Digital I/0 44 digital GPIOs accessible with 18 enabled by default including 2 shared with the 3.3V analog input pins

UART 3 UARTs accessible with 2 enabled by default

12C 2 12C buses enabled by default

SPI 2 SPI buses with single chip selects enabled by default

PWM 4 Pulse Width Modulation outputs accessible with 2 enabled by default

QEP 2 Quadrature encoder inputs accessible

CAN 2 CAN bus controllers accessible

0OSD3358-512M-BSM System in Package

The Octavo Systems OSD3358-512M-BSM System-In-Package (SiP) is part of a family of products that are
building blocks designed to allow easy and cost-effective implementation of systems based in Texas Instru-
ments powerful Sitara AM335x line of processors. The OSD335x-SM integrates the AM335x along with the Tl
TPS65217C PMIC, the TI TL5209 LDO, up to 1 GB of DDR3 Memory, a 4 KB EEPROM for non-volatile configuration
storage and resistors, capacitors and inductors into a single 21mm x 21mm design-in-ready package.

With this level of integration, the OSD335x-SM family of SiPs allows designers to focus on the key aspects of
their system without spending time on the complicated high-speed design of the processor/DDR3 interface or
the PMIC power distribution. It reduces size and complexity of design.

Full Datasheet and more information is available at octavosystems.com/octavo_products/osd335x-sm/

9.4.2 Board Component Locations

This section describes the key components on the board, their location and function.

Figure below shows the locations of the devices, connectors, LEDs, and switches on the PCB layout of the board.

Octavo Systems OSD3358-SM

Power

LED P2 Header

& Boot Config
k 3
oc . %I:o-glol:wlrd.cuge
[l PocketBeagle®
USB 2.0 microSD
oTG OCTAVO Card Slot

SYsTEMS

Power

17401

| " P1 Header
User L POGOOOOPODE®S
LEDs o P1 beagleboard.org/pocke

Fig. 9.20: Key Board Component Locations

9.4. PocketBeagle Overview 367

https://octavosystems.com/octavo_products/osd335x-sm/

BeagleBoard Docs, Release 1.0.20230711-wip

Key Components

* The Octavo Systems 0OSD3358-512M-BSM System-In-Package is the processor system for the
board

* P1 and P2 Headers come unpopulated so a user may choose their orientation

e User LEDs provides 4 programmable blue LEDs

« Power BUTTON can be used to power up or power down the board (see section 3.3.3 for details)
¢ USB 2.0 OTG is a microUSB connection to a PC that can also power the board

* Power LED provides communication regarding the power to the board

* microSD slot is where a microSD card can be installed.
9.5 PocketBeagle High Level Specification
This section provides the high level specification of PocketBeagle.

9.5.1 Block Diagram

Figure 22 below is the high level block diagram of PocketBeagle.

Cape P1 Signals

User 1/0:

0SD335x-SM Sip O 4

Contains: - ———r
AM3358 "a“s

TPS65217C

(" UB Host | TL5209 -W
Connector _ — — Connector

Fig. 9.21: PocketBeagle Key Components

9.5.2 System in Package (SiP)

The OSD335x-SM Block Diagram is detailed in Figure 23 below. More information, including design resources
are available on the ‘Octavo Systems Website’

Note: PocketBeagle utilizes the 512MB DDR3 memory size version of the OSD335x-SM A few of the features of
the OSD335x-SM SiP may not be available on PocketBeagle headers. Please check Section 7 for the P1 and P2
header pin tables.

9.5.3 Connectivity
Expansion Headers
PocketBeagle gives access to a large number of peripheral functions and GPIO via 2 dual rail expansion headers.

With 36 pins each, the headers have been left unpopulated to enable users to choose the header connector
orientation or add-on board / cape connector style. Pins are clearly marked on the bottom of the board with

368 Chapter 9. PocketBeagle

https://octavosystems.com/octavo_products/osd335x-sm

BeagleBoard Docs, Release 1.0.20230711-wip

Octavo Systems OSD335x-SM
256 Ball BGA (21mm x 21mm)

TPS65217C
Power In 5V:

« DC, USB, Li-ion Battery

Power Out:
« 1.8V, 3.3V, S¥YS

TL5209
Power Out:

=033

Up To 1GB DDR3
main memory

Passive Components

T1 AM335x
ARM® Cortex®-A8

» Up to 1 GHz clock

32KB L1 Icache + SED
32KB L1 Dcache + SED
256KB L2 cache + ECC
64KB dedicated RAM
64KB shared L3 RAM

Parallel
MMC, SD and SDIO x3
GPIO x114

Serial
UART x6, SPI x2, 12C x3
McASP x2 (4 channel)
CAN x2 (Ver 2A and B)
USB2.0 HS OTG+PHY x2

Ethernet 10/100/1000 2-

port and switch

: OSD335x SIP Block Diagram

System

ADC (8 channel)
12-bit SAR

PRU-ICSS (PRU x2)

RTC

Timers x8

eHRPWM x3

eQEP x3

eCAP x3

Crystal oscillator x2

JTAG

LCD Display
Up to 24-bit color
3D Graphics Engine
Character Display
Active Matrix LCD
Passive Matrix LCD
Touch screen

. PocketBeagle High Level Specification

369

BeagleBoard Docs, Release 1.0.20230711-wip

additional pin configurations available through software settings. Detailed information is available in Section
7.

Fig. 9.23: PocketBeagle Expansion Headers

microSD Connector

The board is equipped with a single microSD connector to act as the primary boot source for the board. Just
about any microSD card you have will work, we commonly find 4G to be suitable.

When plugging in the SD card, the writing on the card should be up. Align the card with the connector and
push to insert. Then release. There should be a click and the card will start to eject slightly, but it then should
latch into the connector. To eject the card, push the SD card in and then remove your finger. The SD card will
be ejected from the connector. Do not pull the SD card out or you could damage the connector.

microSD
Card Slot

Fig. 9.24: microSD Connector

USB 2.0 Connector

The board has a microUSB connector that is USB 2.0 HS compatible that connects the USBO port to the SiP.
Generally this port is used as a client USB port connected to a power source, such as your PC, to power the
board. If you would like to use this port in host mode you will need to supply power for peripherals via Header
P1 pin 7 (USB1.VIN) or through a powered USB Hub. Additionally, in the USB host configuration, you will need
to power the board through Header P1 pin 1 (VIN) or Header P1 pin 7 (USB1.VIN) or Header P2 pin 14 (BAT.VIN)

Fig. 9.25: USB 2.0 Connector

Boot Modes

There are three boot modes:

¢ SD Boot: MicroSD connector acts as the primary boot source for the board. This is described in Section
3.

370 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

¢ USB Boot: This mode supports booting over the USB port. More information can be found in the project
called “BeagleBoot” This project ported the BeagleBone bootloader server BBBIfs(currently written in c)
to JavaScript(node.js) and make a cross platform GUI (using electron framework) flashing tool utilizing
the etcher.io project. This will allow a single code base for a cross platform tool. For more information on
BeagleBoot, see the BeagleBoot Project Page.

* Serial Boot: This mode will use the serial port to allow downloading of the software. A separate USB to
TTL level serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click
Boards to use this method. The UART pins on PocketBeagle’'s expansion headers support the interface.
For more information regarding the pins on the expansion headers and various modes, see Section 7.

Table 9.4: UART Pins on Expansion Headers for Serial Boot

H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.22 GND GND

P1.30 uUo_TX E16 B12 uart0_txd

P1.32 UO_RX E15 Al2 uart0_rxd

If the Serial Boot is not in use, the UARTO pins can be used for Serial Debug. See Section 5.6 for more informa-
tion.

Software to support USB and serial boot modes is not provided by beagleboard.org. Please contact Tl for
support of this feature.

9.5.4 Power

The board can be powered from three different sources:
* A USB port on a PC.
* A power supply with a USB connector.

e Expansion Header pins.

Note: VIN-USB is directly shorted between the USB connector on PocketBeagle and USB1_VI on the expansion
headers. You should only source power to the board over one of these and may optionally use the other as a
power sink.

The tables below show the power related pins available on PocketBeagle’s Expansion Headers.

Table 9.5: Power Inputs Available on Expansion Headers

H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.01 VIN P10, R10, T10 VIN

P1.07 USB1_VI P9, R9, T9 VIN-USB

P2.14 BAT_+ P8, R8, T8 VIN-BAT

Table 9.6: Power Outputs Available on Expansion Headers

H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.14 +3.3V F6, F7, G6, G7 VOUT-3.3V

P1.24 VOUT K6, K7, L6, L7 VOUT-5V

P2.13 VOUT K6, K7, L6, L7 VOUT-5V

P2.23 +3.3V F6, F7, G6, G7 VOUT-3.3V

9.5. PocketBeagle High Level Specification

371

https://medium.com/@ravikp7/gsoc-2017-final-report-beagleboot-a20d28c8d632
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click
https://shop.mikroe.com/ftdi-click

BeagleBoard Docs, Release 1.0.20230711-wip

Table 9.7: Ground Pins Available on Expansion Headers

H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.15 USB1_GND GND
P1.16 GND GND
P1.22 GND GND
P2.15 GND GND
P2.21 GND GND

Note: A comprehensive tutorial for Power Inputs and Outputs for the OSD335x System in Package is available
in the ‘Tutorial Series’ on the Octavo Systems website.

9.5.5 JTAG Pads

Pads for an optional connection to a JTAG emulator has been provided on the back of PocketBeagle. More
information about JTAG emulation can be found on the Tl website - ‘Entry-level debug through full-capability
development’

JTAG Pads

Fig. 9.26: JTAG Pad Connections

9.5.6 Serial Debug Port

Serial debug is provided via UARTO on the processor. See Section 5.3.4 for the Header Pin table. Signals
supported are TX and RX. None of the handshake signals (CTS/RTS) are supported. A separate USB to TTL level
serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click Boards to use
this method.

> W N
AIN ¢1.8U

Serial Debug Connections

If serial boot is not used, the UARTO can be used to view boot messages during startup and can provide access
to a console using a terminal access program like Putty. To view the boot messages or use the console the
UART should be set to a baud rate of 115200 and use 8 bits for data, no parity bit and 1 stop bit (8N1).

372 Chapter 9. PocketBeagle

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/power-input-output/
https://www.ti.com/tools-software/debug.html
https://www.ti.com/tools-software/debug.html
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click
http://www.putty.org/

BeagleBoard Docs, Release 1.0.20230711-wip

9.6 Detailed Hardwa

re Design

The following sections contain schematic references for PocketBeagle. Full schematics in both PDF and Eagle

are available on the ‘PocketBeagle

Wiki’

9.6.1 OSD3358-SM SiP Design

Schematics for the OSD3358-SM SiP are divided into several diagrams.

SiP A OSD3358 SiP System and

Power Signals

\.(ﬂg U1A V%JT
::g VIN_AG SYS_VOUT E‘;
A0 1 vin_ac svs_vout (I
VIN_AC SYS_voUT [—2
VIN.USE SYS_VOUT
3.3V
;9 VIN_USB . O
TE VIN_USBE SYS_VDD1_3P3v FS
2 | vin_usB svs_vopi_aeav EL
SYS VDD1_3Pav |—Co
SYS VDD1_aPav VDD_3V3AUX
[
VIN_BAT
BATVIN 4 BB VIN_ BAT
T8 1 vIN_BAT SYS_VDDZ_3P3V
" SYS VDD2_3Pav PWR
Ne—| PMIG_BAT_SENSE LTST-C191TBKT
__BATTEMP NG |
PMIC_TS
SYS_ATC_1PBV
sYs_ATC 1PaV [—=11 o
VDD_3V3A
SIPA O ano
§ SYs.vDDa 3pav £a
& svsvbpa aeav -G8
" £ sysvoosaeav |-H
13 { pMIC_NRESET ¥ S8YS_VDD3_3Pav JE‘
POWER E SY¥S_VDD3_3Pav J7
MINI_PUSHBUTTON g svs_vDD3_3Pav KBE
g Ll 5 ™ § sysvopaaeav [
F E—F—NB-EIN— PMIC_PB._IN § svs.vopa apav
GND M1 ppic_PWR_EN = VDDSHV1 32—
N0 | pyic powER en 580 VDDSHV2 g
e b VDDSHV3 [—=¢
[N PMC LDO PGOOD 288 VDDSHV4 2
RTC._PWRONRSTN ¥ VDDSHVS [——4
855 VDDSHVE [
L5 | pMIC_NWAKEUP
[Chas | EXT_WAKEUP @
E4 Fi0 "}-
PMIC_NINT SYS_VDD_1PBY ‘o)
[be] eyminmn svs_vop_tpev [-S10 8
§ SYS_VOD_1PBY [— -
g sYs_vDD_1Pev [o
5 S¥S_VDD_1PBV J‘U -
l—&_lﬂ— PMIC_SCL 3 svs_vop_1eey (L o
12C0_SCL 5 SYS_VDD_1PBY :
8 £ ays vDD_ipav |-L10 VDD_RTC wu
o1 o H O
2| PMic_spa 3 a
12C0. SDA ’—%
GND to program EEPROM EMIC_PGEOOD | 12 o PMIC_PGOOD . *
M2 1 eeprom we ‘g PWRONRSTN | E1L]
ENTALYC1GOTDCK
]
. o GND
g|—WWT;¢ RTC_KALDO_ENN wammrsTN B BESET# :

0S5D3358-512M-BSM

Fig. 9.27: SiP A OSD3358 SiP System and Power Signals

9.6. Detailed Hardware Design

373

https://git.beagleboard.org/beagleboard/pocketbeagle

BeagleBoard Docs, Release 1.0.20230711-wip

SiP B OSD3358 SiP JTAG, USB & Analog Signals

U1B
SIPB
cz A7
]| 0SCIN o 218 | osco m SYS_ADC_1Pav
: -
B
= E VAEFP |-B7 o AINVAEE+
08Co_OouT Analog
0SC0_GND Pwr & Gnd o7
=T 0.1uF, 6.3V
AGND_ADC |22
A8 | pse1 N
(';) VREFN | B2 o AINVBEE-
@
A5
A5 | osci_out
o5 i AINO g AIND(1.8Y)
. AIN1(1.8V)
G8C1_GND 2 B ANt av; . GND
C6 AINA{1 AV} T T
o A Coz__amaayv, AN Fullinput Vatage
—WJTAGTDL G1 | p 1G] £ AN5 |-C8 (U1.CBJAINS~1.8Y LT —AINs(E.3v)
JTAG_TDO c2 | 1pp z o ANG |-G {U1.CO)AINS~1.8Y S AW —AINBIGPIOS?
TAG TCK b1 |t < | B3 AN e A
g; TCK h o AINT = El\ﬂﬂeﬂ Output Volage ll'l'l!.l'
MM TMS = w© s (Input ta Analag IN} _L
ITAG_TRST# .
25| TASTN EPMIC_.MUX_OUT
UTAG EMU0D E2 | pon . GND
—[TAG_EMUM B3 | gy MIC MUX_IN |13 AINZ(1.8V)
VIN.USB
J16 15 |
USBO_VBUS USB1_VBUS ISB1.VBUS
(U1 K16)USBC.D- E}g USBO DM o - Use1 o | Li6__USALD.
= USBD_DP m o UsB1 DP -
(U1 KAUSECID K14 | fete c.:}o g Useip L4 USR1ID
K13 1 yspo_ce usBi_cE 12
A3 useo DRVWBUS Use1_pAvveus 14 USBLDRVVBUS

08D3358-512M-BSM

Fig. 9.28: SiP B OSD3358 SiP JTAG, USB & Analog Signals

SiP C OSD3358 SiP Peripheral Signals

SiP D OSD3358 SiP System Boot Configuration
SiP E OSD3358 SiP Power Signals

SiP F OSD3358 SiP Power Signals

9.6.2 MicroSD Connection

The Micro Secure Digital (microSD) connector design is highlighted in Figure 35.

9.6.3 USB Connector

The USB connector design is highlighted in Figure 36.

Note that there is an ID pin for dual-role (host/client) functionality. The hardware fully supports it, but care
should be taken to ensure the kernel in use is either statically or dynamically configured to recognize and
utilize the proper mode.

9.6.4 Power Button Design

The power button design is highlighted in Figure 37.

374 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

uic
12 7 GPIOES
UARTO_TXD GPMC_CLK
UARTO.RX A2 | \)arTo XD SIPC -
SPI1.MISO 812 AR Cran sPMC A0 ;1;
— 13 1 JARTO_ATSN Gemc a1 (B2
GPMC_A2
- Ti3
GPMC_A3 [
:;g} 2& E” UART1_TXD GPMC_As —E13GPIOS2
1L JAAT1_AXD GPMC_AS
UART1_CTSN GPMC A6 |14 (UH.T14)USR1
12C2.5C1 A0 | JaRT1 RTSN ghcAa 21,:
GPMC_A8
- Ti5 _ GPIOST
GPMC_Ag
SPIN CLK A13 - A5 GPIOAR
SPIOMISO B13 | ShoooK e [-s __apiosa
SPI0MOS! B4 | gpio b
SPI0.CS Al4 1 enig oo GPMC BEN1 |14 GPIOBD
124 spio_cst GEMEC_WAITO :112 H:ﬂi?ﬁ
GPMGC_WPN
—(HBIIMMONCLK___B18 3 yypco cik gemc_csho 52
— (U1 BIGIMMCOCMD B1B 1 g cp GPMC_CSN1 =
—ULAISIMMCO.DL A1 | ypco paTq GPMC_csha [—BZ GPIO&4
—(ULCIBIMMCOD2 C16 | wmco DAT2
—(UicisMMCoD3 G115 MMCO DAT3 GEMC_ADD _gg
GPMC_AD1 |2
A1
GPMC_ADz A1
ELina A MCASPO_ACLKX GPMC ADS =
PALIN £21 MCASPO_FSX GEMC_ADs 12
BALO 2 821 MCASPO_AXRO GPMC_ADs L1
MCASPO_AHCLKR GPMC_ADE L2
PRUO4 A3 | MCASPO_ACLKR GPMC_AD7 |0t
FRUL.S 3 MCASPO_FSA :
Paung €2 1 MCASPO_AXR1 ePmc ADe 2
MCASPO_AHCLKX GPMC_AD9 —po—GEI023
GPMC_AD10 oGP0
GPMC_AD11 £
SPI.CS A2 | woMA_EVENT_INTRO GPMC_AD12 |—EB GPLO48
GPIO20 B4 | XDMA_EVENT INTR1 GPMC_AD13 B8 GPIO45
SPI1.CLK C5 | Ecas0_IN_PWMO_OUT GPMC_AD14 [T GRIE
GPMC_AD1S £l
GPMC_ADVN_ALE % WP
GPMC_BEND CLE |12 (LNMAFEPROMMWE mm
GPMC_WEN D2
GPMC_OEN_REN 11

0SD3358-512M-BSM

Fig. 9.29: SiP C OSD3358 SiP Peripheral Signals

9.6. Detailed Hardware Design 375

BeagleBoard Docs, Release 1.0.20230711-wip

HD
HI6 | pie T CLK LCD DATA0 |-G3 (U1.GIUCDDOB3
:15_ Mil1_TXDO LCD DATA1 _EE_LLJJ.EE}LCD..D_‘LH!_
e% MIl_TXDA LCD DATAz S1 (U1.G1ICD.D2BS
61_ MIlH TXD2 LCD DATA3 w
e% MIl1_TXD3 LCD_DATA4 :—1MH21LCDIE‘B?—
514 s TX_EN LOD_DATAS TﬂJLHJ,‘LLcD,DE.L
Ee | Mi1cRS Lco patas o (UL CDDEGE
15 | Mil1_COL LCD DATAT Wﬂ_
LCD DATAS 1 (I AN CDDAGS
D% MIl1_RXDO LCD_DATA10 |
an MIl1_RXD1 LCD_DATA11 L;
15 1 min_Rxpz LCD_DATA12
g% Mili_RXD3 LCD_DATA13 t‘f (U112 CD 013 RS
1o Mii_RX_ER LCD_DATA14 [—=—UILLLCODLRE
MIl1_RX_DV Lco Datats b2 (UT.M3NC
J14 F1__PRU110
AMII1_REF_CLK LCD_PCLK
D13 -HEr- = F3 3.3V)
13 1 upe LCD VEYNG |—E2AINS(3.3V)
LCD_AC._BIAS_EN GPIOAS
SIPD

0O503358-512M-B5M

Fig. 9.30: SiP D OSD3358 SiP System Boot Configuration

376 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

LHE
DEND DEND j;
DGND DGND .
SIPE DeND 1112 4
DGND panD lE e
DGND
DGND DGND KL‘
DGND DGND P12 e
DGEND
DGND DGEND %«r
DGEND DGND 15w
DGEND
panD M2 o
DGND DGND —Hﬁ "
DGND DGND T?‘
IG1E DGND DGND [=%
DGND DGND [
DGND e
H5 DGND NOTE: Can use pours DGND
Hiz DGND to connect VES pads M
H DGEMD instesd of a via per DGMD N
19 | paNp ped DGND D 4
O503358-512M-BSM _]_
GMD GMD

Fig. 9.31: SiP E OSD3358 SiP Power Signals

9.6. Detailed Hardware Design 377

BeagleBoard Docs, Release 1.0.20230711-wip

U1F
%—B— VDDS_ DDA SIP F
I G4
e F13 | yop wpu
- Test Point per
M VODS PLL power rail
- recommended
D5 1 cae vDD BTG NG EQE
NG
HE | yep NG |4
Do Mot Connect

05D3358-512M-BSM

uSD Connector

3.3V

YWY

Aid
10K
e

ARKK
AAKA
¥
A

3.3V

—L_C8

a0k
1k

L cs
—10uF, 10V —T—0.1uF, 6.3V

1

GND E-'.I“m’
I\ (U1.C16)MMCO.D2 1
(U1CASIMMCO.D3 2 | patarcs 38
- (U1 B1BMMCOCMD 3 | o
4
m
m‘cﬂ LABISMMCOCIK 5 | son. -
| g
-1 (ULATBIMMCOD0 7 | paropo
(UL.ATS)MMCOD1 8 | parq
)\ (UL.C14)MMCO.CD 9 | cpn 58
A thlo
Fig. 9.32: microSD Connections
378 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

USB Device

VIN.USB
1
— 6
FB1
VB L—1 '
. o (U1 K15)ISRC D+
o | (UIKI4JUSBCID
— G) L1
| 1 §
b
10118192 -0201LF 2l of e B —Lca
3 o0 ewp B T.*IUF. 6.3V
- |R£| - T DS A0y GND

Fig. 9.33: USB Connection

POWER
MINI_PUSHBUTTON

1 T_I_T :31, PWR BTN

GND

Fig. 9.34: Power Button

9.6. Detailed Hardware Design 379

BeagleBoard Docs, Release 1.0.20230711-wip

9.6.5 User LEDs

There are four user programmable LEDs on PocketBeagle. The design is highlighted in Figure 38. Table 6
Provides the LED control signals and pins. A logic level of “1” will cause the LEDs to turn on.

USER LEDs

LTST-C191TBKT
(L1 B13iLSBO ==l
=1
",
LTST-C191TBKT e
wiTigusar Ry L Damd
) 4N .
LTST-C191TBKT | AW
L
{Ll FH&:IHHFL'-} JIIIIIM
", —_—
LTST-C191TBKT GND
(U1.P14)USR3
i,

Fig. 9.35: User LEDs

Table 9.8: User LED Control Signals/Pins

LED Signal Name Proc Ball SiP Ball
USRO GPIO1_21 V15 P13
USR1 GPIO1_22 u15 T14
USR2 GPIO1_23 T15 R14
USR3 GPIO1_24 V16 P14

9.6.6 JTAG Pads

There are 7 pads on the bottom of PocketBeagle to connect JTAG for debugging. The design is highlighted in
Figure 39. More information regarding JTAG debugging can be found at ‘www.ti.com/jtag’

9.6.7 PRU-ICSS

The Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem (PRU-ICSS) module is
located inside the AM3358 processor, which is inside the Octavo Systems SiP. Commonly referred to as just
the “PRU", this little subsystem will unleash a lot of performance for you to use in your application. Consisting
of dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs), data and instruction memories, internal
peripheral modules, and an interrupt controller (INTC). The programmable nature of the PRU-ICSS, along with
their access to pins, events and all SoC resources, provides flexibility in implementing fast real-time responses,
specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other
processor cores of the system-on-chip (SoC). Access to these pins is provided by PocketBeagle’s expansion

380 Chapter 9. PocketBeagle

https://www.ti.com/jtag

BeagleBoard Docs, Release 1.0.20230711-wip

JTAG Pads

IMS~— TAG TMS

TDI JTAG_TDI

JDO JTAG_TDO

Tk JTAG_TCK

EMUD TaG_Emun

i.::%: ITAG_TRST# 10upap I%
EMUY TaG EMUA

Fig. 9.36: JTAG Pads Design

headers and is multiplexed with other functions on the board. Access is not provided to all of the available

pins.

Some getting started information can be found on https://beagleboard.org/pru.

Additional documentation is located on the Texas Instruments website at processors.wiki.ti.com/index.php/PRU-
ICSS and also located at http://github.com/beagleboard/am335x_pru_package.

Example projects using the PRU-ICSS can be found in PRU Cookbook.

PRU-ICSS Features

The features of the PRU-ICSS include:

Two independent programmable real-time (PRU) cores:

¢ 32-Bit Load/Store RISC architecture

8K Byte instruction RAM (2K instructions) per core

8K Bytes data RAM per core
12K Bytes shared RAM

Operating frequency of 200 MHz

PRU operation is little endian similar to ARM processor

All memories within PRU-ICSS support parity

Includes Interrupt Controller for system event handling

Fast I/O interface

- 16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the PocketBeagle. Please

check the Pin Table below for PRU-ICSS features available through the P1 and P2 headers.)

9.6.

Detailed Hardware Design

381

https://beagleboard.org/pru
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://github.com/beagleboard/am335x_pru_package

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS Block Diagram

Figure below is a high level block diagram of the PRU-ICSS.

Programmable Real-Time Unit Subsystem &
Industrial Communication Subsystem

(PRU-ICSS)
o Bt
EmEEEE —
'S v v v
[|

Interconnect

. 4
“ i

PRU-ICSS Pin Access

Both PRU 0 and PRU1 are accessible from the expansion headers. Listed below are the ports that can be
accessed on each PRU.

Table 6. below shows which PRU-ICSS signals can be accessed on PocketBeagle and on which connector and
pins on which they are accessible. Some signals are accessible on the same pins.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document,
you will need to print this chart separately.

382 Chapter 9. PocketBeagle

-wip

BeagleBoard Docs, Release 1.0.20230711

(anduj) g 1ed nud Tnud Tad (andinQ) g 0gd nud Tnid Tud €4 SN 98/SV Se'zd

(3nduj) g 1€ nud"onud 14d (3ndino) g ogd nud onud 1.4d €9 €10 S 0N¥d v€'2d

(3ndinQ) ST 0€4 nud onud Tud 94 [4x:] 14 £€'2d

(3nduy) " 1€4 nud onud"1ud (3ndino) z ogs nud onud 14d 4] z1d Z.0Nnyd z€'zd

(anduy) 91 1€4 nud Tnud Tud v GIV SO 1IdS 1€

(anduj) € 14 nud gnud Tad (andinQ) £ ogd nud gnud Tad 19 [4%) £ 0NYd 0€'zd

N0 WMd AJeljixny Jo Indul ainjded padueyuly o wmde uided deda gdeda T.d (=) 81D 1D TIdS 62°2d
(anduj) 9 1ed nud gnud Tad (andino 9 g4 nud onud Tud 3] €1d 9 0NYdd 8z'¢d

(3ndinQ) 1 0€4 nud onud T4d 9d ZIL 8t vZ'ed

(3ndu)) $1 TE4 nud onud Tud 9L €IN 14 zz'ed

ejed oldw ejep olpw”T.d LY €TL ¥9 0z'zd

111XNy 4o 3ndul aunjded padueyuy (3nduj) T T4 nud onud Tud o wmde uided deda gdeda T.d Ld €IN LY 8T'Zd
N0 o1aw Ppwolpw” T4d Ll ZIA S9 LT'Zd

eleq 9AI1923Y 1HVN (anduj) 9T 14 nud Tnud Tud (3nduj) pxa_gnen 14d 11V 91d vas 12zl IT'2d
ejeq jwisuedl 1yvn (3nduy) 91 1€ nud onud 1ud (3ndinQ) px3 ouen 1.d 11d s1d 105 1021 60°2d
(anduj) 0 1ed nud gnud Tad (andinQ) 0 0gd nud onud Tud v €1V YOWMd 9€'1d

(3nduy) 0T TE4 nud Tnud TUd (3ndinQ) 01 0€4 nud Tnud Tud 14 SA 0T'1d SE'1d

(3nduy) T 1g4 nud onud 1ud (3ndino) 1 0g4 nud onud 14d v €19 T_0NY¥d €€'1d

(Indul) $1 1€ Nud Tnad 11d (3ndino) $1 0g4 nud Tnud 14d 414 613 X4 on 2€'1d

(anduj) ¢ 14 nud gnud Tud (3ndinQ) ¥ ogd nud gnud Tud £v [45:] ¥ 0Ndd I€'Td

(anduy) T 14 nud Tnud Tud (andinQ) g1 0gJ4 nud Tnud Tud Z1d 913 XL on 0€'1d

(anduy) £ 1€ nud onud 1ud (IndinQ) £ 0€4 nud pnud Tud [e) vV £ 0Nnydd 62'1d

puas 03 3s9nbay 1¥vVN (3ndinQ) u"sy oyen 1ud o1V L1d 10S 2ozl 87’ 1d
puas 03 1e3|d 1¥vN (3nduy) u"sp open Tud o1g 81d vas_zozl 9Z'1d
(3nduj) 91 1€4 nud onud Tud g ¥1d 0¢Z 0Z'1d

e3eq dA1923Y 1HVN (3nduj) pxa_ouen Td v19 919 ISOW_0IdS 21'1d
puas 03 359nbay 1¥VN (3ndinQ) u~sy oyen T.d €14 L19 OSIW_0IdS 0T'Id
puas 03 Jea|d LuvN (3ndu) u”s3"onen” Tid €IV LIV Y107 0IdS 80'1d
ejeq Jwsuell 14vN (3ndinQ) px3_oHen 1T.d Y1V 91V SD 0IdS 90'1d
(anduj) TT 14 nud Tnud 1ud (3ndinQ) 1T 0gJ4 nud Tnud Tud 13 9y 68 0 Td

(anduj) 6 T€d nud Tnud Tad (andinQ) 6 0gd nud Tnid Tad 4 oY L8/9V 20°'1d

910N 9opony Gopon #9POW €9PON | |G dIS | |[eg J0SS800.d | USBIOSHIIS | Uid sopesH

SS90V TNHd PUe 0NY¥d :6°6 dl9eL

383

9.6. Detailed Hardware Design

BeagleBoard Docs, Release 1.0.20230711-wip

9.7 Connectors

This section describes each of the connectors on the board.

9.7.1 Expansion Header Connectors

The expansion interface on the board is comprised of two 36 pin connectors. The two Expansion Header
Connectors on PocketBeagle are labeled P1 and P2. The connections are a standard 100 mil distance so that
they can be compatible with many standard expansion items. The silkscreen for the headers on the bottom of
the board provides the easiest way to identify them. See Figure 41.

[
m [
. 0

]
N
*®
®
0
x

[
@®
.
° ® e
—4 Nl®
w5
Fy
U

T O
N
..-D
e ®
» @O
o

%
=}

8 >
12c1

Fig. 9.37: Expansion Headers for PocketBeagle

All signals on the expansion headers are 3.3V unless otherwise indicated.

Note:
* Do not connect 5V logic level signals to these pins or the board will be damaged.

* DO NOT APPLY VOLTAGE TO ANY 1/0 PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

* NO PINS ARE TO BE DRIVEN UNTIL AFTER THE NRESET LINE GOES HIGH.

Figure 42 shows a color coded chart with an overview of the most popular functions of PocketBeagle’s Expansion
Header pins. The Header Pin tables in Sections 7.1.1 and 7.1.2 show the full pin assignments for each header.

9.7.2 Pl Header

Figure 43 shows the schematic diagram for the P1 Header.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document
you will need to print this chart separately.

384 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

PocketBeagle Expansion Headers (Rev A2a)

1 2 |87 6 AIN 3.3V 9 50 1 ‘ﬂ|

109 3 | 3 4 ‘g|
5 6|
317 8
159 105
11 12 « 1411 12
13 14 13 14 Yl
15 16 515 16 =00
REF-17 18 REF+ AIN 1.8V = \ﬂ| 18
. |
019 200 | |19 20
ey T2 I . 22
223 24|% Y23 24|
225 26 12 A 41 25 26 NEEINEE
427 28 13 ! 40 27 28 116
11729 30 43 ™ oo 7293013 PRUD
B A 11431 32 22 1031 32 112
GPIO —
B 1133 34| 4533 34 115

_u PRUO | PRUI BAIN33V 5 88|35 367 AIN1laV
Moﬂe enabled by default after kernel boot, if more than one is possible

=Y =l Power and other system control signals

PRU. 8835 36 110

GPIO General purpose inputs and outputs
AIN Analog inputs, note that these are all enabled by default after kernel boot
Serial Peripheral Interface

(klel Inter-Integrated Circuit bus

(WAZR Serial port

Pulse width madulator

(o]=8 Quadrature encoder peripheral

PRU Programmable real-time unit input, output, or peripheral
Controller Area Network — requires external PHY

(ISR Universal Serial Bus

=TV Baitery

Fig. 9.38: Expansion Header Popular Functions - Color Coded

P1
Z0 15 P ANeGRIo8T— — |
= LSB1.DEVVBLS 35 | B4 | GPIosa !
E USB1VBUS 55 | 85 SPIN.CS |
= 75 1 =B | SPINCIK :
@G 1ISA1 D- 9% | Bm SPI0 MISO |
! USB1.ID 135 | Fie O |
= S — S — =z ™

T 0! Bl e o
AIN1(1.AY) 21% . |—r%—-—|

AINZ(1 8\ 235 24 Iuo]E _

AINA(1 8V} 25~ [528] 12C2 SDA Q|
AINA{1_8V) 275, 12C2 SCl :

PRUO.7 295 8% UARTO.TX |

PRLUI0.4 315 2| UARTO.RX |

PRLUO.1 a3,=, as| GPIO2E _

PRI 10 355, 36| _PWMOA N

9.7. Connectors 385

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau UO senuUIU0D
(A8'T
zule 9g L9 | -ZNIV) €Z'1d Z(A8' T)NIV €2'1d
ano (aNo) zZ'1d ano zZ'1d
(A8'T
Tule 8g D | -INIY) 1Z'1d (A8 TNIV 12'1d
. (9T°0NYd)
0Z_001db €Nig3 1es nud onud 1ud LWy 2anox|> upi|2y JUI JUSAS_ewpX] ¥1a 0Z'1d 0z 0Z'1d
(A8'T
oure 8v 989 | -ONIV) 6T'1d 0(AS'T)NIV 6T 1d
d43dA L9 69 | (d434¥A) 8T'Td +V(A8 T)NIV 8T'1d
N43YA 69 6V | (N439A) LT'Td -(A8' NIV LT'1d
ano (aND) 9T'1d ano 9T'1d
ano (aND) ST'Id ano_1asn ST'Id
97 (AE'E
AE'ELNOA | 99 8 /4 B 9 -LNOA) $T'1d AE'E+ vT'1d
. AD_
artasn v11 LTd | -18SN) €T'Id artasn €T'1d
(IsoW
#0_001d@3ro_ejep oipa_1.d o e3ep oipa T.4d pxa_ouemdudayozdiy”owmdiys vas 12zl dmps_Toww 1p_0ds v1g 919 | -0dS) ZT'ld ISOW_0IdS 2TTd
0 . 0 . 0 . . An_ﬁ_
4a_1asn ST1 LTY | -18SN) IT'Id + 185N 11'1d
(OSIW
€ 00/db ENWI Y yole| o1pad T4d | u"su ouen 1ud gowmdiya 10S 2ozl pX3 zden op_0!ds €19 L19 | -01dS) 0T'1d OSIW_0IdS 0T'Id
. AZD
Wa 18asn 911 8TY | -18sN) 60'1d - 1asn 60'1d
oo
20 ooidb ZNIN3 Jos o1pa 14d |u"sp open T.d vowmdiya vas zozl pxJ_zyen J19s_01ds €1V LTV | -01dS) 80'ld A1D701dS 80'1d
(asn
aSN-NIA 619 643 6d “NIA) _ £0'Td IA_ 195N L0'1d
(s2
S_00!dfIno ejep oipa_14d T ejep olpa Tu4d px3_oxen 1ud | 1DUAs gwmdiys 12S 102 dmps_zoww 0s2_o1ds vIv 9TV | -01dS) 90'1d SO 0IdS 90'1d
. Am3m>
SNgA_18sn ST 8TL | -19sn) S0'Id aA 1gsn S0'1d
(1T TNYd)
G¢ zoigf Tes nid Tnud Tpg ges nud Tnud Tug3ino ejep oipa T.d Y ejep oipa Tud s Tw Tud T1e dwdb | usselq e pdj 13 9y ¥0'1d 68 ¥0'1d
. (snaAnda
€1 _€oldb SNEAAYA_18SN YIN GId | -18Sn) €0°'1d N3 185N €0'Td
(L80IdD/9NIV)
€¢ zoldf reJ nud Tnud 14g ges nud_Tnud T4g3ro ejep oipa 14d gy ejep oipd T.d ze dwdb 62 dwdb duAsy po| Zd Sy 20'1d L8/9V 20'1d
(L80IdD/9NIV)
qure 62 8V 20'1d L8/9V 20'1d
0TL
NIA | 8 0Td ® 0Id (NIA) TO'Td NIA 10'1d
(swep) Buim a|6
/3PON 99po GOPON #9PON €9POIN Z9POIN Lopon 09POIN Ileg d'S Ileg 00id -eagiexood U2.IISYIIS uld Jepeay

inould JapeaH 1d ‘0T'6 @|qeL

Chapter 9. PocketBeagle

386

-wip

BeagleBoard Docs, Release 1.0.20230711

. (VOWMd)

#1_€01df geJ nud onud 14d”ges nid onud Tud pops_poww 19s”T1ds vowmdiya x{|2e_odseow v €IV 9€'1d YOWMd 9€'1d
(0T°TNYd)

¥Z zo1gh Tjgs nid Tnud 1g¢ ggd nud Tnid TJgano eiep ojpa 1.d yYi ejep oipa TJd sS40 ouw nud ore >wdb 312d"po)| T4 SA GE'1d 0T'Id GE'1d
. (92°001dD)

9z 001db uaxy_ongndudayozduy zwmdiys 93ep”_Zoww Z3ep Toww 1Zeiep po| otpe dwdb sy TTIL v€'1d 9z ¥€'1d
. (T'0NYdd)

ST €oldf e nud onud 1ag ges nud onud Tad pops_ Toww op_T!ds gowmdiya xs)_odseow [4 €1d €€'1d T_0NY¥d €€'Td
(X

0T _10I¢f Tgs nud Tnud g geJ nud Tnud 13do [eWMd Ul 2dvDR vas ozl Xy_Quesp 0sd TIds pxi_omen [414 ST3 | -01dvN) 2E€'Id Xy 0on 2€'1d
(¥"0NYd)

8T coidf Tjgd nud gnud Tag ges nud gnud Tad dmps goww x3j|oe” Tdseow zixe pdseow ul yod3de 1o pdseow [av2 z1d 1€ 1d ¥ 0NYd 1€ 1d
(XL

11 toidf Tjes nud Tnid 19g (e nud Tnud T3do |TINMd Ul TdVDR 1S 2ozl X4~ Quesp 1sd 1Ids px3_0uen z1d 913 | -0.4¥vN) 0€'Id XL on 0€'1d
(£°0NYd)

1 eo1dp e nud onud 14¢ e nud onud 1ad NN Tixe 1dseow €axe”pdseow 990435 04302 | X3|pye”pdsesw 2 IV 62'1d £ 0N¥d 62'1d
(108

€T 00!d6 uj Tyd3e| dpa 1.d | u sy ouen T.d 1sd 11ds 10S 2ozl X4~ Quesp slawn usy TMen 0Tv L1d | -2Z2Zl) 8Z'1d 1S 2ol 8Z'1d
(A8'T

pule LD 8 | -¥NIV) £LZ'1d #(AS T)NIV LZ1d
(vas

21 001db ul"oyd3e| dpa T4d |u"sp ouen T.d 0sd 11ds vas zozl X3_Quesp 9Jawny usy_THen otg 81a | -zozl) 9Z'1d vas zozl 9Z'1d
(A8'T

gule 90 LV | -ENIV) SZ'ld £(AS'T)NIV SZ1d
s (AS

ASLNOA | 918 I8 -LNOA) ¥2'1d 1NOA ¥Z'1d
(swep) Bulim a|6

/8POWN 99PON GBPON YOPON E£9PON 29PON 18PON 03POW llegd d'S lleg 90.id -eag19%20d usa.0sY|IS uld iepesH

obed snoinaid wouy panunuod - 0L'6 d|qeL

387

Connectors

9.7.

BeagleBoard Docs, Release 1.0.20230711-wip

9.7.3 P2 Header

Figure 44 shows the schematic diagram for the P2 Header.

p2
P— e SRR Bl s 0 — . — E— _T_ 2
R AR
| LUART4.RX 55 | &6l GPIos?
LJARTA TX 7 Q8 | Gpioan
| |2C1 SO s_n,% | %m GPIO52
= __12C1 SDA :13{:, | o2l PWRBTN
|_903 A _J.ﬁ.g_i S6| BATTEMP
—G+_GPIOSS 78— &8 GPIO47
GPIO2T ;s_aD Dg_g_ﬁE[[ﬁg
-—EH— 1 .:-.__EEI.EHE
]_ﬁc_zn 235 - &24 GPin4a
| o SPILMOSI 255 | &28| RESET#
- SPI1_MISO 275 i 528l PRUOG
| SPH.CLE 2 | =a0] PRUNA
O
| SPIL.CS 315 | 532l _pRU0.2
: __GPIO45 335 | O34 _PRUDS
[—ANsa3M PR | oA AlTiewr

Fig. 9.39: P2 Header

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document
you will need to print this chart separately.

