
BeagleBoard Docs
Release 1.0.20230711-wip

BeagleBoard.org Foundation
Jul 11, 2023

Table of contents

1 Introduction 1
1.1 Support . 1

1.1.1 Getting started . 1
1.1.2 Getting support . 6
1.1.3 Understanding Your Beagle . 8
1.1.4 Working with Cape Add-on Boards . 8

1.2 Beagle 101 . 8
1.2.1 QWIIC, STEMMA and Grove Add-ons in Linux . 9

1.3 Contribution . 11
1.3.1 Code of Conduct . 11
1.3.2 Frequently Asked Questions . 12
1.3.3 What should I know before I get started? . 12
1.3.4 How can I contribute? . 14
1.3.5 Style and usage guidelines . 21

2 BeaglePlay 33
2.1 Introduction . 33

2.1.1 Detailed overview . 34
2.2 Quick Start Guide . 38

2.2.1 What’s included in the box? . 38
2.2.2 Attaching antennas . 39
2.2.3 Tethering to PC . 40
2.2.4 Access VSCode . 40
2.2.5 Demos and Tutorials . 40

2.3 Design and specifications . 42
2.3.1 Block diagram . 42
2.3.2 System on Chip (SoC) . 43
2.3.3 Power management . 43
2.3.4 General Connectivity and Expansion . 44
2.3.5 Buttons and LEDs . 47
2.3.6 Wired and wireless connectivity . 48
2.3.7 Memory, Media and Data storage . 48
2.3.8 Multimedia I/O . 51
2.3.9 RTC & Debug . 51
2.3.10 Mechanical Specifications . 54

2.4 Expansion . 55
2.4.1 mikroBUS . 55
2.4.2 Grove . 55
2.4.3 QWIIC . 55
2.4.4 CSI . 55
2.4.5 OLDI . 55

2.5 Demos and tutorials . 55
2.5.1 Using Serial Console . 55
2.5.2 Connect WiFi . 56
2.5.3 Using Grove . 66
2.5.4 Using mikroBUS . 66
2.5.5 Using QWIIC . 69

i

2.5.6 Using OLDI Displays . 69
2.5.7 Using CSI Cameras . 69
2.5.8 Wireless MCU Zephyr Development . 69

2.6 Support . 75
2.6.1 Certifications and export control . 75
2.6.2 Additional documentation . 76
2.6.3 Change History . 76

3 BeagleBone AI-64 79
3.1 Introduction . 79
3.2 Change History . 79

3.2.1 Document Change History . 80
3.2.2 Board Changes . 80

3.3 Connecting up your BeagleBone AI-64 . 80
3.3.1 Methods of operation . 81
3.3.2 What’s In the Box . 81
3.3.3 Main Connection Scenarios . 81
3.3.4 Tethered To A PC . 81
3.3.5 Standalone w/Display and Keyboard/Mouse . 84

3.4 BeagleBone AI-64 Overview . 88
3.4.1 BeagleBone Compatibility . 89
3.4.2 BeagleBone AI-64 Features and Specification . 89
3.4.3 Board Component Locations . 90
3.4.4 Board components . 90

3.5 BeagleBone AI-64 High Level Specification . 91
3.5.1 Processor . 91
3.5.2 Memory . 95
3.5.3 Power Management . 96
3.5.4 PC USB Interface . 96
3.5.5 Serial Debug Ports . 96
3.5.6 USB1 Host Port . 97
3.5.7 Power Sources . 97
3.5.8 Reset Button . 97
3.5.9 Power Button . 97
3.5.10 Indicators . 97

3.6 Connectors . 97
3.6.1 Expansion Connectors . 97

3.7 BeagleBone AI-64 Mechanical . 113
3.7.1 Dimensions and Weight . 113
3.7.2 Silkscreen and Component Locations . 113

3.8 Pictures . 113
3.9 Support Information . 113

3.9.1 Hardware Design . 113
3.9.2 Software Updates . 118
3.9.3 RMA Support . 118
3.9.4 Troubleshooting video output issues . 118

3.10 Update software on BeagleBone AI-64 . 119
3.10.1 Update U-Boot: . 119
3.10.2 Update Kernel and SGX modules: . 119
3.10.3 Update xfce: . 119
3.10.4 Update ti-edge-ai 8.2 examples . 119
3.10.5 Cleanup: . 119

3.11 Edge AI . 119
3.11.1 Getting Started . 119
3.11.2 Running Simple demos . 123
3.11.3 DL models for Edge Inference . 125
3.11.4 Demo Configuration file . 126
3.11.5 Running Advance demos . 132

ii

3.11.6 Docker Environment . 134
3.11.7 Data Flows . 137
3.11.8 Performance Visualization Tool . 149
3.11.9 Generating Performance Logs . 150
3.11.10Running the Visualization tool . 150
3.11.11SDK Components . 151
3.11.12Datasheet . 152
3.11.13Test Report . 158

4 BeagleBone AI 163
4.1 Introduction . 163
4.2 Change History . 164

4.2.1 Rev A0 . 164
4.2.2 Rev A1 . 164
4.2.3 Rev A1a . 164
4.2.4 Rev A2 . 165

4.3 Connecting Up Your BeagleBone AI . 165
4.3.1 What’s In the Box . 165
4.3.2 What’s Not in the Box . 166
4.3.3 Fans . 166
4.3.4 Main Connection Scenarios . 166
4.3.5 Tethered to a PC . 166
4.3.6 Standalone w/Display and Keyboard/Mouse . 171
4.3.7 Wireless Connection . 172
4.3.8 Connecting a 3 PIN Serial Debug Cable . 172

4.4 BeagleBone AI Overview . 173
4.4.1 BeagleBone® AI Features . 173
4.4.2 Board Component Locations . 175

4.5 BeagleBone AI High Level Specification . 175
4.5.1 Block Diagram . 175
4.5.2 AM572x Sitara™ Processor . 176
4.5.3 Memory . 180
4.5.4 Boot Modes . 180
4.5.5 Power Management . 181
4.5.6 Connectivity . 181

4.6 Detailed Hardware Design . 181
4.6.1 Power Section . 182
4.6.2 eMMC Flash Memory (16GB) . 184
4.6.3 Wireless Communication: 802.11 ac & Bluetooth: AzureWave AW-CM256SM 184
4.6.4 HDMI . 185
4.6.5 PRU-ICSS . 185
4.6.6 PRU-ICSS Resources and FAQ’s . 186
4.6.7 User LEDs . 197

4.7 Connectors . 197
4.7.1 Expansion Connectors . 198
4.7.2 Serial Debug . 213
4.7.3 USB 3 Type-C . 214
4.7.4 USB 2 Type-A . 214
4.7.5 Gigabit Ethernet . 214
4.7.6 Coaxial . 214
4.7.7 microSD Memory . 214
4.7.8 microHDMI . 214

4.8 Cape Board Support . 214
4.8.1 BeagleBone® Black Cape Compatibility . 214
4.8.2 EEPROM . 215
4.8.3 Pin Usage Consideration . 215
4.8.4 GPIO . 215
4.8.5 I2C . 215

iii

4.8.6 UART or PRU UART . 215
4.8.7 SPI . 216
4.8.8 Analog . 216
4.8.9 PWM, TIMER, eCAP or PRU PWM/eCAP . 216
4.8.10 eQEP . 216
4.8.11 CAN . 216
4.8.12 McASP (audio serial like I2S and AC97) . 216
4.8.13 MMC . 216
4.8.14 LCD . 216
4.8.15 PRU GPIO . 216
4.8.16 CLKOUT . 216
4.8.17 Expansion Connector Headers . 216
4.8.18 Signal Usage . 216
4.8.19 Cape Power . 217
4.8.20 Mechanical . 217

4.9 Mechanical Information . 217
4.10 Pictures . 217
4.11 Support Information . 218
4.12 Terms and Conditions . 218

4.12.1 REGULATORY, COMPLIANCE, AND EXPORT INFORMATION 218
4.12.2 WARRANTY AND DISCLAIMERS . 219
4.12.3 Warnings and Restrictions . 220

5 BeagleBone Black 223
5.1 Introduction . 224
5.2 Change History . 224

5.2.1 Document Change History . 224
5.2.2 Board Changes . 225

5.3 Connecting Up Your BeagleBone Black . 227
5.3.1 What’s In the Box . 227
5.3.2 Main Connection Scenarios . 228
5.3.3 Tethered To A PC . 228
5.3.4 Standalone w/Display and Keyboard/Mouse . 231

5.4 BeagleBone Black Overview . 235
5.4.1 BeagleBone Compatibility . 236
5.4.2 BeagleBone Black Features and Specification . 237
5.4.3 Board Component Locations . 238

5.5 BeagleBone Black High Level Specification . 239
5.5.1 Block Diagram . 240
5.5.2 Processor . 240
5.5.3 Memory . 240
5.5.4 Power Management . 242
5.5.5 PC USB Interface . 243
5.5.6 Serial Debug Port . 243
5.5.7 USB1 Host Port . 243
5.5.8 Power Sources . 243
5.5.9 Reset Button . 243
5.5.10 Power Button . 244
5.5.11 Indicators . 244
5.5.12 CTI JTAG Header . 244
5.5.13 HDMI Interface . 244
5.5.14 Cape Board Support . 245

5.6 Detailed Hardware Design . 245
5.6.1 Power Section . 246
5.6.2 Sitara AM3358BZCZ100 Processor . 255
5.6.3 4GB eMMC Memory . 260
5.6.4 Board ID EEPROM . 262
5.6.5 Micro Secure Digital . 262

iv

5.6.6 6.6 User LEDs . 263
5.6.7 Boot Configuration . 263
5.6.8 Default Boot Options . 264
5.6.9 10/100 Ethernet . 264
5.6.10 LAN8710A Mode Pins . 268
5.6.11 HDMI Interface . 268
5.6.12 USB Host . 271
5.6.13 PRU-ICSS . 273

5.7 Connectors . 275
5.7.1 Expansion Connectors . 276
5.7.2 Power Jack . 281
5.7.3 USB Client . 281
5.7.4 USB Host . 281
5.7.5 Serial Header . 281
5.7.6 HDMI . 284
5.7.7 microSD . 284
5.7.8 Ethernet . 287
5.7.9 JTAG Connector . 287

5.8 Cape Board Support . 287
5.8.1 BeagleBone Black Cape Compatibility . 288
5.8.2 EEPROM . 290
5.8.3 Pin Usage Consideration . 295
5.8.4 Expansion Connectors . 296
5.8.5 8.5 Signal Usage . 298
5.8.6 8.6 Cape Power . 299
5.8.7 8.7 Mechanical . 300

5.9 BeagleBone Black Mechanical . 301
5.9.1 Dimensions and Weight . 301
5.9.2 Silkscreen and Component Locations . 301

5.10 Pictures . 301
5.11 Support Information . 301

5.11.1 Hardware Design . 301
5.11.2 Software Updates . 307
5.11.3 RMA Support . 307
5.11.4 Trouble Shooting HDMI Issues . 307

6 BeagleBone Blue 311
6.1 BeagleBone Blue Pinouts . 312

6.1.1 UT1 . 313
6.1.2 GPS . 313

6.2 SSH . 313
6.3 WiFi Setup . 314
6.4 IP settings . 314
6.5 Flashing Firmware . 315

6.5.1 Overview . 315
6.5.2 Required Items . 315
6.5.3 Steps Overview . 315
6.5.4 Windows PCs . 315

6.6 Play with the code . 316
6.7 BeagleBone Blue tests . 317

6.7.1 ADC . 317
6.7.2 GP0 . 317
6.7.3 GP1 . 317
6.7.4 UT1 . 317
6.7.5 GPS . 317
6.7.6 I2C . 318
6.7.7 Motors . 318

6.8 Accessories . 318

v

6.8.1 Chassis and kits . 318
6.8.2 Cases . 318
6.8.3 Cable assemblies and sub-assemblies . 318
6.8.4 UART, I2C, CAN, Quadrature encoders, PWR . 319
6.8.5 SPI, GPIO, ADC . 319
6.8.6 Motors . 319
6.8.7 DSM . 319
6.8.8 Power supplies . 320
6.8.9 Motors . 320
6.8.10 Radio remotes . 320
6.8.11 GPS . 320
6.8.12 Replacement antennas . 320
6.8.13 USB devices . 321
6.8.14 SPI devices . 321
6.8.15 I2C devices . 321
6.8.16 UART devices . 321
6.8.17 Bluetooth devices . 321

6.9 Frequently Asked Questions (FAQs) . 321
6.9.1 Are there any books to help me get started? . 321
6.9.2 What system firmware should I use for starting to explore my BeagleBone Blue? 321
6.9.3 What is the name of the access point SSID and password default on BeagleBone Blue? . 322
6.9.4 I’ve connected to BeagleBone Blue’s access point. How do I get logged into the board? . 322
6.9.5 How do I connect BeagleBone Blue to my own WiFi network? 322
6.9.6 Where can I find examples and APIs for programming BeagleBone Blue? 322
6.9.7 My BeagleBone Blue fails to run successful tests . 322
6.9.8 I’m running an image off of a microSD card. How do I write it to the on-board eMMC flash? 322
6.9.9 I’ve written the latest image to a uSD card, but some features aren’t working. How do I

make it run properly? . 323
6.9.10 I’ve got my on-board eMMC flash configured in a nice way. How do I copy that to other

BeagleBone Blue boards? . 323
6.9.11 I have some low-latency I/O tasks. How do I get started programming the BeagleBone PRUs?323
6.9.12 Are there available mechanical models? . 323
6.9.13 What is the operating temperature range? . 323
6.9.14 What is the DC motor drive strength? . 324

7 BeagleBone (all) 325

8 Capes 327
8.1 BeagleBone cape interface spec . 327

8.1.1 Background and overview . 328
8.1.2 Digital GPIO . 329
8.1.3 I2C . 332
8.1.4 SPI . 333
8.1.5 UART . 334
8.1.6 CAN . 335
8.1.7 ADC . 335
8.1.8 PWM . 336
8.1.9 TIMER PWM . 337
8.1.10 eQEP . 338
8.1.11 eCAP . 339
8.1.12 MMC/SDIO . 340
8.1.13 LCD . 340
8.1.14 McASP . 340
8.1.15 PRU . 341
8.1.16 GPIO . 344
8.1.17 Methodology . 344
8.1.18 References . 345

8.2 BeagleBoard.org BeagleBone Relay Cape . 345
8.2.1 Installation . 346

vi

8.2.2 Usage . 346
8.2.3 Code to Get Started . 347
8.2.4 C Source with File Descriptors . 347
8.2.5 C Source with LibGPIOd-dev and File Descriptors . 348

9 PocketBeagle 351
9.1 Introduction . 352
9.2 Change History . 352

9.2.1 Document Change History . 353
9.2.2 Board Changes . 353

9.3 Connecting Up PocketBeagle . 354
9.3.1 What’s In the Package . 354
9.3.2 Connecting the board . 354
9.3.3 Tethered to a PC using Debian Images . 354
9.3.4 Other ways to Connect up to your PocketBeagle . 366

9.4 PocketBeagle Overview . 366
9.4.1 PocketBeagle Features and Specification . 366
9.4.2 Board Component Locations . 367

9.5 PocketBeagle High Level Specification . 368
9.5.1 Block Diagram . 368
9.5.2 System in Package (SiP) . 368
9.5.3 Connectivity . 368
9.5.4 Power . 371
9.5.5 JTAG Pads . 372
9.5.6 Serial Debug Port . 372

9.6 Detailed Hardware Design . 373
9.6.1 OSD3358-SM SiP Design . 373
9.6.2 MicroSD Connection . 374
9.6.3 USB Connector . 374
9.6.4 Power Button Design . 374
9.6.5 User LEDs . 380
9.6.6 JTAG Pads . 380
9.6.7 PRU-ICSS . 380

9.7 Connectors . 384
9.7.1 Expansion Header Connectors . 384
9.7.2 P1 Header . 384
9.7.3 P2 Header . 388
9.7.4 mikroBUS socket connections . 391
9.7.5 Setting up an additional USB Connection . 391

9.8 PocketBeagle Cape Support . 392
9.9 PocketBeagle Mechanical . 392

9.9.1 9.1 Dimensions and Weight . 392
9.10 Additional Pictures . 392
9.11 Support Information . 392

9.11.1 Hardware Design . 394
9.11.2 Software Updates . 394
9.11.3 Export Information . 394
9.11.4 RMA Support . 394
9.11.5 Getting Help . 394