388 Chapter 9. PocketBeagle

-wip

BeagleBoard Docs, Release 1.0.20230711

abed 1xau UO senUIUOD

(ZT°'10IdD)

21 1o1¢f Qs nud onud Tud Zpx3 onwTud ur"vyzdio® 03ep zoww iep Toww 61€38P PO| z1pe dwdb 9d [49% vZ'ed 8Y vZ'zd
(97 (AE'E

AE'ELNOA | 99 8 /4 B 9 -LNOA) €2°2d AE'E+ €zed
(#T°TOIdD)

¥1_ToI¢f Te nud onid 14d opx3y_onw”1.d x3apul_zd3dd Z3ep_zoww 93ep Toww L1e3ep po| v1pe dwdb 9L €IA zzed 9¥ zed

ano (ano) 1Z'2d ano 12'2d
(0°201dD)

00 zoldb #NW3 | ejep olpw T.d sS4 ouwT.d pwd”zoww AP SIDZliw ge dwdb gusd> dwdb LY €IL 0z'zd ¥9 0z'zd
. (LZ'001dD)

LZ_001db €Px3 ol T4d [0duAs gumdiya £3ep_Zoww €3ep_Toww 0zelep po| T1pe dWdb Sl zin 61°2d L2 6T°2d
(IST°0NYd)

dST T01dp Tl nidipdaluig>|deds gdeds 1.d 9q0J3s_zd30? £€3ep_zoww £3ep_ToWw 9tTeIep pd| GIpe dwdb Ld €1N 8T'Zd Ly 8T'Zd
(T'z0IdD)

10 zoidb asy pdseow yppw olpw” Tid s THw T.d P Zoww Tyem dwdb |32~ Alowaw pd) 0 >wdb [l ZIA [1°2d 59 [1°2d
(di3L

diW3Ll-lve 9N slvg) 9r'Zd - 1ve 9T'ed

ano (aND) ST'zd ano GT'zd
(1ve

LVE-NIA 81 '8y ‘8d “NIA) _ pT'2d + 1vg v1'2d
(AS

AS-LNOA L7974 ' -LNOA) €T°2d L1NOA €1'2d
(NL8 93IMOd)

Y¥3IMOd TIL [ANZ] ad [AYZ]
. (vas

¥1_00!gf TeJ nud Tnud 14d px4~oyen 1.d vas_ 1ozl Xy Tuesp dmps”Toww pxJ_THen TV 91a | -1021) 1T'ed vas 1ozl IT'2d
(0Z'101dD)

02 10!db urvidioe | opxy tnw t.d 0ze dwdb TPX3 gliw TPy 2iwbl PX3 Zwb e dwdb €1 1Y ot'zd 49 otr'zd
. (10s

ST 00igf Tgd nud onud 14d px3_oyen 1.d 105 1021 X4_Tuesp dmps”zoww px3_THen 11 GId | -1221) 60°2d 105 1012l 60°2d
(8Z'10IdD)

gz 1o1db Djpepdseow | yuyxd THw Tad aip dwdb £1ep Zoww gqusd> bwdb 102 Zlwb utaq >wdb +IN 81N 80'2d 09 80'2d
(XL

1€ 0oldb px3_yuen uaxy Tiw T.d pops”_zoww x4zl Gus> dDwdb Luaxu” 2l dmOwdb 9Ty LIN | -v1dvN) £0°2d XL 1IN L0°2d
AP 4D gliwd (GZ'T0IdD)

sz 1o1db xsy_gdseow [} Tdw i T4d Gzeowdb | / /3ep zoww Zpd_ziwbl Zpxizl 6e dwdb STL 91N 90'zd LS 90°zd
(xd

0€_0o1db pxJ_pHen 103" THw T4d pops” Toww AP_SJD"Zlw yusd dwdb oyem dwdb S1d LIL | -v1¥VN) S0°2d Xy 1n s0'2d
(9Z°'10IdD)

9z 101db 0Jxe”pdseow | Apxa_Tnw T.d 9ze >wdb TPXJI_Zliw P4 Zlwbl TpxJ_ziwb ote dwdb STY 9TL ¥0'2d 8G ¥0'2d
. (£2°001dD)

€2 00/db 103" 0llwT4d gzwmdiya Giep zoww Tiep Toww zzeep po| 6p dwdb Sd 0TL €0'2d [X4 €0'zd
(LZ'10IdD)

L7 101dB Tixe_pdseow Jaxa”THw”Tad Lze dwdb opxJ_ziiwd opJ_ziwbl 112 dwdb 9TL LTA 20'2d 65 20'2d
(VIIWMd)

81 10/db viwmdiya Zpxy_ Tw14d gre cwdb T3ep_ZoWww €p3 ziwbl ze bwdb [4%) 1IN 10°2d VIWMd 10°'2d
(swep) Buim a|6

/3POn 99PON GOPOW #9POW €9POIN Z9POIN Lopon 09POIN Ileg d'S |leg 90.d -eagiexood U2.IISYIIS uld Jepeay

jnould JapesaH zd ‘TT1°6 3I9eL

389

Connectors

9.7.

-wip

BeagleBoard Docs, Release 1.0.20230711

Lule €IN (LNIV) 9€°2d (8'T)LY 9g'zd
(9801d9/SNIV)
27 zoid@ g nud Tnud Tud ged nud Tnud TU@3Ino ejep oipa T4d zhi ejep oipa Tud 1 Swdbh ge bwdb JUASA™PO| €4 sn se'zd 98/Sv se'ed
(9801d9/SNIV)
sule 80 8d GE'zd 98/Sv GE'ed
~ B ~ ~ ~ ~ (5'0NYd) ~
61 £01dG Tgs nud onud 1.d ged nud onud 1ud Zning Xsy Tdseow gaxe”pdseow ur 90430 Jsy_pdseow €9 €10 ve'zd S 0NY¥d ve'zd
~ R o B ~ B ~ ~ (ET°TOIdD)
€1 _10Idf geJ nud onud 1ud PXx3 onwTud 1924309 Tiep Zoww Siep TowWw g1elep pdj e1pe dwdb 9y [4%°] €€'2d St €€ed
. (z'onydd)
91 coid@ Tjgd nud onud Tad ged nuad gnud Tad pops zowuw p TIdS ndui ayozduy gwmdiys 0Jxe"pdseow 9 z1a zced Z onyd zced
_ N _ . ~ B (152 _
61 _ooidb Zn|d s nid Tnud 1ud TSO Tids TINO|D wlawn 0fi3ul JUSAS” BWIPX v STV | -TidS) I€ed SO TIdS 1€'2d
(€°0NYd)
LT €01df Tgd nud"onud 1.d ges nud onud 13do [eWMd Ul 2dvDR 0sd_1lds zixe pdsedw | pUuAs guimdiya | u|dye”pdsesw 19 [4%) o€z € 0nyd og€'zd
oo
£~001dB ZjjuI 3usAS"ewpx dmps_poww 0 wmde mideddess gdeds 1.d JESICE PX3_€M8NO JOWMJ_Ul”0dVDIR %) 81D | -TIdS) 6z'2d W10 TIdS 62°2d
~ I R ~ . B B (9:0NYd) ~
02 €01d§ geJ nud"onud 14d"ges nud onud Td €NN3 04xe”Tdseow xapul_ 04309 Tixe_odseow € €1d 8z'2d 9 0NYd 8z'zd
(OSIW
80 T0!dfBing 0duAs dpa T.d L1dwy op TIds vas 1ozl Xy Tuesp pXxJ_pyen us3_oHen [4 1) 813 | -TIdS) ‘Z'zd OSIW_TIdS LZ2d
. 1NO NIL3S (13s
-3yu TTY 0TV | -3dN) 9z'zd 15y 9z'ed
(ISOW
60 _10ldBNg TouAs dpa 1.d 0sd>_11ds 1p_T1ds 10S 1021 X4_Tuesp pPX3_pyen usy_oyen €10 L13 | -TIdS) sz'ed ISOW_TIdS Gzed
(swep) Bulim a|6
/8POWN 99PON GBPON YOPON E9PON Z8PON 1SPON JoLc]elely lleg d's Ileg 20id -Bog1e%20d usa.0sY|IS uld Jspesy

abed snoinaid wouy panunuod - | |6 djqeL

Chapter 9. PocketBeagle

390

BeagleBoard Docs, Release 1.0.20230711-wip

9.7.4 mikroBUS socket connections

mikroBUS and, by extension “mikroBUS Click boards”, are trademarks of MikroElektronika. We do not make
any claims of compatibility nor adherence to their specification. We’ve just seen that many of the Click boards
“just work”.

The Expansion Headers on PocketBeagle have been designed to accept up to two Click Boards added to the
header pins at the same time. This provides an exciting opportunity to add functionality easily to PocketBeagle
from ‘hundreds of existing add-on Click Boards’.

The mikroBUS standard comprises a pair of 1x8 female headers with a standardized pin configuration. The
pinout (always laid out in the same order) consists of three groups of communications pins (SPI, UART and 12C),
six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (+3.3V and
5V).

i BUs)
Analog - AN i AN PWM i PWM - PWM output
Reset - RST @®| RsT INT |@ INT - Hardware Interrupt
SPI Chip Select - CS @®| cs RX |@ RX - UART Receive
SPI Clock - SCK @®| scK ™ |@ TX - UART Transmit
SPI Master Input Slave Output - MISO @®| MIso sCL |@ SCL - I°C Clock
SPI Master Output Slave Input - MOSI @| vosl SDA |@ SDA - I°C Data
VCC-3.3V power - +3.3V @) +3.3v +5v |@ +5V - VCC-5V power
Reference Ground - GND ! GND 1 GND } GND - Reference Ground
\ w

Fig. 9.40: mikroBUS

The Expansion Header pin alignment enables 2 Click Boards on the top side of PocketBeagle using the inside
rails of the headers. This leaves the outside rails open to be accessed from either the top or the bottom of
PocketBeagle. Place each Click Board into the position shown in Figure 46, with one Click Board facing each
direction. When choosing Click boards, make sure you are checking that they meet the 3.3V requirements
for PocketBeagle. A growing number of community members are trying out various Click Boards and posting
results on the ‘PocketBeagle Wiki mikroBus Click Boards page’.

MikroElektronika Click Board 1 Position

MikroElektronika Click Board 2 Position

Fig. 9.41: PocketBeagle Both Headers

9.7.5 Setting up an additional USB Connection

You can add an additional USB connection to PocketBeagle easily by connecting a microUSB breakout. By
default in the current software, the system should be configured to use this port as a host. Keep up to date on
this project on the ‘PocketBeagle Wiki FAQ'.

9.7. Connectors 391

https://shop.mikroe.com/click
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/mikroBus%E2%84%A2-Click-Boards
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/FAQ

BeagleBoard Docs, Release 1.0.20230711-wip

' S8 e e e e e e

fritzing

9.8 PocketBeagle Cape Support

This is a placeholder for recommendations for those building their own PocketBeagle Cape designs. If you'd

like to join the conversation ‘check out the discussion on the forum for PocketBeagle’

See also PocketBeagle under ‘BeagleBoard Capes’

9.9 PocketBeagle Mechanical

9.9.1 9.1 Dimensions and Weight

Size: 2.21” x 1.38” (56mm x 35mm)
Max height: .197” (5mm)

PCB size: 55mm x 35mm

PCB Layers: 4

PCB thickness: 1.6mm

RoHS Compliant: Yes

Weight: 10g

Rough model can be found at PocketBeagle models

9.10 Additional Pictures

9.11 Support Information

All support for this design is through the BeagleBoard.org community at:
* beagleboard@googlegroups.com or

* beagleboard.org/discuss.

392 Chapter 9.

PocketBeagle

https://forum.beagleboard.org/t/pocketbeagle-headers/26861
https://git.beagleboard.org/beagleboard/capes
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/models
https://beagleboard.org/chat
https://beagleboard.org/discuss

BeagleBoard Docs, Release 1.0.20230711-wip

P2 PocketBeagle Rev A2

e ®0|0eee ® @6 ® e

0@ @® ol ® @

PocketBeagle®
172340

<0SD3358a12 7"

L] VN
2 lnFje

A IONORORORC ® 36
o el 0@ @& &l& @@ @

® 35
beagleboard.org/pocket

Fig. 9.42: PocketBeagle Front BW

P1@®°C 192 TP4

Fig. 9.43: PocketBeagle Back BW

9.11. Support Information 393

BeagleBoard Docs, Release 1.0.20230711-wip

9.11.1 Hardware Design
Design documentation can be found on the wiki. https://git.beagleboard.org/beagleboard/pocketbeagle/ In-
cluding:

* Schematic in PDF https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_
sch.pdf

¢ Schematic and layout in EAGLE https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/
EAGLE

* Schematic and layout in KiCAD https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/
KiCAD

e Bill of Materials https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle
BOM.csv

* PocketBeagle docs.

9.11.2 Software Updates

It is a good idea to always use the latest software. Instructions for how to update your software to the latest
version can be found at:

Download the latest software files from www.beagleboard.org/distros

9.11.3 Export Information

* ECCN: EAR99
» CCATS: G173833

* Documentation: PocketBeagle Export_Classification.pdf

9.11.4 RMA Support

If you feel your board is defective or has issues and before returning merchandise, please seek approval from
the manufacturer using beagleboard.org/support/rma. You will need the manufacturer, model, revision and
serial number of the board.

9.11.5 Getting Help

If you need some up to date troubleshooting techniques, the Wiki is a great place to start PocketBeagle wiki.

If you need professional support, check out beagleboard.org/resources.

394 Chapter 9. PocketBeagle

https://git.beagleboard.org/beagleboard/pocketbeagle/
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_sch.pdf
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_sch.pdf
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/EAGLE
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/EAGLE
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/KiCAD
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/KiCAD
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_BOM.csv
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_BOM.csv
https://www.beagleboard.org/distros
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/regulatory/PocketBeagle_Export_Classification.pdf
https://www.beagleboard.org/rma
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/home
https://beagleboard.org/resources

Chapter 10

BeagleConnect Freedom

BeagleConnect™ Freedom is an open-hardware wireless hardware platform developed by BeagleBoard.org and
built around the TI CC1352P7 microcontroller, which supports both 2.4-GHz and long-range, low-power Sub-1
GHz wireless protocols. Rapidly prototyping of 10T applications is accelerated by hardware compatibility with
over 1,000 mikroBUS add-on sensors, acutators, indicators and additional connectivity and storage options, and
backed with software support utilizing the Zephyr scalable and modular real-time operating system, allowing
developers to tailor the solution to their specific needs. BeagleConnect Freedom further includes MSP430F5503
for USB-to-UART functionality, temperature and humidity sensor, light sensor, SPI flash, battery charger, buzzer,
LEDs, and JTAG connections to make it a comprehensive solution for 10T development and prototyping.

The Tl CC1352P7 microcontroller (MCU) includes a 48-MHz Arm Cortex-M4F processor, 704KB Flash memory,
256KB ROM, 8KB Cache SRAM, 144KB of ultra-low leakage SRAM, and over-the-air upgrades (OTA) capability.
This MCU provides flexible support for many different protocols and bands making it suitable for many different
communication requirements.

Important: This is a work in progress, for latest documentation please visit https://docs.beagleboard.org/
latest/

395

https://docs.beagleboard.org/latest/
https://docs.beagleboard.org/latest/

BeagleBoard Docs, Release 1.0.20230711-wip

10.1 Introduction

10.1.1 What is BeagleConnect™ Freedom?
BeagleConnect™ Freedom is based on a Tl Arm Cortex-M4 wireless-enabled microcontroller and is the first
available BeagleConnect™ solution. It features:
* BeagleConnect™ node device for Bluetooth Low-Energy (BLE) and Sub-GHz 802.15.4 long range wireless,
* Works with BeaglePlay® gateway,
* USB-based serial console and firmware updates,
¢ 2x mikroBUS sockets,
* On-board light and humidity/temperature sensors,
* Battery-charger circuit, and

e Buzzer, LEDs and buttons for user programming.

beagleconnect

freedom

ﬁbeagleboovd.org beagleconnect ﬁ
freedom S ? ¢

Front == 3001 L P4y J 010 15 Rev C7 Back Rev C7

10.1.2 What makes BeagleConnect™ new and different?

396 Chapter 10. BeagleConnect Freedom

https://www.ti.com/product/CC1352P7
https://www.mikroe.com/mikrobus

BeagleBoard Docs, Release 1.0.20230711-wip

Plug & Play approach

BeagleConnect™ uses the collaboratively developed Linux kernel to contain the intelligence required to speak
to these devices (sensors, actuators, and indicators), rather than relying on writing code on a microcontroller
specific to these devices. Some existing solutions rely on large libraries of microcontroller code, but the in-
tegration of communications, maintenance of the library with a limited set of developer resources and other
constraints to be explained later make those other solutions less suitable for rapid prototyping than Beagle-
Connect™.

Linux presents these devices abstractly in ways that are self-descriptive. Add an accelerometer to the system
and you are automatically fed a stream of force values in standard units. Add a temperature sensor and you
get it back in standard units again. Same for sensing magnetism, proximity, color, light, frequency, orientation,
or multitudes of other inputs. Indicators, such as LEDs and displays, are similarly abstracted with a few other
kernel subsystems and more advanced actuators with and without feedback control are in the process of being
developed and standardized. In places where proper Linux kernel drivers exist, no new specialized code needs
to be created for the devices.

Important: BeagleConnect™ solves |oT in a different and better way than any previous solution. For hundreds
of devices, users won’t have to write a single line of code to add them their systems. The automation code
they do write can be extremely simple, done with graphical tools or in any language they want. Maintenance of
the code is centralized in a small reusable set of microcontroller firmware and the Linux kernel, which is highly
peer reviewed under a highly-regarded governance model.

Reliable software update mechanism

Because there isn’t code specific to any given network-of-devices configuration , we can all leverage the same
software code base. This means that when someone fixes an issue in either BeagleConnect™ firmware or the
Linux kernel, you benefit from the fixes. The source for BeagleConnect™ firmware is also submitted to the
Zephyr Project upstream, further increasing the user base. Additionally, we will maintain stable branches of
the software and provide mechanisms for updating firmware on BeagleConnect™ hardware. With a single, rela-
tively small firmware load, the potential for bugs is kept low. With large user base, the potential for discovering
and resolving bugs is high.

Rapid prototyping without wiring

BeagleConnect™ utilizes the mikroBUS standard. The mikroBUS standard interface is flexible enough for almost
any typical sensor or indicator with hundreds of devices available.

Note: Currently, we have support in the Linux kernel for a bit over 100 Click mikroBUS add-on boards from
Mikroelektronika and are working with Mikroelektronika on a updated version of the specification for these
boards to self-identify. Further, eventually the vast majority of over 800 currently available Click mikroBUS
add-on boards will be supported as well as the hundreds of compliant boards developed every year.

Long-range, low-power wireless

BeagleConnect™ Freedom wireless hardware is built around a TI CC1352P7 multiprotocol and multi-band Sub-1
GHz and 2.4-GHz wireless microcontroller (MCU). CC1352P7 includes a 48-MHz Arm® Cortex®-M4F processor,
704KB Flash, 256KB ROM, 8KB Cache SRAM, 144KB of ultra-low leakage SRAM, and Over-the-Air upgrades
(OTA).

Fully customizable design

BeagleConnect™ utilizes open source hardware and open source software, making it possible to optimize
hardware and software implementations and sourcing to meet end-product requirements. BeagleConnect™

10.1. Introduction 397

https://wiki.p2pfoundation.net/Linux_-_Governance
https://www.zephyrproject.org/
https://elinux.org/Mikrobus
http://www.ti.com/product/CC1352P7
https://en.wikipedia.org/wiki/Over-the-air_programming
https://www.oshwa.org/definition/
https://en.wikipedia.org/wiki/Open-source_software

BeagleBoard Docs, Release 1.0.20230711-wip

is meant to enable rapid-prototyping and not to necessarily satisfy any particular end-product’s requirements,
but with full considerations for go-to-market needs.

Each BeagleBoard.org BeagleConnect™ solution will be:

Readily available for over 10 years,

Built with fully open source software with submissions to mainline Linux and Zephyr repositories to aide
in support and porting,

Built with fully open source and non-restrictive hardware design including schematic, bill-of-materials,
layout, and manufacturing files (with only the BeagleBoard.org logo removed due to licensing restrictions
of our brand),

Built with parts where at least a compatible part is available from worldwide distributors in any quantity,
Built with design and manufacturing partners able to help scale derivative designs,

Based on a security model using public/private keypairs that can be replaced to secure your own network,
and

Fully FCC/CE certified.

10.2 Quick Start Guide

10.2

p W N

.1 What’s included in the box?

BeagleConnect Freedom board in enclosure
Antenna
USB cable

Quick-start card

Todo:

Image with what’s inside the box and a better description.

398

Chapter 10. BeagleConnect Freedom

https://www.youtube.com/watch?v=bJYZ6PTiV9g

BeagleBoard Docs, Release 1.0.20230711-wip

10.2.2 Attaching antenna

To connect the SubGHz antenna with SMA connector to the BeagleConnect Freedom you just have to align,
place and rotate the antenna clockwise as shown in the image below. To detach the antenna just twist it
anti-clockwise.

with the

antenna on the connector

by rotating clockwise by rotating anti-clockwise

Fig. 10.1: Aattaching antenna to BeagleConnect Freedom

10.2.3 Tethering to PC

Todo: Describe how to get a serial connection.

10.2.4 Wireless Connection

Todo: Describe how to get an IEEE802.15.4g connection from BeaglePlay.

10.2.5 Access Micropython

Boards come pre-flashed with Micropython. Read Using Micropython for more details.

Todo: Describe how to get to a local console and websockets console.

10.2.6 Demos and Tutorials

e Using BeagleConnect Greybus

e Using Micropython

10.2. Quick Start Guide 399

BeagleBoard Docs, Release 1.0.20230711-wip

e Using Zephyr

10.3 Design

10.3.1 Detailed overview

10.3.2 Detailed hardware design

LEDs

[2.46G

[900M

[3v3

[LED1

[LED2

S D2 S D3
LED \NLED

W
P

1

R1
1K

1

R2
1K

GND GND

D4
Y o

P4

GND

D5
S LED

W

1

R4
1K

GND

Fig. 10.2: BeagleConnect LEDs

Buttons & Buzzer

USER_BOOT

100K

1

Sw2
R4T " 1523M-BN-PT-PF

D6
S LED

BUZZER_CTL

Fig. 10.3: User Input Output (Buttons & Buzzer)

3V3

D7
S LED

W

1

R6
1K

3V3

D10 }
BZ1

1N41gBws 2|/ Buzzer

R15_

Q2
2N7002PW

GND

400

Chapter 10.

BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

3V3 .
J— C41

0.1U
o
g
o
B
GND 2
SEN_SDA SDA
SEN_SCL B2 et
INT_HDC2010 €21 pROY,/INT
V3 RSy 51— BL avor
o
2
3
HDC2010 :j? us
GND
c40
Io.iu
GND u7__ | OPT3001
=
=
[SEN_S0A>——B{50A INT 5M]
SEN_SCL lscu ADDR 2
2 R48
2
3
=
GND
GND

Sensors

mikroBUS

USB-C port

Buck converter

LiPo battery charger

Battery input protection

MSP430F5503

CC1352P7

Digital subsection

Analog subsection

Power subsection

RF subsection

SPI Flash

Debug interface

INT_SENSOR

Fig. 10.4:

D12 BAT54XV2

2.21K
<
D13 BATS4XV2
[INT_LIS2DE12 1 1< INT_SENSOR]
3v3 ’
_Lcuz
0.1U
R53
221K U9 0|9 US2DEL2
T o
GND 5
=
21t 3
SDA/SDI T INT1[L2 TNT_LIS2DE12 1
3{sao/sp0 INT2|E
SCL/SPC
coo 5
222 Res
5538
o[~
GND

On-board sesnsors

10.3. Design

401

BeagleBoard Docs, Release 1.0.20230711-wip

J4
mikroBUS
[AN_MB1 ; AN PWM 12 PWM_MB1]
[RST_MB1 S RST INT | NT_MB1
CS_MB1 4 Cs RX 3 CC1352 RX MB1 RX
SCK SCK > CC1352_TX_MB1_TX
IS0 31 MISO scL L2 SCL]
05l 61 MosI spa {1 SDA
[3v3 71 43.3v +5v [LO {BY
ﬁ GND GND 917
GND oND
J5
mikroBUS
[AN_MB2 2 AN PWM 12 PWM_MB2
[RST_MB2 51 RST INT £ NT_MB2
CS_MB?2 4 Cs RX 3 CC1352 RX_MB2_RX
SCK SCK X CC1352_TX_MB2_TX
IS0 51 MIso scL [t2 SCL]
0S| 61 mosi spa {ii SDA|
[3V3 71 +3.3v +5v {0 5y
ﬁ GND GND j
GND oND
Fig. 10.5: mikroBUS ports
USB C input
UsB.C R Usfil USB2.0 D9 V_USB max current =1A
—~_Eceplacie b F1 |PMEG6020ER 115
VBUS AL VBUS —&45 Dﬂu V_USB'
7 MSP_PUR
cct gg
cc2 /30
A7 D_N el D— 1.5k
LLT RO e
A6 o D_P reersr)| D+
D+ [[0R0 .
DaclBE T R21
. R22
@ sguid A8 | [R1B I:I R19 D11 M
= 2 cpudee 51K | |5.1K DB DIBR £5DPSA0402v05
il
~| i
o < GND
<~
GND GND
<~
GND GND
Fig. 10.6: USB-C for power & programming
[Luse>
3V3 BUCK_IN T 7 s l8 . Gfm 2 . . BUCK_VOUT V5
T4y l l
- SEr Y o

Fig. 10.7: BuckConverter (3.3V output)

402 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

BQ21040
5V 61 VIN out |2 ALT_IN|
R32

1 o 41 seT 15 HL [Z7K] iéﬁ
= 10U —

1.2K 2

~

~ GND
GND Charge current set to 450mA

GND

Fig. 10.8: 4.2V LiPo battery charger

ALT_IN] - o oo oL ,
J1 Q4
ST-FH-254-0144-02
L2 o 3)2 o
—) V_ALT]

CJ2305

I
|
I
|
I
|
I
|
I
|
I
|
|
|
|
|
GND Q3A Q3B !
I
BC856S 2 BC8B56S
I
|
I
|
I
|
I
|
R8 R9 .
|
100K 100K |
|
I
|
I
|
|
|
I
|
|
|
Fig. 10.9: LiPo battery input protection
PWR_FLAG
Lt
120R-1.3A
Bva)—n 3V3
T 1L Ls
s c4t 10U 01U
I 01U I 220N
GND GND GND
VBUS
u1 ERERRL QE‘ L J_cg
— T - T Toew
MSP430_RST 481rsT/NMi/sBwDIoZ & 8 38 & 2 sewrck/TesTH.— [0} MSP430_TEST
MSP430_TDO 23 >> 233 ¢ o o J7
J—fi MSPA30TDL _28]n) S0 ik TROCLK/ACLK/P1.0 (14— DA [826 hd
MSP430 TMS 251515 ryg TAo.0/PL P —EH 0
33 MSP430_TCK 26{p)3,/1cK TA0.1/P1.2 FX %
80.2/P1.3 A% GND
GND MSP_PUR _39|nyp 120.3/P14 28— (WSO
8 Dy 3Bfpyospp TAO.4/PL.5 [- ———MOSI]
| 12305 D— 40l5y’s oM TALCLK/CBOUT/P1.6 21%
TAL.0/P1.7 44— FTASH_CS
*21{p6.0/cBO
P6.1/CB1 TAL.1/P2.0[22— [T }-R23
LEDL 3 1p6.2/CB2
P6.3/CB3 PM_UCB1STE/PM_UCALCLK/P4.0 LF]E—D 2
PM_UCB1SIMO/PM_UCB1SDA/P4.1
%31P5.0,/VeREF + PM_UCB1SOMI/PM_UCB1SCL/P4.2
v e x% P5.1/VeREF - PM_UCBACLK/PN_UCALSTE/P4.3 [32
oy = AL 121p5.2/XT2IN PM_UCALTXD/PM_UCALSIMO/P4.4
. P5.3/XT20UT PM_UCALRXD,/PM_UCALSOMI/P4.5
*81p5.4/XIN > 3f oo P46
x2{p5.5/x0UT B LY 29 o Pu.7
2 Zz 23 &
[T ole] NN o] MSP&30F5503
IZATNJ EEEEREREE
1 GND
<~
GND

Fig. 10.10: MSP430F5503 (USB to UART & mikroBUS)

10.3. Design 403

BeagleBoard Docs, Release 1.0.20230711-wip

CC1352P-LeashPCB

Digital Subsection

DI018

RST MB2 1% pio_5 DIO_20
RST MB1L 14 pio_s DID21
INT_SENSO 1 007 oi0_22 2

0.1u
R
FIRFLD D08 DIo_12 1o}
(oS> i P2 o013 12 = ;ig U5 o TS5A23157
E!Dﬂ 16 pio_10 Dlo_14 PO 12C_CTRL
T 17] 21 2 CC1352_RX_MBL_RX
[MIS0> ol DIO_11 DID_15 USER_BOOT = =

CC1352_RX_MSP430_TX

DIO_16/JTAG_TDO
DIO_17/JTAG_TDI
JTAG_TMSC
JTAG_TCKC
RESET_N

2
Z CC1352_TX_MB1_TX
4 CC1352_TX_MSP430_RX

GD
Fig. 10.11: CC1352P7 Digital subsection
VDDS)
R55 R56 R57 567UK f]5671K
. 2.21K 10K 10K : :
Analog Subsection
TS5A2066YZPR
SDA . 2{com1 No1HL . SEN_SDA]
DI0_23 ZhiNg
DIO_24 6 5
DIO_25 SCL COM2 NO2 SEN_SCL]
DI0_26 u4D [i2c_cTrRL 3N2
010_27 CC1352P-LeashPCB
DI0_28 8 1L
" SW_ DI0O_29 V+ GND
DI0_30 1
C51 GND
Io.iu
GND
v
GND
Fig. 10.12: CC1352P7 Analog subsection
VDD
PWR_FLAG R36 PWR_FLAG L3 PWR_FLAG
Ne 0 120R-1.3A
3V3 A~ VODS(VDDS]
Optional sense resistor for
power measurement
CC1352P-LeashPCB
Power Subsection
45 VDDR
SX4BMN VDD\;DEE 48 1
XU4BM_P 22 gzisu
0.1U '
VDDS 4 vDDS

32.768KHz

’—‘||:||’—‘ DCDC_Sw [33.D€DC SW L

VDDS2 g — VDDS
VDDS3
VDDS GND
iiﬁﬁ*ﬁi ﬁ c18 €19 €20 c21
- VDDS_DCDC P4 0.1U 0.1U To.iu To.iu

e C15 — C16
8p 8P

pcoupL 23 6.8 uH
A
T_ €17 _L c24

Must connect! 1U 22U
GND I GND
GND

49 GND/EP

GND

Fig. 10.13: CC1352P7 Power subsection

404 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

uig.
cc1352P-LeashPCs
RF Subsection

TX_2008M_P |5

R_p 7 oz [RE24GH
RN 2_4GHZ M.ML‘

Rrp_5UB_1gHz |3—RESUB 1GHZ P ¢
RF N sUB LGHZ [+ RESUB 1GHZ W

N

B1 _ 0900PC15A0036E
L’ﬂ e usp_z s onz |1

ol o2 oz nrp wpirg
21 8P 2.4 GHZRFN GND GND
B
.

BRSUB-1GHZRFP UBP_SUB-L GHZ |-

BP_SUB-1_GHZRFN RO %_
1005
Iczv

50
1005F =

TIC200BMLN [6

R LR

Fig. 10.14: CC1352P7 RF subsection

[3v3 * * *
R41 [R43
2.21k [2.21k Rih
2.21K U6
GD25Q16CEIGR RU5
0
[MoSI 31 si/5100 vee 18 . -
SCK i>scu<
FLASH.CS >nCS 2
-———MIS0]
30 e /s102 50/5101 MISO c26
[RESET_N 71 nRST/S103 01U
41 GND
91 ep
GND
~
GND
Fig. 10.15: SPIFlash
3V3 J2
TAG—C%CT*U) TAG—CO:JNECTfio
_L ; 190 RESET,N] MSP430_RST 1405
1 [CCL352MS >———5T 1% ccyssrmi Rie PWM_MBL] X%: :
TMU g K :%X cc1352. 100 RE2 3V3 “ol I wspuso test
= 1 o1 INT_MB1] L i)
| J
GND GND

Fig. 10.16: CC1352P7 & MSP430F5503 TagConnect

10.3. Design

405

BeagleBoard Docs, Release 1.0.20230711-wip

10.3.3 Mechanical

10.4 Connectors

10.5 Demos & tutorials

10.5.1 Using Micropython

Important: Currently under development

Micropython is a great way to get started developing with BeagleConnect Freedom quickly.

Flashed firmware

BeagleConnect Freedom initial production firmware is release 0.0.3 of our own fork of Micropython.
https://git.beagleboard.org/beagleconnect/zephyr/micropython/-/releases/0.0.3

You can verify this version by using mcumgr over a UDP connection or mcuboot over the serial console shell.
Latest releases are part of our Zephyr SDK releases.

https://git.beagleboard.org/beagleconnect/zephyr/zephyr/-/releases

Examples

0.0.3 The first boards were flashed with this firmware.

debian@BeaglePlay:~$ sudo systemd-resolve —--set-mdns=yes —--interface=lowpan0
debian@BeaglePlay:~$ avahi-browse -r -t _zephyr._tcp
+ lowpanO IPv6 zephyr _zephyr._tcp -
- local
= lowpanO IPv6 zephyr _zephyr._tcp -
< local

hostname = [zephyr.local]

address = [fe80::3265:842a:4b:1200]

port = [12345]

txt = []
debian@BeaglePlay:~$ avahi-resolve -6 -n zephyr.local
zephyr.local fe80::ec0f:7a22:4b:1200

debian@BeaglePlay:~$ mcumgr conn add bcf0 type="udp” connstring=
" [feB80::3265:842a:4b:1200%1lowpan0] :1337”
Connection profile bcf0 successfully added
debian@BeaglePlay:~$ mcumgr —-c bcf0 image list
Images:
image=0 slot=0
version: hu.hu.hu
bootable: true
flags: active confirmed
hash: 3697bcef05a6becda7dc14150d46c05dbed5fa78633657b20cf34e1418affee?
Split status: N/A (0)
debian@BeaglePlay:~$ mcumgr -c bcf0 shell exec "device list”
status=0

devices:
- GPIO_0O (READY)
- random@40028000 (READY)

(continues on next page)

406 Chapter 10. BeagleConnect Freedom

https://git.beagleboard.org/beagleconnect/zephyr/micropython/-/releases/0.0.3
https://git.beagleboard.org/beagleconnect/zephyr/zephyr/-/releases

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

- UART_1 (READY)
— UART_O0 (READY)
— 12c@40002000 (READY)
- I2C_0S (READY)
requires: GPIO_O
requires: 12c@40002000
- flash-controller@40030000 (READY)
- spi@40000000 (READY)
requires: GPIO_O0
- ieeeB802154g (READY)
- gd25gl6c@0 (READY)
requires: spi@40000000
— leds (READY)
— HDC2010-HUMIDITY (READY)
requires: I2C_O0S
debian@BeaglePlay:~$ mcumgr -c bcf0 shell exec "net iface”
status=0

Hostname: zephyr

Interface 0x20002de4 (IEEE 802.15.4) [1]

Link addr : 30:65:84:2A:00:4B:12:00
MTU : 125
Flags : AUTO_START, IPv6
IPv6 unicast addresses (max 3):
fe80::3265:842a:4b:1200 autoconf preferred infinite
2001:db8::1 manual preferred infinite
IPv6 multicast addresses (max 4):
£f£f02::1
f£f02::1:££f4b:1200
£f£f02::1:££00:1
debian@BeaglePlay:~$ tio /dev/ttyACMO
[tio 07:32:17] tio v1.32
[tio 07:32:17] Press ctrl-t g to quit
[tio 07:32:17] Connected
gd25gl6c@0: SFDP v 1.0 AP ff with 2 PH
I: PHO: ff00 rev 1.0: 9 DW @ 30
I: gd25gl6c@0: 2 MiBy flash
I: PHl1: ffc8 rev 1.0: 3 DW @ 60
% Booting Zephyr OS build zephyr-v3.2.0-3470-gl14e193081blf *
I: Starting bootloader
Primary image: magic=unset, swap_type=0x1l, copy_done=0x3, image_ok=0x3
Scratch: magic=unset, swap_type=0x1l, copy_done=0x3, image_ok=0x3
Boot source: primary slot
Swap type: test
Bootloader chainload address offset: 0x20000
Jumping to the first image slot

HHHHHH

[00:00:00.001,647] <inf> spi_nor: gd25glé6c@0: SFDP v 1.0 AP ff with 2 PH
[00:00:00.001,647] <inf> spi_nor: PHO: ff00 rev 1.0: 9 DW @ 30
[00:00:00.001,983] <in

>>>

Press reset

I: gd25g16c@0: SFDP v 1.0 AP ff with 2 PH
I: PHO: £f00 rev 1.0: 9 DW @ 30
(continues on next page)

10.5. Demos & tutorials 407

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
I: gd25glé6c@0: 2 MiBy flash
I: PH1: ffc8 rev 1.0: 3 DW @ 60
*** Booting Zephyr OS build zephyr-v3.2.0-3470-gl14e193081blf ***
I: Starting bootloader
I: Primary image: magic=unset, swap_type=0xl, copy_done=0x3, image_ok=0x3
I: Scratch: magic=unset, swap_type=0x1l, copy_done=0x3, image_ok=0x3
I: Boot source: primary slot
I: Swap type: test
I: Bootloader chainload address offset: 0x20000
I: Jumping to the first image slot

[00:00:00.001,495] <inf> spi_nor: gd25gl6c@0: SFDP v 1.0 AP ff with 2 PH
[00:00:00.001,525] <inf> spi_nor: PHO: ff00 rev 1.0: 9 DW @ 30
[00:00:00.001,800] <inf> spi_nor: gd25glé6c@0: 2 MiBy flash
[00:00:00.001,831] <inf> spi_nor: PH1: ffc8 rev 1.0: 3 DW @ 60

uart:~$ build time: Feb 22 2023 07:13:09MicroPython v1.19.1 on 2023-02-22; .
—zephyr-beagleconnect_freedom with unknown-cpu

Type "help()” for more information.

>>> help ()

Welcome to MicroPython!

Control commands:

CTRL-A —-— on a blank line, enter raw REPL mode

CTRL-B —— on a blank line, enter normal REPL mode
CTRL-C —— interrupt a running program

CTRL-D —— on a blank line, do a soft reset of the board
CTRL-E —-— on a blank line, enter paste mode

For further help on a specific object, type help (obj)

See https://beagleconnect.org/micropython for examples.
>>> import zsensor
>>> light=zsensor.Sensor ("OPT3001-LIGHT"”)
>>> humidity=zsensor.Sensor ("HDC2010-HUMIDITY")
>>> light.measure ()
>>> light.get_float (zsensor.LIGHT)
35.94
>>> humidity.measure ()
>>> humidity.get_float (zsensor.HUMIDITY)
24.32861
>>> humidity.get_float (zsensor.AMBIENT_TEMP)
22.37704
>>> dir (zsensor)
[' name ', 'ACCEL_X', 'ACCEL_Y', 'ACCEL_Zz', 'ALTITUDE', 'AMBIENT TEMP',
& 'BLUE', 'CO2', 'DIE_TEMP', 'DISTANCE', 'GAS_RES', 'GREEN', 'GYRO_X', 'GYRO_
~Y', 'GYRO_Z', 'HUMIDITY', 'IR', 'LIGHT', 'MAGN_X', 'MAGN_Y', 'MAGN_Z', 'PM_
-10', 'PM 1 0', 'PM 2 5', 'PRESS', 'PROX', 'RED', 'Sensor', 'VOC', 'VOLTAGE
H']
>>> import os
>>> with open('/flash/test.txt', 'w') as f:
f.write (”"My test.txt\n”)
o0 c ~“H
12
>>> print (open('/flash/test.txt') .read())
My test.txt

>>> import socket

>>> sock = socket.socket (socket.AF_INET6, socket.SOCK_DGRAM)
>>> sock.bind(('ff02::1"', 9999))

>>> for i1 in range (3):

(continues on next page)

408 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

data, sender = sock.recvfrom(1024)
print (str (sender) + ' ' + repr(data))
“H

('fe80::ec0£f:7a22:4b:1200', <>, 0, 7) Db'4h:32.71;4t:17.29;"
('fe80::ec0£f:7a22:4b:1200', <>, 0, 7) Db'21:0.35;"
('fe80::ec0£f:7a22:4b:1200', <>, 0, 7) b'4h:32.71;4t:17.29;"
>>> import machine

>>> AN=machine.Pin ((”GPIO_0", 23), machine.Pin.OUT)

>>> AN.init (machine.Pin.OUT, machine.Pin.PULL_UP, value=1)
>>> ILNK_LED=machine.Pin ((”GPIO_0", 18), machine.Pin.OUT)
>>> LNK_LED.init (machine.Pin.OUT, machine.Pin.PULL_UP, value=1)
>>> LNK_LED.off ()

>>> LNK_LED.on ()

>>>

~Tq

[tio 07:40:16] Disconnected

debian@BeaglePlay:~$

0.2.2

Todo: Need to describe functionality of 0.2.2

Updating

Look for the latest firmware release on https://www.beagleboard.org/distros or on https://beagleconnect.org.
Download, unzip and flash the micropython-w—-boot image.

wget https://files.beagle.cc/file/beagleboard-public-2021/images/zephyr—
—beagle-ccl1352-0.2.2.zip

unzip zephyr-beagle-ccl1352-0.2.2.zip

./build/freedom/cc2538-bsl.py build/freedom/micropython-w-boot

Contributing

Repository: https://git.beagleboard.org/beagleconnect/zephyr/micropython

10.5.2 Using Zephyr

Developing directly in Zephyr will not be ultimately required for end-users who won't touch the firmware running
on BeagleConnect™ Freedom and will instead use the BeagleConnect™ Greybus functionality, but is important
for early adopters as well as people looking to extend the functionality of the open source design. If you are
one of those people, this is a good place to get started.

Equipment to begin development

There are many options, but using BeaglePlay gives a reasonable common environment. Please adjust as you
see fit.

Required
* BeaglePlay with provided antennas

* BeagleConnect Freedom with provided USB cable

10.5. Demos & tutorials 409

https://www.beagleboard.org/distros
https://beagleconnect.org
https://git.beagleboard.org/beagleconnect/zephyr/micropython

BeagleBoard Docs, Release 1.0.20230711-wip

* 2x 5V/3A USB power adapters

* USB Type-C cable for use with BeaglePlay

Recommended

¢ Ethernet cable and Internet connection

Install the SDK on BeaglePlay

See Setup Zephyr development on BeaglePlay.

Important: TODO: note the tested version of software for BeaglePlay

Important: TODO: describe how to know it is working

Change default board The instructions linked above setup the environment for targeting BeaglePlay’s on
CC1352. We need to change it to target BeagleConnec Freedom.

echo "export BOARD=beagleconnect_freedom” >> S$SHOME/zephyr-beagle-
—ccl352-sdk/zephyr-beagle-ccl352-env/bin/activate

source S$HOME/zephyr-beagle-ccl1352-sdk/zephyr-beagle-ccl1352-env/bin/
—activate

Try demo applications

Now you can build various Zephyr applications

Build and flash Blinky Make sure your BeagleConnect Freedom is connected to your BeaglePlay via the USB
cable provided.

cd S$SZEPHYR_BASE
west build zephyr/samples/basic/blinky
west flash

Debug applications over the serial terminal

Note: #TODO#

10.5.3 Using BeagleConnect Greybus

Note: This is still in development.

410 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

BeagleConnect wireless user experience

The User Experience
Step 1 - Gateway login

Gateway
(BeagleConnect Leash)

Host (Linux) r(flﬁ

Enable a Linux host with BeagleConnect

Log into a host system running Linux that is BeagleConnect™ enabled. Enable a Linux host with Beagle-
Connect™ by plugging a BeagleConnect™ gateway device into its USB port. You'll also want to have a
BeagleConnect™ node device with a sensor, actuator or indicator device connected.

Note: BeagleConnect™ Freedom can act as either a BeagleConnect™ gateway device or a BeagleConnect™
node device.

Important: The Linux host will need to run the BeagleConnect™ management software, most of which is
incorporated into the Linux kernel. Support will be provided for BeagleBoard and BeagleBone boards, x86
hosts, and Raspberry Pi.

#TODO#: Clean up images

10.5. Demos & tutorials 411

BeagleBoard Docs, Release 1.0.20230711-wip

§2 beagiet

The User Experience
Step 2 - Connect with button push

Il

]
Gateway
(BeagleConnect Leash) (]g&
Node
(BeagleConnect Leas!
Host (Linux) mikroBUS add-on boa

Connect host and device

Initiate a connection between the host and devices by pressing the discovery button(s).

§2 b
The User Experience
Step 3 - Live edge data automatically appears

Gateway
(BeagleConnect Leash)

Node

. (BeagleConnect
Host (Linux) mikroBUS add-o

Device data shows up as files
New streams of self-describing data show up on the host system using native device drivers.