10BeagleConnect Freedom 395
10.1 Introduction . 396

10.1.1 What is BeagleConnect™ Freedom? . 396
10.1.2 What makes BeagleConnect™ new and different? . 396

10.2 Quick Start Guide . 398
10.2.1 What’s included in the box? . 398
10.2.2 Attaching antenna . 399
10.2.3 Tethering to PC . 399
10.2.4 Wireless Connection . 399

vii

10.2.5 Access Micropython . 399
10.2.6 Demos and Tutorials . 399

10.3 Design . 400
10.3.1 Detailed overview . 400
10.3.2 Detailed hardware design . 400
10.3.3 Mechanical . 406

10.4 Connectors . 406
10.5 Demos & tutorials . 406

10.5.1 Using Micropython . 406
10.5.2 Using Zephyr . 409
10.5.3 Using BeagleConnect Greybus . 410

10.6 Support . 414
10.6.1 Certifications and export control . 414
10.6.2 Additional documentation . 414
10.6.3 Change History . 414
10.6.4 Document Changes . 414

11BeagleBoard (all) 417

12Projects 419
12.1 simpPRU . 419

12.1.1 simpPRU Basics . 419
12.1.2 Build from source . 420
12.1.3 Install . 420
12.1.4 Language Syntax . 421
12.1.5 IO Functions . 430
12.1.6 Usage(simppru) . 435
12.1.7 Usage(simppru-console) . 435
12.1.8 simpPRU Examples . 439

12.2 BB-Config . 453
12.2.1 BB-Config Detail . 453
12.2.2 Build from Source . 455
12.2.3 Features . 455
12.2.4 Version . 465

12.3 BeagleConnect . 466
12.3.1 BeagleConnect Technology . 467
12.3.2 BeagleConnect™ Greybus demo using BeagleConnect™ Freedom 470
12.3.3 BeagleConnect™ Story . 484
12.3.4 BeagleConnect Experience . 485
12.3.5 BeagleConnect boards . 486

13Books 487
13.1 BeagleBone Cookbook . 487

13.1.1 Basics . 487
13.1.2 Sensors . 497
13.1.3 Displays and Other Outputs . 524
13.1.4 Motors . 537
13.1.5 Beyond the Basics . 551
13.1.6 Internet of Things . 578
13.1.7 The Kernel . 615
13.1.8 Real-Time I/O . 626
13.1.9 Capes . 639
13.1.10Parts and Suppliers . 669
13.1.11Misc . 672

13.2 PRU Cookbook . 680
13.2.1 Case Studies - Introduction . 681
13.2.2 Getting Started . 705
13.2.3 Running a Program; Configuring Pins . 715
13.2.4 Debugging and Benchmarking . 724

viii

13.2.5 Building Blocks - Applications . 741
13.2.6 Accessing More I/O . 810
13.2.7 More Performance . 816
13.2.8 Moving to the BeagleBone AI . 827
13.2.9 PRU Projects . 833

14Accessories 839
14.1 Power supplies . 841
14.2 Displays . 842

14.2.1 Monitors and Resolutions . 842
14.3 Peripherals . 843

14.3.1 Keyboard & Mouse Combo . 843
14.3.2 Keyboards . 843
14.3.3 Mice . 844
14.3.4 USB HUBS . 844

14.4 Cables . 844
14.4.1 USB Cables . 844
14.4.2 Serial Debug Cables . 845
14.4.3 JTAG debug Cables . 846
14.4.4 HDMI Cables . 846
14.4.5 miniDP to HDMI . 847

14.5 Cameras . 847
14.5.1 USB Cameras . 847
14.5.2 CSI Cameras . 847

15Terms & Conditions 849
15.1 Design . 849
15.2 Additional terms . 849
15.3 United States FCC and Canada IC regulatory compliance information 850
15.4 Board warnings, restrictions and disclaimers . 850

ix

x

Chapter 1

Introduction

Welcome to the BeagleBoard documentation project. If you are looking for help with your Beagle open-hardware
development platform, you’ve found the right place!

Important: This documentation is a work in progress. For the latest versions of this documentation, be sure
to check the official release sites:

• https://docs.beagle.cc (cached with local proxies)

• https://docs.beagleboard.org (non-cached, without proxies)

For bleeding edge (development-stage) documentation:

• https://docs.beagleboard.io (straight from docs repo)

Please check out our Support page to find out how to get started, resolve issues, and engage with the developer
community. Don’t forget that this is an open-source project! Your contributions are welcome. Learn about how
to contribute to the BeagleBoard documentation project and any of the many open-source Beagle projects
ongoing on our Contribution page.

Warning: Make sure you thoroughly read and agree with our Terms & Conditions which covers warnings,
restrictions, disclaimers, and warranty for all of our boards. Use of either the boards or the design materials
constitutes agreement to the T&C including any modifications done to the hardware or software solutions
provided by beagleboard.org foundation.

1.1 Support

1.1.1 Getting started

The starting experience for all Beagles has been made to be as consistent as is possible. For any of the Beagle
Linux-based open hardware computers, visit Getting Started Guide.

Getting Started Guide

Beagles are tiny computers ideal for learning and prototyping with electronics. Read the step-by-step getting
started tutorial below to begin developing with your Beagle in minutes.

1

https://docs.beagle.cc
https://docs.beagleboard.org
https://docs.beagleboard.io
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Update board with latest software This step may or may not be necessary, depending on how old a
software image you already have, but executing this step, the longest step, will ensure the rest will go as
smooth as possible.

Download the latest software image Download the latest software image from beagleboard.org distros
page. The “IoT” images provide more free disk space if you don’t need to use a graphical user interface (GUI).

Note: Due to sizing necessities, this download may take 30 minutes or more.

The Debian/Ubuntu distribution is provided for the boards. The file you download will have an .img.xz extension.
This is a compressed sector-by-sector image of the SD card.

Install SD card programming utility Download and install balenaEtcher.

2 Chapter 1. Introduction

https://www.beagleboard.org/distros
https://www.balena.io/etcher/

BeagleBoard Docs, Release 1.0.20230711-wip

Connect SD card to your computer Use your computer’s SD slot or a USB adapter to connect the SD card
to your computer.

Write the image to your SD card Use Etcher to write the image to your SD card. Etcher will transparently
decompress the image on-the-fly before writing it to the SD card.

Eject the SD card Eject the newly programmed SD card.

Boot your board off of the SD card Insert SD card into your (powered-down) board, hold down the
USER/BOOT button and apply power, either by the USB cable or 5V adapter.

If using an original BeagleBone or PocketBeagle, you are done.

Note: If using BeagleBone Black, BeagleBone Blue, BeagleBone AI, BeagleBone AI-64, BeaglePlay or other
board with on-board eMMC flash and you desire to write the image to your on-board eMMC, you’ll need to

1.1. Support 3

BeagleBoard Docs, Release 1.0.20230711-wip

follow the instructions at http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC. When the
flashing is complete, all 4 USRx LEDs will be steady off and possibly power down the board upon completion.
This can take up to 45 minutes. Power-down your board, remove the SD card and apply power again to finish.

Start your Beagle If any step fails, it is recommended to update to the latest software image using the
instructions above.

Power and boot Most Beagles can be powered via a USB cable, providing a convenient way to provide both
power to your Beagle and connectivity to your computer. Be sure the cable is of good quality and your source
can provide enough power.

Alternatively, your Beagle may have a barrel jack which can take power from a wall adapter. Checkout Power
supplies to get the correct adapter for your Beagle.

Danger: Make sure to use only a 5V center positive adapter for all Beagles except BeagleBone Blue and
BeagleBoard-X15 (12V).

If you are using your Beagle with an SD (microSD) card, make sure it is inserted ahead of providing power. Most
Beagles include programmed on-board flash and therefore do not require an SD card to be inserted.

You’ll see the power (PWR or ON) LED lit steadily. Within a minute or so, you should see the other LEDs blinking
in their default configurations. Consult your boards documentation to locate these LEDs.

• USR0 is typically configured at boot to blink in a heartbeat pattern.

• USR1 is typically configured at boot to light during SD (microSD) card accesses.

• USR2 is typically configured at boot to light during CPU activity.

• USR3 is typically configured at boot to light during eMMC accesses.

• USR4/WIFI is typically configured at boot to light with WiFi (client) network association (Only on boards
with built-in WiFi or M.2).

Enable a network connection If connected via USB, a network adapter should show up on your computer.
Your Beagle should be running a DHCP server that will provide your computer with an IP address of either
192.168.7.1 or 192.168.6.1, depending on the type of USB network adapter supported by your computer’s
operating system. Your Beagle will reserve 192.168.7.2 or 192.168.6.2 for itself.

If your Beagle includes WiFi, an access point called “BeagleBone-XXXX” where “XXXX” varies between boards.
The access point password defaults to “BeagleBone”. Your Beagle should be running a DHCP server that will
provide your computer with an IP address in the 192.168.8.x range and reserve 192.168.8.1 for itself.

If your Beagle is connected to your local area network (LAN) via either Ethernet or WiFi, it will utilize mDNS
to broadcast itself to your computer. If your computer supports mDNS, you should see your Beagle as bea-
glebone.local. Non-BeagleBone boards will utilize alternate names. Multiple BeagleBone boards on the same
network will add a suffix such as beaglebone-2.local.

Browse to your Beagle A web server with an Visual Studio Code (IDE) should be running on your Beagle.
Point your browser to http://192.168.7.2:3000 to begin development.

4 Chapter 1. Introduction

http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC
https://www.beagleboard.org/distros
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/Multicast_DNS

BeagleBoard Docs, Release 1.0.20230711-wip

Note: Use either Firefox or Chrome (Internet Explorer will NOT work), browse to the web server running on
your board. It will load a presentation showing you the capabilities of the board. Use the arrow keys on your
keyboard to navigate the presentation.

The below table summarizes the typical addresses.

Link Connection type Operating System(s)
http://192.168.7.2 USB Windows
http://192.168.6.2 USB Mac OS X, Linux
http://192.168.8.1 WiFi all
http://beaglebone.local all mDNS enabled
http://beaglebone-2.local all mDNS enabled

Troubleshooting Do not use Internet Explorer.

Virtual machines are not recommended when using the direct USB connection. It is recommended you use
only network connections to your board if you are using a virtual machine.

When using ‘ssh’ with the provided image, the username is ‘debian’ and the password is ‘temppwd’.

With the latest images, it should no longer be necessary to install drivers for your operating system to give you
network-over-USB access to your Beagle. In case you are running an older image, an older operating system
or need additional drivers for serial access to older boards, links to the old drivers are below.

Operating system USB Driver Comments
Windows (64-bit) 64-bit installer If in doubt, try the 64-bit installer first.
Windows (32-bit) 32-bit installer
Mac OS X Network Serial Install both sets of drivers.
Linux mkudevrules.sh Driver installation isn’t required, but you might find a few udev rules helpful.

Note: For Windows (64-bit):

1. Windows Driver Certification warning may pop up two or three times. Click “Ignore”, “Install” or “Run”.

2. To check if you’re running 32 or 64-bit Windows see this.

1.1. Support 5

https://www.mozilla.org/firefox
https://www.google.com/chrome
http://192.168.7.2
http://192.168.6.2
http://192.168.8.1
http://beaglebone.local
http://beaglebone-2.local
https://beagleboard.org/static/Drivers/Windows/BONE_D64.exe
https://beagleboard.org/static/Drivers/Windows/BONE_DRV.exe
https://beagleboard.org/static/Drivers/MacOSX/FTDI/EnergiaFTDIDrivers2.2.18.pkg
https://beagleboard.org/static/Drivers/Linux/FTDI/mkudevrule.sh
https://support.microsoft.com/en-us/topic/determine-whether-your-computer-is-running-a-32-bit-version-or-64-bit-version-of-the-windows-operating-system-1b03ca69-ac5e-4b04-827b-c0c47145944b

BeagleBoard Docs, Release 1.0.20230711-wip

3. On systems without the latest service release, you may get an error (0xc000007b). In that
case, please perform the following and retry: https://answers.microsoft.com/en-us/windows/forum/all/
windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866

4. You may need to reboot Windows.

5. These drivers have been tested to work up to Windows 10

Additional FTDI USB to serial/JTAG information and drivers are available from https://www.ftdichip.com/Drivers/
VCP.htm

Additional USB to virtual Ethernet information and drivers are available from http://www.linux-usb.org/gadget/
and https://joshuawise.com/horndis

Visit https://docs.beagleboard.org/latest/intro/support/index.html for additional debugging tips.

Hardware documentation Be sure to check check the latest hardware documentation for your board
at https://docs.beagleboard.org. Detailed design materials for various boards can be found at https://git.
beagleboard.org/explore/projects/topics/boards.

Books For a complete list of books on BeagleBone, see beagleboard.org/books.

Bad to the Bone

Perfect for high-school seniors or freshman univerisity level text, consider using “Bad to the Bone”

BeagleBone Cookbook

A lighter treatment suitable for a bit broader audience without the backgrounders on programming and elec-
tronics, consider “BeagleBone Cookbook”

Exploring BeagleBone and Embedded Linux Primer

To take things to the next level of detail, consider “Exploring BeagleBone” which can be considered the missing
software manual and utilize “Embedded Linux Primer” as a companion textbook to provide a strong base on
embedded Linux suitable for working with any hardware that will run Linux.

1.1.2 Getting support

BeagleBoard.org products and open hardware designs are supported via the on-line community resources. We
are very confident in our community’s ability to provide useful answers in a timely manner. If you don’t get
a productive response within 24 hours, please escalate issues to Jason Kridner (contact info available on the
About Page). In case it is needed, Jason will help escalate issues to suppliers, manufacturers or others. Be sure
to provide a link to your questions on the community forums as answers will be provided there.

Be sure to ask smart questions that provide the following:

• What are you trying to accomplish?

• What did you find when researching how to accomplish it?

• What are the detailed results of what you tried?

• How did these results differ from what you expected?

• What would you consider to be a success?

Important: Remember that community developers are volunteering their expertise. Respect developers
time and expertise and they might be happy to share with you. If you want paid support, there are Consulting
and other resources options for that.

6 Chapter 1. Introduction

https://answers.microsoft.com/en-us/windows/forum/all/windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866
https://answers.microsoft.com/en-us/windows/forum/all/windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866
https://www.ftdichip.com/Drivers/VCP.htm
https://www.ftdichip.com/Drivers/VCP.htm
http://www.linux-usb.org/gadget/
https://joshuawise.com/horndis
https://docs.beagleboard.org/latest/intro/support/index.html
https://docs.beagleboard.org
https://git.beagleboard.org/explore/projects/topics/boards
https://git.beagleboard.org/explore/projects/topics/boards
https://beagleboard.org/books
https://bbb.io/bad-to-the-bone
https://bbb.io/cookbook
https://bbb.io/ebb
https://bbb.io/elp
https://www.oshwa.org/definition/
https://beagleboard.org/about
https://forum.beagleboard.org
http://www.catb.org/~esr/faqs/smart-questions.html

BeagleBoard Docs, Release 1.0.20230711-wip

Diagnostic tools

Best to be prepared with good diagnostic information to aide with support.

• Output of beagle-version script needed for support requests

• Beagle Tester source

Tip: For debugging purposes you can either share the beagle-version.txt file you just down-
loaded using the steps shown in pictures above Or you can just paste the terminal output of sudo
beagle-version to https://pastebin.com/ and send us the link.

1.1. Support 7

https://git.beagleboard.org/jkridner/beagle-tester
https://pastebin.com/

BeagleBoard Docs, Release 1.0.20230711-wip

Community resources

Please execute the board diagnostics, review the hardware documentation, and consult the mailing list and
IRC channel for support. BeagleBoard.org is a “community” project with free support only given to those who
are willing to discussing their issues openly for the benefit of the entire community.

• Frequently Asked Questions

• Mailing List

• Live Chat

Consulting and other resources

Need timely response or contract resources because you are building a product?

• Resources

Repairs

Repairs and replacements only provided on unmodified boards purchased via an authorized distributor within
the first 90 days. All repaired board will have their flash reset to factory contents. For repairs and replacements,
please contact support at BeagleBoard.org using the RMA form:

• RMA request

1.1.3 Understanding Your Beagle

• Beagle 101

• Hardware

• Software

• Books

– PRU Cookbook

– BeagleBone Cookbook

– Exploring BeagleBone

– Bad to the Bone

1.1.4 Working with Cape Add-on Boards

• Capes

• BeagleBone cape interface spec

• Accessories

1.2 Beagle 101

Note: This page is under construction. Most of the information here is drastically out of date.

This is a collection of articles to aide in quickly understanding how to make use of Beagles running Linux. Most
of the useful information has moved to BeagleBone Cookbook, but some articles are being built here from a
different perspective.