High-level applications, like Node-RED, can directly read/write these high-level data streams (including data-
type information) to Internet-based MQTT brokers, live dashboards, or other logical operations without requiring

412 Chapter 10. BeagleConnect Freedom

https://mqtt.org/

BeagleBoard Docs, Release 1.0.20230711-wip

any sensor-specific coding. Business logic can be applied using simple if-this-then-that style operations or be
made as complex as desired using virtually any programming language or environment.

Components

BeagleConnect™ enabled host Linux computer, possibly single-board computer (SBC), with BeagleConnect™
management software and BeagleConnect™ gateway function. BeagleConnect™ gateway function can be
provided by a BeagleConnect™ compatible interface or by connecting a BeagleConnect™ gateway device
over USB.

Note: If the Linux host has BLE, the BeagleConnect™ gateway is optional for short distances

BeagleConnect™ Freedom Board, case, and wireless MCU with Zephyr based firmware for acting as either a
BeagleConnect™ gateway device or BeagleConnect™ node device.

* In BeagleConnect™ gateway device mode: Provides long-range, low-power wireless communications,
Connects with the host via USB and an associated Linux kernel driver, and is powered by the USB con-
nector.

* |In BeagleConnect™ node device mode: Powered by a battery or USB connector Provides 2 mikroBUS
connectors for connecting any of hundreds of Click Board mikroBUS add-on devices Provides new Linux
host controllers for SPI, 12C, UART, PWM, ADC, and GPIO with interrupts via Greybus

BeagleConnect gateway device Provides a BeagleConnect™ compatible interface to a host. This could be
a built-in interface device or one connected over USB. BeagleConnect™ Freedom can provide this function.

BeagleConnect node device Utilizes a BeagleConnect™ compatible interface and TODO

BeagleConnect compatible interface Immediate plans are to support Bluetooth Low Energy (BLE), 2.4GHz
IEEE 802.15.4, and Sub-GHz IEEE 802.15.4 wireless interfaces. A built-in BLE interface is suitable for this at
short range, whereas IEEE 802.15.4 is typically significantly better at long ranges. Other wired interfaces, such
as CAN and RS-485, are being considered for future BeagleConnect™ gateway device and BeagleConnect™
node device designs.

Greybus TODO
#TODO: Find a place for the following notes:
* The device interfaces get exposed to the host via Greybus BRIDGED_PHY protocol
e The I12C bus is probed for a an identifier EEPROM and appropriate device drivers are loaded on the host

¢ Unsupported Click Boards connected are exposed via userspace drivers on the host for development

What'’s different?

So, in summary, what is so different with this approach?
* No microcontroller code development is required by users
* Userspace drivers make rapid prototyping really easy

« Kernel drivers makes the support code collaborative parts of the Linux kernel, rather than cut-and-paste

10.5. Demos & tutorials 413

https://bbb.io/click

BeagleBoard Docs, Release 1.0.20230711-wip

10.6 Support

10.6.1 Certifications and export control
Export designations

* HS: 8471504090
* US HS: 8473301180
* EU HS: 8471707000

Size and weight

* Bare product dimensions (without antenna): 63 x 56 x 16.6 mm
* Bare product weight (with antenna): 53.2 g

¢ Full package dimensions: 188 x 85 x 35 mm

Full package weight: 95.2 g

10.6.2 Additional documentation
Hardware docs

For any hardware document like schematic diagram PDF, EDA files, issue tracker, and more you can checkout
the BeagleConnect Freedom repository.

Software docs

For BeagleConnect Freedom specific software projects you can checkout all the BeagleConnect project reposi-
tories group.

Support forum

For any additional support you can submit your queries on our forum, https://forum.beagleboard.org/tag/bcf

Pictures

10.6.3 Change History

Note: This section describes the change history of this document and board. Document changes are not
always a result of a board change. A board change will always result in a document change.

10.6.4 Document Changes

For all changes, see https://git.beagleboard.org/docs/docs.beagleboard.io. Frozen releases tested against spe-
cific hardware and software revisions are noted below.

Rev Changes Date By

414 Chapter 10. BeagleConnect Freedom

https://git.beagleboard.org/beagleconnect/freedom
https://git.beagleboard.org/beagleconnect
https://git.beagleboard.org/beagleconnect
https://forum.beagleboard.org/tag/bcf
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Board Changes

For all changes, see https://git.beagleboard.org/beagleconnect/freedom. Versions released into production are

noted below.

Table 10.1: BeagleConnect Freedom board change history

Rev

Changes

Date

By

Cc7

Initial production version

2023-03-08

K

10.6. Support

415

https://git.beagleboard.org/beagleconnect/freedom

BeagleBoard Docs, Release 1.0.20230711-wip

416 Chapter 10. BeagleConnect Freedom

Chapter 11

BeagleBoard (all)

BeagleBoard boards are low-cost, ARM-based development boards suitable for rapid prototyping and open-
hardware to enable professionals to develop production systems.

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

The latest PDF-formatted System Reference Manual for each BeagleBoard board is linked below.
¢ BeagleBoard
* BeagleBoard-xM

* BeagleBoard-X15

417

https://git.beagleboard.org/beagleboard/beagleboard/-/blob/master/BeagleBoard_revC5_SRM.pdf
https://git.beagleboard.org/beagleboard/beagleboard-xm/-/blob/master/BeagleBoard-xM_SRM.pdf
https://git.beagleboard.org/beagleboard/beagleboard-x15/-/blob/master/BeagleBoard-X15_SRM.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

418 Chapter 11. BeagleBoard (all)

Chapter 12

Projects

This is a collection of reasonably well-supported projects useful to Beagle developers.

12.1 simpPRU

12.1.1 simpPRU Basics

The PRU is a dual core micro-controller system present on the AM335x SoC which powers the BeagleBone. Itis
meant to be used for high speed jitter free 10 control. Being independent from the linux scheduler and having
direct access to the 10 pins of the BeagleBone Black, the PRU is ideal for offloading 10 intensive tasks.

Programming the PRU is a uphill task for a beginner, since it involves several steps, writing the firmware for
the PRU, writing a loader program. This can be a easy task for a experienced developer, but it keeps many
creative developers away. So, | propose to implement a easy to understand language for the PRU, hiding away
all the low level stuff and providing a clean interface to program PRU.

This can be achieved by implementing a language on top of PRU C. It will directly compile down to PRU C. This
could also be solved by implementing a bytecode engine on the PRU, but this will result in waste of already
limited resources on PRU. With this approach, both PRU cores can be run independent of each other.

simpPRU

Intuitive language for PRU which compiles down to PRU C.

What is simpPRU

¢ simpPRU is a procedural programming language.
e |tis a statically typed language. Variables and functions must be assigned data types during compilation.
* |tis type-safe, and data types of variables are decided during compilation.

» simpPRU codes have a . sim extension.

419

BeagleBoard Docs, Release 1.0.20230711-wip

* simpPRU provides a console app to use Remoteproc functionality.

12.1.2 Build from source
Dependencies

o flex

* bison

* gcc

* gcc-pru

e gnuprumcu

e cmake

Build

git clone https://github.com/VedantParanjape/simpPRU.git
cd simpPRU

mkdir build

cd build

cmake

make

Install

sudo make install

Generate debian package

sudo make package

12.1.3 Install
Dependencies
e gcc-pru
e gnuprumcu
* config-pin utility (for autoconfig)

Installation

For Instructions head over to Installation

420 Chapter 12. Projects

https://simppru.readthedocs.io/en/latest/install/install/

BeagleBoard Docs, Release 1.0.20230711-wip

Requirements

Currently this only supports am335x systems: PocketBeagle, BeagleBone Black and BeagleBone Black Wireless:
* gcc-pru
e gnuprumcu
» beaglebone image with official support for remoteproc: ti—-4.19+ kernel

+ config-pin utility

Build from source

For Instructions head over to Building from source

simppru-console

For detailed usage head to Detailed Usage

amdo4

wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/
—simppru-1.4-amd64.deb

sudo dpkg —-i simppru-1.4-amdé64.deb

armhf

wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/
—simppru-1.4-armhf.deb

sudo dpkg —-i simppru-1l.4-armhf.deb

Issues

e For full source code of simPRU visit

e To report a bug or start a issue visit

12.1.4 Language Syntax

¢ simpPRU is a procedural programming language.
* |tis a statically typed language. Variables and functions must be assigned data types during compilation.
* ltis type-safe, and data types of variables are decided during compilation.

* simPRU codes have a . sim extension.

Datatypes

e int - Integer datatype
* bool - Boolean datatype
e char /uint8 - Character/ Unsigned 8 bit integer datatype

* void - Void datatype, can only be used a return type for functions

12.1. simpPRU 421

https://simppru.readthedocs.io/en/latest/install/build/
https://simppru.readthedocs.io/en/latest/usage/usage-simppru-console
https://github.com/VedantParanjape/simppru
https://github.com/VedantParanjape/simppru/issues

BeagleBoard Docs, Release 1.0.20230711-wip

Constants
+ <any_integer> - Integer constant. Integers can be decimal, hexadecimal (start with 0x or 0X) or
octal (start with 0)

* '<any character>"' - Character constant. These can be assigned to both int and char/uint8 vari-
ables

e true - Boolean constant (True)
e false - Boolean constant (False)

*» Px_yz - Pin mapping constants are Integer constant, where x is 1,2 or 8,9 and yz are the header pin
numbers.

Operators

e {,} - Braces

* (,) - Parenthesis

e /,*,4,—,% - Arithmetic operators

e >,<,==,!=>= <= - Comparison operators

e ~,&,|,<<,>> - Bitwise operators: not, and, or and bitshifts

* not,and,or - Logical operators: not, and, or

e := - Assignment operator

* Result of Arithmetic and Bitwise operators is Integer constant.

¢ Result of Comparison and Logical operators is Boolean constant.

* Characters are treated as integers when used in Arithmetic expressions.
* Only Integer constants can be used with Arithmetic and Bitwise operators.
* Only Integer constants can be used with Comparison operators.

* Only Boolean constants can be used with Logical operators.

* Operators are evaluated following these precedence rules.

Correct: bool out

= 6;
Wrong: int yy := 5

5 >
> 6p

Variable declaration

* Datatype of variable needs to be specified during compile time.
* Variables can be assigned values after declarations.

« If variable is not assigned a value after declaration, it is set to O for integer and char/uint8 and
to false for boolean by default.

 Variables can be assigned other variables of same datatype. ints and chars can be assigned to each
other.

* Variables can be assigned expressions whose output is of same datatype.

Declaration

int var;
char char_var;
bool test_var;

422 Chapter 12. Projects

https://en.cppreference.com/w/c/language/operator_precedence

BeagleBoard Docs, Release 1.0.20230711-wip

Assignment during Declaration

int var := 99;

char char_var := 'a';
uint8 short_var := 255;
bool test_var := false;

Assignment

var := 45;
short_var := var;
test_var := true;

¢ Variables to be assigned must be declared earlier.

* Datatype of the variables cannot change. Only appropriate expressions/constants of their respective
datatypes can be assigned to the variables.

* Integer and Character variable can be assigned only Integer expression/Integer constant/Character con-
stant.

* Boolean variable can be assigned only Boolean expression/constant.

Arrays

e Arrays are static - their size has to be known at compile time and this size cannot be changed later.
* Arrays can be used with bool, int and char.

¢ Arrays do not support any arithmetic / logical / comparison / bitwise operators, however these operators
work fine on their elements.

Declaration and Assignment
* The data type has to be specified as data_type[size].

* Array of char can be initialized from a double quoted string, where the length of the array would be at
least the length of the string plus 1.

int[16] a; /* array of 16 integers */
char[20] stringl := "I love BeagleBoards”;

Indexing:
e Arrays are zero-indexed.
* The index can be either a char or an int or an expression involving chars and ints.

* Accessing elements of an array:

int a := arr[4]; /* Copy the 5th element of arr to a */

¢ Changing elements of an array:

arr[4] 5; /* The 5th element of arr is now 5 */
int i := 4;
arr[i] 6; /* The 5th element of arr 1s now 6 */
char j := 4;
arr[j] 7; /* The 5th element of arr is now 7 */

(continues on next page)

12.1. simpPRU 423

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

arr[i+j] := 1; /* The 9th element of arr is now 1 */
/* Declaring and initializing an array with all zeros */
int[16] arr;
for: i in 0:16 {
arr([i] := 0;

Comments

¢ simpPRU supports C style multiline comments.

/* This is a comment */

/* Comments can span
multiple lines */

Keyword and Identifiers

Table 12.1: Reserved keywords

“true* “read_counter* “stop_counter”
“false” “start_counter” “pwm*

“int“ “delay“ “digital_write"
“bool* “digital_read“ “def“

“void* “return “or*

“if “and“ “not*

“elif" “continue” “break”

“else” “while” “in“

“for" “init_message_channel” “send_message*
“receive_message* “print“ “printin“

Valid identifier naming

* An identifier/variable name must be start with an alphabet or underscore (_) only, no other special char-

acters, digits are allowed as first character of the identifier/variable name.

product_name, age, _gender

* Any space cannot be used between two words of an identifier/variable; you can use underscore (_) instead

of space.

product_name, my_age, gross_salary

¢ An identifier/variable may contain only characters, digits and underscores only. No other special char-
acters are allowed, and we cannot use digit as first character of an identifier/variable name (as written

in the first point).
lengthl, length2, _City_1

Detailed info: https://www.includehelp.com/c/identifier-variable-naming-conventions.aspx

Expressions

Arithmetic expressions

=> (9 + 8) * 2 + -1;
33

=> 11 % 3;

2

(continues on next page)

424 Chapter 12. Projects

https://www.includehelp.com/c/identifier-variable-naming-conventions.aspx

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
=> 2 * 6 << 2 + 1;
96
=> ~0xFFFFFFFF;
0

Boolean expressions

=> 9 > 2 or 8 != 2 and not(2 >> 5 or 9 <=5) or 9 != 7;
true

=> O0xXFFFFFFFF != OXFFFFFFFF;

false

=> 'a' < 'b';

true

* Note : Expressions are evaluated following the operator precedence <#operators>

If-else statement

Statements in the if-block are executed only if the if-expression evaluates to t rue. If the value of expression
is true, statementl and any other statements in the block are executed and the else-block, if present, is
skipped. If the value of expression is false, then the if-block is skipped and the else-block, if present, is
executed. If elif-block are present, they are evaluated, if they become true, the statement is executed,
otherwise, it goes on to eval next set of statements

Syntax

if : boolean_expression {
statement 1

}
elif : boolean_expression {
statement 2

I3
else {
statement 3
t
Examples
int a := 3;
if a !'= 4 {
a := 4;
I3
elif a > 4 {
a := 10;
I3
else {
a := 0;
I3
» This will evaluate as follows, since a = 3, if-block (3!=4) will evaluate to true, and value of a will be

set to 4, and program execution will stop.

12.1. simpPRU 425

BeagleBoard Docs, Release 1.0.20230711-wip

For-loop statement

For loop is a range based for loop. Range variable is a local variable with scope only inside the for loop.

Syntax

for

for

for

var in start:stop {
statement 1

Here, for loop is a range based loop, value of integer variable var will vary from start to stop -
1. Value of var does not equal stop. Here, increment is assumed to be 1, so start will have to
less than stop.

Optionally, start can be skipped, and it will automatically start from 0, like this:

var in :stop {
statement 1

Optionally, increment can also be specified like this. Here, stop can be less than start if in—
crement is negative.

var in start:stop:increment {
statement 1

Note : var is a integer, and start, stop, increment can be arithmetic expression, integer or
character variable, or integer or character constant.

Examples

int

for

int
int

for

int

for

sum := 0;

i in 1:4 {
sum = sum + 1i;

mx := 32;
nt;

: J in 2:mx-10 {
nt := nt + j;

sum := 0;

i in in 10:1:-2 { /*10, 8, 6, 4, 2*/
sum = sum + 1ij;

While-loop statement

While loop statement repeatedly executes a target statement as long as a given condition is true.

426

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Syntax

while : boolean_expression {
statement 1

Examples

* Infinite loop

while true {
do_something. .

¢ Normal loop, will repeat 30 times, before exiting
int tag := 0;

while : tag < 30 {
tag := tag + 1;

Control statements

* Note: break and continue can only be used inside looping statements

break break is used to break execution in a loop statement, either for looporwhile loop. It exits
the loop upon calling.

Syntax break;

Examples

for : i in 0:9 {
if : i == 3 {
break;

continue continue is used to continue execution in a loop statement, either for loop or while
loop.

Syntax continue;

Examples

for : j in 9:19 {

if : 1 == 12 {
continue;
I3
else {
break;

(continues on next page)

12.1. simpPRU 427

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Functions

Function definition A function is a group of statements that together perform a task. You can divide up
your code into separate functions. How you divide up your code among different functions is up to you, but
logically the division usually is such that each function performs a specific task. A function declaration tells the
compiler about a function’s name, return type, and parameters. A function definition provides the actual body
of the function.

* Warning : Function must be defined before calling it.

Syntax

def <function_name> : <data_type> : <data_type> <param_name>, <data_type>
—<param_name>, ... {
statement 1;

return <data_type>;

Note: If return data type is void, then return statement is not needed, and if still it is added, it must be return
nothing, i.e., something like this return ;

Warning: return can only be present in the body of the function only once, that too at the end of the
function, not inside any compound statements.

Danger: return inside a compound statement, this syntax is not allowed.

def test : int : int a {
if : a < 4 {

return a;

}

}

e Correct: return is not inside compound statements, It should be placed only at the end of function
definition
def test : int : int a {
int gf := 8;
if : a < 4
{
gf := 4;
}

return gf;

}

Examples Examples according to return types

* Integer

428 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

def test_func : int : int a, int b
{
int aa := a + 5;
if : aa < 3 {
aa = 0;

return aa + b;

}
¢ Character
def next_char : char : char ch, int inc {
char chinc := ch + inc;
return chinc;
}
¢ Boolean
def compare : bool : int wval {
bool ret :=false;
if : val < 0 {
ret := true;
I3
return ret;
}
* Void
def example_func_v : void : {
int temp := 90;
return;
t

Function call Functions can be called only if, they have been defined earlier. They return data types accord-
ing to their definition. Parameters are passed by value. Only pass by value is supported as of now.

Syntax

function_name (varl, wvar2, ..);

Examples
e Integer int a := 55; int ret_val := test_func(4, a);
e Character char a := 'a'; char b := next_char(a, 1);
* Boolean bool wval := compare(22); compare (-2);

* Void example_func (false); example_func_v () ;

Testing or Debugging For testing or debugging code, use the -test or -t flag to enable print, printin and
stub functions. Use -preprocess to stop after generating the C code only. Then run the generated C code (at

/tmp/temp.c) using gcc.

12.1. simpPRU 429

BeagleBoard Docs, Release 1.0.20230711-wip

Print functions print can take either a string (double quoted) or any int / char /bool identifier.
printin is similar to print but also prints a newline (\n).
Examples

print ("Hello World!”);

int a := 2;
print (a);

a :=a + 2;
print (a);
println(””);

Stub functions PRU specific functions will be replaced by stub functions which print function_name called
with arguments arg_name when called.

12.1.5 10 Functions
* All Header pins are constant integer variable by default, with its value equal to respective
R30/R31 register bit

- Example: P1_20 is an constant integer variable with value 16, similarly P1_02 is an constant
integer variable with value 9

Digital Write

digital_write is a function which enables PRU to write given logic level at specified output pin. It is a
function with void return type and it's parameters are integer and boolean, first parameter is the pin
number to write to or PRU R30 register bit and second parameter is boolean value to be written. t rue for
HIGH and false for LOW.

Syntax digital_write (pin_number, value);

Parameters

* pin_number is an integer. It must be a header pin name which supports output, or PRU R30 Register
bit.

* value is a boolean. It is used to set logic level of the output pin, t rue for HIGH and £alse for LOW.

Return Type

e void - returns nothing.

Example

int a := 32;

if : a < 32 {
digital_write(P1_29, true);

}
else {

digital_write(P1_29, false);
}

If the value of a < 32, then pin P1_29 is set to HIGH or else it is set to LOW.

430 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Digital Read

digital_read is a function which enables PRU to read logic level at specified input pin. It is a function
with return type boolean and it’s parameter is a int eger whose value must be the pin number to be read
or PRU R31 register bit.

Syntax digital_read (pin_number) ;

Parameters

* pin_number is an integer. It must be a header pin name which supports input, or PRU R31 Register
bit.

Return Type

* boolean - returns the logic level of the pin number passed to it. It returns t rue for HIGH and false
for LOW.

Example

if digital_read(P1_20) {
digital_write(P1_29, false);

t
else {

digital_write(P1_29, true);
t

Logic level of pin P1_20 is read. If it is HIGH, then pin P1_29 is set to LOW, or else it is set to HIGH.

Delay

delay is a function which makes PRU wait for specified milliseconds. When this is called PRU does absolutely
nothing, it just sits there waiting.

Syntax delay (time_in_ms);

Parameters

« time_in_msisaninteger. Itisthe amount of time PRU should wait in milliseconds. (1000 milliseconds
= 1 second).

Return Type

* void - returns nothing.

Example

digital_write(P1_29, true);
delay (2000) ;
digital_write(P1_29, false);

Logic level of pin P1_29 is set to HIGH, PRU waits for 2000 ms = 2 seconds, and then sets the logic level of
pinP1_29 to LOW.

12.1. simpPRU 431

BeagleBoard Docs, Release 1.0.20230711-wip

Start counter

start_counter is a function which starts PRU’s internal counter. It counts number of CPU cycles. So it
can be used to count time elapsed, as it is known that each cycle takes 5 nanoseconds.

Syntax start_counter ()

Parameters

* n/a

Return Type

e void - returns nothing.

Example

start_counter();

Stop counter

stop_counter is a function which stops PRU’s internal counter.

Syntax stop_counter ()

Parameters

* n/a

Return Type

* void - returns nothing.

Example

stop_counter () ;

Read counter

read_counter is a function which reads PRU’s internal counter and returns the value. It counts number of
CPU cycles. So it can be used to count time elapsed, as it is known that each cycle takes 5 nanoseconds.

Syntax read_counter ()

Parameters

* n/a

Return Type

* integer - returns the number of cycles elapsed since calling start_counter.

432 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Example

start_counter();

while : read_counter < 200000000 {
digital_write(P1_29, true);

t

digital_write(P1_29, false);
stop_counter () ;

while the value of hardware counter is less than 200000000, it will set logic level of pin P1_ 29 to HIGH, after

that it will set it to LOW. Here, 200000000 cpu cycles means 1 second of time, as CPU clock is 200 MHz. So,
LED will turn on for 1 second, and turn off after.

Init message channel
init_message_channel is a function which is used to initialise communication channel between PRU

and the ARM core. It is sets up necessary structures to use RPMSG to communicate, it expects a init message
from the ARM core to initialise. It is a necessary to call this function before using any of the message functions.

Syntax init_message_channel ()

Parameters

* n/a

Return Type

* void - returns nothing

Example

init_message_channel () ;

Receive message

receive_message is a function which is used to receive messages from ARM to the PRU, messages
can only be integers, as only they are supported as of now. It uses RPMSG channel setup by
init_message_channel to receive messages from ARM core.

Syntax receive_message ()

Parameters

* n/a

Return Type

+ integer - returns integer data received from PRU

Example

12.1. simpPRU 433

BeagleBoard Docs, Release 1.0.20230711-wip

init_message_channel () ;

int temp := receive_message();

if

}

temp >= 0 {

digital_write(P1_29, true);

else {

}

digital_write(P1_29, false);

Send message

There are six functions which are used to send messages to ARM core from PRU, messages can be integers,
characters,bools, integer arrays, character arrays,andboolean arrays. It uses
RPMSG channel setup by init_message_channel to send messages from PRU to the ARM core.

For sending arrays, arrays are automatically converted to a string, for example, [1, 2, 3, 4] would become “1
234"

Syntax

send_int (expression)

send_char (expression)
send_bool (expression)
send_ints (identifier)
send_chars (identifier)
send_bools (identifier)

send_message is an alias for send_int to preserve backwards compatibility.

Parameters

For send_int and send_char, expression would be an arithmetic expression.
For send_bool, expression would be a boolean expression

For send_ints, identifier should be an identifier for an integer array.

For send_chars, identifier should be an identifier for a character array.

For send_bools, identifier should be an identifier for a boolean array.

Example

init_message_channel () ;

if digital_read(P1_29) {
send_bool (true) ;
}
else {
send_int (0) ;
t
434 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

12.1.6 Usage(simppru)

simppru [OPTION...] FILE

——device=<device_name> Select for which BeagleBoard to compile
(pocketbeagle, bbb, bbbwireless, bbai)

——load Load generated firmware to /lib/firmware/
-0, —-—output=<file> Place the output into <file>
-p, ——pru=<pru_id> Select which pru id (0/1) for which program is.
—to
be compiled
—-—verbose Enable verbose mode (dump symbol table and ast
graph)
—-—preprocess Stop after generating the intermediate C
file (located at /tmp/temp.c)
=t ==t@st Use stub functions for PRU specific functions.
—and

enable the print functions, useful for testing.
—and debugging

-?, ——help Give this help list
—-—usage Give a short usage message
-V, ——-version Print program version

Mandatory or optional arguments to long options are also mandatory or.
—optional
for any corresponding short options.

simppru autodetects BeagleBoard model and automatically configures pin mux using config-pin. This function-
ality doesn’t work on BeagleBone Blue and Al.

Say we have to compile a example file called test . sim, command will be as follows:

simppru test.sim —--load

If we only want to generate binary for pru0

simppru test.sim -o test_firmware -p O

this will generate a file named test_firmware.prul

12.1.7 Usage(simppru-console)

simppru-console is a console app, it can be used to send/receive message to the PRU using RPMSG, and also
start/stop the PRU. It is built to facilitate easier way to use rpmsg and remoteproc API’s to control and commu-
nicate with the PRU

* Warning : Make sure to stop PRU before exiting. Press ct r1+c to exit

12.1. simpPRU 435

BeagleBoard Docs, Release 1.0.20230711-wip

Features

Use arrow keys to navigate around the textbox and buttons.

Start/stop buttons Use these button to start/stop the selected PRU. If PRU is already running, on starting
simppru-console, it is automatically stopped.

436 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

debian@beaglebone: ~
debian@beaglebone: ~ 190x54

Send message to PRU Use this text box to send data to the PRU, only Integers are supported. On pressing
enter, the typed message is sent.

PRUO is running echo program, whatever is sent is echoed back.

debian@beaglebone: ~
debian@beaglebone: ~ 190x54

12.1. simpPRU

BeagleBoard Docs, Release 1.0.20230711-wip

Receive message from PRU The large box in the screen shows data received from the PRU, It runs using a
for loop, which checks if new message is arrived every 10 ms.
* PRU is running echo program, whatever is sent is echoed back.

debian@beaglebone: ~
debian@beaglebone: ~ 190x54

* PRU is running countup program, it sends a increasing count every 1 second, which starts from 0

debian@beaglebone: ~
debian@beaglebone: ~ 190x54

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Change PRU ID Using the radio box in the upper right corner, one can change the PRU id, i.e. if one wants
to use the features for PRUO or PRU1

12.1.8 simpPRU Examples

These are the examples which have been tested on simpPRU.These examples will serve as a guide for the
users to implement.

simpPRU

Intuitive language for PRU which compiles down to PRU C.

12.1. simpPRU 439

BeagleBoard Docs, Release 1.0.20230711-wip

Delay example

beagleboe

d.or

Red--> P1_31
Blue--> GND

e o o o o
e o o 0 o
e o o o o
e o o o o
e o o o o
e o o 0 o
e o o o o
e o o o o
e o o o o
e e o o o

e e o o o
e o 0o o 0
e o 0o o
e o o o o
e o o o o
e o o o o
e o 0o o
e o o o o
e o o o o
e o o o o

Code

digital_write(P1_31, true);
delay (2000) ;
digital_write(P1_31, false);
delay (5000) ;
digital_write(P1_31, true);

fritzing

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code snippet writes HIGH to header pin P1_31, then waits for 2000ms using the delay
call, after that it writes LOW to header pin P1_31, then again waits for 5000ms using the delay call, and

finally writes HIGH to header pin P1_31.

440

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Digital read example

PocketBeagle Rev A2
PP PIPO®G®OO®O®OGO®E® @

Red-->P1_31
Green--> P1_29
Blue--> GND

e e e 00 ® o 0o 0 0 o ® o 00 @ LI I) ® 0o 000 '
. o e ® o 0 (IR (IR * e e e i
'
.
® 6 600060000008 00 © 68 6060606000600 0000000000
® 0o 0000000000 00 see s s s esesseesses s e
® ® 0 0 0 0 000 0 0 e e ® 9 ® 0 0 0 P P e e e e e e
® 0o 000000000000 © o0 0000000000000 000000
® o 00 0 0 00 0 0 0 e e ® 00 ® 0 0 0 00 e e 00 e e e e e e e
® o o 00 0 00 LI e s 8 0 0 0 s s 000 LI
® o 0o 000 00 U e o0 0 0 0 o0 000 (IR
® o 0 00 0 00 * ® o0 0 0 0 ® e 0 0 00 LI
® 0o 0000 00 ° e e o0 0 00 e o0 000 o e
® e 0 0 0 0 00 LN e e 0 e 0 0 e 0 0 00 ° e
e o o 0 0 e o s 0 0 NI e o s 0 0 o o o 0 0 ® o s 0 0 e o s 0 0 ® s s 0 0 ¢ e o 0 e o 0 0 8
e o 0 00 © o 0o 0 0 (NI R) ® o 00 0 oo 0 0o 0 ® o 00 0 (NI R ® o 0o 0 0 e o 00 ® o 0 0 o

fritzing

Code

while : true {
if : digital_read(P1_29) {
digital_write(P1_31, false);
}
else {
digital_write(P1_31, true);
}

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, since itis while : true. Inside while it checks if
header pin P1_29 is HIGH or LOW. If header pin P1_29 is HIGH, header pin P1_31 is set to LOW, and if header
pin P1_29 is LOW, header pin P1_31 is set to HIGH.

12.1. simpPRU 441

BeagleBoard Docs, Release 1.0.20230711-wip

Digital write example

beagleboéfd-

Red--> P1_31
Blue--> GND

I T B oo o0 0 oo LI A ® o 000 e e 0 00 ® o 000

o o 0 o0 ® o 00 0 e o o 0 o o 0 ® o 0 ® o 0 0 0
o0 ® e 00000 00 o o 0 ® 0o 000000 .
° ® 0o 0 0000 00 U ® 0o 00 0 0 00 .
LI] ® 0o 00000 00 (IR ® e 00 00 00 .
LI ® o0 0000 00 U ® 0o 0000 00 .
LI ® o0 000000 U ® o 000 000 .
® 90000 000000000 ® 0 0 00 0 0 0P 000 PR PN e O
® 9 00 00 000000000 0 ® 2 0 0 0 0 00 00 0P PPN e OT
® 0 90 0 0 00 00000 0 ® 0 00 00 00 00 0O 0O OO OO T TOT
® 0000000000000 00 ® 0600000 0000000000000 OO
® 6 06000 0000000000 ® 6 00 0000 000000000

® e 0 00 ® e 00 e CINC I A LRI e 0 00 . U ® e 0 00 LRI LI ® e 0 0

e o 0 0 ® o 0 0 e 0 0 0 LA e e o 0 0 L L e 0o 0 0 ® o 0 00 * e e 00 ® o 0 00

Code

while : true {
digital_write(P1_31, true);

fritzing

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, sinceitiswhile
pin P1_31 to HIGH.

true. Inside while it sets header

442

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

HCSRO04 Distance Sensor example (sending distance data to ARM using RPMSG)

Green-->P1_29
Purple--> P1_31
Grey--> P1_33
Red--> VOUT(5v)
Blue--> GND

o e 0 . . LA R e o o 00 o ® o 0 0 e o o 00 L B B ® o o 0
L L] L) ..\'... e e e 00 e e o 00 e e e 0 0 * e e 00
LN o o 8 0 . e & 8 & 0 0 ® & o 8 0 0 0o .
. e o o 0 o o 0o 00 0 0 000 o o 0 0 0 0 ® o 0 0 0 0 000 L]
L) ® e 00 oD e o o0 0 00 ® o 00 00 00 L]
e o o 0o 0 ® o 8 & 0 00 0 0 0o o o o 0 0 0 ® o 0o 0 0 0 00 L]
e e o 0 0 00 I"'-M e e e 0 0 0 * e e 0 ° 0 00 .
L L . e & 8 5 0 8 0 00 e o o 8 0 0 0o .
L L) . e o 0 0 00 0 0 0 ® o 0o 0 0 0 00 .
L) U . ® e 00000 00 ® o 000000 .
L L . e o 0 0 00 0 0 0 ® o 0o 0 0 0 00 .
LA L ‘deS_:]H . e 9 0 0 0 0 0 ® e e 0 e 0 00 .
LRI A e s 000 DO I DI) oo o 00 e s 000 DO IR DI) e o o 00 e o 000

e o 0 00 © o 0o 0 0 (NI R) ® o 00 0 oo 0 0o 0 ® o 00 0 (NI R ® o 0o 0 0 e o 00 ® o 0 0 o

fritzing

Code

def measure : int : {
bool timeout := false;
int echo := -1;

start_counter () ;

while : read_counter () <= 2000 {
digital_write (5, true);

}

digital_write (5, false);

stop_counter () ;

start_counter () ;
while : not (digital_read(6)) and true {
if : read_counter () > 200000000 {
timeout := true;
break;
}
I3

stop_counter () ;

if : not(timeout) and true {
start_counter () ;
while : digital_read(6) and true {
if : read_counter() > 200000000 {
timeout := true;
break;
I3

echo := read_counter();

(continues on next page)

12.1. simpPRU 443

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

stop_counter () ;

if : timeout and true {
echo := 0;

return echo;

init_message_channel () ;

while : true {
int ping:= measure();

send_message (ping) ;
delay (1000) ;

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation

Ultrasonic range sensor example

Green-->P1_29
Purple-->P1_31
Grey-->P1_33
Red--> VOUT(5v)
Blue--> GND

cetNgssse sesss seese sesse sseee

AN

® e 00 ORI A U ® 0 0 5 0 08P IO LI ISP
e o o0 e o o 0 0 ® © 0 0 0 0 0 0 0 00 000 00O OO OO OO OO SO OSSO O DS OO DE SO O
® 0 600 0 00 ooootod:Dooooo-Woooooooooooo.ooo.oooooooooo
....-M. ® ® 0 © 0 0 0 0 0 0 00 00 e I © 0 00 OO OO OO OO SO OO SO OO PSP OO PSP DO O OE BSOSO
® o 0 0 9 0 0 00 ® e o 0 0 ."'-M..................."'.".....'..
® s 00000000 ® 9 0 9 5 0 0 0 5 PP I PSP IBEIIOEEIIIEBEENIEOLIEETEE TN
® 0 0 0 0 0 0 0 00 ® 0 0 0 0 0 0 0 O 0 0SSOSO OO OO OO OO PO SN OO
® 0 0000 00 e ® 0 0 0 0 0 0 P P PSPPI IEEEYEPEEEY YN
® 0 0 0 0 0 0 0 00 ® ® 0 0 0 0 00 O 0 0O PO OSSOSO O OO OO PO SO PSS SN PODEOD
® 0 0 0 0 0 00 0 ® 0 0 0 0 0 00 O 0 S S OSSOSO OTS
. L) U] U] L) . U] U] LA . U]

e o ® o 0o 0 0 (NI B ® o 0o 0 0 e o 00 ® o 0 0 0

fritzing

Code

def measure : int : {
bool timeout := false;
int echo := 0;
(continues on next page)

444 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

start_counter () ;

while : read_counter () <= 2000 {
digital_write (7, true);

)

digital_write (7, false);

stop_counter () ;

start_counter () ;
while : not (digital_read(l)) and true {
if : read_counter() > 200000000 {
timeout := true;
break;
}
}

stop_counter () ;

if : not (timeout) and true {
start_counter () ;
while : digital_read(l) and true {
if : read_counter () > 200000000 {

timeout := true;
break;
}
echo := read_counter();
}
stop_counter () ;
b
if : timeout and true {
echo := 0;
I3
return echo;
t
while : true {
int ping:= measure () *1000;
if : ping > 292200 {
digital_write (4, false);
}
else
{
digital_write (4, true);
b
delay (1000) ;
3

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation

12.1. simpPRU 445

BeagleBoard Docs, Release 1.0.20230711-wip

Sending state of button using RPMSG

PocketBeagle Rev A2
PP PIPO®G®OO®O®OGO®E® @

Red-->P1_31
Green--> P1_29
Blue--> GND

e e e 00 ® o 0o 0 0 o ® o 00 @ LI I) ® 0o 000 '
. o e ® o 0 (IR (IR . * e e . e i
'
.
® 6 600060000008 00 © 68 6060606000600 0000000000
® 0o 0000000000 00 see s s s esesseesses s e
® ® 0 0 0 0 000 0 0 e e ® 9 ® 0 0 0 P P e e e e e e
® 0o 000000000000 © o0 0000000000000 000000
® o 00 0 0 00 0 0 0 e e ® 00 ® 0 0 0 00 e e 00 e e e e e e e
® o o 00 0 00 LI e s 8 0 0 0 s s 000 LI
® o 0o 000 00 U e o0 0 0 0 o0 000 (IR
® o 0 00 0 00 * ® o0 0 0 0 ® e 0 0 00 LI
® 0o 0000 00 ° e e o0 0 00 e o0 000 o e
® e 0 0 0 0 00 LN e e 0 e 0 0 e 0 0 00 ° e
e o o 0 0 e o s 0 0 NI e o s 0 0 o o o 0 0 L] U e o s 0 0 ® s s 0 0 ¢ e o 0 e o 0 0 8
e o 0 00 © o 0o 0 0 (NI R) ® o 00 0 oo 0 0o 0 (] U (NI R ® o 0o 0 0 e o 00 ® o 0 0 o

Code

init_message_channel () ;

while : true {
if : digital_read(P1_29) {
send_message (1) ;

}
else {

send_message (0) ;
}

delay (100) ;

fritzing

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation init_message_channel is needed to setup communication channel between ARM<-

>PRU. It only needs to be called once, before using RPMSG functions.

while : truelooprunsendlessly, inside this, we check for value of header pin P1_29, if it reads HIGH, 1 is
sent to the ARM core using send_message and if it is LOW, 0 is sent to ARM core using send_message.

Then PRU waits for 100ms, and repeats the steps again and again.

446

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink on button press example

PocketBeagle Rev A2

Red--> P1_31
Green--> P1_29
Blue--> GND

LI I A ® o o0 0 LI ® o 00 e OB O ® o000 '
. L) o s LI LI LI Y L) 3
'
.
® 0o 0000000000 00 ® o 0000000000000 0 00000000
® o 00 0 0 00 0 0 00 e ee s e s e s e s s e e e s e e e e e e
® 0o 000000000000 ® o 0000 000000000000 00000
® o 0000000000 00 ® 0 000000 000000 00 00 00 e
® o 600060000008 00 ® 6 6 6060 0600000000000 008000
® o 0000 00 LI ® o 00 0 00 e e 0o 000 o0
® e 00 0 0 00 (N ® o 00 0 0 0 e 0 0 00 e
® o o000 00 e ® o 00 0 00 e o0 000 o
® o 000 0 00 U ® o 00 0 00 e o0 000 e
® o o008 0 00 LI ® o s 0 0 00 e 0 000 LI
o 0 00 ® o 0o 0 0 e o 0o 0 0 ° 0 o oo o 00 . o e e o 0 0 0 ® o 0o 0 0 * e o 00 ® o 0 00

fritzing

Code

while : true {
if : digital_read(P1_29) {
digital_write(P1_31, false);

}
else {

digital_write(P1_31, true);
}

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, since itiswhile : true. Inside while if header pin
P1_29 is HIGH, then header pin P1_31 is set to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW,
then again it waits for 1000ms. This loop runs endlessly as long as header pin P1_29 is HIGH, so we get a
Blinking output if one connects a LED to output pin.

12.1. simpPRU 447

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink using for loop example

beagleboe

d.or

Red--> P1_31
Blue--> GND

® 0o 000 0000000000000 ® 0 00 0000000000000 000000
® 9 00 00 0000000000 e ® 0 0 0 0 0 00 0000 PR e O
® 0 00 00 00 00 0000 e e ® 0 0 0 0 0 00 00 00000 e OO e OTE
® 0 0000 000000000000 ® 0000000 0000000000000
® 0 60600 0000000000 0 ® 6 0 0 06000 000000000
® 00000 00 0000 0000 e ® 0 0 00 0 0 0P 000 PR PN e O
® 9 9 0 00 00 00 00 000 e ® 2 0 0 0 0 00 00 0P PPN e OT
® 0 90 00 00 00000 e e ® 0 00 00 00 00 0O 0O OO OO T TOT
® 00000 0000000000 0 ® 0600000 0000000000000 OO
® 6 00600 000000000000 ® 6 00 0000 000000000
® e 0 00 ® e 00 e CINC I A LRI e 0 00 U LRI LI ® e 0 0
e o 0 0 ® o 0 0 e 0 0 0 LA e e o 0 0 ® o 0 ® o 0 00 * e e 00 ® o 0 00

Code

for

1l in 0:10 {
digital_write(P1_31, true);
delay (1000) ;
digital_write(P1_31, false);
delay (1000) ;

fritzing

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs for loop with 10 iterations, Inside for it sets header pin P1_31 to HIGH, waits
for 1000ms, then sets header pin P1_31 to LOW, then again it waits for 1000ms. This loop runs endlessly, so
we get a Blinking output if one connects a LED. So LED will blink 10 times with this code.