8 Chapter 1. Introduction

https://forum.beagleboard.org/c/faq
https://forum.beagleboard.org
https://beagleboard.org/chat
https://beagleboard.org/resources
https://www.beagleboard.org/rma
https://beagleboard.org/Support/Hardware+Support
https://beagleboard.org/Support/Software+Support
https://beagleboard.org/ebb
https://beagleboard.org/bad-to-the-bone

BeagleBoard Docs, Release 1.0.20230711-wip

Articles under construction or to be imported and updated:

• QWIIC, STEMMA and Grove Add-ons in Linux

• https://beagleboard.github.io/bone101/Support/bone101/

1.2.1 QWIIC, STEMMA and Grove Add-ons in Linux

Note: This article is under construction.

I’m creating a place for me to start taking notes on how to load drivers for I2C devices (mostly), but also other
Grove add-ons.

For simplicity sake, I’ll use these definitions

• add-on: the QWIIC, STEMMA (QT) or Grove add-on separate from your Linux computer

• device: the “smart” IC on the add-on to which we will interface from your Linux computer

• board: the Linux single board computer with the embedded interface controller you are using

• module: a kernel module that might contain the driver

Using I2C with Linux drivers

Linux has a ton of drivers for I2C devices. We just need a few parameters to load them.

Using a Linux I2C kernel driver module can be super simple, like in the below example for monitoring a digital
light sensor.

cd /dev/bone/i2c/2
echo tsl2561 0x29 > new_device
watch -n0 cat ”2-0029/iio:device0/in_illuminance0_input”

Once you issue this, your screen continuously refresh with luminance values from the add-on sensor.

In the above example, /dev/bone/i2c/2 comes from which I2C controller we are using on the board and there
are specific pins on the board where you can access it. On BeagleBone boards, there is often a symbolic link to
the controller based upon the cape expansion header pins being used. See I2C for the cape expansion header
pin assignments.

tsl2561 is the name of the driver we want to load and 0x29 is the address of the device on the I2C bus. If you
want to know about I2C device addresses, the Sparkfun I2C tutorial isn’t a bad place to start. The new_device
virtual file is documented in the Linux kernel documentation on instantiating I2C devices.

On the last line, watch is a program that will repeatedly run the command that follows. The -n0 sets the refresh
rate. The program cat will share the contents of the file 2-0029/iio:device0/in_illuminance0_input.

2-0029/iio:device0/in_illuminance0_input is not a file on a disk, but output directly from the driver. The leading
2 in 2-0029 represents the I2C controller index. The 0029 represents the device I2C address. Most small sensor
and actuator drivers will show up as Industrial I/O (IIO) devices. New IIO devices get incrementing indexes. In
this case, iio:device0 is the first IIO device driver loaded. Finally, in_illuminance0_input comes from the SYSFS
application binary interface for this type of device, a light sensor. The Linux kernel ABI documentation for
sysfs-bus-iio provides the definition of available data often provided by light sensor drivers.

What: /sys/.../iio:deviceX/in_illuminance_input
What: /sys/.../iio:deviceX/in_illuminance_raw
What: /sys/.../iio:deviceX/in_illuminanceY_input
What: /sys/.../iio:deviceX/in_illuminanceY_raw
What: /sys/.../iio:deviceX/in_illuminanceY_mean_raw
What: /sys/.../iio:deviceX/in_illuminance_ir_raw

(continues on next page)

1.2. Beagle 101 9

https://beagleboard.github.io/bone101/Support/bone101/
https://learn.sparkfun.com/tutorials/i2c
https://www.kernel.org/doc/html/v5.19/i2c/instantiating-devices.html
https://manpages.debian.org/bullseye/procps/watch.1.en.html
https://manpages.debian.org/bullseye/coreutils/cat.1.en.html
https://www.kernel.org/doc/html/v5.19/driver-api/iio/index.html
https://www.kernel.org/doc/html/v5.19/filesystems/sysfs.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

What: /sys/.../iio:deviceX/in_illuminance_clear_raw
KernelVersion: 3.4
Contact: linux-iio@vger.kernel.org
Description:

Illuminance measurement, units after application of scale
and offset are lux.

Read further to discover how to find these bits of magic text used above.

The generic steps are fairly simple:

1. Identify driver name and address

2. Ensure driver is enabled in kernel build

3. Identify I2C signals on board and controller in Linux

4. Ensure pinmux set to I2C

5. Ensure add-on connection is good

6. Issue Linux command to load driver

7. Identify and utilize interface provided by driver

Driver name One resource that is very helpful is the list that Vaishnav put together for supporting Mikroelek-
tronika Click add-ons. This list of Click add-ons with driver information can help a lot with matching a device
to the driver name, device address, and kernel configuration setting.

Note: Documentation for your particular add-on might indicate a different device address than is configured
on Click add-ons.

I’m not aware of a trivial way of discovering the mapping that Vaishnav created outside of looking at the kernel
sources. As an example, let’s look at the Grove Digital Light Sensor add-on which is documented to utilize a
TSL2561.

Searching through the kernel sources, we can find the driver code at drivers/iio/light/tsl2563.c. There is a list
of driver names in a i2c_device_id table:

static const struct i2c_device_id tsl2563_id[] = {
{ ”tsl2560”, 0 },
{ ”tsl2561”, 1 },
{ ”tsl2562”, 2 },
{ ”tsl2563”, 3 },
{}

};

Important: Don’t miss that the driver, tsl2561 , is actually part of a a superset driver, tsl2563 . This can
make things a bit trickier to find, so you have to look within the text of the driver source, not just the filenames.

Kernel configuration

I2C signals and controller

Pinmuxing

10 Chapter 1. Introduction

https://git.beagleboard.org/beagleconnect/manifesto/-/blob/main/click_info.csv
https://wiki.seeedstudio.com/Grove-Digital_Light_Sensor/
https://elixir.bootlin.com/linux/v5.19.5/source/drivers/iio/light/tsl2563.c#L862

BeagleBoard Docs, Release 1.0.20230711-wip

Wiring

Load driver

Interface

Finding I2C add-onmodules
Note: There are some great resources out there:

• Adafruit list of I2C devices

• Sparkfun list of QWIIC devices

• Adafruit STEMMA QT introduction

Pitfalls Not all I2C devices with drivers in the Linux kernel can be loaded this way. The most common reason
is that the device driver expects an interrupt signal or other GPIO along with the I2C communication. In these
cases, a device tree overlay or driver modification may be necessary.

1.3 Contribution

Note: This section is under developmement right now.

Important: First off, thanks for taking the time to think about contributing!

Note: For donations, see BeagleBoard.org - Donate.

The BeagleBoard.org Foundation maintains source for many open source projects.

Example projects suitable for first contributions:

• BeagleBoard project documentation

• Debian image bug repository

• Debian image builder

These guidelines are mostly suggestions, not hard-set rules. Use your best judgment, and feel free to propose
changes to this document in a pull request.

1.3.1 Code of Conduct

This project and everyone participating are governed by the same code of conduct.

Note: Check out https://forum.beagleboard.org/faq as a starting place for our code of conduct.

By participating, you are expected to uphold this code. Please report unacceptable behavior to contact one of
our administrators or moderators on https://forum.beagleboard.org/about.

1.3. Contribution 11

https://learn.adafruit.com/i2c-addresses/the-list
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt/sparkfun-qwiic
https://beagleboard.org/donate
https://git.beagleboard.org/docs/docs.beagleboard.io
https://git.beagleboard.org/beagleboard/Latest-Images
https://git.beagleboard.org/beagleboard/image-builder
https://forum.beagleboard.org/faq
https://forum.beagleboard.org/about

BeagleBoard Docs, Release 1.0.20230711-wip

1.3.2 Frequently Asked Questions

Please refer to the technical and contribution frequently asked questions pages before posting any of your own
questions. Please feel encouraged to ask follow-up questions if any of the answers are not clear enough.

• Frequently asked questions contribution category on the BeagleBoard.org Forum

1.3.3 What should I know before I get started?

The more you know about Linux and contributing to upstream projects, the better, but this knowledge isn’t
strictly required. Simply reading about contributing to Linux and upstream projects can help build your vocab-
ulary in a meaningful way to help out. Learn about the skills required for Linux contributions in the Upstream
Kernel Contributions section.