448

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink using while loop example

PocketBeagle Rev A2

Red--> P1_31
Blue--> GND

beagleboéfd-

® 0o 000 0000000000000 ® 0 00 0000000000000 000000
® 9 00 00 0000000000 e ® 0 0 0 0 0 00 0000 PR e O
® 0 00 00 00 00 0000 e e ® 0 0 0 0 0 00 00 00000 e OO e OTE
® 0 0000 000000000000 ® 0000000 0000000000000
® 0 60600 0000000000 0 ® 6 0 0 06000 000000000
® 00000 00 0000 0000 e ® 0 0 00 0 0 0P 000 PR PN e O
® 9 9 0 00 00 00 00 000 e ® 2 0 0 0 0 00 00 0P PPN e OT
® 0 90 00 00 00000 e e ® 0 00 00 00 00 0O 0O OO OO T TOT
® 00000 0000000000 0 ® 0600000 0000000000000 OO
® 6 00600 000000000000 ® 6 00 0000 000000000
® e 0 00 ® e 00 e CINC I A LRI e 0 00 . U ® e 0 00 LRI LI ® e 0 0
e o 0 0 ® o 0 0 e 0 0 0 LA e e o 0 0 L L e 0o 0 0 ® o 0 00 * e e 00 ® o 0 00

fritzing

Code

while : true {
digital_write(P1_31, true);
delay (1000) ;
digital_write(P1_31, false);
delay (1000) ;

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending while loop, since it is while : true. Inside while it
sets header pin P1_31 to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW, then again it waits for
1000ms. This loop runs endlessly, so we get a Blinking output if one connects a LED

12.1. simpPRU 449

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink example

PocketBeagle Rev

beagleboefd-or

Red--> P1_31
Blue--> GND

® 0 06000 000000 0000 00 ® 0 000 0000000000000 00 e
® 0o 00 000000000000 00 ® 0000000000600 0000000000
® 0 00 0 0 00 00000000 e ® 0 90 0 0 0000 00PN e e O
® 9 0 0 0 0 00 00000 e e ® 9 0 0 0 0 0 0 P9 0PI OND
® 0 00 00 00 000000 e e ® 0 0 0 0 0 0 0 00 00 0O RO T OT
® o 0000000000 0000 00 ® 0 000 0000000000000 00 e
® 0o 0000000 0000000 00 ® 000 0000000000000 000 e 0
® 0 00 00 0000 000000 e ® 0 00 0000 P 00PN e O
® 9 0 0 00 00 00 00 000 e ® 9 0 0 0 0 00 P00 e
® 0 90 00 00 00 00 0000 e ® 0 00 00 00 00 0O PN OO OO OO Oe T OTN

e o 0 0 0 ® o 0 0 o (NI LRI ® o o 0 o L] U] (NI R LR e o 0 ® o 0 0 o

e o o 0 0 o o 0 0 0 o e 0o 0 0 o o 0 0 0 o o o 0 0 o o 0 00 ¢ e 0 0 0 o o 0 0 0 o e 0o 0 0 o o 0 00

Code

while : == 1 {
digital_write(P1_31, true);
delay (1000) ;
digital_write(P1_31, false);
delay (1000) ;

fritzing

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, sinceitiswhile

loop runs endlessly, so we get a Blinking output if one connects a LED

true. Inside while it sets header
pin P1_31 to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW, then again it waits for 1000ms. This

450

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink using hardware counter

PocketBeagle Rev A2
Pl e ®®o®
P®0 0 e ®O®

Red--> P1_31
Blue--> GND

LN ® ® 0 0 0 0 0 0 0 ® o o ® o o 0 0 0 0 0 L
LN e 0 ¢ 0 9 0 0 00 L ® 0 0 0 0 0 00 .
LN e 0 0 00 0 0 00 o e 0 ® 0 0 0 0 0 00 L]
LN ® 0 0 00 0 0 00 o e 0 ® 0 0 0 " 0 00 L]
LN ® & 0 0 0 0 0 0 0 o o 0 ® 0 0 0 0 0 00 L]
® 0 9 9 9 0 00 00 PO P ODPO OO ® 9 0 9 0 0 0O PO O P OO O P PP OO P VNP
® 0 9 9 9 0 09 P 0 P e PP OO ® 9 0 9 0 0 0O PP O E PO OO PPN PN e NP OPOE DN
® 0 0 0 0 0 0 000 PO PP OO ® 0 0 0 0 0 00O P OO PO OO PP NP O ODOY DN
® 0 0 0 0 0 0 0 " 0 S O OGPSY OO ® 9 0 8 0 0 0O O OO PO OO PP PSP O ODOE DN
® 0 0 0 6 0 6 5 0 0 00 S ® 0 6 & & 0 0 0 0 0 0SSOSO S DE SN ODNODS

e 0 0 0 ® o 0 0 0 o 0o 0 0 L o e 0 0 . L o 0 0 0 * e 0 LA ® o 0 00

e 0 0 0 ® o 0o 00 e 0 0 0 ® e o 00 e ° 00 L] LN e 0 0 0 ® o o 00 * e 0 00 ® o 0 00

fritzing

Code

while : true {
start_counter () ;
while : read_counter() < 200000000 {
digital_write(P1_31, true);
)

stop_counter () ;

start_counter();

while : read_counter () < 200000000 {
digital_write(P1_31, false);

b

stop_counter () ;

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending while loop, sinceitiswhile : true. Insidewhile itstarts
the counter, then in a nested while loop, which runs as long as read_counter returns values less than
200000000, so for 200000000 cycles, HIGH is written to header pin P1_31, and after the while loop ends, the
counter is stopped.

Similarly counter is started again, which runs as long as read_counter returns a value less than
200000000, so for 200000000 cycles, LOW is written to header pin P1_31, and after the while loop ends,
the counter is stopped.

This process goes on endlessly as it is inside a never ending while loop. Here, we check if read_counter
is less than 200000000, as counter takes exactly 1 second to count this much cycles, so basically the LED
is turned on for 1 second, and then turned off for 1 second. Thus if a LED is connected to the pin, we get a
endlessly blinking LED.

12.1. simpPRU 451

BeagleBoard Docs, Release 1.0.20230711-wip

Read hardware counter example

Code

start_counter();

while : read_counter () < 200000000 A
digital_write (4, true);

}

stop_counter () ;

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation Since, PRU’s hardware counter works at 200 MHz, it counts up to 2 x 108 cycles in 1 second.
So, this can be reliably used to count time without using delay, as we can find exactly how much time 1 cycle
takes.

2 x 108 cycles/second.
1 Cycles = 0.5 x 10-8 seconds.

So, it can be used to count how many cycles have passed since, say we received a high input on pin 3.
start__counter starts the counter, and read_counter reads the current state of the counter, and
stop_counter stops the counter.

Using RPMSG to communicate with ARM core

Code

init_message_channel () ;
int count := receive_message();

while : true {
send_message (count) ;
count := count + 1;
delay (1000) ;

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation PRU has a functionality to communicate with the ARM core, it is called RPMSG. This examples
show how to use RPMSG functionality to communicate with ARM core using RPMSG.

init_message_channel is needed to setup communication channel between ARM<->PRU. It only needs
to be called once, before using RPMSG functions.

int count := receive_message () ; waits for a message from ARM Core, we need to send some
integer to PRU with which to start the counting. So, say we send 3, then int variable count will be equal to 3.

After this, thereiswhile : true block which runs endlessly. Inside the block there isa send_message
call, this sends message back to the ARM Core.

So, inside the for loop we are sending value of count variable, after this we increase value of count by 1. Then
we wait for 1000ms, and repeat the above steps again and again.

Using RPMSG to implement a simple calculator on PRU

Code

452 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

init_message_channel () ;

while : true {
int option := receive_message();
int a := receive_message();
int b := receive_message();
if : option == 1 {
send_message (atb) ;
)
elif : option == 2 {
send_message (a—b) ;
b3
elif : option == 3 {
send_message (a*b) ;
)
elif : option == 4 {
if : b !'= 0 {
send_message (a/b) ;
}
else {
send_message (a) ;
}
b
else
{
send_message (atb) ;
I3

* Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation init_message_channel () ; starts the message channel for communication with ARM
<-> PRU cores. Thenwhile : true loops runs endlessly.

int option := receive_message () ; receives which operator to be executed and stores it in
option variable. 1 for addition, 2 for subtractions, 3 for multiplication and 4 for division. int a :=
receive_message () ; receives the value of first operand, and int b := receive_message () ;
receives the value of second operand.

if-elseif ladder checks if value of option is 1, 2, 3 or 4 and accordingly sends the value of operation back to ARM
core using send_message. While division, it makes sure that divisor is not 0. If value of option is anything
other than 1, 2, 3, 4, then it defaults to else condition, that is a+b.

This runs endlessly since it is inside a while : true loop.

12.2 BB-Config

12.2.1 BB-Config Detail

Configure your beagle devices easily.

Github

12.2. BB-Config 453

https://git.beagleboard.org/gsoc/bb-config

BeagleBoard Docs, Release 1.0.20230711-wip

AN RN R I VA
N A I I I O I Y O B
| VO Jf O O I W

What is BB-Config
BB-Config is software that makes the most common low-level configuration changes of beagle devices easily
and provides a terminal Ul.

BB-Config is using FTXUI (C++ Functional Terminal User Interface) which provides a simple and elegant looking
Ul.

454 Chapter 12. Projects

https://github.com/ArthurSonzogni/FTXUI

BeagleBoard Docs, Release 1.0.20230711-wip

T bb-config
System

PRU enable/disable
GPIO

DAC

EMMC and MicroSD stats
LEDs

uEnv

Password

SSH

PinMux

WiFi

bb-config
[Exit]|About

Applicatio |bb-config

Descriptio|bb-config is a tool-set, that aims to provide the
| functionality to make the most common low-levelconfiguration
changes in beagle devices easily

https://github.com/SAtacker/bb-config

|

Services https://github.com/SAtacker/bb-config/commit/6d2332c32c5calelfb51a
> ADC

Network

> Internet Sharing and Client Confi

View Logo

12.2.2 Build from Source

Dependencies

e g++
¢ cmake
e glib-2.0

e libnm

Build

git clone https://git.beagleboard.org/gsoc/bb-config

cd bb-config
mkdir build

cd build

cmake

make —-j$(nproc)

Install

sudo make install

12.2.3 Features

BB-Config v1.x

PRU Enable/Disable

¢ Enable/Disable PRU

12.2. BB-Config

455

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config ————————7—7—D0D—0 0 mD—————

- " //
s bb-config [Exit]|PRU enable/disable
System

> PRU enable/disable

GPIO Firmware State |[Actions

DAC

EMMC and MicroSD stats
LEDs

ru|am335x—-prud—fw |offline| | Loaded Firmware: am335x]| |
ru|am335x-prul-fw |offline| [Start] [Stop] | Loaded Firmware: am335x| |

Password
SSH
PinMux

Services
ADC
Network:
>

WiFi

Internet Sharing and Client
Info
> About

[start] [Stop]

[Start] [Stop]

| [
| [
‘ uEnv " am335x-pm—firmware.elf|running Firmware Not found / No
| |‘

GPIO
* Turn On/Off gpio

EMMC and MicroSD stats
LEDs

uEnv

Password

SSH

PinMux

Services

ADC

Network
> WiFi

GPIO Menu

456 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

bb-confi
T bb-config [Exit]|GPIO
System

PRU enable/disable |P8_14 Status
> GPIO * Direction : in
DAC ‘ * Value HC)
EMMC and MicroSD stats
LEDs ‘
uEnv
Password
SSH ‘ Value
PinMux | * Active Low

Services Edge

ADC

Network
> WiFi

Internet Sharing and Client Confi

* Active Low : 0

|
* Edge ‘
Actions

* Direction

GPIO Setting

EMMC and MicroSD Stats

* Storage stats & grow partition

bb-config ——m———Ho——-—-—————

- ___ " "
»~ bb-config [Exit]|EMMC and MicroSD stats
System

| PRU enable/disable
GPIO Capacity
DAC
[> EMMC and MicroSD stats
LEDs
uEnv
Password
SSH |
PinMux
Services

|
ADC Grow Partition Show (approx) size in:
Network

/dev/mmcblklboot®|213.37 MB [213.37 MB (213.37 MB
/dev/mmcblkl 213.37 MB (213.37 MB
/dev/mmcblklbootl|213.37 MB [213.37 MB [213.37 MB
/dev/mmcb1ke 213.37 MB [213.37 MB
| /home/debian | 27004.53 MB|29277.34 MB|25764.68 MB|

> WiFi

Internet Sharing and Client Confi

LEDs

¢ Config board build in LEDs

12.2. BB-Config 457

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config

» bb-config [Exit]|LEDs
LSystem

PRU enable/disable Select a LED:
‘ GPIO

DAC O beaglebone:gree

EMMC and MicroSD stats beaglebone:green:usr2

LEDs beaglebone:green:usr3

o
uEnv O mmcO: :
Password o
SSH
| PinMux | Name :beaglebone:green:usr®

Services Brightness:0
ADC Trigger :heartbeat
}:

mmcl::

Network:
> WiFi

Internet Sharing and Client Confi
Info

About

none
usb—gadget
usb—host
rfkill-any
rfkill-none
kbd-scrolllock
kbd—numlock
kbd-capslock
kbd-kanalock
kbd-shiftlock

O 0O0OO0O0O0O0O0OO0OO

Toggle

Password

* Change users password

bb-config
~ bb-config [Exit]|Password
System

PRU enable/disable User:debian
‘ GPIO 0ld password:
DAC New password:
EMMC and MicroSD stats 0 Hide password
LEDs ‘
|

uEnv Apply

SSH
| PinMux |
Services
ADC
Network:

> WiFi
Internet Sharing and Client Confi

SSH

¢ Enable/Disable SSH

458 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config

System
PRU enable/disable

Status: Active: active (running) since Tue 2022-09-27 07:12:29 UTC; dh

L_ bb-conf [Exit]|SSH
‘ GPIO
|

DAC ||Enable | |[pisable
EMMC and MicroSD stats B ————————
LEDs
uEnv
Password
> SSH
| PinMux |
Services
ADC
Network:
> WiFi
Internet Sharing and Client Confi
Info:
> About

WiFi
e Connect to Wi-Fi

bb-config —————0—0—0—0—0—m—m—m7m2m2B-——

f—I—
bb-config [Exit]|WiFi
Syste
|
’ DAC
|

PRU enable/disable |WiFi Status : Enabled |

GPIO Current Network: satochi BDC ’
. 1 1

EMMC and MicroSD stats Toggle WiFi||Scan network

LEDs

uEnv Network:

Password —)

SSH

PinMux |

Services

ADC

> Overlay
Network:
b wiFi |

Internet Sharing and Client Confi

12.2. BB-Config 459

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config
bb-config [Exit]|Internet Sharing and Client Configuration

System

PRU enable/disable

GPIO

DAC

EMMC and MicroSD stats

LEDs

uEnv

Password

SSH

PinMux

Services
> ADC

Network:

WiFi

> Internet Sharing and Client Confi

Internet Sharing and Client Config
* Note: You'll have to configure your host Following is an example script:

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables —--table nat —-—-append POSTROUTING --out-interface wlp4s0 -j.
~MASQUERADE

iptables —--—append FORWARD —--in-interface wlp4s0 —-j ACCEPT

bb-config
T bb-config [Exit]|About
Syste

PRU enable/disable

GPIO Applicatio|bb-config
DAC

EMMC and MicroSD stats Descriptio|bb-config is a tool-set, that aims to provide the
LEDs | functionality to make the most common low-levelconfiguration
uEnv changes in beagle devices easily

Password
SSH https://github.com/SAtacker/bb-config
| PinMux
Services https://github.com/SAtacker/bb-config/commit/6d2332c32c5calelfb51a
> ADC
85

Network
WiFi

> Internet Sharing and Client Confi
Info View Logo

About

BB-Config v2.x

ADC (Graph)

* Plot graph for Analogue pin

460 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config
T bb-config [Exit]|ADC
System

‘ PRU enable/disable

GPIO

| DAC in_voltage3_raw |
| EMMC and MicroSD stats in_voltage7_raw |
| LEDs in_voltage®_raw |
| uEnv in_voltagel_raw |
| Password in_voltagel_raw |
| ssH in_voltage5_raw |
| PinMux in_voltage2_raw |
Services

> ADC
> WiFi

Internet Sharing and Client Confi

bb-config
4 bb-config [Exit] [ADC
System

PRU enable/disable
‘ GPIO
DAC
EMMC and MicroSD stats
’ LEDs
uEnv in_voltage3_raw [Hz]
’ Password
SSH
| PinMux

Services
> ADC
Network:
>

WiFi
Internet Sharing and Client Confi

DAC (PWM)

¢ Generate PWM waveform

12.2. BB-Config 461

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config

v bb-config [Exit]|DAC
LSystem

PRU enable/disable Select a LED:

GPIO

DAC

EMMC and MicroSD stats

LEDs

uEnv

Password

SSH

PinMux |Period: ©s Duty Cycle: 0%
Services

ADC Select a Polarity:

Network: ® normal
> WiFi |o inversed

Internet Sharing and Client Confi
Info
Trigger

uEnv

* Enable/Disable boot configuration

bb-config
T bb-config [Exit] |uEnv
LSystem
PRU enable/disable Menu Config
‘ GPIO
DAC Master Enable
| EMMC and MicroSD stats Overide capes with eeprom
LEDs Additional custom capes
Custom Cape
Password Disable auto loading of virtual capes (emmc/video/wireless/adc)
SSH Cape Universal Enable
PinMux
Services
ADC

|
|
|
Network: o enable_uboot_overlays=1
> WiFi

Internet Sharing and Client Confi

services

¢ Enable/Disable services startup at boot

462 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config ————————7—7—D0D—0 0 mD—————
bb-config [Exit]|Services
System
PRU enable/disable
‘ GPIO
DAC nginx.service
| EMMC and MicroSD stats |o wpa_supplicant-n180211@.service
| LEDs |o remote-cryptsetup.target
| uEnv |o man-db.timer
| Password |@ keyboard-setup.service
| ssH |o saned.socket
PinMux hostapd@.service

ADC bb_install_modules.service

|o
|= nodered. service
1=

|

| overlay |o kexec.target

Network—————|@ avahi-daemon.service

T; WiFi |@ cron.service

| Internet Sharing and Client Confi|m systemd-pstore.service
Info——————————In hostapd.service

T: About |o dphys-swapfile.service

| |o apt-daily.timer

| |@ systemd-networkd.service

| |o resize_filesystem.service

wpa_supplicant.service

PINMUX
* Display PIN 1/0 detail
¢ Config PINMUX

bb-config

»~ bb-config [Exit]|PinMux
LSyste

PRU enable/disable Hardware
‘ GPIO

DAC

EMMC and MicroSD stats

LEDs

uEnv

Password

SSH

Services

ADC

Ethernet

Network
> WiFi
Internet Sharing and Client Confi
Info
> About

———

Hardware Display

12.2. BB-Config 463

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config

{ bb-config [Exit]|PinMux
LSystem
PRU enable/disable Pin Detail]
‘ GPIO —_—
DAC
EMMC and MicroSD stats gnd gnd Content : P8_01 gnd

LEDs
uEnv
Password
SSH

Name : gnd power
power
power

system
PinMux
Services
ADC
Network:
> WiFi

i2c
Internet Sharing and Client Confi
Info
> About

adc
adc
adc
adc

gnd

Pin Table References

System:

PRU enable/disable PINMUX
GPIO

DAC

EMMC and MicroSD stats

LEDs

uEnv

Password

SSH

PinMux _ 0

Services
ADC L ® default

Lt bb-config [Exit]|PinMux

>
’—Network—|

[
|> WiFi I L IIO gpio_pu
o gpio_input
o rt

Pin Config

Overlay (dts)
¢ Enable/Disable Device Tree Overlay in Boot option

¢ Select dtbo file and automate update in UEnv.txt

464 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

bb-config

Syste

PRU enable/disable Kernel Version : 5.10.131-ti-ru9
GPIO

DAC

EMMC and MicroSD stats

LEDs o Overlay O : |»> BB-SPIDEVO-00A0.dtbo
uEnv

Password
SSH |o Overlay 1 : [» <fileX>.dtbo
L — |

PinMux
Services

|
|
|

ADC o Overlay 2 : |» BB-W1-P9.12-00A0.dtbo
Network:

¥— WiFi |o Overlay 3 : |- <FileX> dtbo
Internet Sharing and Client Confi
Info:

L_ bb-config [Exit]|Overlay
>

> About o Overlay 4 : |2 <fileX>.dtbo

o Overlay 5 : (» BB-BONE: —00A1.dtbo

WiFi (D-Bus)
e Connect to WiFi with wpa_supplicant
e Support for Debian 11

bb-config ————0—0—7—7—D—DmDm—m—2—o0m0m—MMMMM

F______________________________T______________
bb-config [Exit]|WiFi
Syste

PRU enable/disable TYPE : wlan®

GPIO OPERATIONAL :

DAC SETUP 3] e
EMMC and MicroSD stats

LEDs h||Connect Network
uEnv

Password
SSH
PinMux
Services
> ADC

Network
> wiFi]
Internet Sharing and Client Confi

12.2.4 Version

GSOC@21 BB-Config v1.x

* Name: Shreyas Atre

¢ Mentors: Arthur Sonzogni, Abhishek Kumar, Deepak Khatri.
* Organization: BeagleBoard.org

¢ Code: https://github.com/SAtacker/beagle-config

* Project Page: https://summerofcode.withgoogle.com/projects/#6718016412188672

12.2. BB-Config 465

https://github.com/SAtacker/beagle-config
https://summerofcode.withgoogle.com/projects/#6718016412188672

BeagleBoard Docs, Release 1.0.20230711-wip

e Progress Log: https://satacker.github.io/gsoc-log/
¢ Kanban: https://github.com/SAtacker/beagle-config/projects/1
* |nitial Video: https://youtu.be/vFUWCzqE6xI

GSOC@22 BB-Config v2.x

* Name: Seak Jian De

* Mentors: Shreyas Atre, Vedant Paranjape, Vaishnav Achath.

* Organization: BeagleBoard.org

¢ Code: https://git.beagleboard.org/gsoc/bb-config

* Project Page: https://summerofcode.withgoogle.com/programs/2022/projects/2DbiYPIY

* Progress Log: https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/
32357/2

* Initial Video: https://youtu.be/V_Euk5uWY1lo

12.3 BeagleConnect

Important: Currently under development

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

BeagleConnect™ is a revolutionary technology virtually eliminating low-level software development for loT
and IloT applications, such as building automation, factory automation, home automation, and scientific data
acquisition. While numerous IoT and lloT solutions available today provide massive software libraries for micro-
controllers supporting a limited body of sensors, actuators and indicators as well as libraries for communicating
over various networks, BeagleConnect simply eliminates the need for these libraries by shifting the burden into
the most massive and collaborative software project of all time, the Linux kernel.

These are the tools used to automate things in scientific data collection, data science, mechatronics, and loT.
BeagleConnect™ technology solves:

e The need to write software to add a large set of diverse devices to your system,

¢ The need to maintain the software with security updates,

* The need to rapidly prototype using off-the-shelf software and hardware without wiring,

* The need to connect to devices using long-range, low-power wireless, and

* The need to produce high-volume custom hardware cost-optimized for your requirements.

466 Chapter 12. Projects

https://satacker.github.io/gsoc-log/
https://github.com/SAtacker/beagle-config/projects/1
https://youtu.be/vFUWCzqE6xI
https://git.beagleboard.org/gsoc/bb-config
https://summerofcode.withgoogle.com/programs/2022/projects/2DbiYPlY
https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/32357/2
https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/32357/2
https://youtu.be/V_Euk5uWY1o
http://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Industrial_internet_of_things
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Indicator_(distance_amplifying_instrument)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Data_collection_system
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Mechatronics
https://en.wikipedia.org/wiki/Internet_of_things

BeagleBoard Docs, Release 1.0.20230711-wip

12.3.1 BeagleConnect Technology

This is the deep-dive introduction to BeagleConnect™ technology and software architecture.

Note: This documentation and the associated software are each a work-in-progress.

CC1L352P
BeagleConnect Freed
Rewv C7/

BeagleConnect™ is built using Greybus code in the Linux kernel originally designed for mobile phones. To
understand a bit more about how the BeagleConnect™ Greybus stack is being built, this section helps describe
the development currently in progress and the principles of operation.

12.3. BeagleConnect 467

https://kernel-recipes.org/en/2015/talks/an-introduction-to-greybus/

BeagleBoard Docs, Release 1.0.20230711-wip

Background

BeagleConnect software proposition

+ Uses Greybus for automatic provisioning of 12C, SPI, GPIO, UART, ADC, PWM, etc.

USB in Linux Today I2C/SPIIGPIO/... I2C/SPIIGPIO/...

Before Greybus With Greybus
HOST Peripheral

g Connect Device

Fobe Arbitrary e
what is if === transport
Tell it
Sp— ell 1 . UART
.9 CLU -

Load
Driver

—

i g Connect Device

Specific device tree required Probe

what isit =

(Frustration ensues) !
G Manifest

Load
Driver —p
It Works!

Bea

gleConnect™ uses Greybus and updated Click Boards with identifiers to eliminate the need to add and

manually configure devices added onto the Linux system.

Hig

h-level

e For Linux nerds: Think of BeagleConnect™ as 6LoOWPAN over 802.15.4-based Greybus (instead of Unipro
as used by Project Ara), where every BeagleConnect™ board shows up as new SPI, 12C, UART, PWM, ADC,
and GPIO controllers that can now be probed to load drivers for the sensors or whatever is connected to
them. (Proof of concept of Greybus over TCP/IP: https://www.youtube.com/watch?v=7H50pv-4YXw)

* For MCU folks: Think of BeagleConnect™ as a Firmata-style firmware load that exposes the interfaces for
remote access over a secured wireless network. However, instead of using host software that knows how
to speak the Firmata protocol, the Linux kernel speaks the slightly similar Greybus protocol to the MCU
and exposes the device generically to users using a Linux kernel driver. Further, the Greybus protocol is
spoken over 6LoWPAN on 802.15.4.

468

Chapter 12. Projects

https://www.youtube.com/watch?v=7H50pv-4YXw

BeagleBoard Docs, Release 1.0.20230711-wip

Software architecture

Linux PC

Linux userspace

Linux kernel

BCF gatcway

MSP430

BJF node

mikroBUS ad.

TODO items

¢ Linux kernel driver (wpanusb and bcfserial still need to be upstreamed)

¢ Provisioning

* Firmware for host CC13x

* Firmware for device CC13x

¢ Unify firmware for host/device CC13x

* Click Board drivers and device tree formatted metadata for 100 or so Click Boards
* Click Board plug-ins for node-red for the same 100 or so Click Boards

* BeagleConnect™ Freedom System Reference Manual and FAQs

Associated pre-work

* Click Board support for Node-RED can be executed with native connections on PocketBeagle+TechLab
and BeagleBone Black with mikroBUS Cape

* Device tree fragments and driver updates can be provided via https://bbb.io/click

* The Kconfig style provisioning can be implemented for those solutions, which will require a reboot. We
need to centralize edits to /boot/uEnv.txt to be programmatic. As | think through this, | don’t think
BeagleConnect is impacted, because the Greybus-style discovery along with Click EEPROMS will eliminate
any need to edit /boot/uEnv.txt.

12.3. BeagleConnect 469

https://bbb.io/click

BeagleBoard Docs, Release 1.0.20230711-wip

User experience concerns

* Make sure no reboots are required
* Plugging BeagleConnect into host should trigger host configuration

* Click EEPROMSs should trigger loading whatever drivers are needed and provisioning should load any new
drivers

* Userspace (spidev, etc.) drivers should unload cleanly when 2nd phase provisioning is completed

12.3.2 BeagleConnect™ Greybus demo using BeagleConnect™ Freedom

BeagleConnect™ Freedom runs a subGHz IEEE 802.15.4 network. This BeagleConnect™ Greybus demo shows
how to interact with GPIO, I12C and mikroBUS add-on boards remotely connected over a BeagleConnect™ Free-
dom.

This section starts with the steps required to use Linux embedded computer (BeagleBone Green Gateway) and
the Greybus protocol, over an IEEE 802.15.4 wireless link, to blink an LED on a Zephyr device.

Introduction

Why??

Good question. Blinking an LED is kind of the Hello, World of the hardware community. In this case, we're less
interested in the mechanics of switching a GPIO to drive some current through an LED and more interested in
how that happens with the Internet of Things (loT).

There are several existing network and application layers that are driven by corporate heavyweights and in-
dustry consortiums, but relatively few that are community driven and, more specifically, even fewer that have
the ability to integrate so tightly with the Linux kernel.

The goal here is to provide a community-maintained, developer-friendly, and open-source protocol for the
Internet of Things using the Greybus Protocol, and blinking an LED using Greybus is the simplest proof-of-
concept for that. All that is required is a reliable transport.

1. Power a BeagleConnect Freedom that has not yet been programmed via a USB power source, not the
BeagleBone Green Gateway. You'll hear a click every 1-2 seconds along with seeing 4 of the LEDs turn
off and on.

2. In an isolated terminal window, sudo beagleconnect-start—-gateway
3. sensortest—-rx.py

Every 1-2 minutes, you should see something like:

('fe80::3111:7a22:4b:1200 wpanO', 52213, 0, 13) '21:7.79;"
("fe80::3111:7a22:4b:1200 wpanO', 52213, 0, 13) '4dh:43.75;4t:23.11;"

The value after “21:” is the amount of light in lux. The value after “4h:” is the relative humidity and after “4t:"”
is the temperature in Celsius.

Flash BeagleConnect™ Freedom node device with Greybus firmware

#TODO: How can we add a step in here to show the network is connected without needing gbridge to be fully
functional?

Do this from the BeagleBone® Green Gateway board that was previously used to program the BeagleConnect™
Freedom gateway device:

1. Disconnect the BeagleConnect™ Freedom gateway device

2. Connect a new BeagleConnect™ Freedom board via USB

470 Chapter 12. Projects

https://en.wikipedia.org/wiki/Linux
https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://lwn.net/Articles/715955/
https://zephyrproject.org/
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/Internet_of_things

BeagleBoard Docs, Release 1.0.20230711-wip

3. sudo systemctl stop lowpan.service

4. cc2538-bsl.py /usr/share/beagleconnect/ccl1352/
greybus_mikrobus_beagleconnect.bin /dev/ttyACMO

After it finishes programming successfully, disconnect the BeagleConnect Freedom node device
Power the newly programmed BeagleConnect Freedom node device from an alternate USB power source
Reconnect the BeagleConnect Freedom gateway device to the BeagleBone Green Gateway

sudo systemctl start lowpan.service

© 0 N o Wu

sudo beagleconnect-start—-gateway

debian@beaglebone:~$ sudo beagleconnect-start-gateway

[sudo] password for debian:

setting up wpanusb gateway for IEEE 802154 CHANNEL 1 (906 Mhz)

ping6: Warning: source address might be selected on device other than.
—lowpanO.

PING 2001:db8::1(2001:db8::1) from ::1 lowpanO: 56 data bytes

64 bytes from 2001:db8::1: icmp_seg=2 ttl=64 time=185 ms

64 bytes from 2001:db8::1: icmp_seqg=3 ttl=64 time=40.9 ms

64 bytes from 2001:db8::1: icmp_seg=4 ttl=64 time=40.9 ms

64 bytes from 2001:db8::1: icmp_seg=5 ttl=64 time=40.6 ms

——— 2001:db8::1 ping statistics —-——
5 packets transmitted, 4 received, 20% packet loss, time 36ms
rtt min/avg/max/mdev = 40.593/76.796/184.799/62.356 ms
debian@beaglebone:~$ iio_info
Library version: 0.19 (git tag: v0.19)
Compiled with backends: local xml ip usb serial
IIO context created with local backend.
Backend version: 0.19 (git tag: v0.19)
Backend description string: Linux beaglebone 5.14.18-bone20 #lbuster PREEMPT.,
—~Tue Nov 16 20:47:19 UTC 2021 armv71
IIO context has 1 attributes:
local,kernel: 5.14.18-bone20
IIO context has 3 devices:
iio:device0: TI-am335x-adc.0.auto (buffer capable)
8 channels found:
voltageO: (input, index: 0, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 1412
voltagel: (input, index: 1, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 2318
voltage?2: (input, index: 2, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 2631
voltage3: (input, index: 3, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 817
voltage4: (input, index: 4, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 881
voltage5: (input, index: 5, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 0
voltageb: (input, index: 6, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 0
voltage7: (input, index: 7, format: le:ul2/16>>0)
1 channel-specific attributes found:
attr 0: raw value: 1180
(continues on next page)

12.3. BeagleConnect 471

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

2 buffer-specific attributes found:
attr 0: data_available value: 0
attr 1: watermark value: 1
iio:devicel: hdc2010
3 channels found:
humidityrelative: (input)
3 channel-specific attributes found:
attr 0: peak_raw value: 52224
attr 1: raw value: 52234
attr 2: scale value: 1.525878906
current: (output)
2 channel-specific attributes found:
attr O0: heater_raw value: 0
attr 1: heater_raw_available value: 0 1
temp: (input)
4 channel-specific attributes found:
attr 0: offset value: -15887.515151
attr 1: peak_raw value: 25600
attr 2: raw value: 25628
attr 3: scale value: 2.517700195
iio:device2: opt3001
1 channels found:
illuminance: (input)
2 channel-specific attributes found:
attr 0: input value: 79.040000
attr 1: integration_time wvalue: 0.800000
2 device-specific attributes found:
attr 0: current_timestamp_clock value: realtime

attr 1: integration_time_available value: 0.1 0.8
debian@beaglebone:~$ dmesg | grep -e mikrobus -e greybus
[100.491253] greybus 1-2.2: Interface added (greybus)
[100.491294] greybus 1-2.2: GMP VID=0x00000126, PID=0x00000126
[100.491306] greybus 1-2.2: DDBL1 Manufacturer=0x00000126,
—Product=0x00000126
[100.737637] greybus 1-2.2: excess descriptors in interface manifest
[102.475168] mikrobus:mikrobus_port_gb_register: mikrobus gb_probe , num.
—cports= 2, manifest_size 192
102.475206] mikrobus:mikrobus_port_gb_register: protocol added 3
102.475214] mikrobus:mikrobus_port_gb_register: protocol added 2
102.475239] mikrobus:mikrobus_port_register: registering port mikrobus-1
102.475400] mikrobus_manifest:mikrobus_state_get: mikrobus descriptor not.
—found
[102.475417] mikrobus_manifest:mikrobus_manifest_attach_device: parsed.
—~device 1, driver=opt3001, protocol=3, reg=44
[102.494516] mikrobus_manifest:mikrobus_manifest_attach_device: parsed.
—~device 2, driver=hdc2010, protocol=3, reg=41
[102.494567] mikrobus_manifest:mikrobus_manifest_parse: (null) manifest.
—parsed with 2 devices
[102.494592] mikrobus mikrobus-1: registering device : opt3001
[102.495096] mikrobus mikrobus-1: registering device : hdc2010
debian@beaglebone:~$

— — — —

#TODO: update the below for the built-in sensors
#TODO: can we also handle the case where these sensors are included and recommend them? Same firmware?
#TODO: the current demo is for the built-in sensors, not the Click boards mentioned below

Currently only a limited number of add-on boards have been tested to work over Greybus, simple add-on
boards without interrupt requirement are the ones that work currently. The example is for Air Quality 2 Click
and Weather Click attached to the mikroBUS ports on the device side.

472 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

/var/log/gbridge will have the gbridge log, and if the mikroBUS port has been instantiated successfully the
kernel log will show the devices probe messages:

#TODO: this log needs to be updated

greybus 1-2.2:
greybus 1-2.2:
greybus 1-2.2:

GMP VID=0x00000126, PID=0x00000126
DDBL1 Manufacturer=0x00000126, Product=0x00000126
excess descriptors in interface manifest

mikrobus:mikrobus_port_gb_register: mikrobus gb_probe , num cports= 3, .
—manifest_size 252

mikrobus:mikrobus_port_gb_register: protocol added 11
mikrobus:mikrobus_port_gb_register: protocol added 3
mikrobus:mikrobus_port_gb_register: protocol added 2
mikrobus:mikrobus_port_register: registering port mikrobus-0

mikrobus_manifest:mikrobus_manifest_attach_device:
—driver=bme280, protocol=3, reg=76
mikrobus_manifest:mikrobus_manifest_attach_device:
—~driver=ams—-iag-core, protocol=3, reg=b5a
mikrobus_manifest:mikrobus_manifest_parse:
—Application manifest parsed with 2 devices
mikrobus mikrobus-0: registering device bme280
mikrobus mikrobus-0: registering device ams—iag-core

parsed device 1,.
parsed device 2, .

Greybus Service Sample.

#TODO: bring in the GPIO toggle and 12C explorations for greater understanding

Flashing via a Linux Host

If flashing the Freedom board via the BeagleBone fails here’s a trick you can try to flash from a Linux host.

Use sshfs to mount the Bone’'s files on the Linux host. This assumes the Bone is plugged in the USB and
appearsat 192.168.7.2:

host$ cd

host$ sshfs 192.168.7.2:/ bone

host$ cd bone; 1s

bin dev home 1lib media opt root sbin sys usr
boot etc ID.txt lost+found mnt proc run sSrv tmp var
host$ 1ls /dev/ttyACM*

/dev/ttyACM1

The Bone’s files now appear as local files. Notice there is already a /dev/ACM* appearing. Now plug the
Connect into the Linux host’s USB port and run the command again.

host$ 1ls /dev/ttyACM*
/dev/ttyACMO /dev/ttyACM1

The /dev/ttyACM that just appeared is the one associated with the Connect. In my case it's /dev/
ttyACMO. That's what I'll use in this example.

Now change directories to where the binaries are and load:

host$ cd ~/bone/usr/share/beagleconnect/ccl352;1s

greybus_mikrobus_beagleconnect.bin
greybus_mikrobus_beagleconnect.config
greybus_mikrobus_beagleconnect.dts
sensortest_beagleconnect.bin
sensortest_beagleconnect.config

sensortest_beagleconnect.dts
wpanusb_beagleconnect.bin
wpanusb_beagleconnect.config
wpanusb_beagleconnect.dts

host$ ~/bone/usr/bin/cc2538-bsl.py sensortest_beagleconnect.bin /dev/ttyACMO
8-bsl.py sensortest_beagleconnect.bin /dev/ttyACMO

Opening port /dev/ttyACMO, baud 50000

Reading data from sensortest_beagleconnect.bin

(continues on next page)

12.3. BeagleConnect

473

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Cannot auto-detect firmware filetype: Assuming .bin
Connecting to target...
CC1350 PG2.0 (7x7mm): 352KB Flash, 20KB SRAM, CCFG.BL_CONFIG at 0x00057FD8
Primary IEEE Address: 00:12:4B:00:22:7A:10:46

Performing mass erase
Erasing all main bank flash sectors

Erase done
Writing 360448 bytes starting at address 0x00000000
Write 104 bytes at 0x00057F988

Write done
Verifying by comparing CRC32 calculations.

Verified (match: 0x0febdf0Of)

Now you are ready to continue the instructions above after the cc2528 command

Trying for different add-on boards See mikroBUS over Greybus for trying out the same example for dif-
ferent mikroBUS add-on boards/ on-board devices.

Observe the node device

Connect BeagleConnect Freedom node device to an Ubuntu laptop to observe the Zephyr console.

Console (tio)

In order to see diagnostic messages or to run certain commands on the Zephyr device we will require a terminal
open to the device console. In this case, we use tio due how its usage simplifies the instructions.

1. Installtio sudo apt install -y tio
2. Runtiotio /dev/ttyACMO

To exit tio (later), enter ctrl+t, g.

The Zephyr Shell

After flashing, you should observe the something matching the following output in £ io.

uart:~$ *** Booting Zephyr OS build 9c858c863223 ***

[00:00:00.009,735] <inf> greybus_transport_tcpip: CPort 0 mapped to TCP/IP.
—port 4242

[00:00:00.010,131] <inf> greybus_transport_tcpip: CPort 1 mapped to TCP/IP.
—port 4243

[00:00:00.010,528] <inf> greybus_transport_tcpip: CPort 2 mapped to TCP/IP.
—port 4244

[00:00:00.010,742] <inf> greybus_transport_tcpip: Greybus TCP/IP Transport..
—initialized

[00:00:00.010,864] <inf> greybus_manifest: Registering CONTROL greybus.
—~driver.

[00:00:00.011,230] <inf> greybus_manifest: Registering GPIO greybus driver.
[00:00:00.011,596] <inf> greybus_manifest: Registering I2C greybus driver.
[00:00:00.011,871] <inf> greybus_service: Greybus is active
[00:00:00.026,092] <inf> net_config: Initializing network
[00:00:00.134,063] <inf> net_config: IPv6 address: 2001:db8::1

The line beginning with * * * is the Zephyr boot banner.
Lines beginning with a timestamp of the form [H:m:s.us] are Zephyr kernel messages.

Lines beginning with uart : ~$ indicates that the Zephyr shell is prompting you to enter a command.

474 Chapter 12. Projects

https://github.com/vaishnav98/greybus-for-zephyr/tree/mikrobus#trying-out-different-add-on-boardsdevices-over-mikrobus
https://tio.github.io/

BeagleBoard Docs, Release 1.0.20230711-wip

From the informational messages shown, we observe the following.
» Zephyr is configured with the following link-local IPv6 address fe80::3177:a11c:4b:1200
e |tis listening for (both) TCP and UDP traffic on port 4242

However, what the log messages do not show (which will come into play later), are 2 critical pieces of informa-
tion:

1. The RF Channel: As you may have guessed, IEEE 802.15.4 devices are only able to communicate with
each other if they are using the same frequency to transmit and receive data. This information is part of
the Physical Layer.

2. The PAN identifier: IEEE 802.15.4 devices are only be able to communicate with one another if they use
the same PAN ID. This permits multiple networks (PANs) on the same frequency. This information is part
of the Data Link Layer.

If we type help in the shell and hit Enter, we're prompted with the following:

Please press the <Tab> button to see all available commands.

You can also use the <Tab> button to prompt or auto-complete all commands or.
—1its subcommands.

You can try to call commands with <-h> or <--help> parameter for more.
—information.

Shell supports following meta-keys:

Ctrl+a, Ctrl+b, Ctrl+c, Ctrl+d, Ctrl+e, Ctrl+f, Ctrl+k, Ctrl+l, Ctrl+n,.
—Ctrl+p, Ctrl+u, Ctrl+tw

Alt+b, Alt+f.

Please refer to shell documentation for more details.

So after hitting Tab, we see that there are several interesting commands we can use for additional information.

uart:~$
clear help history ieee802154 1log net
resize sample shell

Zephyr Shell: IEEE 802.15.4 commands Entering 1ieee802154 help, we see

uart:~$ ieee802154 help
ieee802154 - IEEE 802.15.4 commands

Subcommands:

ack :<set/1 | unset/0> Set auto-ack flag

associate :<pan_id> <PAN coordinator short or long address (EUI-64)>

disassociate :Disassociate from network

get_chan :Get currently used channel

get_ext_addr :Get currently used extended address

get_pan_id :Get currently used PAN id

get_short_addr :Get currently used short address

get_tx_power :Get currently used TX power

scan :<passivelactive> <channels set n[:m:...]:x|all> <per-channel
duration in ms>

set_chan :<channel> Set used channel

set_ext_addr :<long/extended address (EUI-64)> Set extended address

set_pan_id :<pan_id> Set used PAN id

set_short_addr :<short address> Set short address

set_tx_power :<-18/-7/-4/-2/0/1/2/3/5> Set TX power

We get the missing Channel number (frequency) with the command ieee802154 get_chan.

uart:~$ ieee802154 get_chan
Channel 26

We get the missing PAN ID with the command 1eee802154 get_pan_id.

12.3. BeagleConnect 475

https://en.wikipedia.org/wiki/Link-local_address#IPv6
https://www.silabs.com/community/wireless/proprietary/knowledge-base.entry.html/2019/10/04/connect_tutorial6-ieee802154addressing-rapc

BeagleBoard Docs, Release 1.0.20230711-wip

uart:~$ ieee802154 get_pan_id
PAN ID 43981 (Oxabcd)

Zephyr Shell: Network Commands Additionally, we may query the IPv6 information of the Zephyr device.

uart:~$ net iface

Interface 0x20002b20 (IEEE 802.15.4) [1]

Link addr : CD:99:A1:1C:00:4B:12:00
MTU : 125
IPv6 unicast addresses (max 3):
fe80::¢cf99:a11c:4b:1200 autoconf preferred infinite
2001:db8::1 manual preferred infinite
IPv6 multicast addresses (max 4):
ff02::1
£f£f02::1:££f4b:1200
£f£f02::1:££00:1
IPv6 prefixes (max 2):

<none>
IPv6 hop limit : 64
IPv6 base reachable time : 30000
IPv6 reachable time : 16929
IPv6 retransmit timer 3 ©

And we see that the static IPv6 address (2001:db8::1) from samples/net/sockets/
echo_server/prj.conf is present and configured. While the statically configured IPv6 address is use-
ful, it isn't 100% necessary.

Rebuilding from source

#TODO: revisit everything below here

Prerequisites
e Zephyr environment is set up according to the Getting Started Guide
- Please use the Zephyr SDK when installing a toolchain above
e Zephyr SDK is installed at ~/zephyr-sdk-0.11.2 (any later version should be fine as well)

e Zephyr board is connected via USB

Cloning the repository This repository utilizes git submodules to keep track of all of the projects required
to reproduce the ongoing work. The instructions here only cover checking out the demo branch which should
stay in a tested state. ongoing development will be on the master branch.

Note: The parent directory ~ is simply used as a placeholder for testing. Please use whatever parent directory
you see fit.

Clone specific tag

el =
git clone —--recurse-submodules —--branch demo https://github.com/jadonk/
—beagleconnect

476 Chapter 12. Projects

https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html#install-a-toolchain
https://git-scm.com/book/en/v2/Git-Tools-Submodules

BeagleBoard Docs, Release 1.0.20230711-wip

Zephyr

Add the Fork For the time being, Greybus must remain outside of the main Zephyr repository. Currently, it
is just in a Zephyr fork, but it should be converted to a proper Module (External Project). This is for a number
of reasons, but mainly there must be:

» specifications for authentication and encryption
* specifications for joining and rejoining wireless networks
* specifications for discovery

Therefore, in order to reproduce this example, please run the following.

cd ~/beagleconnect/sw/zephyrproject/zephyr
west update

Build and Flash Zephyr Here, we will build and flash the Zephyr greybus_net sample to our device.

1. Edit the file ~/ . zephyrrc and place the following text inside of it

export ZEPHYR_TOOLCHAIN_VARIANT=zephyr
export ZEPHYR_SDK_INSTALL_DIR=~/zephyr-sdk-0.11.2

1. Set up the required Zephyr environment variables via

source zephyr-env.sh

1. Build the project

BOARD=cc1352r1_launchxl west build samples/subsys/greybus/net —--pristine \
——build-dir build/greybus_launchpad —-- -DCONF_FILE="prj.conf overlay-802154.
—conf”

1. Ensure that the last part of the build process looks somewhat like this:

[221/226] Linking C executable zephyr/zephyr_prebuilt.elf

Memory region Used Size Region Size %age Used
FLASH: 155760 B 360360 B 43.22%
FLASH_CCFG: 88 B 88 B 100.00%

SRAM: 58496 B 80 KB 71.41%

IDT_LIST: 184 B 2 KB 8.98%

[226/226] Linking C executable zephyr/zephyr.elf

1. Flash the firmware to your device using

BOARD=cc1352r1_launchxl west flash —--build-dir build/greybus_launchpad

Linux

Warning: If you aren’t comfortable building and installing a Linux kernel on your computer, you should probably
just stop here. I'll assume you know the basics of building and installing a Linux kernel from here on out.

Clone, patch, and build the kernel For this demo, | used the 5.8.4 stable kernel. Also, I've applied the
mikrobus kernel driver, though it isn’t strictly required for greybus.

Note: The parent directory ~ is simply used as a placeholder for testing. Please use whatever parent directory
you see fit.

TODO: The patches for gb-netlink will eventually be applied here until pushed into mainline.

12.3. BeagleConnect 477

https://docs.zephyrproject.org/latest/guides/modules.html
https://github.com/cfriedt/zephyr/tree/greybus-sockets/samples/subsys/greybus/net

BeagleBoard Docs, Release 1.0.20230711-wip

eel =

git clone —--branch v5.8.4 --single-branch git://git.kernel.org/pub/scm/linux/
—kernel/git/stable/linux.git

cd linux

git checkout -b v5.8.4-greybus

git am ~/beagleconnect/sw/linux/v2-0001-RFC-mikroBUS-driver—-for-add-on-
—boards.patch

git am ~/beagleconnect/sw/1inux/0001-mikroBUS-build-fixes.patch

cp /boot/config- uname -r .config

yes "”” | make oldconfig

./scripts/kconfig/merge_config.sh .config ~/beagleconnect/sw/linux/mikrobus.
—~config

./scripts/kconfig/merge_config.sh .config ~/beagleconnect/sw/linux/atusb.
—config

make —-j nproc —-all’

sudo make modules_install

sudo make install

Reboot and select your new kernel.

Probe the IEEE 802.15.4 Device Driver On the Linux machine, make sure the atusb driveris loaded. This
should happen automatically when the adapter is inserted or when the machine is booted while the adapter is
installed.

6.512154] usb 1-1: ATUSB: AT86RF231 version 2

6.512492] usb 1-1: Firmware: major: 0, minor: 3, hardware type: ATUSB.
— (2)
[6.525357] usbcore: registered new interface driver atusb

$ dmesg | grep —-i ATUSB
[
[

We should now be able to see the IEEE 802.15.4 network device by entering ip a show wpanO.

S ip a show wpan0
36: wpanO: <BROADCAST,NOARP,UP,LOWER_UP> mtu 123 gdisc fg codel state.
—UNKNOWN group default glen 300

link/ieee802.15.4 3e:7d:90:4d:8f:00:76:a2 brd ff:ff:ff:ff:ff:ff:ff:ff

But wait, that is not an IP address! It's the hardware address of the 802.15.4 device. So, in order to associate
it with an IP address, we need to run a couple of other commands (thanks to wpan.cakelab.org).

Set the 802.15.4 Physical and Link-Layer Parameters

1. First, get the phy number for the wpanO device

S iwpan list
wpan_phy phyO0
supported channels:
page O: 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
current_page: 0
current_channel: 26, 2480 MHz

cca_mode: (1) Energy above threshold
cca_ed_level: =77
tx_power: 3
capabilities:
iftypes: node,monitor
channels:
page 0:

[11] 2405 MHz, [12] 2410 MHz, [13] 2415 MHz,
[14] 2420 MHz, [15] 2425 MHz, [16] 2430 MHz,

(continues on next page)

478 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

[17] 2435 MHz, [18] 2440 MHz, [19] 2445 MHz,
[20] 2450 MHz, [21] 2455 MHz, [22] 2460 MHz,
[23] 2465 MHz, [24] 2470 MHz, [25] 2475 MHz,
[26] 2480 MHz

tx_powers:
3 dBm, 2.8 dBm, 2.3 dBm, 1.8 dBm, 1.3 dBm, 0.7 dBm,
0 dBm, -1 dBm, -2 dBm, -3 dBm, -4 dBm, -5 dBm,
-7 dBm, -9 dBm, -12 dBm, -17 dBm,
cca_ed_levels:
-91 dBm, -89 dBm, -87 dBm, -85 dBm, -83 dBm, -81 dBm,
-79 dBm, -77 dBm, -75 dBm, -73 dBm, -71 dBm, -69 dBm,
-67 dBm, -65 dBm, -63 dBm, -61 dBm,
cca_modes:
(1) Energy above threshold
(2) Carrier sense only
(3, cca_opt: 0) Carrier sense with energy above threshold.
— (logical operator is 'and')
(3, cca_opt: 1) Carrier sense with energy above threshold.
— (logical operator is 'or'")
min_be: 0,1,2,3,4,5,6,7,8
max_be: 3,4,5,6,7,8
csma_backoffs: 0,1,2,3,4,5
frame_retries: 3
1lbt: false

1. Next, set the Channel for the 802.15.4 device on the Linux machine

sudo iwpan phy phy0 set channel 0 26

1. Then, set the PAN identifier for the 802.15.4 device on the Linux machine sudo iwpan dev wpan0
set pan_id Oxabcd

2. Associate the wpanO device to a new, 6lowpan network interface

sudo ip link add link wpan0O name lowpan0O type lowpan

1. Finally, set the links up for both wpanO and 1lowpanO

sudo ip link set wpanO up
sudo ip link set lowpanO up

We should observe something like the following when we run ip a show lowpanO.

ip a show lowpanO
37: lowpanO@wpanO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 gdisc noqueue.
—~state UNKNOWN group default glen 1000

link/6lowpan 9e:0b:a4:€8:00:d3:45:53 brd ff:ff:ff:ff:ff:ff:ff:ff

inet6 fe80::9c0b:a4e8:d3:4553/64 scope link

valid_1ft forever preferred_lft forever

Ping Pong

Broadcast Ping Now, perform a broadcast ping to see what else is listening on 1owpanO.

S ping6 -I lowpanO0 ff02::1

PING ff02::1(££f02::1) from fe80::9c0b:a4e8:d3:4553%1lowpan0 lowpanO: 56 data.

—bytes

64 bytes from fe80::9c0b:a4e8:d3:4553%1lowpanl: icmp_seqg=1 ttl=64 time=0.099.

—MsS

64 bytes from fe80::9c0b:a4e8:d3:4553%1lowpanl: icmp_seqg=2 ttl=64 time=0.125._
(continues on next page)

12.3. BeagleConnect 479

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

—MSsS

64 bytes from fe80::cf99:al1lc:4b:1200%1lowpanl: icmp_seqg=2 ttl=64 time=17.3._
—ms (DUP!)

64 bytes from fe80::9cOb:a4e8:d3:4553%1lowpanl: icmp_seqg=3 ttl=64 time=0.126.
—ms

64 bytes from fe80::cf99:allc:4b:1200%1lowpanO: icmp_seqg=3 ttl=64 time=9.60._
—ms (DUP!)

64 bytes from fe80::9c0b:a4e8:d3:4553%1lowpanl: icmp_seqg=4 ttl=64 time=0.131.
—mMs

64 bytes from fe80::cf99:a1l1c:4b:1200%1lowpanl: icmp_seqg=4 ttl=64 time=14.9.
—ms (DUP!)

Yay! We have pinged (pung?) the Zephyr device over IEEE 802.15.4 using 6LowPAN!

Ping Zephyr We can ping the Zephyr device directly without a broadcast ping too, of course.

$ ping6 -I lowpanO fe80::cf99:allc:4b:1200
PING fe80::cf99:a11c:4b:1200 (fe80::cf£99:allc:4b:1200) from.
—fe80::9c0b:a4e8:d3:4553%1owpan0 lowpanO: 56 data bytes

64 bytes from fe80::cf99:allc:4b:1200%1lowpanl: icmp_seg=1 ttl=64 time=16.0 ms
64 bytes from fe80::cf99:allc:4b:1200%1lowpanl: icmp_seg=2 ttl=64 time=13.8 ms
64 bytes from fe80::cf99:al1l1c:4b:1200%1lowpanl: icmp_seqg=3 ttl=64 time=9.77 ms
64 bytes from fe80::cf99:allc:4b:1200%1lowpanl: icmp_seqg=5 ttl=64 time=11.5 ms

Ping Linux Similarly, we can ping the Linux host from the Zephyr shell.

uart:~$ net ping --help
ping - Ping a network host.

Subcommands :

—-—help :'net ping [-c count] [-i interval ms] <host>' Send ICMPv4 or ICMPv6
Echo-Request to a network host.

S net ping -c¢ 5 £e80::9c0b:a4e8:d3:4553

PING fe80::9c0b:a4e8:d3:4553

8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a1l1lc:4b:1200: icmp_seg=0._

—ttl=64 rssi=110 time=11 ms

8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:al1l1c:4b:1200: icmp_seg=1._

—~ttl=64 rssi=126 time=9 ms

8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf£99:al1ll1lc:4b:1200: icmp_seqg=2.

—ttl=64 rssi=128 time=13 ms

8 bytes from fe80::9c0b:a4e8:d3:4553 to £fe80::c£99:allc:4b:1200: icmp_seg=3._

—~ttl=64 rssi=126 time=10 ms

8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:al1l1lc:4b:1200: icmp_seg=4.

—~ttl=64 rssi=126 time=7 ms

Assign a Static Address So far, we have been using IPv6 Link-Local addressing. However, the Zephyr
application is configured to use a statically configured IPv6 address as well which is, namely 2001 : db8: : 1.

If we add a similar static IPv6 address to our Linux IEEE 802.15.4 network interface, Lowpan0, then we should
expect to be able to reach that as well.

In Linux, run the following

sudo ip -6 addr add 2001:db8::2/64 dev lowpan0

We can verify that the address has been set by examining the 1owpan0 network interface again.

$ ip a show lowpanO

37: lowpanO@wpanO: <BROADCAST,MULTICAST,UP,LOWER _UP> mtu 1280 gdisc noqueue.
(continues on next page)
480 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
—state UNKNOWN group default glen 1000
link/6lowpan 9e:0b:a4:e8:00:d3:45:53 brd ff:ff:ff:ff:ff:ff:ff:ff
inet6 2001:db8::2/64 scope global
valid_1ft forever preferred_lft forever
inet6 fe80::9c0b:a4e8:d3:4553/64 scope link
valid_1ft forever preferred_lft forever

Lastly, ping the statically configured IPv6 address of the Zephyr device.

$ ping6 2001:db8::1
PING 2001:db8::1(2001:db8::1) 56 data bytes

64 bytes from 2001:db8::1: icmp_seqg=2 ttl=64 time=53.7 ms
64 bytes from 2001:db8::1: icmp_seqg=3 ttl=64 time=13.1 ms
64 bytes from 2001:db8::1: icmp_seg=4 ttl=64 time=22.0 ms
64 bytes from 2001:db8::1: icmp_seqg=5 ttl=64 time=22.7 ms
64 bytes from 2001:db8::1: icmp_seqg=6 ttl=64 time=18.4 ms

Now that we have set up a reliable transport, let's move on to the application layer.

Greybus

Hopefully the videos listed earlier provide a sufficient foundation to understand what will happen shortly. How-
ever, there is still a bit more preparation required.

Build and probe Greybus Kernel Modules Greybus was originally intended to work exclusively on the
UniPro physical layer. However, we're using RF as our physical layer and TCP/IP as our transport. As such,
there was need to be able to communicate with the Linux Greybus facilities through userspace, and out of
that need arose gb-netlink. The Netlink Greybus module actually does not care about the physical layer, but
is happy to usher Greybus messages back and forth between the kernel and userspace.

Build and probe the gb-netlink modules (as well as the other Greybus modules) with the following:

cd WORKSPACE }/sw/greybus
make —-j nproc —--all’

sudo make install
../load_gb_modules.sh

Build and Run Gbridge The gbridge utility was created as a proof of concept to abstract the Greybus Netlink
datapath among several reliable transports. For the purposes of this tutorial, we'll be using it as a TCP/IP bridge.

To run gbridge, perform the following:

sudo apt install -y libnl-3-dev libnl-genl-3-dev libbluetooth-dev libavahi-
—~client-dev

cd gbridge

autoreconf -vfi

GBNETLINKDIR=S{PWD}/../greybus \

./configure —--enable-uart --enable-tcpip --disable-gbsim —--enable-netlink —--—
—disable-bluetooth

make —-j nproc —--all’

sudo make install

gbridge

Blinky!

Now that we have set up a reliable TCP transport, and set up the Greybus modules in the Linux kernel, and
used Gbridge to connect a Greybus node to the Linux kernel via TCP/IP, we can now get to the heart of the

12.3. BeagleConnect 481

BeagleBoard Docs, Release 1.0.20230711-wip

demonstration!

First, save the following script as blinky. sh.

#!/bin/bash

Blinky Demo for CC1352R SensorTag

/dev/gpiochipN that Greybus created

CHIP="$ (gpiodetect |

red, green,
RED=6

GREEN=7
BLUE=21

grep greybus_gpio |

head

blue LED pins

Bash array for pins and values

PINS= (SRED
NPINS=

SGREEN $BLUE)
PINS[@]

do
'PINS[@Q] /};

for

(C;7))s

for i in

do

turn off previous pin

if [$1 -eq 0 1;
PREV=2
else
PREV=$ ((i-1))
fi

gpioset S$SCHIP

then

PINS [$SPREV] }=0

turn on current pin

gpioset SCHIP

walit a sec
sleep 1
done
done

PINS[$i] j=1

-n 1 |

awk

Second, run the script with root privileges: sudo bash blinky.sh

The output of your minicom session should resemble the following.

$ *** Booting Zephyr OS build zephyr-v2.3.0-1435-g40c0ed940d71
Initializing network
IPv6 address:
<dbg> greybus_service.greybus_service_init:

[00:00:00.011,932]
[00:00:00.111,938]
[00:00:00.112,121]
—~initializing..

[00:00:00.112,426]

<inf>
<inf>

<dbg>

net_config:
net_config:

greybus_transport_tcpip.

—Greybus TCP/IP Transport initializing..

[00:00:00.112,579] <dbg>
—~socket 0 for cport O
[00:00:00.112,579] <dbg>
—options for socket 0
[00:00:00.112,609] <dbg>
— (cport 0) to port 4242

[00:00:00.112,640] <dbg>
—~socket 0 (cport O0)
[00:00:00.112,823] <dbg>

—~socket 1 for cport 1
[00:00:00.112,823] <dbg>
—options for socket 1
[00:00:00.112,854] <dbg>
— (cport 1) to port 4243
[00:00:00.112,854] <dbg>

greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.

greybus_transport_tcpip.

'{print $1}')”

* x k

fe80::6c42:bclc:4b:1200

Greybus..

gb_transport_backend_init:.

netsetup:
netsetup:
netsetup:
netsetup:
netsetup:
netsetup:
netsetup:

netsetup:

created server.
setting socket.
binding socket 0.
listening on.
created server.
setting socket.
binding socket 1.

listening on.
(continues on next page)

482

Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

—socket 1 (cport 1)
[00:00:00.113,037] <inf>
[00:00:00.113,250] <dbg>

—socket 2 for cport 2
[00:00:00.113,250] <dbg>
—options for socket 2
[00:00:00.113,281] <dbg>
— (cport 2) to port 4244

[00:00:00.113,311] <dbg>
—socket 2 (cport 2)
[00:00:00.113,494] <dbg>

—socket 3 for cport 3
[00:00:00.113,494] <dbg>
—options for socket 3
[00:00:00.113,525] <dbg>
— (cport 3) to port 4245

[00:00:00.113,555] <dbg>
—socket 3 (cport 3)
[00:00:00.113,861] <inf>
—~initialized
[00:00:00.116,149] <inf>
[00:00:00.116,546] <dbg>
[00:45:08.397,399] <dbg>
[00:45:08.397,399] <dbg>

— (cport 0) has traffic
[00:45:08.397,491] <dbg>
—connection from

[00:45:08.397,491] <dbg>
—~client thread..

[00:45:08.397,735] <dbg>
[00:45:08.491,363] <dbg>
[00:45:08.491,363] <dbg>

— (cport 3) has traffic
[00:45:08.491,455] <dbg>
—connection from

[00:45:08.491,455] <dbg>
—~client thread..

[00:45:08.491,699] <dbg>
[00:45:08.620,056] <dbg>
[00:45:08.620,086] <dbg>

— (cport 2) has traffic
[00:45:08.620,147] <dbg>
—connection from

[00:45:08.620,147] <dbg>
—~client thread..

[00:45:08.620,422] <dbg>
[00:45:08.679,504] <dbg>
[00:45:08.679,534] <dbg>

— (cport 1) has traffic
[00:45:08.679,595] <dbg>
—connection from

[00:45:08.679,595] <dbg>
—~client thread..
[00:45:08.679,870] <dbg>

net_config:
greybus_transport_tcpip

greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.

greybus_transport_tcpip:

greybus_service:

greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.

greybus_transport_tcpip.
[2001:db8::2]:39638 as fd 4
greybus_transport_tcpip.

greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.

greybus_transport_tcpip.
[2001:db8::2]:39890 as fd 5
greybus_transport_tcpip.

greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.

greybus_transport_tcpip.
[2001:db8::2]1:42422 as fd o6
greybus_transport_tcpip.

greybus_transport_tcpip.
greybus_transport_tcpip.
greybus_transport_tcpip.

greybus_transport_tcpip.
[2001:db8::2]:48286 as fd 7
greybus_transport_tcpip.

greybus_transport_tcpip.

IPv6 address:

(continued from previous page)

fe80::6c42:bclc:4b:1200

.netsetup: created server.
netsetup: setting socket.
netsetup: binding socket 2.
netsetup: listening on.

netsetup:
netsetup:
netsetup:
netsetup:

Greybus

Greybus is active

accept_loop:
accept_loop:
accept_loop:

accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:
accept_loop:

accept_loop:

accept_loop:

created server.
setting socket.
binding socket 3.
listening on.

TCP/IP Transport.

calling poll
poll returned 1
socket O_
accepted.
spawning.
calling poll
poll returned 1
socket 3.
accepted..
spawning..
calling poll
poll returned 1
socket 2.
accepted.
spawning.
calling poll
poll returned 1
socket 1.
accepted.

spawning.

calling poll

Read 12C Registers The SensorTag comes with an opt3001 ambient light sensor as well as an hdc2080

temperature & humidity sensor.

First, find which i2c device corresponds to the SensorTag:

12.3. BeagleConnect

483

BeagleBoard Docs, Release 1.0.20230711-wip

ls -la /sys/bus/i2c/devices/* | grep "greybus”
lrwxrwxrwx 1 root root 0 Aug 15 11:24 /sys/bus/i2c/devices/i2c-8 -> ../../../
—devices/virtual/gb_nl/gn_nl/greybusl/1-2/1-2.2/1-2.2.2/gbphy2/12c-8

On my machine, the i2c device node that Greybus creates is /dev/i12c—8.

Read the ID registers (at the i2c register address 0x7e) of the opt3001 sensor (at i2c bus address 0x44) as
shown below:

i2cget -y 8 0x44 0x7e w
0x4954

Read the ID registers (at the i2c register address Oxfc) of the hdc2080 sensor (at i2c bus address 0x41) as
shown below:

i2cget -y 8 0x41 Oxfc w
0x5449

Conclusion

The blinking LED can and poking i2c registers can be a somewhat anticlimactic, but hopefully it illustrates the
potential for Greybus as an 10T application layer protocol.

What is nice about this demo, is that we’re using Device Tree to describe our Greybus Peripheral declaratively,
they Greybus Manifest is automatically generated, and the Greybus Service is automatically started in Zephyr.

In other words, all that is required to replicate this for other IoT devices is simply an appropriate Device Tree
overlay file.

The proof-of-concept involving Linux, Zephyr, and IEEE 802.15.4 was actually fairly straight forward and was
accomplished with mostly already-upstream source.

For Greybus in Zephyr, there is still a considerable amount of integration work to be done, including * converting
the fork to a proper Zephyr module * adding security and authentication * automatic detection, joining, and
rejoining of devices.

Thanks for reading, and we hope you’ve enjoyed this tutorial.

12.3.3 BeagleConnect™ Story

There are many stories behind BeagleConnect™, mine is just one of them. It begins with my mom teaching
me about computers. She told me | could anything | wanted with ours, as long as | didn’t open the case. This
was the late-70s/early-80s, so all she needed to do was put her floppy disk away and there wasn’t risk of me
damaging the family photo album or her ability to do her work the next day. | listened and learned from her
the basics of programming, but it wasn't long before | wanted to take the computer apart.

Initially exploring Getting Started in Electronics satisfied my itch for quite a while. Eventually, | got a Com-
modore 64 and began connecting voice synthesizer ICs to it. My interest in computers and electronics flour-
ished into an electrical engineering degree and a long career in the semiconductor industry.

Over this time, I've become more and more alarmed with the progress of technology. Now, to be clear, | love
technology. | love innovation and invention. It is just that some things have evolved in a sort of tunnel-vision,
without bringing everyone along.

But, what about keyboard users? As graphical user interfaces and mice took over computers, they rapidly
became almost unusable by my mom. She typed well, but the dexterity to move a mouse aluded her. To
satisfy the need to interact with locations on the screen, she adopted using a joystick and her productivity
came to a crawl. How is it that such assumptions could be made impacting all computer users without any
thoughtful provisions for what already worked?

484 Chapter 12. Projects

https://en.wikipedia.org/wiki/Floppy_disk
http://www.forrestmims.org/

BeagleBoard Docs, Release 1.0.20230711-wip

12.3.4 BeagleConnect Experience

BeagleConnect™ provides a scalable experience for interacting with the physical world.

Note: The term BeagleConnect™ refers to a technology comprising of a family of boards, a collection of Linux
kernel drivers, microcontroller firmware, a communication protocol, and system-level integration to automation
software tools. More specific terms will be applied in the architecture details. The term is also used here to
represent the experience introduced to users through the initial BeagleConnect™ Freedom product consisting
of a board and case which ships programmed and ready to be used.

For scientists, we are integrating Jupyter Notebook with the data streams from any of hundreds of sensor
options, including vibration, gas detection, biometrics and more. These data streams can be stored in simple
data files <https://en.wikipedia.org/wiki/Comma-separated values> or processed and visualized.

Todo: provide images demonstrating Jupyter Notebook visualization

For embedded systems developers, data is easily extracted using the standard 11O interface provided by the
Linux kernel running on the gateway using any of hundreds of programming languages and environments,
without writing a line of microcontroller firmware. The Linux environment provides opportunities for high-level
remote management using tools like Balena with applications deployed in Docker containers.

#TODO: provide image illustrating remote management
The hardware and software are fully open source, providing for scalability and a lack of vendor lock-in.
For DevOps...

For home automaters, integration into WebThings...

Todo: think a bit more about this section with some feedback from Cathy.

12.3. BeagleConnect 485

https://jupyter.org/
https://www.mikroe.com/click/sensors/force
https://www.mikroe.com/click/sensors/gas
https://www.mikroe.com/click/sensors/biometrics
https://www.mikroe.com/click/sensors

BeagleBoard Docs, Release 1.0.20230711-wip

12.3.5 BeagleConnect boards

e BeagleConnect Freedom

486 Chapter 12. Projects

Chapter 13

Books

This is a collection of open-source books written to help Beagle developers.

BeagleBone Cookbook is a great introduction to programming a BeagleBone using Linux from userspace, mostly
using Python or JavaScript.

PRU Cookbook provides numerous examples on using the incredible ultra-low-latency microcontrollers inside
the processors used on BeagleBone boards that are a big part of what has made BeagleBone such a popular
platform.

Links to additional books available for purchase can be found on the Beagle books page.

13.1 BeagleBone Cookbook

Contributors
e Author: Mark A. Yoder

* Book revision: v2.1 beta

A cookbook for programming Beagles

13.1.1 Basics

When you buy BeagleBone Black, pretty much everything you need to get going comes with it. You can just
plug it into the USB of a host computer, and it works. The goal of this chapter is to show what you can do with
your Bone, right out of the box. It has enough information to carry through the next three chapters on sensors
(Sensors), displays (Displays and Other Outputs), and motors (Motors).

Picking Your Beagle

Problem There are many different BeagleBoards. How do you pick which one to use?

Solution Current list of boards: https://git.beagleboard.org/explore/projects/topics/boards

Discussion

487

https://beagleboard.org/books
mailto:Mark.A.Yoder@Rose-Hulman.edu
https://git.beagleboard.org/explore/projects/topics/boards

BeagleBoard Docs, Release 1.0.20230711-wip

Getting Started, Out of the Box

Problem You just got your Bone, and you want to know what to do with it.

Solution Fortunately, you have all you need to get running: your Bone and a USB cable. Plug the USB cable
into your host computer (Mac, Windows, or Linux) and plug the mini-USB connector side into the USB connector
near the Ethernet connector on the Bone, as shown in Plugging BeagleBone Black into a USB port.

Fig. 13.1: Plugging BeagleBone Black into a USB port

The four blue USER LEDs will begin to blink, and in 10 or 15 seconds, you’'ll see a new USB drive appear on
your host computer. The Bone appears as a USB drive shows how it will appear on a Windows host, and Linux
and Mac hosts will look similar. The Bone acting like a USB drive and the files you see are located on the Bone.

Browse to http://192.168.7.2:3000 from your host computer (Visual Studio Code). If the page is not found, run
the following:

bone$ sudo systemctl start bb-code-server.service

Wait a minute and try the URL again.

Here, you'll find Visual Studio Code, a web-based integrated development environment (IDE) that lets you edit
and run code on your Bone! See :ref: basics_vsc for more details.

Warning:

Make sure you turn off your Bone properly. It's best to run the halt command:

488 Chapter 13. Books

http://192.168.7.2:3000

BeagleBoard Docs, Release 1.0.20230711-wip

@lel-;l v Computer » - |¢,~ | r

Organize » =

05Disk ()

4 Hard Disk Drives (1)

=~ O @

=) 262 GB free of 465 GB

4 Devices with Removable Storage (2)

]
E@ DVD RW Drive (D)

| Eeagleﬂone Getting Started (E:)

34 0 MB free of 95.7 MB

BeagleBone Getting Started (E:)
Rermowvable Disk

Fig. 13.2: The Bone appears as a USB drive

13.1. BeagleBone Cookbook

489

BeagleBoard Docs, Release 1.0.20230711-wip

4 BoneCookbook - Code -

<

@ MyRHIT @ Discrete-Time

File

8 main*

C A Notsecure

Edit Selection

BONECOOKBOOK
docs
> 01b:

> 04mot

> 0stips

> osiot

> 07kernel

> Ogrealtime

> 09cape:

> 10parts

£ book.adoc
book html

headerhtml
£ index.adoc

index.html
M Makefile
README.md

OUTLINE
TIMELINE
< ®oAo

192.168.7.2:3000/2folder=/home/debian/BoneCookbook

@ Forms) GitHub Class

Fig. 13.3:

Q< x O@ ¢

. R Grades:View @ ECE/ME Help. @ waTch 2022

BoneCookbook - Code - 0SS

Visual Studio Code

& Photo-Googl.

Layoutus Q0

490

Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ sudo halt

The system is going down for system halt NOW! (pts/0)

This will ensure that the Bone shuts down correctly. If you just pull the power, it is possible that open files
would not close properly and might become corrupt.

Discussion The rest of this book goes into the details behind this quick out-of-the-box demo. Explore your
Bone and then start exploring the book.

Verifying You Have the Latest Version of the OS on Your Bone

Problem You just got BeagleBone Black, and you want to know which version of the operating system it's
running.

Solution This book uses Debian, the Linux distribution that currently ships on the Bone. However this book
is based on a newer version (BeagleBoard.org Debian Bullseye IoT Image 2023-06-03) than what is shipping at
the time of this writing. You can see which version your Bone is running by following the instructions in Getting
Started, Out of the Box to log into the Bone. Then run:

bone$ cat /etc/dogtag
BeagleBoard.org Debian Bullseye IoT Image 2023-06-03

I’'m running the 2023-06-03 version.

Running the Python and JavaScript Examples

Problem You'd like to learn Python or JavaScript interact with the Bone to perform physical computing tasks
without first learning Linux.

Solution Plug your board into the USB of your host computer and browse to http://192.168.7.2:3000 using
Google Chrome or Firefox (as shown in Getting Started, Out of the Box). In the left column, click on examples,
then BeagleBone and then Black. Several sample scripts will appear. Go and explore them.

Tip: Explore the various demonstrations of Python and JavaScript. These are what come with the Bone. In
Cloning the Cookbook Repository you see how to load the examples for the Cookbook.

Cloning the Cookbook Repository

Problem You want to run the Cookbook examples.

Solution Connect your Bone to the Internet and log into it. From the command line run:

bone$ git clone https://git.beagleboard.org/beagleboard/beaglebone—-cookbook—
—code

bone$ cd beaglebone-cookbook-code

bone$ 1s

You can look around from the command line, or explore from Visual Sudio Code. If you are using VSC, go to the
File menu and select Open Folder ... and select beaglebone-cookbook-code. Then explore.

13.1. BeagleBone Cookbook 491

https://www.debian.org
http://192.168.7.2:3000

BeagleBoard Docs, Release 1.0.20230711-wip

Wiring a Breadboard

Problem You would like to use a breadboard to wire things to the Bone.

Solution Many of the projects in this book involve interfacing things to the Bone. Some plug in directly, like
the USB port. Others need to be wired. If it's simple, you might be able to plug the wires directly into the P8
or P9 headers. Nevertheless, many require a breadboard for the fastest and simplest wiring.

To make this recipe, you will need:
* Breadboard and jumper wires

The Breadboard wired to BeagleBone Black shows a breadboard wired to the Bone. All the diagrams in this
book assume that the ground pin (P9_1 on the Bone) is wired to the negative rail and 3.3 V (P9_3) is wired to
the positive rail.

e o 0 0 0
e o 0 0o 0

e e 0o 0 0
e e 0 00
e e 0 0 0 0 0 0 0 0 0 0 0

e e 0 0 0 0 0 00 0 0 0 0

e e 0o 0 0
e e 0o 0 0

BeagleBone

e e 0o 00
e e 0o 00

e o o 0 0
e e o 00
L I T T I I I I N R R R T T N S S A N]

LI N IR IR TN M N N N N T U N IR R R N T Y S N N S N NN N S N SN N}
L I IR T N O R R T T T R N T N M MY N N N N N A A I I N '}
LI I NIRRT M M T R TR TN W N M MY N T MY N N N T NN N N N NN M A)
® e 0 e 0 0 0 0 0 0 00000000000 00
® e 0 0 0 0 0 0 00 00 0000000000000 e 00 0
® e 0 0 0 0 0 0 0 000 0000000 0
® e 0 0 0 0 0 0 0 0 00 000 000000000000 0 0

e e o 000 00 00000

fritzing
Fig. 13.4: Breadboard wired to BeagleBone Black

Breadboard wired to BeagleBone Black

Editing Code Using Visual Studio Code

Problem You want to edit and debug files on the Bone.

Solution Plug your Bone into a host computer via the USB cable. Open a browser (either Google Chrome
or FireFox will work) on your host computer (as shown in Getting Started, Out of the Box). After the Bone has
booted up, browse to http://192.168.7.2:3000 on your host. You will see something like Visual Studio Code.

Click the examples folder on the left and then click BeagleBoard and then Black, finally double-click segLEDs .
PYy. You can now edit the file.

492 Chapter 13. Books

http://192.168.7.2:3000

BeagleBoard Docs, Release 1.0.20230711-wip

Note: If you editlines 33 and 37 of the segqLEDs . py file (time.sleep(0.25)), changing 0.25 to 0.1, the LEDs
next to the Ethernet port on your Bone will flash roughly twice as fast.

Running Python and JavaScript Applications from Visual Studio Code

Problem You have a file edited in VS Code, and you want to run it.

Solution VS Code has a bash command window built in at the bottom of the window. If it's not there, hit
Ctrl-Shift-P and then type terminal create new then hit Enter. The terminal will appear at the bottom of the
screen. You can run your code from this window. To do so, add #! /usr/bin/env python at the top of
the file that you want to run and save.

Tip: If you are running JavaScript, replace the word python in the line with node.

At the bottom of the VS Code window are a series of tabs (Visual Studio Code showing bash terminal). Click
the TERMINAL tab. Here, you have a command prompt.

i2cTemp.py-docs - Code

= C A Notsec
IB File Edit Selection View Go Run Terminal Help i2cTemp.py - docs - Code - 0SS DO 08
@ EXPLORER o @ j2cTemppy X >~ 0 -
~ DOCS 02sensors > code > @ i2cTemp.py
> O1basics 1 #!'/usr/bin/env python
v 02sensors 20 F SR ELERI LRI EE LB ELE
3 #// i2cTemp.py
zfﬂ Sz Sl (A Sl @)= U e GRS 4 #// Read a TMP101 sensor on i2c bus 2, address 0x49
2gpioa 5 #// Wiring: Attach to i2c as shown in text.
analoginjs 6 #// Setup: echo tmpl@1 Ox49 > /sys/class/i2c-adapter/i2c-2/new device
@ analogin.py 7 #// See:
audio.asoundrc 8 FESIIIIELIIELEII LRI EL LB EL R
audio js 9 import time
bone_eqep2b.dts 10 .)
. }; ;IS = 1023 # Read time in ms
us =
GPS.js 13 addr = '49'
he-sro4-ultrasonic js 14 I2CPATH='/sys/class/i2c-adapter/i2c-'+bus+'/'+bus+'-80'+addr+'/hwmon/hwmor
i2c-scan.js 15
i2c-testjs 16 f = open(I2CPATH+"/templ input”, "r")
i2cTemp.js 17
& i2cTemp.py 18 while True:
. 19 f.seek(0)
@ i2ctmp101.py 20 data = f.read()[:-1] # returns mili-degrees C
pushbutton_digitalRead.js 21 print(“"data (C) = " + str(int(data)/1000))
pushbutton.js 22 time.sleep(ms/1000)
@ pushbutton.py
pushbutton2.js
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL Bbash +~ M @ ~ X

pushbuttonPullup.js
B AT = debian@breadboard-home: s
@ rotaryEncoder.py
sensorTag.js
stop.js
testHC-SR04.js
ultrasonicRange.js
wljs
> OUTLINE
> TIMELINE

#maine & ®odo Ln1,Col1 Spacess4 UTF-8 LF Python 3.9.232bit Layoutius 0

Fig. 13.5: Visual Studio Code showing bash terminal

Change to the directory that contains your file, make it executable, and then run it:

bone$ cd ~/examples/BeagleBone/Black/
bone$./seqLEDs.py

13.1. BeagleBone Cookbook 493

BeagleBoard Docs, Release 1.0.20230711-wip

The cd is the change directory command. After you cd, you are in a new directory. Finally, ./seqLEDs.py instructs
the python script to run. You will need to press ~C (Ctrl-C) to stop your program.

Finding the Latest Version of the OS for Your Bone

Problem You want to find out the latest version of Debian that is available for your Bone.

Solution On your host computer, open a browser and go to https://forum.beagleboard.org/tag/latest-images
This shows you a list of dates of the most recent Debian images (Latest Debian images).

wil.js-docs-Code-0SS x % Latestlatest-imagestopi x +

&« (&} & forum.beagleboard.org

&1 beagleboard.org s | 20 1Q)

all categories » latest-images »

Categories Top [:]

¥ Debian 1.x (Bullseye) - Monthly Snapshots (ARM&4) ’ 2 . .
W General Discussion bbai64, bbbio_debian, latest-images B

X Debian 11.x (Bullseye) - Monthly Snapshots ’ 3

W General Discussion bbbio_debian, latest-images < B

¥ Debian 10.x (Buster) - Monthly Snapshots ’ ; 17

W General Discussion bbbio_debian, latest-images ’ B

There are no more latest-images topics. Erowse all tags or view latest topics.

Fig. 13.6: Latest Debian images

At the time of writing, we are using the Bullseye image. Click on its link. Scrolling up you’ll find Latest Debian
images. There are three types of snapshots, Minimal, 1oT and Xfce Desktop. 10T is the one we are running.

These are the images you want to use if you are flashing a Rev C BeagleBone Black onboard flash, or flashing
a 4 GB or bigger miscroSD card. The image beginning with am335x-debian-11.3-iot- is used for the non-Al
boards. The one beginning with am57xx-debian- is for programming the Beagle Al’s.

Note: The onboard flash is often called the eMMC memory. We just call it onboard flash, but you’ll often see
eMMC appearing in filenames of images used to update the onboard flash.

Click the image you want to use and it will download. The images are some 500M, so it might take a while.

494 Chapter 13. Books

https://forum.beagleboard.org/tag/latest-images

BeagleBoard Docs, Release 1.0.20230711-wip

€ Debian 11.x (Bullseye) - x + v — O x
& C & forumbeagleboard.org/t/debian-11x-.. X < % O & < & s OB O « A » 0 ¢

¥ Debian 11.x (Bullseye) - Monthly Snapshots E L%

B General Discussi bio_debian, latest-ima =

‘Q microSD sha256sum 1f6b0fd83afafd8603a17bb71bcdDac226c147fb05d41b5bf3deaalbf004730

Debian 11.x (Bullseye) IOT Snapshot Hetwore
Please submit all bugs to: Issue Tracker 32 - '
2022-06-02 notes

e Kemel: 510109-ti-r45

* U-Boot: am335x v2022.04 1

s U-Boot: am57xx v2021.04

* default username:password is [debian:temppwd]

Media AM335x 10T Snapshot

microSD Download am335x-debian-11.3-iot-armhf-2022-06-02-4gb.img.xz

microSD sha256sum 4c88467ef045209701b433b1b8ede46681ee0a2ala29328a29362ebdab4d1a0 Snap

Debian 11.x

Media AM57xx 10T Snapshot (Bullseye) 10T
microSD Download amS7xx-debian-N.3-iot-armhf-2022-06-02-4gb.img.xz Snapshot
microSD sha256sum 8d11f4e8fc9787ha035a6cdaaaedd36262fa9b957b36255e651914656ed2aaf8 Debia

(Bulls

Debian 11.x (Bullseye) Xfce Desktop Snapshot

Please submit all buas to: |ssue Tracker 3:

Fig. 13.7: Latest Debian images

Running the Latest Version of the OS on Your Bone

Problem You want to run the latest version of the operating system on your Bone without changing the
onboard flash.

Solution This solution is to flash an external microSD card and run the Bone from it. If you boot the Bone
with a microSD card inserted with a valid boot image, it will boot from the microSD card. If you boot without
the microSD card installed, it will boot from the onboard flash.

Tip: If you want to reflash the onboard flash memory, see Updating the Onboard Flash.

Note: | instruct my students to use the microSD for booting. | suggest they keep an extra microSD flashed
with the current OS. If they mess up the one on the Bone, it takes only a moment to swap in the extra microSD,
boot up, and continue running. If they are running off the onboard flash, it will take much longer to reflash and
boot from it.

Download the image you found in Finding the Latest Version of the OS for Your Bone. It's more than 500 MB,
so be sure to have a fast Internet connection. Then go to http://beagleboard.org/getting-started#update and
follow the instructions there to install the image you downloaded.

Updating the OS on Your Bone

Problem You've installed the latest version of Debian on your Bone (Running the Latest Version of the OS on
Your Bone), and you want to be sure it’s up-to-date.

13.1. BeagleBone Cookbook 495

http://beagleboard.org/getting-started#update

BeagleBoard Docs, Release 1.0.20230711-wip

Solution Ensure that your Bone is on the network and then run the following command on the Bone:

bone$ sudo apt update
bone$ sudo apt upgrade

If there are any new updates, they will be installed.

Note: [f you getthe error The following signatures were invalid: KEYEXPIRED 1418840246, see eLinux support
page for advice on how to fix it.

Discussion After you have a current image running on the Bone, it’s not at all difficult to keep it upgraded.

Backing Up the Onboard Flash

Problem You've modified the state of your Bone in a way that you’d like to preserve or share.

Solution The eLinux wiki page on BeagleBone Black Extracting eMMC contents provides some simple steps
for copying the contents of the onboard flash to a file on a microSD card:

Get a 4 GB or larger microSD card that is FAT formatted.

If you create a FAT-formatted microSD card, you must edit the partition and ensure that it is a bootable
partition.

Download beagleboneblack-save-emmc.zip and uncompress and copy the contents onto your microSD
card.

Eject the microSD card from your computer, insert it into the powered-off BeagleBone Black, and apply
power to your board.

You'll notice USERO (the LED closest to the S1 button in the corner) will (after about 20 seconds) begin
to blink steadily, rather than the double-pulse “heartbeat” pattern that is typical when your BeagleBone
Black is running the standard Linux kernel configuration.

It will run for a bit under 10 minutes and then USERO will stay on steady. That's your cue to remove
power, remove the microSD card, and put it back into your computer.

You will see a file called BeagleBoneBlack-eMMC-image-XXXXX.img, where XXXXX is a set of random
numbers. Save this file to use for restoring your image later.

Note: Because the date won't be set on your board, you might want to adjust the date on the file to remember
when you made it. For storage on your computer, these images will typically compress very well, so use your
favorite compression tool.

Tip: The eLinux wiki is the definitive place for the BeagleBoard.org community to share information about the
Beagles. Spend some time looking around for other helpful information.

Updating the Onboard Flash

Problem You want to copy the microSD card to the onboard flash.

496

Chapter 13. Books

http://bit.ly/1EXocb6
http://bit.ly/1EXocb6
Thehttp://elinux.org/Beagleboard
http://bit.ly/1C57I0a
http://bit.ly/1wtXwNP
Thehttp://elinux.org/Beagleboard

BeagleBoard Docs, Release 1.0.20230711-wip

Solution If you want to update the onboard flash with the contents of the microSD card,
* Repeat the steps in Running the Latest Version of the OS on Your Bone to update the OS.

e Attach to an external 5V source. you must be powered from an external 5 V source. The flashing process
requires more current than what typically can be pulled from USB.

* Boot from the microSD card.

* Log on to the bone and edit /boot/uEnv.txt.

¢ Uncomment out the last line cmdline=init=/usr/sbin/init-beagle-flasher.
* Save the file and reboot.

* The USR LEDs will flash back and forth for a few minutes.

* When they stop flashing, remove the SD card and reboot.

* You are now running from the newly flashed onboard flash.

Warning: If you write the onboard flash, be sure to power the Bone from an external 5 V source.
The USB might not supply enough current.