The most useful thing to know is how to ask smart questions. Read about this in the Getting support section. If
you ask smart questions on the issue trackers and forum, you’ll be doing a lot to help us improve the designs
and documentation.

Upstream Kernel Contributions

Note: For detailed information on Kernel Developmement checkout the official kernel.org kernel docs.

For a person or company who wishes to submit a change to the Linux kernel, the process can sometimes be
daunting if you’re not familiar with “the system.” This text is a collection of suggestions which can help you
get started and greatly increase the chances of your change being accepted.

Note: This version is an unofficial draft and is subject to change.

Pre-requisites The following are the skills that are needed before you actually start to contribute to the linux
kernel:

• More Git!

• C-Programming

• Cross-arch Development

• Basics of embedded buses (I2C, UART, SPI, etc.)

• Device Drivers in Embedded Systems

• Device Trees

For more guidance, check out the Additional Resources.

More Git! It is highly recommended that you go through Git Usage before starting to read and follow these
guidelines. You will need to have a proper git setup on your computer in order to effectively follow these steps.

Creating your first patch When you first enter the world of Linux Kernel development from a background
in contributing over gitlab or github, the terminologies slightly change.

Your Pull Requests (PRs) now become Patches or Patch Series. You no longer just go to some website and click
on a “Create Pull Request” button. Whatever code/changes you want to add will have to be sent as patches
via emails.

As an example, let’s consider a commit to add the git section to these docs. I stage these changes first using
git add -p.

12 Chapter 1. Introduction

https://forum.beagleboard.org/c/faq
https://www.kernel.org/doc/html/latest/

BeagleBoard Docs, Release 1.0.20230711-wip

diff --git a/contribution/contribute.rst b/contribution/contribute.rst
index def100b..0af08c5 100644
--- a/contribution/contribute.rst
+++ b/contribution/contribute.rst

Then, commit the above changes.

Note: Don’t forget to make your commit message descriptive of the feature you are adding or the work that
you have done in that commit. The commit has to be self explanatory in itself. Link any references if you have
used and paste any logs to prove your code works or if there is a fix.

git commit -vs

[linux-contrib 3bc0821] contribute.rst: Add git section
1 file changed, 27 insertions(+), 1 deletion(-)

Now, let’s say we want to send this new feature to upstream kernel. You then have to create a patch file using
the following command:

git format-patch -1 HEAD

0001-contribute.rst-Add-git-section.patch

This will generate one file that is generally referred to as the patch file. This is what you will now be sending
upstream in order to get your patch merged. But wait, there are a fewmore things we need to setup for sending
a patch via e-mail. That is, of course your email!

For configuring your email ID for sending patches refer to this excellent stackoverflow thread, configure git-
send-email.

Finally, after you have configured you email properly, you can send out a patch using:

git send-email 0001-contribute.rst-Add-git-section.patch

replacing of course the above patchfile name with whatever was your own patch. This command will then ask
you To whom should the emails be sent (if anyone)? Here, you have to write the email
address of the list you want to send out the patch to.

git send-email also has command line options like --to and --cc that you can also use to add more
email addresses of whoever you want to keep in CC. Generally it is a good idea to keep yourself in CC.

C-Programming It is highly recommended that you have proficiency in C-Programming, because well the
kernel is mostly written in C! For starters, you can go through Dennis Ritchie’s C Programming book to under-
stand the language and also solve the exercises given there for getting hands on.

Cross-arch Development While working with the kernel, you’ll most likely not be compiling it on themachine
that you intend to actually boot it on. For example if you are compiling the Kernel for BeageBone Black it’s
probably not ideal for you to actually clone the entire kernel on BeagleBone Black and then compile it there.
What you’d do instead is pick a much powerful machine like a Desktop PC or laptop and then use cross arch
compilers like the arm-gcc for instance to compile the kernel for your target device.

Basics of embedded buses (I2C, UART, SPI, etc.) In the world of embedded, you often need to commu-
nicate with peripherals over very low level protocols. To name a few, I2C, UART, SPI, etc. are all serial protocols
used to communicate with a variety of devices and peripherals.

It’s recommended to understand at least the basics of each of the protocol so you know what’s actually going
on when you write for instance an I2C or SPI driver to communicate with let’s say a sensor.

1.3. Contribution 13

https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to
https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to

BeagleBoard Docs, Release 1.0.20230711-wip

Device Drivers in Embedded Systems I used the term “Drivers” in the above section, but what does it
really mean?

Todo: Why “device” drivers?

Todo: Why do we need drivers?

Todo: What do drivers look like?

Device Trees We just learned about drivers, and it’s time that once you have written a driver in the kernel,
you obviously want it to work! So how do we really tell the kernel which drivers to load? How do we, at boot
time, instruct which devices are present on the board you are booting on?

The kernel does not contain the description of the hardware, it is located in a separate binary: the device tree
blob.

What is a Device Tree?

A device tree is used to describe system hardware. A boot program loads a device tree into a client program’s
memory and passes a pointer to the device tree to the client.

A device tree is a tree data structure with nodes that describe the physical devices in a system.

Additional Resources

1. Device Trees for Dummies PDF

2. What are Device Drivers

3. Submitting your patches upstream

1.3.4 How can I contribute?

The most obvious way to contribute is using the git.beagleboard.org Gitlab server to report bugs, suggest
enhancements and providing merge requests, also called pull requests, the provide fixes to software, hardware
designs and documentation.

This documentation has a number of todo items where help is needed that can be searched in the source.

Todo: We need a 404 document to help people handle broken links (report, find, etc.).

(The original entry is located in /builds/jdneal/docs.beagleboard.io/404.rst, line 8.)

Todo: add cape compatibility details

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-64/ch04.rst, line 100.)

Todo: This section needsmore work and references to greater detail. Other boot modes are possible. Software
to support USB and serial boot modes is not provided by beagleboard.org._Please contact TI for support of this
feature.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-64/ch05.rst, line 225.)

14 Chapter 1. Introduction

https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://tldp.org/LDP/tlk/dd/drivers.html
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://git.beagleboard.org

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: IMX219 CSI sensor connection with BeagleBone® AI-64 for Edge AI

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-
64/edge_ai_apps/getting_started.rst, line 78.)

Todo: BeagleBone® AI-64 wallpaper upon boot

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-
64/edge_ai_apps/getting_started.rst, line 182.)

Todo: Microsoft Visual Studio Code for connecting to BeagleBone® AI-64 for Edge AI via SSH

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai-
64/edge_ai_apps/getting_started.rst, line 243.)

Todo: Need info on BBAI boot mode settings

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 259.)

Todo: Need info on BBAI power management

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 264.)

Todo: Add WiFi/Bluetooth/Ethernet

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 269.)

Todo: This text needs to go somewhere.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch05.rst, line 276.)

Todo: This table needs entries

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1490.)

Todo: Table entries needed

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1582.)

Todo: Need info on BealgeBone AI serial debug

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1596.)

Todo: Need info on BealgeBone AI USB Type-C connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1601.)

1.3. Contribution 15

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: Need info on BealgeBone AI USB Type-A connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1606.)

Todo: Need info on BealgeBone AI USB Gigabit Ethernet connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1611.)

Todo: Need info on BealgeBone AI u.FL antenna connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1616.)

Todo: Need info on BealgeBone AI uSD card slot

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1621.)

Todo: Need info on BealgeBone AI uHDMI connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/ai/ch07.rst, line 1626.)

Todo: Make all figure references actual references

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/black/ch07.rst, line
1163.)

Todo: move accessory links to a single common document for all boards.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/black/ch07.rst, line
1184.)

Todo: We should include all support information in docs.beagleboard.org now and leave eLinux to others,
freeing it as much as possible

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/black/ch07.rst, line
1194.)

Todo: We are going to work on a unified accessories page for all the boards and it should replace this.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beaglebone/blue/accessories.rst,
line 6.)

Todo: Image with what’s inside the box and a better description.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 14.)

16 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: Describe how to get a serial connection.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 55.)

Todo: Describe how to get an IEEE802.15.4g connection from BeaglePlay.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 62.)

Todo: Describe how to get to a local console and websockets console.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/02-quick-
start.rst, line 73.)

Todo: Need to describe functionality of 0.2.2

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/freedom/demos-and-
tutorials/using-micropython.rst, line 201.)

Todo: provide images demonstrating Jupyter Notebook visualization

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/index.rst, line 76.)

Todo: think a bit more about this section with some feedback from Cathy.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleconnect/index.rst, line 95.)