When you boot from the microSD card, it will copy the image to the onboard flash. When all four USER LEDs
turn off (in some versions, they all turn on), you can power down the Bone and remove the microSD card. The
next time you power up, the Bone will boot from the onboard flash.

13.1.2 Sensors

In this chapter, you will learn how to sense the physical world with BeagleBone Black. Various types of elec-
tronic sensors, such as cameras and microphones, can be connected to the Bone using one or more interfaces
provided by the standard USB 2.0 host port, as shown in The USB 2.0 host port.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

The two 46-pin cape headers (called P8 and P9) along the long edges of the board (Cape Headers P8 and P9)
provide connections for cape add-on boards, digital and analog sensors, and more.

The simplest kind of sensor provides a single digital status, such as off or on, and can be handled by an
input mode of one of the Bone’s 65 general-purpose input/output (GPIO) pins. More complex sensors can be
connected by using one of the Bone’s seven analog-to-digital converter (ADC) inputs or several I°C buses.

Displays and Other Outputs discusses some of the output mode usages of the GPIO pins.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and run
it, either within the Visual Studio Code (VSC) integrated development environment (IDE) or from the command
line (Getting to the Command Shell via SSH).

Choosing a Method to Connect Your Sensor

Problem You want to acquire and attach a sensor and need to understand your basic options.

Solution Some of the many sensor connection options on the Bone shows many of the possibilities for con-
necting a sensor.

Choosing the simplest solution available enables you to move on quickly to addressing other system aspects.
By exploring each connection type, you can make more informed decisions as you seek to optimize and trou-
bleshoot your design.

13.1. BeagleBone Cookbook 497

BeagleBoard Docs, Release 1.0.20230711-wip

DC Power 10/100 Ethernet

PMIC Ethernet PHY

Sitara AM3358
USB Client

Serial Debug LEDS

512MB DDR3
Reset Button

eMMC

USB Host

HDMI Framer
microHDMI

uSD Boot Button

Fig. 13.8: The USB 2.0 host port

BeagleBone

fritzing

Fig. 13.9: Cape Headers P8 and P9

498 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

&
=]
o
=
o
@
[
=
L}
o
-

~ DeND. - DGND 2 [[SENOIN
- vbD_ava ~ MMC1_DAT6 4 [MMCI_DATZ |
- vpD.sv. MMC1_DATZ2 6 MMC1_DATS
| sys_sv| GPIO_66 8 GPIO_67
| PWR_BUT | GPIO_69 10 GPIO_68
UART4_RXD 11 GPIO_45 11 12 GPIO_44
UART4_TXD 13 _ 13 14 GPIO_26

GPl1O_48 15
SPIO_CSO 17 18 SPIO_D1

GPIO 47 15 16 GPIO_46
GPIO_27 17 18 GPIO_65

EEEEEER - co [EETETRE 19 20 [MMEIIEMBIN

I -+ -- 21 22 [MMCILDATS |
GPIO_49 23 24 UARTI_TXD 23 24 [MMCILDATI |
GPIO_117 25 26 UARTI_RXD 25 26 GPIO_61
crio_115 27 2 N 27 28

30 GPIO_112 29 30

31 32
34
35 36
37 38

W
0
B
o]

GPIO_20 41 | g
43 44

45 46

]
W

Fig. 13.10: Some of the many sensor connection options on the Bone

Input and Run a Python or JavaScript Application for Talking to Sensors

Problem You have your sensors all wired up and your Bone booted up, and you need to know how to enter
and run your code.

Solution You are just a few simple steps from running any of the recipes in this book.
¢ Plug your Bone into a host computer via the USB cable (Getting Started, Out of the Box).
e Start Visual Studio Code (Editing Code Using Visual Studio Code).

¢ In the bash tab (as shown in Entering commands in the VSC bash tab), run the following commands:

bone$ cd
bone$ cd beaglebone-cookbook—-code/02sensors

Here, we issued the change directory (cd) command without specifying a target directory. By default, it takes
you to your home directory. Notice that the prompt has changed to reflect the change.

Note: If you log in as debian, your home is /home/debian. If you were to create a new user called newuser,
that user’'s home would be /home/newuser. By default, all non-root (non-superuser) users have their home
directories in /home.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

Double-click the pushbutton.py file to open it.

¢ Press ™S (Ctrl-S) to save the file. (You can also go to the File menu in VSC and select Save to save the
file, but Ctrl-S is easier.) Even easier, VSC can be configured to autosave every so many seconds.

In the bash tab, enter the following commands:

©

13.1. BeagleBone Cookbook 49

BeagleBoard Docs, Release 1.0.20230711-wip

A4 beaglebone-cookbook-code - cc X

File

@
£
g | =
>

Edit Selection View Go Run

EXPLORER

~ BEAGLEBONE-COOKBOOK-CODE
~ D2sensors

gpiod

analogin.js

~

o

analogln.py
audic.asoundrc

S audiogs

o bone_eqep2b.dts
Bﬂ 5 encoderjs

GPs.js
hc-sr04-ultraSonic.js

S i2c-scanjs

i12c-tests

i2cTemp.js
12cTemp.py

LU

i2ctmp101.py

pushbutton_digitalRead,js

pushbuttonjs

o

pushbutton.py

pushbuttonz.js

pushbuttonPullup.js

rotaryEncoder.js
% rotaryEncoder.py

S2NsorTag.js

5 stopgs
testHC-5R04.js

S ultrasonicRange,js

% ultrasonicRange.py
5 wljs

2 wlpy
> D3displays
> 0dmators

> 05tips

¥ OBiot

> 07kernel

> 0D8realtime
> DBcapes

@ README.md

®
» OUTLINE
{g} » TIMELINE

;vmain o ®oho Wo

&« > O A Notsecure | hps//192.168.7.2:3000/?folder=/home/debian/beagl... |12

+
¥

Terminal Help beaglebone-cookbook-code - code-server
Show All Commands
Go to File
Find in Files
Start Debugging
Termina
PROBLEMS QUTPUT DEBUG COMSOLE PORTS

® debianiBeagleBone:~$ cd beaglebone-cookbook-code/@2sensors/
debianfiBeagleBone : ~/beaglebone- cookbook-code/@2sensors$ D

TERMINAL

Ctri

Ctrl

Ctri

Ctrl

G& # » 0BO

W — O *

i A »0M:

| A= NI
Shift + P

P

Shift + F

g bash-O2ensors 4~ [0 W - ~ X

1

Layout: US [}

Fig. 13.11: Entering commands in the VSC bash tab

500

Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

debian@beaglebone:beaglebone-cookbook/code/02sensors$./pushbutton.py
data= 0

data= 0
data= 1
data= 1
~C

This process will work for any script in this book.

Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor)

Problem You wantto read a pushbutton, a magnetic switch, or other sensor that is electrically open or closed.

Solution Connect the switch to a GPIO pin and read from the proper place in /sys/class/gpio.
To make this recipe, you will need:

¢ Breadboard and jumper wires.

* Pushbutton switch.

* Magnetic reed switch. (optional)

You can wire up either a pushbutton, a magnetic reed switch, or both on the Bone, as shown in Diagram for
wiring a pushbutton and magnetic reed switch input.

e e 0 0 0
e e 0 00

e e o 00
e e o 00
P e e e e 0 0 00 0 0 0 00

e o 0 00
e o 0 0 0

BeagleBone

e o 0o 00
e o 0 00
® e 0 0 0 0 0 0 0 000 00 0000000000000

® @ 0 0 0 0 0 0 0 0 0 0 0 0 0 0000 0000000000000
® @ 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000000 000
® @ 0 0 0 0 0 0 0 0 0 0 0 0 00 0000000000000 00e0
®© @ 0 0 0 0 0 0 0 0 0 00 0 000000000000 000000

fritzing
Fig. 13.12: Diagram for wiring a pushbutton and magnetic reed switch input

The code in Monitoring a pushbutton (pushbutton.py) reads GPIO port P9_42, which is attached to the push-
button.
Python

C

13.1. BeagleBone Cookbook 501

11

12

13

14

15

16

17

18

19

20

21

22

23

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.1: Monitoring a pushbutton (pushbutton.py)

#!/usr/bin/env python

//
//
//
//
//

HOF W I I W R

pushbutton.py
Reads P9 _42 and prints its value.

Wiring:

Setup:

See

import time
import gpiod
import os

ms = 100

LINE_OFF

Read time in ms
CHIP = 'gpiochipO'

SET = [7]

chip = gpiod.Chip (CHIP)
chip.get_lines (LINE_OFFSET)

lines =

lines.request (consumer="pushbutton.py"',

while True:
= lines.get_values/()
print ('data = ' + str(datal0]))
time.sleep (ms/1000)

data

pushbutton.py

s
/S
/7
7/
/7

Wiring:

Setup
Seel:

SIS

SIS

P9 42 is gpio 7

Listing 13.2: Monitoring a pushbutton (pushbutton.c)

LSS S S S S S S SSSSSSSSSSSS
pushbutton.c
Reads P9 42 and prints its value.

LSS LSS S S S S S S S SSSSSSSSS SSS S
#include <gpiod.h>
#include <stdio.h>
#include <unistd.h>

#define CONSUMER

int main (int argc,

char **argv)

"pushbutton.c”

Connect a switch between P9 42 and 3.3V

type=gpiod.LINE_REQ_DIR_IN)

Connect a switch between P9 42 and 3.3V

{
int chipnumber = 0;
unsigned int line_num 7e
struct gpiod_line *line;
struct gpiod_chip *chip;
int i, ret;
chip = gpiod_chip_open_by_number (chipnumber) ;
line = gpiod_chip_get_line(chip, line_num) ;
ret = gpiod_line_request_input (line, CONSUMER) ;
/* Get */
while (1) {
printf (”%d\r”, gpiod_line_get_value(line));
usleep (100);
}
}
502 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

pushbutton.c

Put this code in a file called pushbutton.py following the steps in Input and Run a Python orJavaScript Application
for Talking to Sensors. In the VSC bash tab, run it by using the following commands:

bone$./pushbutton.py

data = 0
data = 0
data = 1
data = 1
~C

The command runs it. Try pushing the button. The code reads the pin and prints its current value.
You will have to press ~C (Ctrl-C) to stop the code.

If you want to run the C version do:

bone$ gcc -o pushbutton pushbutton.c -lgpiod
bone$./pushbutton

data = 0
data = 0
data = 1
data = 1
~C

If you want to use the magnetic reed switch wired as shown in Diagram for wiring a pushbutton and magnetic
reed switch input, change P9_42 to P9_26 which is gpio 14.

Mapping Header Numbers to gpio Numbers

Problem You have a sensor attached to the P8 or P9 header and need to know which gpio pin it's using.

Solution The gpioinfo command displays information about all the P8 and P9 header pins. To see the info for
just one pin, use grep.

bone$ gpioinfo | grep -e chip -e P9.42
gpiochipO0 - 32 lines:
line 7: "P8_42A [ecappwmO]” "P9_42" input active-high [used]
gpiochipl - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

This shows P9 42 is on chip 0 and pin 7. To find the gpio number multiply the chip number by 32 and add it to
the pin number. This gives 0¥32+7=7.

For P9_26 you get:

bone$ gpioinfo | grep -e chip -e P9.26
gpiochip0 - 32 lines:
line 14: "P9_26 [uartl_rxd]” "P9_26" input active-high [used]
gpiochipl - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

0*32+14=14, so the P9_26 pin is gpio 14.

Reading a Position, Light, or Force Sensor (Variable Resistance Sensor)

Problem You have a variable resistor, force-sensitive resistor, flex sensor, or any of a number of other sensors
that output their value as a variable resistance, and you want to read their value with the Bone.

13.1. BeagleBone Cookbook 503

BeagleBoard Docs, Release 1.0.20230711-wip

Solution Use the Bone’s analog-to-digital converters (ADCs) and a resistor divider circuit to detect the resis-
tance in the sensor.

The Bone has seven built-in analog inputs that can easily read a resistive value. Seven analog inputs on P9
header shows them on the lower part of the P9 header.

P9 P8

EEEEE ¢ 2 [DGND NN DGND |
| VDD_3V3 [GPIO_38 3 4 GPIO_39
B 5 < GPIO_34 5 6 GPIO_35
| SYsS 5V N GPIO_ 66 7 8 GPIO_67
BN © 10 GPIO_69 9 10 GPIO_68
GPIO_30 11 12 GPIO_60 GPIO_45 11 12 GPIO_44
GPIO_31 13 14 GPIO_50 GPIO_23 13 14 GPIO_26
GPIO_48 15 16 GPIO_51 GPIO_47 15 16 GPIO_46
GPIO_ 5 17 18 GPIO_4 GPIO_ 27 17 18 GPIO_65
I '° o GPIO_22 19 20 GPIO_63
GPIO_3 21 22 GPIO_2 GPIO_62 21 22 GPIO_37
GPIO_49 23 24 GPIO_15 GPIO_36 23 24 GPIO_33
GPIO_117 25 26 GPIO_14 GPIO_32 25 26 GPIO_61
GPIO_115 27 28 GPIO_113 GPIO_86 27 28 GPIO_88
GPIO_111 29 30 GPIO_112 GPIO_87 29 30 GPIO_89
GPIO_110 31 32| VDD_ADC GPIO_10 31 32 GPIO_11
AINA 33 34 GNDA_ADC GPIO_9 33 34 GPIO_81
AIN6 35 36 | AIN5S GPIO_8 35 36 GPIO_80
AIN2 37 38 AIN3 GPIO_78 37 38 GPIO_79
AINO 39 | 40 | AIN1 GPIO_76 39 40 GPIO_77
GPIO_20 41 42 GPIO_7 GPIO_74 41 42 GPIO_75
I - 44 e GPIO_72 43 44 GPIO_73
IEERE - < EEREE GPIO_70 45 46 GPIO_71

To make this recipe, you will need:

* Breadboard and jumper wires.

e 10k trimpot or

* Flex resistor (optional)

e 22 kQ resistor

Fig. 13.13: Seven analog inputs on P9 header

o os woN e

A variable resistor with three terminals Wiring a 10 kQ variable resistor (trimpot) to an ADC port shows
a simple variable resistor (trimpot) wired to the Bone. One end terminal is wired to the ADC 1.8 V power supply
on pin P9_32, and the other end terminal is attached to the ADC ground (P9_34). The middle terminal is wired
to one of the seven analog-in ports (P9_36).

Reading an analog voltage (analogin.py) shows the code used to read the variable resistor. Add the code to a
file called analogin.py and run it; then change the resistor and run it again. The voltage read will change.

Python

JavaScript

Listing 13.3: Reading an analog voltage (analogin.py)

#!/usr/bin/env python3

#ILSSS LSS S S S S S SSSSSSSSSSSSSS S S

analogin.py

Reads the analog value of the light sensor.

#LSS LSS S S S S S SSSSSSSSSSSSSS

S ¥

(continues on next page)

504 Chapter 13. Books

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

BeagleBoard Docs, Release 1.0.20230711-wip

e e o0

L]
L]
.
L]

e e 0 00
e e 0 0 0

® e 0 00 e e 0 00

® e 0 0 ® e o 0 0
2 2 0 0 0 0 0 0 0 0 0000000000
2 2 0 0 0 0 0 0 0 0 0000000000
2 9 0 0 0 0 0 0 0 000 00000000

®© 0 0 0 0 0 0 0 0 0 0 00000000

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

BeagleBone

e e 0 00
* e e 0 0
®© © 2 2 0 0 0 0 0 0 0 02 0 0 0 0 0000 000000000000

®© © 02 2 0 0 0 0 0 0 0 0 0 0 0 90 0000 000000000000

® e 0 0 0 0 0 0 0 o
® e 0 0 0 0 0 00
® e 0 0 0 00

® e 0 0 0 00

® e 0 0 0 0 0 0
® e 0 0 0 0 0 0

® o 0 0 0 0 0 0 0

fritzing

Fig. 13.14: Wiring a 10 kQ variable resistor (trimpot) to an ADC port

(continued from previous page)
import time
import os

pin = ”2” # light sensor, A2, P9 _37
ITIOPATH="'/sys/bus/iio/devices/iio:devicel/in_voltage'+pin+'_raw'
print ("Hit ~C to stop')
f = open (IIOPATH, "r”)
while True:

f.seek (0)

x = float (f.read/(

print ('
time.sleep(0.1)

) /4096
, V'.format (pin, 100*x, 1.8*x), end = '\r')

o0 ~—

// Bone | Pocket
/) —mm
// P9_39
// P9_40
// P9_37
// P9_38
// P9_33
// P9_36
// P9_35

AIN

e H H R R R R R W
U
~
N
W

s

[N

N

(€}
ol W N = O

analogIn.py

Listing 13.4: Reading an analog voltage (analogln.js)

#!/usr/bin/env node
SIS S S S S S SSSSSSSSSSSSSSS SS S S

(continues on next page)

13.1. BeagleBone Cookbook 505

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

// analogin. js

// Reads the analog value of the light sensor.
SIS S LSS S S S

const fs = require(”fs”);

const ms = 500; // Time in milliseconds

const pin = "2”; // light sensor, A2, P9 _37

const IIOPATH='/sys/bus/iio/devices/iio:devicel/in_voltage'+pin+'_raw';
console.log('Hit ~C to stop');

// Read every 500ms
setInterval (readPin, ms);

function readPin () {
var data = fs.readFileSync (IIOPATH) .slice (0, -1);

console.log('data = ' + data);

}

// Bone | Pocket | AIN
/===) semmes | ===
// P9 39 | P1_19 | O
// P9 40 | P1_21 | 1
// P9 37 | P1_23 | 2
// P9 38 | P1_25 | 3
// P9 33 | P1_27 | 4
// P9 36 | P2.35 | 5
// P9 35 | P1_02 | 6

analogIn.js

Note: The code in Reading an analog voltage (analogln.js) outputs a value between 0 and 4096.

A variable resistor with two terminals Some resistive sensors have only two terminals, such as the flex
sensor in Reading a two-terminal flex resistor The resistance between its two terminals changes when it is
flexed. In this case, we need to add a fixed resistor in series with the flex sensor. Reading a two-terminal flex
resistor shows how to wire in a 22 kQ resistor to give a voltage to measure across the flex sensor.

BeagleBone

fritzing
Fig. 13.15: Reading a two-terminal flex resistor

The code in Reading an analog voltage (analogin.py) and Reading an analog voltage (analogln.js) also works
for this setup.

506 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Reading a Distance Sensor (Analog or Variable Voltage Sensor)

Problem You want to measure distance with a LV-MaxSonar-EZ1 Sonar Range Finder, which outputs a voltage
in proportion to the distance.

Solution To make this recipe, you will need:
¢ Breadboard and jumper wires.
¢ LV-MaxSonar-EZ1 Sonar Range Finder

All you have to do is wire the EZ1 to one of the Bone’s analog-in pins, as shown in Wiring the LV-MaxSonar-EZ1
Sonar Range Finder to the P9 33 analog-in port. The device outputs ~6.4 mV/in when powered from 3.3 V.

Warning: Make sure not to apply more than 1.8 V to the Bone’s analog-in pins, or you will likely damage
them. In practice, this circuit should follow that rule.

e e 0 0 0
e e 0 00

e e 0o 00
e e 0 00

e o 0 00
e o 0 0 0

BeagleBone

e o 0o 00
e o 0 00

e e 0 00
e e 0 00
® @ 0 0 0 0 0 0 0 0 000 0 000000000000 000000

EEREE 0000000

fritzing
Fig. 13.16: Wiring the LV-MaxSonar-EZ1 Sonar Range Finder to the P9 33 analog-in port

Reading an analog voltage (ultrasonicRange.py) shows the code that reads the sensor at a fixed interval.
Python

JavaScript

Listing 13.5: Reading an analog voltage (ultrasonicRange.py)

#!/usr/bin/env python

LSS S S S SS S SSSSSSSSSSSSSSSSS

// ultrasonicRange. js

// Reads the analog value of the sensor.
LSS S S S S S S S SSSSSSSSSSSSSSS

import time

ms = 250; # Time in milliseconds

(continues on next page)

13.1. BeagleBone Cookbook 507

https://www.sparkfun.com/products/11309

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

pin = 70" # sensor, A0, P9 39

ITIOPATH="'/sys/bus/iio/devices/iio:devicel/in_voltage'+pin+'_raw'

print ("Hit ~C to stop');

f = open (IIOPATH, "r")
while True:

f.seek (0)
data = f.read()[:-1]
print ('data= ' + data)

time.sleep (ms/1000)

// Bone | Pocket | AIN
/) ——— | —————— | -
// P9 39 | P1_19 | 0
// P9 40 | P1_21 | 1
// P9 37 | P1_23 | 2
// P9 38 | P1_25 | 3
// P9 33 | P1.27 | 4
// P9 36 | P2.35 | 5
// P9 35 | P1_02 | 6

ultrasonicRange.py

Listing 13.6: Reading an analog voltage (ultrasonicRange.js)

#!/usr/bin/env node

LSS

// ultrasonicRange. js

// Reads the analog value of the sensor.
SIS LSS S S S

const fs = require(”fs”);

const ms = 250; // Time in milliseconds

const pin = "0”; // sensor, A0, P9 39

const IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw';

console.log('Hit ~C to stop');

// Read every ms
setInterval (readPin, ms);

function readPin () {
var data = fs.readFileSync (IIOPATH);
console.log('data= ' + data);

I3

// Bone | Pocket | AIN

s | —=——= |

// P9 39 | P1_19 | O

// P9 40 | P1_21 | 1

// P9 37 | P1_23 | 2

// P9 38 | P1_25 | 3

// P9 33 | P1_27 | 4

// P9 36 | P2_35 | 5

// P9 35 [P1_02 | 6

ultrasonicRange.js

508

Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Reading a Distance Sensor (Variable Pulse Width Sensor)

Problem You want to use a HC-SR04 Ultrasonic Range Sensor with BeagleBone Black.

Solution The HC-SR04 Ultrasonic Range Sensor (shown in HC-SR04 Ultrasonic range sensor) works by send-
ing a trigger pulse to the Trigger input and then measuring the pulse width on the Echo output. The width of
the pulse tells you the distance.

RSN RS

I
AN Y
£ A

Fig. 13.17: HC-SR04 Ultrasonic range sensor

To make this recipe, you will need:
* Breadboard and jumper wires.
* 10 kQ and 20 kQ resistors
¢ HC-SR04 Ultrsonic Range Sensor.

Wire the sensor as shown in Wiring an HC-SR04 Ultrasonic Sensor. Note that the HC-SR04 is a 5 V device,
so the banded wire (running from P9_7 on the Bone to VCC on the range finder) attaches the HC-SR04 to the
Bone’s 5 V power supply.

Driving a HC-SR04 ultrasound sensor (hc-srO4-ultraSonic.js) shows BoneScript code used to drive the HC-SR04.

Listing 13.7: Driving a HC-SR04 ultrasound sensor (hc-sr04-
ultraSonic.js)

#!/usr/bin/env node
// This is an example of reading HC-SR04 Ultrasonic Range Finder

// This version measures from the fall of the Trigger pulse
// to the end of the Echo pulse

var b = require('bonescript');
var trigger = 'P9_16', // Pin to trigger the ultrasonic pulse
echo = 'P9_41', // Pin to measure to pulse width related to the.

(continues on next page)

13.1. BeagleBone Cookbook 509

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

BeagleBoard Docs, Release 1.0.20230711-wip

e e 0 00
e
e e o 0 00
e e 0 0 00
e e 0 0 00
e e 0 0 00
e e 0 0 00

e e 0 00

.
.
.
.
.
.
.
.
.
.
.
.
.

® e 0 00

BeagleBone

e e 0 0 0
°

.
.
.
.
.
.
.
.
.
.
.
.

|-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

® e 0 0 0 0 0 0 00
® e 0 0 0 0 0 0 00
® e 0 0 0 0 0 0 00
e e 0 0 0 0 0 0 00
® e 0 0 0 0 0 0 00

fritzing

Fig. 13.18: Wiring an HC-SR04 Ultrasonic Sensor

(continued from previous page)

—~distance
ms = 250; // Trigger period in ms

var startTime, pulseTime;

b.pinMode (echo, b.INPUT, 7, 'pulldown', 'fast', doAttach);
function doAttach (x) {
if(x.err) {
console.log('x.err = ' + x.err);
return;
}
// Call pingEnd when the pulse ends
b.attachInterrupt (echo, true, b.FALLING, pingEnd);
}

b.pinMode (trigger, b.OUTPUT);

b.digitalWrite (trigger, 1); // Unit triggers on a falling edge.
// Set trigger to high so we call pull it.
—low later

// Pull the trigger low at a regular interval.
setInterval (ping, ms);

// Pull trigger low and start timing.
function ping () A
// console.log('ping');
b.digitalWrite (trigger, 0);
startTime = process.hrtime();

}

// Compute the total time and get ready to trigger again.
function pingEnd(x) {
(continues on next page)

510 Chapter 13. Books

42

43

44

45

46

47

48

49

50

51

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

if (x.attached) {
console.log (”"Interrupt handler attached”);

return;
}
if (startTime) |

pulseTime = process.hrtime (startTime) ;

b.digitalWrite (trigger, 1);

console.log('pulseTime = ' + (pulseTime[1]/1000000-0.8) .toFixed(3));
}

hc-sr04-ultraSonic.js

This code is more complex than others in this chapter, because we have to tell the device when to start
measuring and time the return pulse.

Accurately Reading the Position of a Motor or Dial

Problem You have a motor or dial and want to detect rotation using a rotary encoder.

Solution Use arotary encoder (also called a quadrature encoder) connected to one of the Bone’s eQEP ports,
as shown in Wiring a rotary encoder using eQEP2.

BeagleBone

fritzing

Fig. 13.19: Wiring a rotary encoder using eQEP2

Table 13.1: On the BeagleBone and PocketBeage the three encoders
are:

eQEPO P9.27 and P9.42 OR P1_33 and P2_34
eQEP P9.33 and P9.35
eQEP2 P8.11 and P8.12 OR P2_24 and P2_33

13.1. BeagleBone Cookbook 511

10

11

12

13

14

15

16

17

18

19

20

21

22

BeagleBoard Docs, Release 1.0.20230711-wip

Table 13.2: On the Al it's:

eQEP1 P8.33 and P8.35
eQEP2 P8.11 and P8.12 or P9.19 and P9.41
eQEP3 P8.24 and P8.25 or P9.27 and P9.42

To make this recipe, you will need:
* Breadboard and jumper wires.
* Rotary encoder.

We are using a quadrature rotary encoder, which has two switches inside that open and close in such a manner
that you can tell which way the shaft is turning. In this particular encoder, the two switches have a common
lead, which is wired to ground. It also has a pushbutton switch wired to the other side of the device, which we
aren’t using.

Wire the encoder to P8_11 and P8_12, as shown in Wiring a rotary encoder using eQEP2.

BeagleBone Black has built-in hardware for reading up to three encoders. Here, we’ll use the eQEP2 encoder
via the Linux count subsystem.

Then run the following commands:

bone$ config-pin P8_11 gep
bone$ config-pin P8_12 gep
bone$ show-pins | grep gep

P8.12 12 fast rx up 4 gep 2 in A ocp/P8_12_pinmux (pinmux_P8_12_
—gep_pin)
P8.11 13 fast rx up 4 gep 2 in B ocp/P8_11_pinmux (pinmux_P8_11_
—gep_pin)

This will enable eQEP2 on pins P8_11 and P8_12. The 2 after the gep returned by show-pins shows it's eQEP2.
Finally, add the code in Reading a rotary encoder (rotaryEncoder.py) to a file named rotaryEncoder.py and run
it.

Python

JavaScript

Listing 13.8: Reading a rotary encoder (rotaryEncoder.py)

#!/usr/bin/env python

// This uses the eQEP hardware to read a rotary encoder
// boneS config-pin P8_11 eqgep

// boneS config-pin P8_12 eqgep

import time

eQEP = '2'
COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
ms = 100 # Time between samples in ms
maxCount = '1000000"'
Set the eEQP maximum count
f = open (COUNTERPATH+'/ceiling', 'w')
f.write (maxCount)
f.close()
Enable

= open (COUNTERPATH+'/enable', 'w')
.write('1")
.close ()

Hh Fh Hhoss

(continues on next page)

512 Chapter 13. Books

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

BeagleBoard Docs, Release 1.0.20230711-wip

f = open (COUNTERPATH+'/count', 'r'")
olddata = -1
while True:
f.seek (0)
data = f.read () [:-1]
Print only if data changes
if data != olddata:
olddata = data
print ("data = " + data)
time.sleep(ms/1000)
Black OR Pocket
eQEPO: P9.27 and P9.42 OR P1_33 and P2 34
eQEP1: P9.33 and P9.35
eQEP2: P8.11 and P8.12 OR P2 24 and P2_33
AT
eQEP1: P8.33 and P8.35
eQEP2: P8.11 and P8.12 or P9.19 and P9.41
eQEP3: P8.24 and P8.25 or P9.27 and P9.42

rotaryEncoder.py

Listing 13.9: Reading a rotary encoder (rotaryEncoder.js)

#!/usr/bin/env node

// This uses the eQEP hardware to read a rotary encoder

// boneS$S config-pin P8_11 egep
// bone$S config-pin P8_12 eqgep
const fs = require(”fs”);

const eQEP = "2”;
const COUNTERPATH =

const ms = 100;
const maxCount =

// Set the eEQP maximum count
fs.writeFileSync (COUNTERPATH+'/ceiling', maxCount) ;

// Enable

4

(continued from previous page)

' /dev/bone/counter/counter'+eQEP+"'/count0"';

// Time between samples in ms

'1000000";

fs.writeFileSync (COUNTERPATH+'/enable', '1');

setInterval (readEncoder, ms); // Check state every ms

var olddata = -1;

function readEncoder () {
var data = parselnt (fs.readFileSync (COUNTERPATH+'/count'));
if (data != olddata)

// Print only if data changes

console.log('data =

olddata =

// Black OR Pocket

// eQEPO:
// eQEP1:
// eQEP2:

P9.27 and P9.42 OR P1_33 and P2 34

data;

P9.33 and P9.35

P8.11 and P8.12 OR P2_24 and P2 33

' + data);

(continues on next page)

13.1. BeagleBone Cookbook

513

36

37

38

39

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

// AT

// eQEP1: P8.33 and P8.35

// eQEP2: P8.11 and P8.12 or P9.19 and P9.41
// eQEP3: P8.24 and P8.25 or P9.27 and P9.42

rotaryEncoder. js

Try rotating the encoder clockwise and counter-clockwise. You'll see an output like this:

data = 32
data = 40
data = 44
data = 48
data = 39
data = 22
data = 0

data = 999989
data = 999973
data = 999972
~C

The values you get for data will depend on which way you are turning the device and how quickly. You will need
to press ~C (Ctrl-C) to end.

See Also You can also measure rotation by using a variable resistor (see Wiring a 10 kQ variable resistor
(trimpot) to an ADC port).

Acquiring Data by Using a Smart Sensor over a Serial Connection

Problem You want to connect a smart sensor that uses a built-in microcontroller to stream data, such as a
global positioning system (GPS), to the Bone and read the data from it.

Solution The Bone has several serial ports (UARTs) that you can use to read data from an external microcon-
troller included in smart sensors, such as a GPS. Just wire one up, and you’ll soon be gathering useful data,
such as your own location.

Here’s what you'll need:
* Breadboard and jumper wires.
* GPS receiver
Wire your GPS, as shown in Wiring a GPS to UART 4.

The GPS will produce raw National Marine Electronics Association (NMEA) data that’'s easy for a computer to
read, but not for a human. There are many utilities to help convert such sensor data into a human-readable
form. For this GPS, run the following command to load a NMEA parser:

bone$ npm install —-g nmea

Running the code in Talking to a GPS with UART 4 (GPS.js) will print the current location every time the GPS
outputs it.

Listing 13.10: Talking to a GPS with UART 4 (GPS.js)

#!/usr/bin/env node
// Install with: npm install nmea

// Need to add exports.serialParsers = m.module.parsers;
// to the end of /usr/local/lib/node_modules/bonescript/serial.]s
(continues on next page)

514 Chapter 13. Books

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

BeagleBoard Docs, Release 1.0.20230711-wip

*adafruit! B

Ultimate GPS
Breakout v3

BeagleBone

fritzing

Fi

g. 13.20: Wiring a GPS to UART 4

(continued from previous page)

var b = require ('bonescript');
var nmea = require('nmea');

var port = '/dev/ttyO4';
var options = {
baudrate: 9600,
parser: b.serialParsers.readline (”\n”)

bi
b.serialOpen (port, options, onSerial);
function onSerial (x) {

if (x.err) {
console.log ('***ERROR*** ' + JSON.stringify (x));

I3
if (x.event == 'open') {
console.log ('***OPENED***") ;
}
if (x.event == 'data') {
console.log(String(x.data));
console.log (nmea.parse (x.data));
}
}
GPS. s

If you don’t need the NMEA formatting, you can skip the npm part and remove the lines in the code that refer
to it.

Note: If you get an error like this TypeError: Cannot call method ‘readline’ of undefined

add this line to the end of file /usr/local/lib/node_modules/bonescript/

13.1. BeagleBone Cookbook 515

BeagleBoard Docs, Release 1.0.20230711-wip

serial.js:

exports.serialParsers = m.module.parsers;

P8

| opcnD 1 2
| vDD_3V3 s GPIO_38 3 4 GPIO_39
| vDD_5V GPIO_34 5 6 GPIO_35
| sys_ 5V S GPIO_66 7 8 GPIO_67
| PWR_BUT I GPIO_69 9 10 GPIO_68
UART4_RXD 11|12 GPIO_60 GPIO_45 11 12 GPIO_44
UART4_TXD 13|14 GPIO_50 GPIO_23 13 14 GPIO_26
GPIO_48 15 16 GPIO_51 GPIO_47 15 16 GPIO_46
GPIO_5 17 18 GPIO_4 GPIO_27 17 18 GPIO_65
UARTI_RTSN 19 20 UARTI_CTSN GPIO_22 19 20 GPIO_63
UART2_TXD 21 | 22 | UART2_RXD GPIO_62 21 22 GPIO_37
GPIO_49 23 |24 | UARTI_TXD GPIO_36 23 24 GPIO_33
GPIO_117 25|26 | UARTI_RXD GPIO_32 25 26 GPIO_61
GPIO_115 27 28 GPIO_113 GPIO_86 27 28 GPIO_88
GPIO_111 29 30 GPIO_112 GPIO_87 29 30 GPIO_89

GPIO_110 31 32 UART5_CTSN+ | 31 | 32 | UART5_RTSN

33 34 UART4_RTSN | 33 34 | UART3_RTSN

35 36 UART4_CTSN | 35 36 | UART3_CTSN

37 25 HEEB UARRS5_TXD+ |37 38 | UART5_RXD+
39 40 GPIO_76 39 40 GPIO_77
GFPIO_20 41 |42 | UART3_TXD | GPIO_74 41 42 GPIO_75
IR 2 24 GPIO_72 43 44 GPIO_73
45 46 | EEEEEE GPIO_70 45 46 GPIO_71

Measuring a Temperature

Problem You want to measure a temperature using a digital temperature sensor.

Fig. 13.21: Table of UART outputs

Solution The TMP101 sensor is a common digital temperature sensor that uses a standard 1°C-based serial

protocol.

To make this recipe, you will need:

* Breadboard and jumper wires.

* Two 4.7 kQ resistors.

* TMP101 temperature sensor.

Wire the TMP101, as shown in Wiring an 12C TMP101 temperature sensor.

There are two 1°C buses brought out to the headers. Table of I12C outputs shows that you have wired your
device to I°C bus 2.

Once the I2C device is wired up, you can use a couple handy I>C tools to test the device. Because these are
Linux command-line tools, you have to use 2 as the bus number. i2cdetect, shown in /2C tools, shows which
I°C devices are on the bus. The -r flag indicates which bus to use. Our TMP101 is appearing at address 0x49.
You can use the ji2cget command to read the value. It returns the temperature in hexadecimal and degrees C.
In this example, 0x18 = 24{deg}C, which is 75.2{deg}F. (Hmmm, the office is a bit warm today.) Try warming
up the TMP101 with your finger and running i2cget again.

[$]

16 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

® o o o o e e 0 0o e e 0 00 e o 0o 00
e e o o o e e o 0 o e e 0 0 e e 0o 00

e e 0 00
e e 0 00

GPIO_30
GPIO_31
GPI1O_48

® @ e o 0 0 0 0 o o o o NI
® o 0 0 0 0 0 0 0 0 0 o}
® o 0 0 0 000 0 0 0 00

Fig. 13.22: Wiring an I2C TMP101 temperature sensor

GPIO_60
GPIO_50
16 GPIO_51

12C1_SCL

18 12C1_SDA

12C2_SCL

20 12C2_SDA

12C2_SCL

22 | 12C2_SDA

GPIO_49
GPIO_117
GPIO 115
GPIO_111
GPIO_110

GPIO_20

T pE

39
41

45

24 12C1_SCL

26 12C1_SDA

28 GPIO_113
30 GPIO_112

34
36
- R
a0 ERENE
42 GPIO_7

a4

46

BeagleBone

GPIO_38
GPIO_34
GPIO_66
GPIO_69
GPIO_45
GPIO 23
GPIO_47
GPIO_27
GPIO_22
GPIO_62
GPIO_36
GPIO_32
GPIO_86
GPIO_87
GPIO_10

GPIO_9

GPIO_8
GPIO_78
GPIO_76
GPIO 74
GPIO_72
GPIO_70

Fig. 13.23: Table of I°C outputs

fritzing

GPIO_39
GPIO_35
GPIO_67
GPIO_68
GPIO_44
GPIO 26
GPIO_46
GPIO_65
GPIO_63
GPIO_37
GPIO_33
GPIO 61
GPIO_88
GPIO_89
GPIO 11
GPIO_81
GPIO_80
GPIO_79
GPIO 77
GPIO_75
GPIO 73
GPIO_71

13.1. BeagleBone Cookbook

517

BeagleBoard Docs, Release 1.0.20230711-wip

12C tools

bone$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c¢c d e f£
00: T

102 == == == == —— mm —— o
20: —= == —= m= mm m— mm —— mm e o

30. —_—— e - —— - —— - —— ——

407 == == == == —— —— —— —— == 49 —— —— —m o o o
50: —— == —— == UU UU UU UU —= —— —= —— ——= —— —— —-

60: == == == == = —m —m —m —m e o o

T0: == == —— —m —— —— —— oo

bone$ i2cget -y 2 0x49
0x18

Reading the temperature via the kernel driver

The cleanest way to read the temperature from at TMP101 sensor is to use the kernel drive.
Assuming the TMP101 is on bus 2 (the last digit is the bus number)

I2°C TMP101 via Kernel

bone$ cd /sys/class/i2c—adapter/

bone$ 1s

i2¢c-0 i2c-1 1i2c-2 # Three i2c buses (bus 0 is internal)
bone$ cd i2c-2 # Pick bus 2

bone$ 1s -1s

0 ——w——-w———- 1 root gpio 4096 Jul 1 09:24 delete_device

0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 device —> ../../4819c000.1i2c

0 drwxrwxr—-x 3 root gpio 0 Dec 31 1999 i2c-dev

0 —r--r—-r——- 1 root gpio 4096 Dec 31 1999 name

0 ——w——w———— 1 root gpio 4096 Jul 1 09:24 new_device

0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 of_node -> ../../../../../../../..

—/firmware/devicetree/base/ocp/interconnect@48000000/segment@100000/target—
—module@9c000/12c@0

0 drwxrwxr—-x 2 root gpio 0 Dec 31 1999 power

0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 subsystem -> ../../../../../../../
—../bus/i2c

0 —rw-rw-r—— 1 root gpio 4096 Dec 31 1999 uevent

Assuming the TMP101 is at address 0x49

bone$ echo tmpl0l1 0x49 > new_device

This tells the kernel you have a TMP101 sensor at address 0x49. Check the log to be sure.

bone$ dmesg -H | tail -3

[+13.571823] 12c i2c-2: new_device: Instantiated device tmpl0l at 0x49
[+0.043362] 1m75 2-0049: supply vs not found, using dummy regulator

[+0.009976] 1m75 2-0049: hwmonO: sensor 'tmplO1l'

Yes, it's there, now see what happened.

bone$ 1s
2-0049 delete_device device 12c-dev name new_device of _node power .
—subsystem uevent

Notice a new directory has appeared. It's for i2c bus 2, address 0x49. Look into it.

518 Chapter 13. Books

10

11

12

13

14

15

16

17

18

19

20

21

22

10

11

12

13

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ cd 2-0049/hwmon/hwmon0

bone$ 1s -F

device@ name power/ subsystem@ templ_input templ_max templ_max_hyst .
—uevent update_interval

bone$ cat templ_input

24250

There is the temperature in milli-degrees C.

Other i2c devices are supported by the kernel. You can try the Linux Kernel Driver Database, https://cateee.
net/lkddb/ to see them.

Once the driver is in place, you can read it via code. Reading an I12C device (i2cTemp.py) shows how to read
the TMP101.

Python

JavaScript

Listing 13.11: Reading an I°C device (i2cTemp.py)

#!/usr/bin/env python
S S S S S S SSSSSSSSSSSSSSSSSSSSSS SSS

// i2cTemp.py

// Read a TMP101 sensor on i2c bus 2, address 0x49

// Wiring: Attach to i2c as shown in text.

// Setup: echo tmpl01 0x49 > /sys/class/i2c-adapter/i2c-2/
—new_device

// See:

LSS S S S S S SSSSSSSSSSSSSSSSSSSSSSS

import time

ms = 1000 # Read time 1in ms
bus = '2'
addr = '49'

I2CPATH="'/sys/class/i2c—adapter/i2c~"+bus+'/"'+bus+'-00'+addr+'/hwmon/hwmon0"';
f = open (I2CPATH+”/templ_input”, "r”)

while True:

f.seek (0)
data = f.read() [:-1] # returns mili-degrees C
print ("data (C) = ” + str(int (data)/1000))

time.sleep (ms/1000)
i2cTemp.py

Listing 13.12: Reading an 1°C device (i2cTemp.js)

#!/usr/bin/env node

LSS S S S S S S S

// i2cTemp. js

// Read at TMP101 sensor on i2c bus 2, address 0x49
// Wiring: Attach to i2c as shown in text.
// Setup: echo tmpl01 0x49 > /sys/class/i2c-adapter/i2c-2/new_
—device

// See:

SIS S S S S S S

const fs = require(”fs”);

const ms = 1000; // Read time in ms

const bus = '2';

const addr = '49"';

(continues on next page)

13.1. BeagleBone Cookbook 519

https://cateee.net/lkddb/
https://cateee.net/lkddb/

14

15

16

17

18

19

20

21

22

11

12

13

14

15

16

17

18

19

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
I2CPATH="'/sys/class/i2c—adapter/i2c-"'+bus+'/'+bus+'-00"'+addr+"'/hwmon/hwmon0"';

// Read every ms
setInterval (readTMP, ms);

function readTMP () {
var data = fs.readFileSync (I2CPATH+” /templ_input”) .slice (0, -1);
console.log('data (C) = ' + data/1000);

i2cTemp. js
Run the code by using the following command:

bone$./i2cTemp. s

data (C) = 25.625
data (C) = 27.312
data (C) = 28.187
data (C) = 28.375
~C

Notice using the kernel interface gets you more digits of accuracy.

Reading i2c device directly

The TMP102 sensor can be read directly with i2c commands rather than using the kernel driver. First you need
to install the i2c module.

bone$ pip install smbus

Listing 13.13: Reading an I>C device (i2cTemp.py)
#!/usr/bin/env python

LSS S S S S S S S SSSSSSSSSSSSSSS

// i2ctmpl01.py

// Read at TMP101 sensor on i2c bus 2, address 0x49
// Wiring: Attach to i2c as shown in text.
// Setup: pip install smbus

// See:

LSS S S S S S S S SSSSSSSSSSSSSSSSS

import smbus
import time

ms = 1000 # Read time in ms
bus = smbus.SMBus (2) # Using i2c bus 2
addr = 0x49 # TMP101 is at address 0x49

while True:
data = bus.read_byte_data (addr, 0)
print ("temp (C) = " + str(data))
time.sleep (ms/1000)

i2ctmplOl.py

This gets only 8 bits for the temperature. See the TMP101 datasheet (https://www.ti.com/product/TMP101) for
details on how to get up to 12 bits.