Todo: Need an image of the logo

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 43.)

Todo: To make it stick, …

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 92.)

Todo: Document kernel version that integrates this overlay and where to get update instructions.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 158.)

Todo:

• How do turn off the driver?

• How do turn on spidev?

• How do I enable GPIO?

1.3. Contribution 17

BeagleBoard Docs, Release 1.0.20230711-wip

• How do a provide a manifest?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 203.)

Todo:

• Needs udev

• Needs live description

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/using-mikrobus.rst, line 211.)

Todo: Describe how to know it is working

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/zephyr-cc1352-development.rst, line 56.)

Todo: A big part of what is missing here is to put your BeaglePlay on the Internet such that we can download
things in later steps. That has been initially brushed over.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/zephyr-cc1352-development.rst, line 67.)

Todo: Describe how to handle the serial connection

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/beagleplay/demos-and-
tutorials/zephyr-cc1352-development.rst, line 393.)

Todo: figure out if BONE-SPI0_0 and BONE-SPI0_1 can be loaded at the same time

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
504.)

Todo: We need a udev rule to make sure the ADC shows up at /dev/bone/adc! There’s nothing for sure that
IIO devices will show up in the same place.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
669.)

Todo: I think we can also create symlinks for each channel based on which device is there, such that we can
do /dev/bone/adc/Px_y

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
671.)

Todo: I believe a multiplexing IIO driver is the future solution

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
673.)

18 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: remove deep references to git trees

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
768.)

Todo: This doesn’t include any abstraction yet.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
952.)

Todo: For each of the pins with a GPIO, there should be a symlink that comes from the names

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
1338.)

Todo: Describe how the Device Trees expose symbols for reuse across boards

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
1351.)

Todo: The steps used to verify all of these configurations is to be documented here. It will serve to document
what has been tested, how to reproduce the configurations, and how to verify each major triannual release.
All faults will be documented in the issue tracker.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/boards/capes/cape-interface-spec.rst, line
1385.)

Todo: Add cape examples of various sizes

(The original entry is located in /builds/jdneal/docs.beagleboard.io/books/beaglebone-
cookbook/09capes/capes.rst, line 18.)

Todo: Update display cape example

(The original entry is located in /builds/jdneal/docs.beagleboard.io/books/beaglebone-
cookbook/09capes/capes.rst, line 23.)

Todo: Make a mapping table for the Black

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp

(The original entry is located in /builds/jdneal/docs.beagleboard.io/books/pru-cookbook/05blocks/blocks.rst,
line 1809.)

Todo: Describe where and how to report issues on git.beagleboard.org

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/index.rst, line 76.)

1.3. Contribution 19

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/index.rst, line 82.)

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/index.rst, line 88.)

Todo: Why “device” drivers?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/linux-upstream.rst, line
148.)

Todo: Why do we need drivers?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/linux-upstream.rst, line
152.)

Todo: What do drivers look like?

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/linux-upstream.rst, line
156.)

Todo: The terminology Implicit and Explicit is not accurate here.

(The original entry is located in /builds/jdneal/docs.beagleboard.io/intro/contribution/rst-cheat-sheet.rst, line
286.)

Reporting bugs

Todo: Describe where and how to report issues on git.beagleboard.org

Suggesting enhancements

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

Submitting merge requests

Todo: Describe how to introduct ideas on forum.beagleboard.org and git.beagleboard.org

20 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

1.3.5 Style and usage guidelines

• Git Usage

• Git commit messages

• Documentation Style Guide

Git Usage

Note: For detailed information on Git and Gitlab checkout the official Git and GitLab help page. Also, for good
GitLab workflow you can checkout the Introduction to GitLab Flow (FREE) page.

These are (draft) general guidelines taken from BioPython project to be used for BeagleBoard development
using git. We’re still working on the finer details.

This document is meant as an outline of the way BeagleBoard projects are developed. It should include all
essential technical information as well as typical procedures and usage scenarios. It should be helpful for core
developers, potential code contributors, testers and everybody interested in BeagleBoard code.

Note: This version is an unofficial draft and is subject to change.

Relevance This page is about actually using git for tracking changes.

If you have found a problem with any BeagleBoard project, and think you know how to fix it, then we suggest
following the simple route of filing a bug and describe your fix. Ideally, you would upload a patch file showing
the differences between the latest version of BeagleBoard project (from our repository) and your modified
version. Working with the command line tools diff and patch is a very useful skill to have, and is almost a
precursor to working with a version control system.

Technicalities This section describes technical introduction into git usage including required software and
integration with GitLab. If you want to start contributing to BeagleBoard, you definitely need to install git
and learn how to obtain a branch of the BeagleBoard project you want to contribute. If you want to share your
changes easily with others, you should also sign up for a BeagleBoard GitLab account and read the correspond-
ing section of the manual. Finally, if you are engaged in one of the collaborations on experimental BeagleBoard
modules, you should look also into code review and branch merging.

Installing Git You will need to install Git on your computer. Git is available for all major operating systems.
Please use the appropriate installation method as described below.

Linux Git is now packaged in all major Linux distributions, you should find it in your package manager.

Ubuntu/Debian You can install Git from the git-core package. e.g.,

sudo apt-get install git-core

You’ll probably also want to install the following packages: gitk, git-gui, and git-doc

Redhat/Fedora/Mandriva git is also packaged in rpm-based linux distributions.

dnf install gitk

should do the trick for you in any recent fedora/mandriva or derivatives

1.3. Contribution 21

https://git.beagleboard.org/help#git-and-gitlab
https://git.beagleboard.org/help/topics/gitlab_flow.md
https://biopython.org/wiki/GitUsage
https://git.beagleboard.org/users/sign_up
http://git-scm.com/

BeagleBoard Docs, Release 1.0.20230711-wip

Mac OS X Download the .dmg disk image from http://code.google.com/p/git-osx-installer/

Windows Download the official installers from Windows installers

Testing your git installation If your installation succeeded, you should be able to run

$ git --help

in a console window to obtain information on git usage. If this fails, you should refer to git documentation for
troubleshooting.

Creating a GitLab account (Optional) Once you have Git installed on your machine, you can obtain the
code and start developing. Since the code is hosted at GitLab, however, you may wish to take advantage of
the site’s offered features by signing up for a GitLab account. While a GitLab account is completely optional
and not required for obtaining the BeagleBoard code or participating in development, a GitLab account will
enable all other BeagleBoard developers to track (and review) your changes to the code base, and will help
you track other developers’ contributions. This fosters a social, collaborative environment for the BeagleBoard
community.

If you don’t already have a GitLab account, you can create one here. Once you have created your account,
upload an SSH public key by clicking on SSH and GPG keys <https://git.beagleboard.org/-/profile/keys> after
logging in. For more information on generating and uploading an SSH public key, see this GitLab guide.

Working with the source code In order to start working with the BeagleBoard source code, you need to
obtain a local clone of our git repository. In git, this means you will in fact obtain a complete clone of our git
repository along with the full version history. Thanks to compression, this is not much bigger than a single copy
of the tree, but you need to accept a small overhead in terms of disk space.

There are, roughly speaking, two ways of getting the source code tree onto your machine: by simply “cloning”
the repository, or by “forking” the repository on GitLab. They’re not that different, in fact both will result in a
directory on your machine containing a full copy of the repository. However, if you have a GitLab account, you
can make your repository a public branch of the project. If you do so, other people will be able to easily review
your code, make their own branches from it or merge it back to the trunk.

Using branches on GitLab is the preferred way to work on new features for BeagleBoard, so it’s useful to learn
it and use it even if you think your changes are not for immediate inclusion into the main trunk of BeagleBoard.
But even if you decide not to use GitLab, you can always change this later (using the .git/config file in your
branch.) For simplicity, we describe these two possibilities separately.

Cloning BeagleBoard directly Getting a copy of the repository (called “cloning” in Git terminology) without
GitLab account is very simple:

git clone https://git.beagleboard.org/docs/docs.beagleboard.io.git

This command creates a local copy of the entire BeagleBoard repository on your machine (your own personal
copy of the official repository with its complete history). You can now make local changes and commit them
to this local copy (although we advise you to use named branches for this, and keep the main branch in sync
with the official BeagleBoard code).

If you want other people to see your changes, however, you must publish your repository to a public server
yourself (e.g. on GitLab).