Reading Temperature via a Dallas 1-Wire Device

Problem You want to measure a temperature using a Dallas Semiconductor DS18B20 temperature sensor.

520 Chapter 13. Books

https://www.ti.com/product/TMP101

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The DS18B20 is an interesting temperature sensor that uses Dallas Semiconductor’s 1-wire inter-
face. The data communication requires only one wire! (However, you still need wires from ground and 3.3 V.)
You can wire it to any GPIO port.

To make this recipe, you will need:
* Breadboard and jumper wires.
e 4.7 kQ resistor
¢ DS18B20 1-wire temperature sensor.

Wire up as shown in Wiring a Dallas 1-Wire temperature sensor.

e o o 00
e e o 0 0

e e o 0 0

e e o 0 0
e e e e 00000000 0 00
e e e 00000000 0 0 0

e e e e 00000000 0 00

"'vvvvoooovcccqfo-"'vvvovoo.

e o 0o 0 0
e o o 0 0
® e o 000 00000000000

BeagleBone

e e 0o 00
e o 0o 00

e o o 0 0
e e 0 0 0
I R T T N T N N N N R N T T R O R R T T N N Y N N A)

® e 0 0 0 0 0 0 0 0 0 00000000
e e e 000 00000 0 00

e e e 00000000 0 00

fritzing
Fig. 13.24: Wiring a Dallas 1-Wire temperature sensor

Edit the file /boot/uEnt.txt. Go to about line 19 and edit as shown:

17 ###
18 ###Additional custom capes
19 uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo

20 #uboot_overlay_addrb5=<file5>.dtbo

Be sure to remove the # at the beginning of the line.

Reboot the bone:

bone$ reboot

Now run the following command to discover the serial number on your device:

bone$ 1ls /sys/bus/wl/devices/
28-00000114eflb 28-00000128197d wl_bus_masterl
I have two devices wired in parallel on the same P9_12 input. This shows the serial numbers for all the devices.

Finally, add the code in Reading a temperature with a DS18B20 (wl.py) in to a file named wl.py, edit the path
assigned to w1l so that the path points to your device, and then run it.

Python

13.1. BeagleBone Cookbook 521

11

12

13

14

15

16

17

18

19

20

21

22

23

12

13

14

15

16

17

18

19

20

21

22

23

BeagleBoard Docs, Release 1.0.20230711-wip

JavaScript

Listing 13.14: Reading a temperature with a DS18B20 (w1l.py)

#!/usr/bin/env python

LSS S S S S SSSSSSSSSSSSSSSSSSS SSS

// wl.js

// Read a Dallas l-wire device on P9 12

// Wiring: Attach gnd and 3.3V and data to P9 _12
// Setup: Edit /boot/uEnv.txt to include:

// uboot_overlay addr4=BB-W1-P9.12-00A0.dtbo

// See:

LSS S S S S S S SSSSSSSSSS

import time

ms = 500 # Read time in ms

Do 1ls /sys/bus/wl/devices and find the address of your device
addr = '28-00000d459c2c' # Must be changed for your device.

W1PATH ='/sys/bus/wl/devices/' + addr
f = open (WIPATH+'/temperature')

while True:

f.seek (0)
data = f.read()[:-1]
print ("temp (C) = ” + str(int (data)/1000))

time.sleep (ms/1000)

wl.py

Listing 13.15: Reading a temperature with a DS18B20 (w1l.js)

#!/usr/bin/env node

LSS LSS/

// wl.js

// Read a Dallas l1-wire device on P9 _12

// Wiring: Attach gnd and 3.3V and data to P9_12
// Setup: Edit /boot/uEnv.txt to include:

// uboot_overlay addr4=BB-W1-P9.12-00A0.dtbo

// See:

LIS LSS S S S S S S SSSSSSSSS S

const fs = require(”fs”);

const ms = 500 // Read time in ms

// Do 1ls /sys/bus/wl/devices and find the address of your device
const addr = '28-00000d459c2c'; // Must be changed for your device.

const WI1PATH ='/sys/bus/wl/devices/' + addr;

// Read every ms
setInterval (readWl, ms);

function readwl () {
var data = fs.readFileSync (W1PATH+'/temperature') .slice (0, -1);
console.log('temp (C) = ' + data/1000);

wl.Js

bone$./wl.]s
temp) = 28.625
temp) = 29.625
temp) 30.5
temp) = 31.0

(C
(C
(C
(C

(continues on next page)

522 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
~C

Each temperature sensor has a unique serial number, so you can have several all sharing the same data line.

Playing and Recording Audio

Problem BeagleBone doesn’t have audio built in, but you want to play and record files.

Solution One approach is to buy an audio cape, but another, possibly cheaper approach is to buy a USB
audio adapter, such as the one shown in A USB audio dongle.

Fig. 13.25: A USB audio dongle

Drivers for the Advanced Linux Sound Architecture (ALSA) are already installed on the Bone. You can list the
recording and playing devices on your Bone by using aplay and arecord, as shown in Listing the ALSA audio
output and input devices on the Bone. BeagleBone Black has audio-out on the HDMI interface. It's listed as
card 0 in Listing the ALSA audio output and input devices on the Bone. card 1 is my USB audio adapter’s audio
out.

Listing the ALSA audio output and input devices on the Bone

bone$ aplay -1
x*% List of PLAYBACK Hardware Devices **
card 0: Black [TI BeagleBone Black], device 0: HDMI nxp-hdmi-hifi-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0
(continues on next page)

13.1. BeagleBone Cookbook 523

http://bit.ly/1MrAJUR

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

bone$ arecord -1

**** Tist of CAPTURE Hardware Devices ****

card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

In the aplay output shown in Listing the ALSA audio output and input devices on the Bone, you can see the
USB adapter’s audio out. By default, the Bone will send audio to the HDMI. You can change that default by
creating a file in your home directory called ~/.asoundrc and adding the code in Change the default audio out
by putting this in ~/.asoundrc (audio.asoundrc) to it.

Listing 13.16: Change the default audio out by putting this in
~/.asoundrc (audio.asoundrc)

pcm. !default {
type plug
slave {

pcm "hw:1,0"”

}

}

ctl.!default {
type hw
card 1

audio.asoundrc

You can easily play .wav files with aplay:

bone$ aplay test.wav

You can play other files in other formats by installing mplayer:

bone$ sudo apt update
bone$ sudo apt install mplayer
bone$ mplayer test.mp3

Discussion Adding the simple USB audio adapter opens up a world of audio 1/0 on the Bone.

13.1.3 Displays and Other Outputs

In this chapter, you will learn how to control physical hardware via BeagleBone Black’s general-purpose in-
put/output (GPIO) pins. The Bone has 65 GPIO pins that are brought out on two 46-pin headers, called P8 and
P9, as shown in The P8 and P9 GPIO headers.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

The purpose of this chapter is to give simple examples that show how to use various methods of output. Most
solutions require a breadboard and some jumper wires.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and run it,
either within Visual Studio Code (VSC) integrated development environment (IDE) or from the command line
(Getting to the Command Shell via SSH).

524 Chapter 13. Books

11

12

13

14

15

16

17

BeagleBoard Docs, Release 1.0.20230711-wip

BeagleBone

fritzing

Fig. 13.26: The P8 and P9 GPIO headers

Toggling an Onboard LED

Problem You want to know how to flash the four LEDs that are next to the Ethernet port on the Bone.

Solution Locate the four onboard LEDs shown in The four USER LEDs. They are labeled USRO through USR3,
but we’ll refer to them as the USER LEDs.

Place the code shown in Using an internal LED (internLED.py) in a file called internLED.py. You can do
this using VSC to edit files (as shown in Editing Code Using Visual Studio Code) or with a more traditional editor
(as shown in Editing a Text File from the GNU/Linux Command Shell).

Python
C

Listing 13.17: Using an internal LED (internLED.py)

#!/usr/bin/env python
LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSS

internLED.py

Blinks A USR LED.
Wiring:

Setup:

See:

LSS S S S SSSSSSSSSSSSSSSSSS
import gpiod
import time

LED_CHIP = 'gpiochipl'
LED_LINE_OFFSET = [21] # USRO run: gpioinfo | grep -1 —-e chip —-e usr

chip = gpiod.Chip (LED_CHIP)

lines = chip.get_lines (LED_LINE_OFFSET)
(continues on next page)

13.1. BeagleBone Cookbook 525

18

19

20

21

22

23

24

11

12

13

14

16

17

18

19

20

21

22

23

24

25

BeagleBoard Docs, Release 1.0.20230711-wip

PWR USR3 USR2 USR1 USRO

-
S
=
=
-
o
o0
m
o
=
)
—

10/100 Ethernet

- -

Fig. 13.27: The four USER LEDs

(continued from previous page)

lines.request (consumer="internLED.py', type=gpiod.LINE_REQ _DIR_OUT)

state = 0 # Start with LED off

while True:
lines.set_values ([state])
state = ~state # Toggle the state
time.sleep(0.25)

internLED.py

Listing 13.18: Using an internal LED (internLED.c)
LSS S S S S S SS

/) # internLED.c

/) # Blinks A USR LED.
/) # Wiring:

/7 # Setup:

/) # See:

SS S S S S S S S S SSSSSSSSSSSSS S S
#include <gpiod.h>

#include <stdio.h>

#include <unistd.h>

#define CONSUMER ”internLED.c”

int main (int argc, char **argv)
{

int chipnumber = 1;

unsigned int line_num = 21; // usr0 LED, run: gpioinfo | grep -
—~1 —e chip -e usr

unsigned int val;

struct gpiod_chip *chip;

struct gpiod_line *line;

int i, ret;

chip = gpiod_chip_open_by_number (chipnumber) ;
line = gpiod_chip_get_line(chip, line_num) ;
ret = gpiod_line_request_output (line, CONSUMER, O0);
(continues on next page)

526 Chapter 13. Books

26

27

28

29

30

31

32

33

34

35

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

/* Blink */

val = 0;
while (1) {
ret = gpiod_line_set_value(line, val);
// printf (”Output %u on line #%u\n”, val, line_num);
usleep (100000) ; // Number of microseconds to.
—sleep
val = !wval;
}

internLED.c

In the bash command window, enter the following commands:

bone$ cd ~/beaglebone-cookbook-code/03displays
bone$./internLED.py

The USERO LED should now be flashing.

Toggling an External LED

Problem You want to connect your own external LED to the Bone.

Solution Connect an LED to one of the GPIO pins using a series resistor to limit the current. To make this
recipe, you will need:

¢ Breadboard and jumper wires.
e 220 Q to 470 Q resistor.

* LED

Warning: The value of the current limiting resistor depends on the LED you are using. The Bone can drive
only 4 to 6 mA, so you might need a larger resistor to keep from pulling too much current. A 330 Q or 470
Q resistor might be better.

Diagram for using an external LED shows how you can wire the LED to pin 14 of the P9 header (P9_14). Every
circuit in this book (Wiring a Breadboard) assumes you have already wired the rightmost bus to ground (P9_1)
and the next bus to the left to the 3.3 V (P9_3) pins on the header. Be sure to get the polarity right on the LED.
The _short_lead always goes to ground.

After you've wired it, start VSC (see Editing Code Using Visual Studio Code) and find the code shown in Code
for using an external LED (externLED.py). Notice that it looks very similar to the internLED code, in fact it only
differs in the line number (18 instead of 21). The built-in LEDs use the same GPIO interface as the GPIO pins.

Python
C

Listing 13.19: Code for using an external LED (externLED.py)

#!/usr/bin/env python
LSS S S S S S S SSSSSSSS S S

externLED.py
Blinks an external LED wired to P9 _14.
Wiring: P9_14 connects to the plus lead of an LED. The negative.

—~lead of the
(continues on next page)

13.1. BeagleBone Cookbook 527

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

BeagleBoard Docs, Release 1.0.20230711-wip

e e 0 00
e e 0 0 0

® e 0 0 0 0 0 0 0 000
® e 0 0 0 0 0 0 0 0 00
® e 0 0 0 00 0 0 0 00
® e 0 0 0 00 0 0 0 00
® e 0 0 0 00 0 0 0 00
® e 0 0 0 00 0 0 0 0 0

e e 0 00
® e o 0 0
:]

* e ¢ e o ¢ e o o 0 * e
* e ¢ e o ¢ e o o 0 * e
* e ¢ e o e e o o 0 * e
* e ¢ e o e e o o 0 * e
* e ¢ e o ¢ e o o 0 * o
¢ e o ¢ e o o o
L) ¢ e o ¢ e o o 0 * e
L) ¢ e o ¢ e o o o . o BeagleBOne
L) ¢ e o ¢ e o o o . o
L) ¢ e o ¢ e o o o . o
L) ¢ e o ¢ e o o o . o
¢ e o ¢ e o o o
* e ¢ e o ¢ e o o o ¢ e
* e ¢ e o ¢ e o o 0 e e
* e ¢ e o ¢ e o o 0 ¢ e
* e ¢ e o ¢ e o o 0 e o
* e ¢ e o ¢ e o o 0 e o
¢ e o ¢ e o o 0

fritzing

Fig. 13.28: Diagram for using an external LED

(continued from previous page)

LED goes to a 220 Ohm resistor. The other lead of the.
wresistor goes
to ground
Setup:
Seel:
S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSS SS
import gpiod
import time

H H

LED_CHIP = 'gpiochipl'
LED_LINE_OFFSET = [18] # P9 14 run: gpioinfo | grep -1 —e chip -e P9 14

chip = gpiod.Chip (LED_CHIP)

lines = chip.get_lines (LED_LINE_OFFSET)
lines.request (consumer="internLED.py', type=gpiod.LINE_REQ_DIR_OUT)

state = 0 # Start with LED off

while True:
lines.set_values([state])
state = ~state # Toggle the state
time.sleep (0.25)

externLED.py

Listing 13.20: Code for using an external LED (externLED.c)

LSS S S S S S SSSSSSSSSSSSSSSSSS S

/) # externLED.c

// Blinks an external LED wired to P9 _14.

// Wiring: P9_14 connects to the plus lead of an LED. The negative lead of.

—the

// LED goes to a 220 Ohm resistor. The other lead of the.
(continues on next page)

528 Chapter 13. Books

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

—resistor goes

// to ground
// Setup:
// See:

LSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S S
#include <gpiod.h>
#include <stdio.h>
#include <unistd.h>

#define CONSUMER ”internLED.c”

int main (int argc, char **argv)
{

int chipnumber = 1;

unsigned int line_num = 18; // P9 _14, run: gpioinfo | grep —i -
—e chip —-e P9 14

unsigned int val;

struct gpiod_chip *chip;

struct gpiod_line *line;

int i, ret;

chip = gpiod_chip_open_by_number (chipnumber) ;
line gpiod_chip_get_line(chip, line_num);
ret gpiod_line_request_output (line, CONSUMER, O0);

/* Blink */

val 0g
while (1) {
ret = gpiod_line_set_value(line, val);
// printf (”Output %u on line #%ul\n”, val, line_num);
usleep (100000) ; // Number of microseconds to.
—~sleep
val = !wval;
}
I3

externLED.cC

Save your file and run the code as before (Toggling an Onboard LED).
Toggling a High-Voltage External Device
Problem You want to control a device that runs at 120 V.
Solution Working with 120 V can be tricky -even dangerous- if you aren’t careful. Here's a safe way to do it.
To make this recipe, you will need:
e PowerSwitch Tail Il

Diagram for wiring PowerSwitch Tail Il shows how you can wire the PowerSwitch Tail Il to pin P9_14.

After you've wired it, because this uses the same output pin as Toggling an External LED, you can run the same
code (Code for using an external LED (externLED.py)).

Fading an External LED

Problem You want to change the brightness of an LED from the Bone.

13.1. BeagleBone Cookbook 529

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

BeagleBoard Docs, Release 1.0.20230711-wip

PowerSwitch Tail

1:+in 2:-in 3:Ground

CADICH

BeagleBone

fritzing

Fig. 13.29: Diagram for wiring PowerSwitch Tail Il

Solution Use the Bone’s pulse width modulation (PWM) hardware to fade an LED. We'll use the same circuit
as before (Diagram for using an external LED). Find the code in Code for using an external LED (fadelLED.py)
Next configure the pins. We are using P9_14 so run:

bone$ config-pin P9_14 pwm
Then run it as before.

Python

JavaScript

Listing 13.21: Code for using an external LED (fadeLED.py)
#!/usr/bin/env python

LSS S S S S S S S S S S
// fadeLED.py

// Blinks the P9_14 pin

// Wiring:

// Setup: config-pin P9_14 pwm

// See:

LSS S S S S SSSSSSSSSSSSSSSSSSSSSS SSS
import time

ms = 20; # Fade time in ms

pwmPeriod = 1000000 # Period in ns

pwm = '1l'" # pwm to use

channel = 'a' # channel to use
PWMPATH="'/dev/bone/pwm/"'+pwm+'/'+channel
step = 0.02 # Step size

min = 0.02 # dimmest value

max = 1 # brightest value
brightness = min # Current brightness

f = open (PWMPATH+'/period', 'w')
f.write (str (pwmPeriod))
f.close()

(continues on next page)

530 Chapter 13. Books

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
f = open (PWMPATH+'/enable', 'w')
f.write('1")
f.close()

f = open (PWMPATH+'/duty_cycle', 'w')

while True:
f.seek (0)
f.write(str (round (pwmPeriod*brightness)))
brightness += step
if (brightness >= max or brightness <= min) :

step = -1 * step

time.sleep (ms/1000)

| Pin | pwm | channel
| P9 31 | O | a
| P9_29 | O | b
| P9 14 | 1 | a
| P9 16 | 1 | b
| P8_19 | 2 | a
| P8_13 | 2 | b

fadelED.py

Listing 13.22: Code for using an external LED (fadeLED.js)

#!/usr/bin/env node

LSS S S S S

// fadeLED. js

// Blinks the P9_14 pin

// Wiring:

// Setup: config-pin P9_14 pwm
// See:

LSS S S S SSSSSSSSSSSSSSSSSSSSS S S
const fs = require(”fs”);

const ms = '20"'; // Fade time in ms
const pwmPeriod = '1000000"'; // Period in ns
const pwm = '1'; // pwm to use
const channel = 'a'; // channel to use

const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
var step = 0.02; // Step size

const min = 0.02, // dimmest value
max = 1; // brightest value
var brightness = min; // Current brightness;

// Set the period in ns

fs.writeFileSync (PWMPATH+'/period', pwmPeriod);
fs.writeFileSync (PWMPATH+'/duty_cycle', pwmPeriod/2);
fs.writeFileSync (PWMPATH+'/enable', '1');

setInterval (fade, ms); // Step every ms

function fade () {
fs.writeFileSync (PWMPATH+'/duty_cycle',
parselnt (pwmPeriod*brightness));
brightness += step;
if (brightness >= max || brightness <= min) {
step = -1 * step;
}

(continues on next page)

13.1. BeagleBone Cookbook 531

37

38

39

40

41

42

43

44

BeagleBoard Docs, Release 1.0.20230711-wip

// | Pin | pwm | channel
// | P9_31 | 0 | a

// | P9_29 | 0 | b

// | P9_14 | 1 | a

// | P9_16 | 1 | b

// | P8_19 | 2 | a

// | P8_13 | 2 | b
fadelED.js

The Bone has several outputs that can be use as pwm’s as shown in Table of PWM outputs. There are three

(continued from previous page)

EHRPWM'’s which each has a pair of pwm channels. Each pair must have the same period.

P9 P8

EENEERE ¢ 2 - DGND NN DGND |
| VDD _3V3 [GPIO_38 3 4 GPIO_39
B 5 < GPIO_ 34 5 6 GPIO_35
B 0 s TIMER4 | 7 | 8 TIMER?Y
B © o TIMERS5 | 9 10 TIMERS6
GPIO_30 11 12 GPIO_60 GPIO_45 11 12 GPIO_44
GPIO_31 13|14 | EHRPWMIA || EHRPWM2B 13|14 GPIO 26
GPIO_48 15 16 EHRPWMIB GPIO_47 15 16 GPIO_46
GPIO_5 17 18 GPIO_4 GPIO_27 17 18 GPIO_65
19 20 | EHRPWM2A | 19 20 GPIO 63
EHRPWMOB | 21 | 22 | EHRPWMOA GPIO_62 21 22 GPIO_37
GPIO_49 23 24 GPIO_I5 GPIO_36 23 24 GPIO_33
GPIO_117 25 26 GPIO_i14 GPIO_32 25 26 GPIO_61
GPIO_115 27 |28 | ECAPPWM2 | GPIO_86 27 28 GPIO_88
EHRPWMOB |29 20 GFIO 112 GPIO_87 29 30 GPIO_89
EHRPWMOA 31 32 GPIO_10 31 32 GPIO_11

33 34 GPIO_9 33 34 EHRPWMIB
35 36 GPIO_8 35 36 EHRPWMIA

37 38 GPIO_78 37 38 GPIO_79
39 40 GPIO_76 39 40 GPIO_77
GFIO_20 41|42 ECAPPWMO | GPIO_74 41 42 GPIO_75
43 44 GPIO_72 43 44 GPIO_73

45 46

| EHRPWM2A | 45 46 EHRPWM2B

Fig. 13.30: Table of PWM outputs

The pwm'’s are accessed through /dev/bone/pwm

bone$ cd /dev/bone/pwm
bone$ 1s
0o 1 2

Here we see three pwmchips that can be used, each has two channels. Explore one.

bone$ cd 1
bone$ 1s

a b

bone$ cd a
bone$ 1s
capture

duty_cycle enable

period polarity power

uevent

Here is where you can set the period and duty_cycle (in ns) and enable the pwm. Attach in LED to P9_14 and
if you set the period long enough you can see the LED flash.

532 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ echo 1000000000 > period
bone$ echo 500000000 > duty_cycle
bone$ echo 1 > enable

Your LED should now be flashing.

Headers to pwm channel mapping are the mapping I've figured out so far. | don’t know how to get to the timers.

Table 13.3: Headers to pwm channel mapping
Pin pwm
P9_31 0
P9_29 0

1

1

2

2

channel

P9 14
P9 16
P8 19
P8 13

T|o|To|o|T|o

Writing to an LED Matrix

Problem You have an I?C-based LED matrix to interface.

Solution There are a number of nice LED matrices that allow you to control several LEDs via one interface.
This solution uses an Adafruit Bicolor 8x8 LED Square Pixel Matrix w/|I12C| Backpack.

To make this recipe, you will need:
* Breadboard and jumper wires
* Two 4.7 kQ resistors.
* 12C LED matrix

The LED matrix is a 5 V device, but you can drive it from 3.3 V. Wire, as shown in Wiring an 12C LED matrix.

¢ e e o o . . e
® e e o o . . e
° e ® e e o o . . e
* e ¢ e e o 0 . . e
* e ¢ e e o 0 . . e
* e ¢ e e o 0 . ¢ e
* e ¢ e o o o . ¢ e
¢ e o o 0 . ¢ e
. e e o o o . * e
. e e 0o o o . e e
e e 0o o 0 .

e e 0o 00
]

e e 0 0o

BeagleBone

® o o o o
e e o o o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

® e 0 0 0 0 0 0 0 0000
® @ 0 0 0 000 0 00 0 0 00
®© ® 0 0 0 000 000000 00

fritzing

Fig. 13.31: Wiring an I°C LED matrix

13.1. BeagleBone Cookbook 533

http://www.adafruit.com/products/902

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

BeagleBoard Docs, Release 1.0.20230711-wip

Measuring a Temperature shows how to use i2cdetect to discover the address of an I°C device.

Run the i2cdetect -y -r 2 command to discover the address of the display on I12C bus 2, as shown in Using 12C
command-line tools to discover the address of the display.

Using 12C command-line tools to discover the address of the display

bone$ i2cdetect -y -r 2
o 1 2 3 4 5 6 7 8 9 a b c¢c d e f£

OO. —_—— e e e e e —— - —— ——
10. _— 0 0 0 0 e =
208 == —= —= m= m— —— mm o —m o e o o

308 == m= m— mm mm mm mm mm mm e e oo e e o o

40: == == —= m= —m o —m o —m 49 —m — o o o
50: —— == —— —= UU UU UU UU —= —— —= —— —— —— —— —-

60. —_— e e e e e e e e e e e e e e

708 70 == == == == == == ==

Here, you can see a device at 0x49 and 0x70. | know | have a temperature sensor at 0x49, so the LED matrix
must be at 0x70.

Find the code in LED matrix display (matrixLEDi2c.py) and run it by using the following command:

bone$ pip install smbus # (Do this only once.)
bone$./matrixLEDi2c.py

LED matrix display (matrixLEDi2c.py)

Listing 13.23: LED matrix display (matrixLEDi2c.py)

#!/usr/bin/env python
LSS S S SSS S SSSSSSSSSSSSSSSSSSS

// i2cTemp.py

// Write an 8x8 Red/Green LED matrix.

// Wiring: Attach to i2c as shown in text.

// Setup: echo tmpl01 0x49 > /sys/class/iZ2c-adapter/i2c-2/
—new_device

// See: https://www.adafruit.com/product/902

LSS S S S S S S SSSSS
import smbus
import time

bus = smbus.SMBus (2) # Use 12c bus 2 2
matrix = 0x70 # Use address 0x70 =
ms = 1; # Delay between images in ms
The first byte is GREEN, the second is RED. 2

smile = [0x00, Ox3c, 0x00, O0x42, 0x28, 0x89, 0x04, 0x85,
0x04, 0x85, 0x28, 0x89, 0x00, 0x42, 0x00, O0x3c

]

frown = [0x3c, 0x00, 0x42, 0x00, 0x85, 0x20, 0x89, 0x00,
0x89, 0x00, 0x85, 0x20, 0x42, 0x00, O0x3c, 0x00

]

neutral = [0x3c, 0x3c, 0x42, 0x42, 0xa9, 0xa9, 0x89, 0x89,
0x89, 0x89, 0xa9, 0xa9, 0x42, 0x42, 0x3c, 0x3c

]

bus.write_byte_data (matrix, 0x21, O0) # Start oscillator (pl0) [
bus.write_byte_data (matrix, 0x81, 0) # Disp on, blink off (pll)
bus.write_byte_data (matrix, Oxe7, 0) # Full brightness (page 15)

(continues on next page)

534 Chapter 13. Books

30

31

32

33

34

35

36

37

38

39

40

41

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

bus.write_i2c_block_data (matrix, 0, frown)

for fade in range (Oxef, 0OxeO, -1):
bus.write_byte_data (matrix, fade, 0)
time.sleep (ms/10)

) |

RTE S
N

5

bus.write_i2c_block_data (matrix, 0, neutral)

for fade in range (0xe0O, Oxef, 1):
bus.write_byte_data (matrix, fade, 0)
time.sleep (ms/10)

bus.write_i2c_block_data (matrix, 0, smile)

matrixLEDi2c.py
® This line states which bus to use. The last digit gives the I1°C bus number.
@ This specifies the address of the LED matrix, 0x70 in our case.

® This indicates which LEDs to turn on. The first byte is for the first column of green LEDs. In this
case, all are turned off. The next byte is for the first column of red LEDs. The hex 0x3c number is
0b00111100 in binary. This means the first two red LEDs are off, the next four are on, and the last
two are off. The next byte (0x00) says the second column of green LEDs are all off, the fourth byte
(0x42 = 0b01000010) says just two red LEDs are on, and so on. Declarations define four different
patterns to display on the LED matrix, the last being all turned off.

@ Send three commands to the matrix to get it ready to display.

® Now, we are ready to display the various patterns. After each pattern is displayed, we sleep a
certain amount of time so that the pattern can be seen.

® Finally, send commands to the LED matrix to set the brightness. This makes the display fade
out and back in again.

Driving a 5 V Device

Problem You have a 5V device to drive, and the Bone has 3.3 V outputs.

Solution If you are lucky, you might be able to drive a 5 V device from the Bone’s 3.3 V output. Try it and
see if it works. If not, you need a level translator.

What you will need for this recipe:
* A PCA9306 level translator
* A5V power supply (if the Bone’s 5 V power supply isn’t enough)

The PCA9306 translates signals at 3.3 V to 5 V in both directions. It's meant to work with I°C devices that have
a pull-up resistor, but it can work with anything needing translation.

Wiring a PCA9306 level translator to an LED matrix shows how to wire a PCA9306 to an LED matrix. The left is
the 3.3 V side and the right is the 5 V side. Notice that we are using the Bone’s built-in 5 V power supply.

Note: If your device needs more current than the Bone’s 5 V power supply provides, you can wire in an
external power supply.

Writing to a NeoPixel LED String Using the PRUs

Problem You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and want to light it up.

13.1. BeagleBone Cookbook 535

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487

10

11

12

13

14

15

16

BeagleBoard Docs, Release 1.0.20230711-wip

n
oW oo
90ELVOd
n T oy oo

BeagleBone

fritzing

Fig. 13.32: Wiring a PCA9306 level translator to an LED matrix

Solution The PRU Cookbook has a nice discussion (WS2812 (NeoPixel) driver) on driving NeoPixels.

Writing to a NeoPixel LED String Using LEDscape
Making Your Bone Speak

Problem Your Bone wants to talk.

Solution Justinstall the £11te text-to-speech program:

bone$ sudo apt install flite
Then add the code from A program that talks (speak.js) in a file called speak. js and run.

Listing 13.24: A program that talks (speak.js)

#!/usr/bin/env node
var exec = require('child_process') .exec;

function speakForSelf (phrase) {

{
exec('flite -t ”' + phrase + '"”', function (error, stdout,
console.log (stdout) ;
if (error) {
console.log('error: ' + error);
}
if (stderr) {
console.log('stderr: ' + stderr);
}
}) i
I3

(continues on next page)

stderr)

536 Chapter 13. Books

https://markayoder.github.io/PRUCookbook/05blocks/blocks.html#blocks_ws2812

17

18

19

20

21

22

23

24

25

26

27

BeagleBoard Docs, Release 1.0.20230711-wip

BeagleBone

fritzing

Fig. 13.33: Wiring an Adafruit NeoPixel LED matrix to P9_29

(continued from previous page)

speakForSelf ("Hello, My name is Borris. ” +
"I am a BeagleBone Black, ” +
"a true open hardware, " +
"community-supported embedded computer for developers and hobbyists. ” +
T am powered by a 1 Giga Hertz Sitara™ ARM® Cortex—-A8 processor. " +
"I boot Linux in under 10 seconds. " +
"You can get started on development in ” +
"less than 5 minutes with just a single USB cable.” +
"Bark, bark!”
) i
speak. s

See Playing and Recording Audio to see how to use a USB audio dongle and set your default audio out.

13.1.4 Motors

One of the many fun things about embedded computers is that you can move physical things with motors. But
there are so many different kinds of motors (servo, stepper, DC), so how do you select the right one?

The type of motor you use depends on the type of motion you want:

* R/C or hobby servo motor
Can be quickly positioned at various absolute angles, but some don’t spin. In fact, many can turn
only about 180{deg}.

* Stepper motor
Spins and can also rotate in precise relative angles, such as turning 45°. Stepper motors come in
two types: bipolar (which has four wires) and unipolar (which has five or six wires).

* DC motor
Spins either clockwise or counter-clockwise and can have the greatest speed of the three. But a DC

13.1. BeagleBone Cookbook 537

BeagleBoard Docs, Release 1.0.20230711-wip

motor can’t easily be made to turn to a given angle.

When you know which type of motor to use, interfacing is easy. This chapter shows how to interface with each
of these motors.

Note: Motors come in many sizes and types. This chapter presents some of the more popular types and
shows how they can interface easily to the Bone. If you need to turn on and off a 120 V motor, consider using
something like the PowerSwitch presented in Toggling a High-Voltage External Device.

Note: The Bone has built-in 3.3 V and 5 V supplies, which can supply enough current to drive some small
motors. Many motors, however, draw enough current that an external power supply is needed. Therefore, an
external 5 V power supply is listed as optional in many of the recipes.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

Controlling a Servo Motor

Problem You want to use BeagleBone to control the absolute position of a servo motor.

Solution We’'ll use the pulse width modulation (PWM) hardware of the Bone to control a servo motor.
To make the recipe, you will need:

* Servo motor.

* Breadboard and jumper wires.

* 1 kQ resistor (optional)

* 5V power supply (optional)

The 1 kQ resistor isn’t required, but it provides some protection to the general-purpose input/output (GPIO) pin
in case the servo fails and draws a large current.

Wire up your servo, as shown in Driving a servo motor with the 3.3 V power supply.

Note: There is no standard for how servo motor wires are colored. One of my servos is wired like Driving a
servo motor with the 3.3 V power supply red is 3.3 V, black is ground, and yellow is the control line. | have
another servo that has red as 3.3 V and ground is brown, with the control line being orange. Generally, though,
the 3.3 Vis in the middle. Check the datasheet for your servo before wiring.

The code for controlling the servo motor is in servoMotor.py, shown in Code for driving a servo motor
(servoMotor.py). You need to configure the pin for PWM.

bone$ cd ~/beaglebone-cookbook-code/04motors
bone$ config-pin P9_16 pwm
bone$./servoMotor.py

Python

JavaScript

538 Chapter 13. Books

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

BeagleBoard Docs, Release 1.0.20230711-wip

e e 0 00
e e 0 0 0

e a0 00
T e e e e

2 0 0 0 0 0 00 0 0000000
® ® 0 0 0 0000 000000 00

/

BeagleBone

e e 0 00
* e e 0 0
® ® 9 2 0 0 0 0 0 0 0 0 02 0 9 0 0000 000000000000

®© © 0 2 0 0 0 0 0 0 0 00 0 9 90 00 00 000000000000
®© © 0 2 0 0 0 0 0 0 0 00 0 9 9 00 00 000000000000

® e 0 0 0 00 0 0 0 00
® e 0 0 0 0 0 0 0 0 00
® e 0 0 0 0 0 0 0 0 00
e e 0 0 0 00 0 0 0 00
® e 0 0 0 0 0 0 0 0 00
® e 0 0 0 00 0 0 0 0

fritzing

Fig. 13.34: Driving a servo motor with the 3.3 V power supply

Listing 13.25: Code for driving a servo motor (servoMotor.py)

#!/usr/bin/env python

LSS S S S S S S S SSSSSSSSSSSSSSSSSSSSS SS

// servoMotor.py

// Drive a simple servo motor back and forth on P9 16 pin
// Wiring:

// Setup: config-pin P9 16 pwm

// See:

LSS S S S S S SSSSSSSSSSSSSSSSSSSSSSSS SS

import time
import signal
import sys

pwmPeriod = '20000000" # Period in ns, (20 ms)
pwm = '1' # pwm to use

channel = 'b' # channel to use
PWMPATH="'/dev/bone/pwm/"'+pwm+'/"'+channel

low = 0.8 # Smallest angle (in ms)

hi = 2.4 # Largest angle (in ms)

ms = 250 # How often to change position, in ms
pos = 1.5 # Current position, about middle ms)
step = 0.1 # Step size to next position

def signal_handler (sig, frame):
print ('Got SIGINT, turning motor off')
f = open (PWMPATH+'/enable', 'w')
f.write('0")
f.close ()
sys.exit (0)
signal.signal (signal.SIGINT, signal_handler)
print ('Hit ~C to stop')

(continues on next page)

13.1. BeagleBone Cookbook 539

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
= open (PWMPATH+'/period', 'w')
.write (pwmPeriod)
.close ()
= open (PWMPATH+'/enable', 'w')
.write('1")
.close ()

f = open (PWMPATH+'/duty_cycle', 'w')
while True:

pos += step # Take a step
if (pos > hi or pos < low):

step *= -1
duty_cycle = str (round(pos*1000000)) # Convert ms to ns
print ('pos = ' + str(pos) + ' duty_cycle = ' + duty_cycle)
f.seek (0)

f.write (duty_cycle)
time.sleep(ms/1000)

| Pin | pwm | channel
| P9 31 | O | a
| P9 29 | 0 | b
| P9_14 | 1 | a
| P9 16 | 1 | b
| P8_19 | 2 | a
| P8_13 | 2 | b

servoMotor.py

Listing 13.26: Code for driving a servo motor (servoMotor.js)

#!/usr/bin/env node

LIS LSS S S S S S S SSSSSSSSSS

// servoMotor. js

// Drive a simple servo motor back and forth on P9 _16 pin
// Wiring:

// Setup: config-pin P9_16 pwm

// See:

LIS LSS S S S S S S SSSSSSSSSSSS

const fs = require(”fs”);

const pwmPeriod = '20000000"'; // Period in ns, (20 ms)
const pwm ='1'; // pwm to use
const channel = 'b'; // channel to use
const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
const low = 0.8, // Smallest angle (in ms)
hi = 2.4, // Largest angle (in ms)
ms = 250; // How often to change position, in ms
var pos = 1.5, // Current position, about middle ms)
step = 0.1; // Step size to next position

console.log('Hit ~C to stop');
fs.writeFileSync (PWMPATH+'/period', pwmPeriod);
fs.writeFileSync (PWMPATH+'/enable', '1');

var timer = setInterval (sweep, ms);

// Sweep from low to hi position and back again

function sweep () {
pos += step; // Take a step
if(pos > hi || pos < low) {

step *= -1;
(continues on next page)

540 Chapter 13. Books

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

10

11

12

13

14

15

16

17

18

19

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

}
var dutyCycle = parselnt (pos*1000000) ; // Convert ms to ns
// console.log('pos = ' + pos + ' duty cycle = ' + dutyCycle);
fs.writeFileSync (PWMPATH+'/duty_cycle', dutyCycle);

t

process.on('SIGINT', function () {
console.log('Got SIGINT, turning motor off');
clearInterval (timer) ; // Stop the timer
fs.writeFileSync (PWMPATH+'/enable', '0');

)i

// | Pin | pwm | channel

// | P9_31 | O | a

// | P9_29 | 0 | b

// | P9_14 | 1 | a

// | P9_16 | 1 | b

// | P8_19 | 2 | a

// | P8_13 | 2 | b

servoMotor. js

Running the code causes the motor to move back and forth, progressing to successive positions between the
two extremes. You will need to press ~C (Ctrl-C) to stop the script.

Controlling a Servo with an Rotary Encoder

Problem You have a rotary encoder from Reading a rotary encoder (rotaryEncoder.js) that you want to control
a servo motor.

Solution Combine the code from Reading a rotary encoder (rotaryEncoder.js) and Controlling a Servo Motor.

bone$ config-pin P9_16 pwm
bone$ config-pin P8_11 egep
bone$ config-pin P8_12 egep
bone$./servoEncoder.py

Listing 13.27: Code for driving a servo motor with a rotary en-
corder(servoEncoder.py)

#!/usr/bin/env python

LSS S S S S S S S SSSSSSSSSSSSSSS

// servoEncoder.py

// Drive a simple servo motor using rotary encoder viqg eQEP
// Wiring: Servo on P9_16, rotary encoder on P8_11 and P8_12
// Setup: config-pin P9 16 pwm

// config-pin P8_11 egep

// config-pin P8_12 egep

// See:

S SSS S SSSSSSSSSSSSSSSSSSSSSSSSS SS S

import time
import signal
import sys

Set up encoder

eQEP = '2"

COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
maxCount = '180'

(continues on next page)

13.1. BeagleBone Cookbook 541

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

ms = 100 # Time between samples in ms

Set the eEQP maximum count

fQEP = open (COUNTERPATH+'/ceiling', 'w')
fQEP .write (maxCount)

fQEP.close ()

Enable

fQEP = open (COUNTERPATH+'/enable', 'w')
fQEP.write ('1")

fQEP.close ()

fQEP = open (COUNTERPATH+'/count', 'r'")

Set up servo

pwmPeriod = '20000000" # Period in ns, (20 ms)
pwm = '1l'" # pwm to use

channel = 'b' # channel to use
PWMPATH="'/dev/bone/pwm/"'+pwm+'/"'+channel

low = 0.6 # Smallest angle (in ms)

hi 2.5 # Largest angle (in ms)

ms = 250 # How often to change position, in ms
pos = 1.5 # Current position, about middle ms)
step = 0.1 # Step size to next position

def signal_handler(sig, frame):
print ('Got SIGINT, turning motor off')
f = open (PWMPATH+'/enable', 'w')
f.write('0")
f.close ()
sys.exit (0)
signal.signal (signal.SIGINT, signal_handler)

= open (PWMPATH+'/period', 'w')
.write (pwmPeriod)

.close ()

= open (PWMPATH+'/duty_cycle', 'w')
.write (str (round (int (pwmPeriod) /2)))
.close ()

= open (PWMPATH+'/enable', 'w')
.write('1")

.close ()

Lo T O T Y W R

print ('"Hit ~C to stop')

olddata = -1
while True:
fQEP.seek (0)

data = fQEP.read () [:-1]
Print only if data changes
if data != olddata:
olddata = data
print (”data = ” + data)
map 0-180 to low-hi
duty_cycle = —-1*int (data)* (hi-low)/180.0 + hi

duty_cycle = str(int (duty_cycle*1000000))
—~from ms to ns
print ('duty_cycle = ' + duty_cycle)
= open (PWMPATH+'/duty_cycle', 'w')
.write (duty_cycle)
f.close()

#
f
£

Convert.

(continues on next page)

542

Chapter 13. Books

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
time.sleep(ms/1000)

Black OR Pocket

eQEPO: P9.27 and P9.42 OR P1_33 and P2 34
eQEP1: P9.33 and P9.35

eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
AT

eQEP1: P8.33 and P8.35

eQEP2: P8.11 and P8.12 or P9.19 and P9.41
eQEP3: P8.24 and P8.25 or P9.27 and P9.42
| Pin | pwm | channel

| P9 31 | O | a

| P9 29 | 0 | b

| P9 _14 | 1 | a

| P9 16 | 1 | b

| P8_19 | 2 [a

| P8_13 | 2 | b

servoEncoder.py

Controlling the Speed of a DC Motor

Problem You have a DC motor (or a solenoid) and want a simple way to control its speed, but not the direction.

Solution It would be nice if you could just wire the DC motor to BeagleBone Black and have it work, but it
won’t. Most motors require more current than the GPIO ports on the Bone can supply. Our solution is to use a
transistor to control the current to the bone.

Here we configure the encoder to returns value between 0 and 180 inclusive. This value is then mapped to a
value between min (0.6 ms) and max (2.5 ms). This number is converted from milliseconds and nanoseconds
(time 1000000) and sent to the servo motor via the pwm.

Here’s what you will need:

* 3Vto5YVDC motor

¢ Breadboard and jumper wires.

* 1 kQ resistor.

» Transistor 2N3904.

* Diode 1N4001.

* Power supply for the motor (optional)
If you are using a larger motor (more current), you will need to use a larger transistor.
Wire your breadboard as shown in Wiring a DC motor to spin one direction.
Use the code in Driving a DC motor in one direction (dcMotor.py) to run the motor.
Python

JavaScript

Listing 13.28: Driving a DC motor in one direction (dcMotor.py)

#!/usr/bin/env python
LSS S S SSS S SSSSSSSSSSSSSSSSSSS
// dcMotor. js
// This is an example of driving a DC motor
(continues on next page)

13.1. BeagleBone Cookbook 543

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

BeagleBoard Docs, Release 1.0.20230711-wip

.
.
.
.
e e 0o 0

R

2 ® 0 EEIIID O e e e e
-0

e e 0 0 0
e e o 0 0
® 2 92 2 2 0 0 0 0 0 0 2 02 0 0 90 0 00 0 000000000000

®© 0 0 0 0 0 0 0 0 0 0 0 00 000000 0.
® 0 0 0 0 0 0 0 0 0 0 000000000 0.
® 0 0 0 0 0 0 0 0 00 00 000000000
2 0 0 0 0 0 0 0 0 00 00 000000 e

® 0 @ 0 0 0 0 0 0 0 0 0000 0000 e

® 2 0 0 0 0 0 0 0 0 0 0000 000000

® 0 0 0 0 0 0 0 0 0 0 0000000

Fig. 13.35: Wiring a DC motor to spin one direction

// Wiring:
// Setup: config-pin P9_16 pwm
// See:

LSS S S S SSSSSSSSSSSSSSS S
import time

import signal

import sys

def signal_handler (sig, frame):
print ('Got SIGINT, turning motor off')
f = open (PWMPATH+'/enable', 'w')
f.write('0")
f.close ()
sys.exit (0)
signal.signal (signal.SIGINT, signal_handler)

pwmPeriod = '1000000"' # Period in ns
pwm = 'l'" # pwm to use
channel = 'b' # channel to use

PWMPATH="'/dev/bone/pwn/'+pwm+'/'+channel

BeagleBone

fritzing

(continued from previous page)

low = 0.05 # Slowest speed (duty cycle)
hi =1 # Fastest (always on)
ms = 100 # How often to change speed, in ms
speed = 0.5 # Current speed
step = 0.05 # Change in speed
f = open (PWMPATH+'/duty_cycle', 'w')
f.write('0")
f.close ()
f = open (PWMPATH+'/period', 'w')
f.write (pwmPeriod)
f.close ()
(continues on next page)
544 Chapter 13. Books

38

39

40

41

42

43

44

45

46

47

48

49

50

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

a1

42

43

44

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

f = open (PWMPATH+'/enable', 'w')
f.write('1l")
f.close()

f = open (PWMPATH+'/duty_cycle', 'w')
while True:

speed += step

if (speed > hi or speed < low):

step *= -1
duty_cycle = str (round(speed*1000000)) # Convert ms to ns
f.seek (0)

f.write (duty_cycle)
time.sleep (ms/1000)

dcMotor.py

Listing 13.29: Driving a DC motor in one direction (dcMotor.js)

#!/usr/bin/env node

SSLLLLL LSS/

// dcMotor. js

// This is an example of driving a DC motor
// Wiring:

// Setup: config-pin P9_16 pwm

// See:

LIS LSS S S S S S S SSSSSSS

const fs = require(”fs”);

const pwmPeriod = '1000000"'; // Period in ns
const pwm = '1'; // pwm to use

const channel = 'b'; // channel to use

const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;

const low = 0.05, // Slowest speed (duty cycle)

hi =1, // Fastest (always on)

ms = 100; // How often to change speed, in ms
var speed = 0.5, // Current speed;

step = 0.05; // Change in speed

// fs.writeFileSync (PWMPATH+'/export', pwm); // Export the pwm channel

// Set the period in ns, first 0 duty_cycle,
fs.writeFileSync (PWMPATH+'/duty_cycle', '0");
fs.writeFileSync (PWMPATH+'/period', pwmPeriod) ;
fs.writeFileSync (PWMPATH+'/duty_cycle', pwmPeriod/2);
fs.writeFileSync (PWMPATH+'/enable', '1');

timer = setInterval (sweep, ms);
function sweep () {
speed += step;
if (speed > hi || speed < low) {
step *= -1;
}
fs.writeFileSync (PWMPATH+'/duty_cycle', parselnt (pwmPeriod*speed)) ;
// console.log('speed = ' + speed);
}
process.on ('SIGINT', function() {
console.log('Got SIGINT, turning motor off');
clearInterval (timer); // Stop the timer

fs.writeFileSync (PWMPATH+'/enable', '0");
1)

13.1. BeagleBone Cookbook

545

BeagleBoard Docs, Release 1.0.20230711-wip

dcMotor. js

See Also

How do you change the direction of the motor? See Controlling the Speed and Direction of a DC Motor.

Controlling the Speed and Direction of a DC Motor

Problem You would like your DC motor to go forward and backward.

Solution Use an H-bridge to switch the terminals on the motor so that it will run both backward and forward.
We'll use the L.293D a common, single-chip H-bridge.

Here’s what you will need:
* 3Vto5V motor.
¢ Breadboard and jumper wires.
e L293D H-Bridge IC.
* Power supply for the motor (optional)

Lay out your breadboard as shown in Driving a DC motor with an H-bridge. Ensure that the L293D is positioned
correctly. There is a notch on one end that should be pointed up.

e e 0 00 e o o o Gumm
e e 0o 0 0 e o o o @
e e 0 00 00000000
e e 0 00 000000000000
e 0 00 0000000000000
e o 0 0 00
e e 0 0 00
e e 0 00000000
®e e 000000

BeagleBone

y:

fritzing

Fig. 13.36: Driving a DC motor with an H-bridge

The code in Code for driving a DC motor with an H-bridge (h-bridgeMotor.js) (h—-bridgeMotor. js) looks
much like the code for driving the DC motor with a transistor (Driving a DC motor in one direction (dcMotor.js)).
The additional code specifies which direction to spin the motor.

546 Chapter 13. Books

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.30: Code for driving a DC motor with an H-bridge (h-
bridgeMotor.js)

#!/usr/bin/env node

// This example uses an H-bridge to drive a DC motor in two directions

var b = require ('bonescript');
var enable = 'P9_21"'; // Pin to use for PWM speed control
inl = 'P9_15"',
in2 = 'P9_16"',
step = 0.05, // Change in speed
min = 0.05, // Min duty cycle
max = 1.0, // Max duty cycle
ms = 100, // Update time, in ms
speed = min; // Current speed;

b.pinMode (enable, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);
b.pinMode (inl, b.OUTPUT) ;
b.pinMode (in2, b.OUTPUT) ;

function doInterval (x) {
if(x.err) {

console.log('x.err = ' + x.err);
return;
}
timer = setInterval (sweep, ms);
t
clockwise () ; // Start by going clockwise
function sweep () |
speed += step;
if (speed > max || speed < min) {
step *= -1;
step>0 ? clockwise() : counterClockwise();
I3
b.analogWrite (enable, speed);
console.log('speed = ' + speed);
t
function clockwise () {
b.digitalWrite (inl, b.HIGH);
b.digitalWrite (in2, b.LOW) ;
I3
function counterClockwise () A
b.digitalWrite (inl, b.LOW);
b.digitalWrite (in2, b.HIGH);
}
process.on ('SIGINT', function() A
console.log('Got SIGINT, turning motor off');
clearInterval (timer); // Stop the timer
b.analogWrite (enable, 0); // Turn motor off

)

h-bridgeMotor.js

13.1. BeagleBone Cookbook 547

10

11

12

13

14

15

16

17

BeagleBoard Docs, Release 1.0.20230711-wip

Driving a Bipolar Stepper Motor

Problem You want to drive a stepper motor that has four wires.

Solution Use an L293D H-bridge. The bipolar stepper motor requires us to reverse the coils, so we need to
use an H-bridge.

Here’s what you will need:
* Breadboard and jumper wires.
* 3V to 5V bipolar stepper motor.
e L293D H-Bridge IC.

Wire as shown in Bipolar stepper motor wiring.

I
=
» 3 I =
2= .
-

fritzing
Fig. 13.37: Bipolar stepper motor wiring
Use the code in Driving a bipolar stepper motor (bipolarStepperMotor.py) to drive the motor.

Listing 13.31: Driving a bipolar stepper motor (bipolarStepperMo-
tor.py)

#!/usr/bin/env python
import time

import os

import signal

import sys

Motor is attached here
controller = [”P9 11”7, ”P9 13”7, ”P9 15”7, ”P9 177];
controller = [”30”, ”31”, 748”, ”57]

controller = [”P9 147, ”P9 16”7, ”P9 18”, ”P9 227];
controller = [”50"”, ”51”, 74”7, 72"]

H H W IR

14
states = [[1,0,0,0], [O,1,0,0], [0,0,1,0], [0,0,0,1]1]
statesHiTorque = [[21,21,0,0], [0,21,1,0], [O,0,1,11, [1,0,0,11]
statesHalfStep = [[2,0,0,0], [1,%,0,0], [0,2,0,0], [O,21,1,01,
to,o,1,01, f0,0,2,11, [0,0,0,2], [1,0,0,1]1]

curState = 0 # Current state
(continues on next page)

548 Chapter 13. Books

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

73

74

76

77

78

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

ms = 100 # Time between steps, in ms

maxStep = 22 # Number of steps to turn before turning around
minStep = 0 # minimum step to turn back around on

cw = 1 # Clockwise

CCw = -1

pos = 0 # current position and direction

direction = CW

GPIOPATH="/sys/class/gpio”

def signal_handler(sig, frame):
print ('Got SIGINT, turning motor off')
for i in range(len(controller))
f = open (GPIOPATH+”/gpio”+controller[i]+”/value”, "w”)
f.write('0")
f.close()
sys.exit (0)
signal.signal (signal.SIGINT, signal_handler)
print ('Hit "C to stop')

def move () :
global pos
global direction
global minStep
global maxStep
pos += direction
print ("pos: ” + str(pos))
Switch directions if at end.
if (pos >= maxStep or pos <= minStep)
direction *= -1
rotate (direction)

This is the general rotate
def rotate (direction)
global curState
global states
print (”"rotate(%d)”, direction);
Rotate the state according to the direction of rotation
curState += direction
if (curState >= len(states))

curState = 0;
elif (curState<0)
curState = len(states)-1

updateState (states[curState])

Write the current input state to the controller
def updateState(state)
global controller
print (state)
for i in range(len(controller))
f = open (GPIOPATH+” /gpio”+controller[i]+”/value”, "w”)
f.write(str(state[i]))
f.close ()

Initialize motor control pins to be OUTPUTs
for i in range(len(controller))
Make sure pin is exported
if (not os.path.exists (GPIOPATH+”/gpio”+controller[i])):
f = open (GPIOPATH+” /export”, "w”)
f.write (pin)
f.close()

(continues on next page)

13.1. BeagleBone Cookbook 549

79

80

81

82

83

84

85

86

87

88

89

90

91

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
Make it an output pin
= open (GPIOPATH+” /gpio”+controller[i]+”/direction”, "w”)
.write ("out”)
.close ()

FhoFh Fh oS

Put the motor into a known state
updateState (states[0])
rotate (direction)

Rotate
while True:

move ()

time.sleep (ms/1000)
bipolarStepperMotor.py

When you run the code, the stepper motor will rotate back and forth.

Driving a Unipolar Stepper Motor

Problem You want to drive a stepper motor that has five or six wires.

Solution If your stepper motor has five or six wires, it's a unipolar stepper and is wired differently than
the bipolar. Here, we’lluse a ULN2003 Darlington Transistor Array IC to drivethe motor.

Here’s what you will need:
* Breadboard and jumper wires.
* 3V to5 Vunipolar stepper motor.
¢ ULN2003 Darlington Transistor Array IC.

Wire, as shown in Unipolar stepper motor wiring.

Note: The IC in Unipolar stepper motor wiring is illustrated upside down from the way it is usually displayed.
That is, the notch for pin 1 is on the bottom. This made drawing the diagram much cleaner.

Also, notice the banded wire running the P9 _7 (5 V) to the UL2003A. The stepper motor I’'m using runs better
at 5V, soI’'m using the Bone’'s 5 V power supply. The signal coming from the GPIO pins is 3.3 V, but the U2003A
will step them up to 5 V to drive the motor.

The code for driving the motor is in unipolarStepperMotor. js however, it is almost identical to the
bipolar stepper code (Driving a bipolar stepper motor (bipolarStepperMotor.py)), so Changes to bipolar code
to drive a unipolar stepper motor (unipolarStepperMotor.js.diff) shows only the lines that you need to change.

Listing 13.32: Changes to bipolar code to drive a unipolar stepper mo-
tor (unipolarStepperMotor.py.diff)

controller [”P9_117”, ”P9 13”7, ”"P9_15”, P9 _177]

controller = [”30”, ”31”, ”48”, "5"]

states = [[%,1,0,0], [O,%,1,01, [0,0,1,1], [1,0,0,1]]

curState = 0 // Current state

ms = 100 // Time between steps, in ms

max = 200 // Number of steps to turn before turning around

unipolarStepperMotor.py.diff

550 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

e 0000
o0 0 00

e 0000000

e 0000000

e 0000000

e e e 00000

e e 00000000
e e 00000000

U U
e
U U

BeagleBone

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

e e 00 0000000000000 0000
e 0 0000000000000 00000
@000 0000000000000 000

fritzing

Fig. 13.38: Unipolar stepper motor wiring

Listing 13.33: Changes to bipolar code to drive a unipolar stepper mo-
tor (unipolarStepperMotor.js.diff)

var controller = [”P9 _11”, ”P9 13”, ”P9 _15”, ”P9 177];

controller = [”30”, ”31”, 748", "5"]
var states = [[1,1,0,0], [O,1,%1,0], [0,0,1,11, [1,0,0,111;
var curState = 0; // Current state
var ms = 100, // Time between steps, in ms
max = 200, // Number of steps to turn before turning around

unipolarStepperMotor.js.diff
The code in this example makes the following changes:
e The states are different. Here, we have two pins high at a time.

¢ The time between steps (ms) is shorter, and the number of steps per direction (max) is bigger. The
unipolar stepper I’'m using has many more steps per rotation, so | need more steps to make it go around.

13.1.5 Beyond the Basics

In Basics, you learned how to set up BeagleBone Black, and Sensors, Displays and Other Outputs, and Motors
showed how to interface to the physical world. The remainder of the book moves into some more exciting
advanced topics, and this chapter gets you ready for them.

The recipes in this chapter assume that you are running Linux on your host computer (Selecting an OS for
Your Development Host Computer) and are comfortable with using Linux. We continue to assume that you are
logged in as debian on your Bone.

Running Your Bone Standalone

Problem You want to use BeagleBone Black as a desktop computer with keyboard, mouse, and an HDMI
display.

13.1. BeagleBone Cookbook 551

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The Bone comes with USB and a microHDMI output. All you need to do is connect your keyboard,
mouse, and HDMI display to it.

To make this recipe, you will need:
* Standard HDMI cable and female HDMI-to-male microHDMI adapter, or
¢ MicroHDMI-to-HDMI adapter cable
* HDMI monitor
¢ USB keyboard and mouse

* Powered USB hub

Note: The microHDMI adapter is nice because it allows you to use a regular HDMI cable with the Bone.
However, it will block other ports and can damage the Bone if you aren’t careful. The microHDMI-to-HDMI
cable won't have these problems.

Tip: You can also use an HDMI-to-DVI cable and use your Bone with a DVI-D display.

The adapter looks something like Female HDMI-to-male microHDMI adapter.

Fig. 13.39: Female HDMI-to-male microHDMI adapter
Plug the small end into the microHDMI input on the Bone and plug your HDMI cable into the other end of the
adapter and your monitor. If nothing displays on your Bone, reboot.

If nothing appears after the reboot, edit the /boot /uEnv.txt file. Search for the line containing dis—
able_uboot_overlay_video=1 and make sure it's commented out:

552 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_ emmc=1
#disable_uboot_overlay video=1

Then reboot.

The /boot /uEnv. txt file contains a number of configuration commands that are executed at boot time.
The # character is used to add comments; that is, everything to the right of a +# is ignored by the Bone and
is assumed to be for humans to read. In the previous example, ###Disable auto loading is a comment that
informs us the next line(s) are for disabling things. Two disable_uboot overlay commands follow. Both should
be commented-out and won't be executed by the Bone.

Why not just remove the line? Later, you might decide you need more general-purpose in-
put/output (GPIO) pins and don’'t need the HDMI display. If so, just remove the # from the dis-—
able_uboot_overlay_video=1 command. If you had completely removed the line earlier, you would
have to look up the details somewhere to re-create it.

When in doubt, comment-out don't delete.

Note: If you want to re-enable the HDMI audio, just comment-out the line you added.

The Bone has only one USB port, so you will need to get either a keyboard with a USB hub or a USB hub. Plug
the USB hub into the Bone and then plug your keyboard and mouse in to the hub. You now have a Beagle
workstation no host computer is needed.

Tip: A powered hub is recommended because USB can supply only 500 mA, and you’'ll want to plug many
things into the Bone.

This recipe disables the HDMI audio, which allows the Bone to try other resolutions. If this fails, see Beagle-
BoneBlack HDMI for how to force the Bone’s resolution to match your monitor.

Selecting an OS for Your Development Host Computer

Problem Your project needs a host computer, and you need to select an operating system (OS) for it.

Solution For projects that require a host computer, we assume that you are running Linux Ubuntu 22.04 LTS.
You can be running either a native installation, through Windows Subsystem for Linux, via a virtual machine
such as VirtualBox, or in the cloud (Microsoft Azure or Amazon Elastic Compute Cloud, EC2, for example).

Recently I've been preferring Windows Subsystem for Linux.

Getting to the Command Shell via SSH

Problem You want to connect to the command shell of a remote Bone from your host computer.

Solution Running Python and JavaScript Applications from Visual Studio Code shows how to run shell com-
mands in the Visual Studio Code bash tab. However, the Bone has Secure Shell (SSH) enabled right out of the
box, so you can easily connect by using the following command to log in as user debian, (note the $ at the end
of the prompt):

host$ ssh debian@192.168.7.2

Warning: Permanently added '192.168.7.2"'" (ED25519) to the list of known.
—hosts.

Debian GNU/Linux 11

(continues on next page)

13.1. BeagleBone Cookbook 553

http://bit.ly/1GEPcOH
http://bit.ly/1GEPcOH
http://bit.ly/1wXOwkw
https://docs.microsoft.com/en-us/windows/wsl/
https://www.virtualbox.org/
https://portal.azure.com/
http://aws.amazon.com/ec2/
https://docs.microsoft.com/en-us/windows/wsl/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
BeagleBoard.org Debian Bullseye IoT Image 2023-06-03
Support: https://bbb.io/debian
default username:password is [debian:temppwd]

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Thu Jun 8 14:02:40 2023 from 192.168.7.1

bones$

Default password debian has the default password temppwd. It's best to change the password:

bone$ password

Changing password for debian.

(current) UNIX password:

Enter new UNIX password:

Retype new UNIX password:

password: password updated successfully

Removing the Message of the Day

Problem Every time you login a long message is displayed that you don’t need to see.

Solution The contents of the files /etc/motd, /etc/issue and /etc/issue.net are displayed everytime you long
it. You can prevent them from being displayed by moving them elsewhere.

bone$ sudo mv /etc/motd /etc/motd.orig
bone$ sudo mv /etc/issue /etc/issue.orig
bone$ sudo mv /etc/issue.net /etc/issue.net.orig

Now, the next time you ssh in they won't be displayed.

Getting to the Command Shell via the Virtual Serial Port

Problem You want to connect to the command shell of a remote Bone from your host computer without using
SSH.

Solution Sometimes, you can’t connect to the Bone via SSH, but you have a network working over USB to
the Bone. There is a way to access the command line to fix things without requiring extra hardware. (Viewing
and Debugging the Kernel and u-boot Messages at Boot Time shows a way that works even if you don’t have
a network working over USB, but it requires a special serial-to-USB cable.)

Note: This method doesn’t work with WSL.

First, check to ensure that the serial port is there. On the host computer, run the following command:

host$ 1s —-1s /dev/ttyACMO
0 crw-—rw———— 1 root dialout 166, 0 Jun 19 11:47 /dev/ttyACMO

554 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

/dev/ttyACMO is a serial port on your host computer that the Bone creates when it boots up. The letters crw-
rw—- show that you can’t access it as a normal user. However, you can access it if you are part of dialout
group. See if you are in the dialout group:

host$ groups
yoder adm tty uucp dialout cdrom sudo dip plugdev lpadmin sambashare

Looks like I'm already in the group, but if you aren’t, just add yourself to the group:

host$ sudo adduser SUSER dialout

You have to run adduser only once. Your host computer will remember the next time you boot up. Now, install
and run the screen command:

host$ sudo apt install screen

host$ screen /dev/ttyACMO 115200
Debian GNU/Linux 7 beaglebone ttyGSO0

default username:password is [debian:temppwd]
Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

The /dev/ttyACMO parameter specifies which serial port to connect to, and 115200 tells the speed of the
connection. In this case, it's 115,200 bits per second.

Viewing and Debugging the Kernel and u-boot Messages at Boot Time

Problem You want to see the messages that are logged by BeagleBone Black as it comes to life.

Solution There is no network in place when the Bone first boots up, so Getting to the Command Shell via SSH
and Getting to the Command Shell via the Virtual Serial Port won't work. This recipe uses some extra hardware
(FTDI cable) to attach to the Bone’s console serial port.

To make this recipe, you will need:

¢ 3.3V FTDI cable

Warning: Be sure to get a 3.3 V FTDI cable (shown in FTDI cable), because the 5 V cables won’t work.

Tip: The Bone’s Serial Debug J1 connector has Pin 1 connected to ground, Pin 4 to receive, and Pin 5 to
transmit. The other pins are not attached.

Look for a small triangle at the end of the FTDI cable (FTD/ connector). It's often connected to the black wire.

Next, look for the FTDI pins of the Bone (labeled J1 on the Bone), shown in FTDI pins for the FTDI connector.
They are next to the P9 header and begin near pin 20. There is a white dot near P9_20.

Plug the FTDI connector into the FTDI pins, being sure to connect the t riangle pin on the connector to the
white dot pin of the FTDI connector.

Now, run the following commands on your host computer:

host$ 1ls -1s /dev/ttyUSBO
0 crw—-rw———— 1 root dialout 188, 0 Jun 19 12:43 /dev/ttyUSBO
host$ sudo adduser S$SUSER dialout
(continues on next page)

13.1. BeagleBone Cookbook 555

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.40: FTDI cable

556 Chapter 13. Books

-wip

BeagleBoard Docs, Release 1.0.20230711

Fig. 13.41: FTDI connector

for the FTDI connector

Ins

13.42: FTDI pi

Fig

557

13.1. BeagleBone Cookbook

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

host$ screen /dev/ttyUSBO 115200
Debian GNU/Linux 7 beaglebone tty00

default username:password is [debian:temppwd]
Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack _Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

Note: Your screen might initially be blank. Press Enter a couple times to see the login prompt.

Verifying You Have the Latest Version of the OS on Your Bone from the Shell

Problem You are logged in to your Bone with a command prompt and want to know what version of the OS
you are running.

Solution Log in to your Bone and enter the following command:

bone$ cat /etc/dogtag
BeagleBoard.org Debian Bullseye IoT Image 2023-06-03

Verifying You Have the Latest Version of the OS on Your Bone shows how to open the /etc/dogtag file to
see the OS version. See Running the Latest Version of the OS on Your Bone if you need to update your OS.

Controlling the Bone Remotely with a VNC

Problem You want to access the BeagleBone’s graphical desktop from your host computer.

Solution Install and run a Virtual Network Computing (VNC) server:

bone$ sudo apt update
bone$ sudo apt install tightvncserver

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

The following additional packages will be installed:

update-alternatives: using /usr/bin/Xtightvnc to provide /usr/bin/Xvnc.
— (Xvnc) in auto mode

update-alternatives: using /usr/bin/tightvncpasswd to provide /usr/bin/
—vncpasswd (vncpasswd) in auto mode

Processing triggers for libc-bin (2.31-13+debllu6)

bone$ tightvncserver

You will require a password to access your desktops.

Password:

Verify:

Would you like to enter a view-only password (y/n)? n

xauth: (argv):1: Dbad display name "beaglebone:1” in "add” command

New 'X' desktop is beaglebone:1

(continues on next page)

558 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)
Creating default startup script /home/debian/.vnc/xstartup
Starting applications specified in /home/debian/.vnc/xstartup
Log file is /home/debian/.vnc/beagleboard:1.log

To connect to the Bone, you will need to run a VNC client. There are many to choose from. Remmina Remote
Desktop Client is already installed on Ubuntu. Start and select the new remote desktop file button (Creating a
new remote desktop file in Remmina Remote Desktop Client).

Remmina Remote Desktop Client

Total 0 items.

Fig. 13.43: Creating a new remote desktop file in Remmina Remote Desktop Client

Give your connection a name, being sure to select “Remmina VNC Plugin” Also, be sure to add :1 after the
server address, as shown in Configuring the Remmina Remote Desktop Client. This should match the :1 that
was displayed when you started vncserver.

Click Connect to start graphical access to your Bone, as shown in The Remmina Remote Desktop Client showing
the BeagleBone desktop.

Tip: You might need to resize the VNC screen on your host to see the bottom menu bar on your Bone.

Note: You need to have X Windows installed and running for the VNC to work. Here’s how to install it. This
needs some 250M of disk space and 19 minutes to install.

bone$ bone$ sudo apt install bbb.io-xfced-desktop

bone$ sdo cp /etc/bbb.io/templates/fbdev.xorg.conf /etc/X11l/xorg.conf
bone$ startxfced

/usr/bin/startxfced: Starting X server

/usr/bin/startxfced: 122: exec: xinit: not found

13.1. BeagleBone Cookbook 559

BeagleBoard Docs, Release 1.0.20230711-wip

Remote Desktop Preference
Sl BeagleBone

Group

Protocol

(@ Remmina VNC Plugin

Pre-command

Post-command

Username
User password
Color depth True color (32 bpp)

Quality Best (slowest)

Keyboard mapping

Cancel Save as Default Connect Save and Connect

Fig. 13.44: Configuring the Remmina Remote Desktop Client

560 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

< B A #

55

[BeagleBone x

¥ Applications debian

BeagleBone

B Terminal - debian@brea... 2 Aug, 14:08 Beagle User]

/home/debian/

Places

Computer

Desktop BoneCookbook Desktop Documents Downloads examples
o Trash
Devices

=) Flle System exercises host Music Pictures Public

>] Terminal - debi breadboard-h z ~ A _ O X

File Edit View Terminal Tabs Help

:~% uname -a
Linux breadboard-home 5.10.120-ti-r48 #lbullseye SMP PREEMPT Wed Jul 20 19:54:38
UTC 2022 armv71 GNU/Linux

P
3

Fig. 13.45: The Remmina Remote Desktop Client showing the BeagleBone desktop

13.1. BeagleBone Cookbook

561

BeagleBoard Docs, Release 1.0.20230711-wip

Learning Typical GNU/Linux Commands

Problem There are many powerful commands to use in Linux. How do you learn about them?

Solution Common Linux commands lists many common Linux commands.

Table 13.4: Common Linux commands

Command | Action

pwd show current directory

cd change current directory
Is list directory contents
chmod change file permissions
chown change file ownership

cp copy files

mv move files

rm remove files

mkdir make directory

rmdir remove directory

cat dump file contents

less progressively dump file

Vi edit file (complex)

nano edit file (simple)

head trim dump to top

tail trim dump to bottom

echo print/dump value

env dump environment variables
export set environment variable
history dump command history
grep search dump for strings
man get help on command
apropos show list of man pages
find search for files

tar create/extract file archives
gzip compress a file

gunzip decompress a file

du show disk usage

df show disk free space
mount mount disks

tee write dump to file in parallel
hexdump readable binary dumps
whereis locates binary and source files

Editing a Text File from the GNU/Linux Command Shell

Problem You want to run an editor to change a file.

Solution The Bone comes with a number of editors. The simplest to learn is nano. Just enter the following
command:

bone$ nano file

You are now in nano (Editing a file with nano). You can’t move around the screen using the mouse, so use the
arrow keys. The bottom two lines of the screen list some useful commands. Pressing ~G (Ctrl-G) will display
more useful commands. ~X (Ctrl-X) exits nano and gives you the option of saving the file.

562 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

@ 2 @ root@yoder-debian-bone: ~/node-red

GNU nano 2.2.6 File: file Modified

Here is some text to edit

W Cet Help Q¢ WriteOut @& Read File Prev Page @ Cut Text @8 Cur Pos
W Exit Wl Justify Wl Where Is Mext Page @il UnCut Textigll To Spell

Fig. 13.46: Editing a file with nano

Tip: By default, the file you create will be saved in the directory from which you opened nano.

Many other text editors will run on the Bone. vi, vim, emacs, and even eclipse are all supported. See Installing
Additional Packages from the Debian Package Feed to learn if your favorite is one of them.

Establishing an Ethernet-Based Internet Connection

Problem You want to connect your Bone to the Internet using the wired network connection.

Solution Plug one end of an Ethernet patch cable into the RJ45 connector on the Bone (see The R/45 port on
the Bone) and the other end into your home hub/router. The yellow and green link lights on both ends should
begin to flash.

If your router is already configured to run DHCP (Dynamical Host Configuration Protocol), it will automatically
assign an IP address to the Bone.

Warning: It might take a minute or two for your router to detect the Bone and assign the IP address.

To find the IP address, open a terminal window and run the ip command:

bone$ ip a
1: lo: <LOOPBACK, UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group..
—default glen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host 1lo

valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
(continues on next page)

13.1. BeagleBone Cookbook 563

BeagleBoard Docs, Release 1.0.20230711-wip

PWR USR3 USR2 USR1 USRO

-
S
=
=
-
o
o0
m
o
=
)
—

Fig. 13.47: The RJ45 port on the Bone

(continued from previous page)

valid_1ft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc mg state UP group.
—~default glen 1000
link/ether c8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
inet 10.0.5.144/24 brd 10.0.5.255 scope global dynamic ethO
valid_1ft 80818sec preferred_lft 80818sec
inet6 fe80::caal:30ff:fea6:26e8/64 scope link
valid_1ft forever preferred_lft forever
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc pfifo_fast state.
—UP group default glen 1000
link/ether c¢2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0
valid_1ft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link
valid_1ft forever preferred_lft forever
4: usbl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc pfifo_fast state.
—UP group default glen 1000
link/ether 76:7e:49:46:1b:78 brd ff:ff:ff:ff:ff:ff
inet 192.168.6.2/24 brd 192.168.6.255 scope global usbl
valid_1ft forever preferred_lft forever
inet6 fe80::747e:49ff:fed6:1b78/64 scope link
valid_1ft forever preferred_lft forever
5: canO: <NOARP,ECHO> mtu 16 gdisc no-op state DOWN group default glen 10
link/can
6: canl: <NOARP,ECHO> mtu 16 gdisc no-op state DOWN group default glen 10

link/can
My Bone is connected to the Internet in two ways: via the RJ45 connection (eth0) and via the USB cable (usb0).
The inet field shows that my Internet address is 10.0.5.144 for the RJ45 connector.

On my university campus, you must register your MAC address before any device will work on the network.
The HWaddr field gives the MAC address. For ethO, it's c8:a0:30:a6:26:€8.

The IP address of your Bone can change. If it's been assigned by DHCP, it can change at any time. The MAC
address, however, never changes; it is assigned to your ethernet device when it’'s manufactured.

564 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

On many home networks, you will be behind a firewall and won’t be as visible.

Establishing a WiFi-Based Internet Connection

Problem You want BeagleBone Black to talk to the Internet using a USB wireless adapter.

Solution

Tip: For the correct instructions for the image you are using, go to latest-images and click on the image you
are using.

I’'m running Debian 11.x (Bullseye), the top one, on the BeagleBone Black.

e Latest latest-images topics - Bea: X

“ 3 @ forum.beagleboard.org/tag/latest-images [|1& ¢ (‘. o 5 o O B O & £ % 0O Q H

¢ beagleboard.org a

-

Hey All, we now have a Discord community! Come ask questions and hang out: EcagleBoard.org - discord b4
all categories » latest-images » Categories Top [] + New Topic fal
= Topic Replies Views Activity
¥ Debian 11.x (Bullseye) - Monthly Snapshots .-" . s Sk Mar 10
M FAQ bbbio_debian, latest-images - :
¥ Debian 11.x (Bullseye) - Monthly Snapshots (ARM64) ."’ s s ek Nov 22
B FAQ bbai64, bbbio_debian, latest-images - ’
¥ Debian 10.x (Buster) - Monthly Snapshots ’ . Aok Dec 1

B FAQ bbbio_debian, latest-images

There are no more latest-images topics. Browse all tags or view latest topics.

Fig. 13.48: Latest Beagle Images
Scroll to the top of the page and you’ll see instructions on setting up Wifi. The instructions here are based on
using networkctl.
Several WiFi adapters work with the Bone. Check WiFi Adapters for the latest list.

To make this recipe, you will need:

13.1. BeagleBone Cookbook 565

http://forum.beagleboard.org/tag/latest-images
http://bit.ly/1EbEwUo

BeagleBoard Docs, Release 1.0.20230711-wip

§; Debian 11.x (Bullseye)-1» x 4 v - 0O X

& C @ forumbeagleboardorg/t/d... 2 < % QO @& ¢ & H » O B © s A 0

* Debian 11.x (Bullseye) - Monthly Snapshots m 2))

B General Discussion bbbio_debian. latest-images

’twork v

We migrated from connman to Debian Systemd-Networkd 28 Network

debian@BeagleBone:~% sudo networkctl

IDX LINK TYPE OPERATIONAL SETUP
1 lo loopback carrier unmanaged \
2 eth® ether routable configured thru s
3 usb® gadget no-carrier configuring version.sh
4 usbl gadget no-carrier configuring beagle-version
5 can® can of f unmanaged
Update U-Boot
6 canl can of f unmanaged

eMMC Flasher

6 links listed.

Configuration files NodeRED port
1880
ethe -> /etc/systemd/network/eth®.network PRU uio

usb® (Windows - 192.168.7.x) -> /etc/systemd/network/usb@.network
usbl (Mac - 192.168.6.x) -> /etc/systemd/network/usbil.network
wlan® -> /etc/systemd/network/wlan@.network

enablement:

WiFi Configuration (wpa_supplicant)

csudn _nann fete/wna sunnlicant /wna sunnlicant-wlanf _conf

Fig. 13.49: Instructions for setting up your network.

566 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

* USB Wifi adapter

* 5V external power supply

Warning: Most adapters need at least 1 A of current to run, and USB supplies only 0.5 A, so be sure to
use an external power supply. Otherwise, you will experience erratic behavior and random crashes.

First, plug in the WiFi adapter and the 5 V external power supply and reboot.
Then run Isusb to ensure that your Bone found the adapter:

bone$ lsusb

Bus 001 Device 002: ID Obda:8176 Realtek Semiconductor Corp. RTL8188CUS 802.
—11n

WLAN Adapter

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Note: There is a well-known bug in the Bone’s 3.8 kernel series that prevents USB devices from being discov-
ered when hot-plugged, which is why you should reboot. Newer kernels should address this issue.

Next, run networkctl to find your adapter’'s name. Mine is called wlan0, but you might see other names, such
as rao0.

bone$ networkctl

IDX LINK TYPE OPERATIONAL SETUP

1 lo loopback carrier unmanaged

2 ethO ether no—-carrier configuring
3 usbO gadget routable configured
4 usbl gadget routable configured
5 can0 can off unmanaged

6 canl can off unmanaged

7 wlanO wlan routable configured
8 SoftAp0 wlan routable configured

8 links listed.

If no name appears, try ip a:

bone$ ip a

2: ethO: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 gdisc pfifo_fast state.
—DOWN group default glen 1000
link/ether ¢8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc pfifo_fast state.
—UP group default glen 1000
link/ether c2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:£ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0
valid_1ft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link
valid_1ft forever preferred_lft forever

7: wlanO: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc mg state UP group.
—~default glen 1000
link/ether 64:69:4e:7e:5c:ed brd ff:ff:ff:ff:ff:ff
inet 10.0.7.21/24 brd 10.0.7.255 scope global dynamic wlanO
valid_1ft 85166sec preferred_lft 85166sec
inet6 fe80::6669:4eff:feV7e:5ced/64 scope link
valid_1ft forever preferred_lft forever

(continues on next page)

13.1. BeagleBone Cookbook 567

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Next edit the configuration file */etc/wpa_supplicant/wpa_supplicant—-wlanO.
—conf*.

bone$ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0O.conf

In the file you'll see:

ctrl_interface=DIR=/run/wpa_supplicant GROUP=netdev
update_config=1
#country=US

network={
ssid="Your SSID”
psk="Your Password”

Change the ssid and psk entries for your network. Save your file, then run:

bone$ sudo systemctl restart systemd-networkd

bone$ 1ip a

bone$ ping -c2 google.com

PING google.com (142.250.191.206) 56(84) bytes of data.

64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206): icmp_ seg=1.
—ttl1=115 time=19.5 ms

64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206) : icmp_seg=2.
—ttl1=115 time=19.4 ms

—-—— google.com ping statistics ———
2 packets transmitted, 2 received, 0% packet loss, time 1001lms
rtt min/avg/max/mdev = 19.387/19.450/19.513/0.063 ms

wlan0 should now have an ip address and you should be on the network. If not, try rebooting.

Sharing the Host’s Internet Connection over USB

Problem Your host computer is connected to the Bone via the USB cable, and you want to run the network
between the two.

Solution Establishing an Ethernet-Based Internet Connection shows how to connect BeagleBone Black to the
Internet via the RJ45 Ethernet connector. This recipe shows a way to connect without using the RJ45 connector.

A network is automatically running between the Bone and the host computer at boot time using the USB. The
host’'s IP address is 192.168.7.1 and the Bone's is 192.168.7.2. Although your Bone is talking to your host, it
can’t reach the Internet in general, nor can the Internet reach it. On one hand, this is good, because those who
are up to no good can’t access your Bone. On the other hand, your Bone can’t reach the rest of the world.

Letting your bone see the world: setting up IP masquerading You need to set up IP masquerading on
your host and configure your Bone to use it. Here is a solution that works with a host computer running Linux.
Add the code in Code for IP Masquerading (ipMasquerade.sh) to a file called ipMasquerade. sh on your
host computer.

Listing 13.34: Code for IP Masquerading (ipMasquerade.sh)

#!/bin/bash
These are the commands to run on the host to set up IP
masquerading so the Bone can access the Internet through
the USB connection.
(continues on next page)

568 Chapter 13. Books

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10

11

12

13

14

15

16

17

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

This configures the host, run ./setDNS.sh to configure the Bone.
Inspired by http://thoughtshubham.blogspot.com/2010/03/
1nternet-over—-usb-otg-on-beagleboard.html

if [$# -eq 0] ; then

echo ”Usage: $0 interface (such as ethO or wlanQ)”
exit 1

fi

interface=$1

hostAddr=192.168.7.1
beagleAddr=192.168.7.2
ip_forward=/proc/sys/net/ipvd/ip_forward

if [‘cat Sip_forward® == 0]
then
echo ”"You need to set IP forwarding. Edit /etc/sysctl.conf using:”
echo ”$ sudo nano /etc/sysctl.conf”
echo "and uncomment the line \”net.ipv4.ip_forward=1\""
echo "to enable forwarding of packets. Then run the following:”
echo ”$ sudo sysctl -p”
exit 1
else
echo "IP forwarding is set on host.”
fi
Set up IP masquerading on the host so the bone can reach the outside world
sudo iptables -t nat —-A POSTROUTING -s SbeagleAddr -o S$interface -j.
—MASQUERADE

ipMasquerade.sh

Then, on your host, run the following commands:

host$ chmod +x ipMasquerade.sh
host$./ipMasquerade.sh ethO

This will direct your host to take requests from the Bone and send them to ethO. If your host is using a wireless
connection, change eth0 to wlanO.

Now let’s set up your host to instruct the Bone what to do. Add the code in Code for setting the DNS on the
Bone (setDNS.sh) to setDNS . sh on your host computer.

Listing 13.35: Code for setting the DNS on the Bone (setDNS.sh)

#!/bin/bash

These are the commands to run on the host so the Bone

can access the Internet through the USB connection.

Run ./ipMasquerade.sh the first time. It will set up the host.

Run this script if the host is already set up.

Inspired by http://thoughtshubham.blogspot.com/2010/03/internet—-over-usb—
—otg-on—-beagleboard.html

hostAddr=192.168.7.1
beagleAddr=5{1:-192.168.7.2}

Save the /etc/resolv.conf on the Beagle in case we mess things up.
ssh root@SbeagleAddr ”"mv -n /etc/resolv.conf /etc/resolv.conf.orig”
Create our own resolv.conf

cat - << EOF > /tmp/resolv.conf

This is installed by ./setDNS.sh on the host

EOF
(continues on next page)

13.1. BeagleBone Cookbook 569

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

TMP=/tmp/nmcli
Look up the nameserver of the host and add it to our resolv.conf
From: http://askubuntu.com/questions/197036/how—to—-know-what-dns—-am—1i-—
—using-in-ubuntu-12-04
Use nmcli dev 1list for older version nmcli
Use nmcli dev show for newer version nmcli
nmcli dev show > $TMP
if [$? -ne 0]; then # S? 1s the return code, if not 0 something bad.
—happened.
echo "nmcli failed, trying older 'list' instead of 'show'”
nmcli dev list > S$TMP

if [$? -ne 0]; then
echo "nmcli failed again, giving up...”
exit 1

fi

fi
grep IP4.DNS $TMP | sed 's/IP4.DNS\[.\]:/nameserver/' >> /tmp/resolv.conf
scp /tmp/resolv.conf root@SbeagleAddr:/etc

Tell the beagle to use the host as the gateway.
ssh root@SbeagleAddr ”/sbin/route add default gw ShostAddr” || true

setDNS.sh
Then, on your host, run the following commands:

host$ chmod +x setDNS.sh

host$./setDNS.sh

host$ ssh -X root@192.168.7.2

bone$ ping -c2 google.com

PING google.com (216.58.216.96) 56(84) bytes of data.

64 bytes from ord30s22....net (216.58.216.96): icmp_reg=1l ttl=55 time=7.49 ms
64 bytes from ord30s22....net (216.58.216.96): icmp_reg=2 ttl=55 time=7.62 ms

—-—— google.com ping statistics ———
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 7.496/7.559/7.623/0.107 ms

This will look up what Domain Name System (DNS) servers your host is using and copy them to the right place
on the Bone. The ping command is a quick way to verify your connection.

Letting the world see your bone: setting up port forwarding

Now your Bone can access the world via the USB port and your host computer, but what if you have a web
server on your Bone that you want to access from the world? The solution is to use port forwarding from your
host. Web servers typically listen to port 80. First, look up the IP address of your host:

host$ ip a
1: lo: <LOOPBACK, UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group.
—default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_1ft forever preferred_lft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: eth0O: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 gdisc mg state UP group.
—~default glen 1000
link/ether 00:15:5d:7c:e8:dc brd ff:ff:ff:ff:ff:ff
inet 172.31.43.210/20 brd 172.31.47.255 scope global ethO
(continues on next page)

570 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

valid_1lft forever preferred_lft forever
inet6 fe80::215:5dff:fe7c:e8dc/64 scope link
valid_1ft forever preferred_lft forever

It's the number following inet, which in my case is 172.31.43.210.

Tip: If you are on a wireless network, find the IP address associated with wian0.

Then run the following, using your host’s IP address:

host$ sudo iptables -t nat —-A PREROUTING -p tcp -s 0/0 \
-d 172.31.43.210 ——-dport 1080 —-j DNAT --to 192.168.7.2:80

Now browse to your host computer at port 1080. That is, if your host’s IP address is 123.456.789.0, enter
123.456.789.0:1080. The :1080 specifies what port number to use. The request will be forwarded to the
server on your Bone listening to port 80. (I used 1080 here, in case your host is running a web server of its
own on port 80.)

Setting Up a Firewall

Problem You have put your Bone on the network and want to limit which IP addresses can access it.

Solution How-To Geek has a great posting on how do use ufw, the “uncomplicated firewall”. Check out How
to Secure Your Linux Server with a UFW Firewall. I'll summarize the initial setup here.

First install and check the status:

bone$ sudo apt update
bone$ sudo apt install ufw
bone$ sudo ufw status
Status: inactive

Now turn off everything coming in and leave on all outgoing. Note, this won't take effect until ufw is enabled.

bone$ sudo ufw default deny inco