Forking BeagleBoard with your GitLab account If you are logged in to GitLab, you can go to the Beagle-
Board Docs repository page:

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main

22 Chapter 1. Introduction

http://code.google.com/p/git-osx-installer/
https://git-scm.com/download/win
https://git-scm.com/doc
https://git.beagleboard.org/users/sign_up
https://docs.gitlab.com/ee/user/ssh.html
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main

BeagleBoard Docs, Release 1.0.20230711-wip

and click on a button named ‘Fork’. This will create a fork (basically a copy) of the official BeagleBoard reposi-
tory, publicly viewable on GitLab, but listed under your personal account. It should be visible under a URL that
looks like this:

https://git.beagleboard.org/yourusername/docs.beagleboard.io/

Since your new BeagleBoard repository is publicly visible, it’s considered good practice to change the de-
scription and homepage fields to something meaningful (i.e. different from the ones copied from the official
repository).

If you haven’t done so already, setup an SSH key and upload it to gitlab for authentication.

Now, assuming that you have git installed on your computer, execute the following commands locally on your
machine. This “url” is given on the GitLab page for your repository (if you are logged in):

git clone https://git.beagleboard.org/yourusername/docs.beagleboard.io.git

Where yourusername, not surprisingly, stands for your GitLab username. You have just created a local copy of
the BeagleBoard Docs repository on your machine.

You may want to also link your branch with the official distribution (see below on how to keep your copy in
sync):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

If you haven’t already done so, tell git your name and the email address you are using on GitLab (so that your
commits get matched up to your GitLab account). For example,

git config --global user.name ”David Jones” config --global user.email ”d.
↪→jones@example.com”

Making changes locally Now you can make changes to your local repository - you can do this offline, and
you can commit your changes as often as you like. In fact, you should commit as often as possible, because
smaller commits are much better to manage and document.

First of all, create a new branch to make some changes in, and switch to it:

git branch demo-branch checkout demo-branch

To check which branch you are on, use:

git branch

Let us assume you’ve made changes to the file beaglebone-black/ch01.rst Try this:

git status

So commit this change you first need to explicitly add this file to your change-set:

git add beaglebone-black/ch01.rst

and now you commit:

git commit -m ”added updates X in BeagleBone Black ch01”

Your commits in Git are local, i.e. they affect only your working branch on your computer, and not the whole
BeagleBoard tree or even your fork on GitLab. You don’t need an internet connection to commit, so you can
do it very often.

Pushing changes to GitLab If you are using GitLab, and you are working on a clone of your own branch,
you can very easily make your changes available for others.

1.3. Contribution 23

https://git.beagleboard.org/yourusername/docs.beagleboard.io/
https://docs.gitlab.com/ee/user/ssh.html

BeagleBoard Docs, Release 1.0.20230711-wip

Once you think your changes are stable and should be reviewed by others, you can push your changes back
to the GitLab server:

git push origin demo-branch

This will not work if you have cloned directly from the official BeagleBoard branch, since only the core devel-
opers will have write access to the main repository.

Merging upstream changes We recommend that you don’t actually make any changes to themain branch
in your local repository (or your fork onGitLab). Instead, use named branches to do any of your own work. The
advantage of this approach it is the trivial to pull the upstream main (i.e. the official BeagleBoard branch) to
your repository.

Assuming you have issued this command (you only need to do this once):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

Then all you need to do is:

git checkout main pull upstream main

Provided you never commit any change to your localmain branch, this should always be a simple fast forward
merge without any conflicts. You can then deal with merging the upstream changes from your local main
branch into your local branches (and you can do that offline).

If you have your repository hosted online (e.g. at GitLab), then push the updated main branch there:

git push origin main

Submitting changes for inclusion in BeagleBoard If you think you changes are worth including in the
main BeagleBoard distribution, then file an (enhancement) bug on our bug tracker, and include a link to your
updated branch (i.e. your branch on GitLab, or another public Git server). You could also attach a patch to
the bug. If the changes are accepted, one of the BeagleBoard developers will have to check this code into our
main repository.

On GitLab itself, you can inform keepers of the main branch of your changes by sending a ‘pull request’ from
the main page of your branch. Once the file has been committed to the main branch, you may want to delete
your now redundant bug fix branch on GitLab.

If other things have happened since you began your work, it may require merging when applied to the official
repository’s main branch. In this case we might ask you to help by rebasing your work:

git fetch upstream checkout demo-branch

git rebase upstream/main

Hopefully the only changes between your branch and the official repository’s main branch are trivial and git
will handle everything automatically. If not, you would have to deal with the clashes manually. If this works,
you can update the pull request by replacing the existing (pre-rebase) branch:

git push origin demo-branch --force

If however the rebase does not go smoothly, give up with the following command (and hopefully the Beagle-
Board developers can sort out the rebase or merge for you):

git rebase --abort

Evaluating changes Since git is a fully distributed version control system, anyone can integrate changes
from other people, assuming that they are using branches derived from a common root. This is especially
useful for people working on new features who want to accept contributions from other people.

24 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

This section is going to be of particular interest for the BeagleBoard core developers, or anyone accepting
changes on a branch.

For example, suppose Jason has some interesting changes on his public repository:

https://git.beagleboard.org/jkridner/docs.beagleboard.io

You must tell git about this by creating a reference to this remote repository:

git remote add jkridner https://git.beagleboard.org/jkridner/BeagleBoard.git

Now we can fetch all of Jason’s public repository with one line:

git fetch jkridner

Now we can run a diff between any of our own branches and any of Jason’s branches. You can list your own
branches with:

git branch

Remember the asterisk shows which branch is currently checked out.

To list the remote branches you have setup:

git branch -r

For example, to show the difference between your main branch and Jason’s main branch:

git diff main jkridner/main

If you are both keeping your main branch in sync with the upstream BeagleBoard repository, then his main
branch won’t be very interesting. Instead, try:

git diff main jkridner/awesomebranch

You might now want to merge in (some) of Jason’s changes to a new branch on your local repository. To make
a copy of the branch (e.g. awesomebranch) in your local repository, type:

git checkout --track jkridner/awesomebranch

If Jason is adding more commits to his remote branch and you want to update your local copy, just do:

git checkout awesomebranch # if you are not already in branch awesomebranch␣
↪→pull

If you later want to remove the reference to this particular branch:

git branch -r -d jkridner/awesomebranch
Deleted remote branch jkridner/awesomebranch (#######)

Or, to delete the references to all of Jason’s branches:

git remote rm jkridner

git branch -r
upstream/main
origin/HEAD
origin/main

Alternatively, from within GitLab you can use the fork-queue to cherry pick commits from other people’s forked
branches. While this defaults to applying the changes to your current branch, you would typically do this using
a new integration branch, then fetch it to your local machine to test everything, before merging it to your main
branch.

1.3. Contribution 25

https://git.beagleboard.org/jkridner/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Committing changes to main branch This section is intended for BeagleBoard developers, who are al-
lowed to commit changes to the BeagleBoard main “official” branch. It describes the typical activities, such as
merging contributed code changes both from git branches and patch files.

Prerequisites Currently, the main BeagleBoard branch is hosted on GitLab. In order to make changes to
the main branch you need a GitLab account and you need to be added as a collaborator/Maintainer to the
BeagleBoard account. This needs to be done only once. If you have a GitLab account, but you are not yet a
collaborator/Maintainer and you think you should be ask Jason to be added (this is meant for regular contribu-
tors, so in case you have only a single change to make, please consider submitting your changes through one
of developers).

Once you are a collaborator/Maintainer, you can pull BeagleBoard official branch using the private url. If you
want to make a new repository (linked to the main branch), you can just clone it:

git clone https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

It creates a new directory “BeagleBoard” with a local copy of the official branch. It also sets the “origin” to the
GitLab copy This is the recommended way (at least for the beginning) as it minimizes the risk of accidentally
pushing changes to the official GitLab branch.

Alternatively, if you already have a working git repo (containing your branch and your own changes), you can
add a link to the official branch with the git “remote command”… but we’ll not cover that here.

In the following sections, we assume you have followed the recommended scenario and you have the following
entries in your .git/config file:

[remote ”origin”]
url = https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

[branch ”main”]
remote = origin

Committing a patch If you are committing from a patch, it’s also quite easy. First make sure you are up to
date with official branch:

git checkout main pull origin

Then do your changes, i.e. apply the patch:

patch -r someones_cool_feature.diff

If you see that there were some files added to the tree, please add them to git:

git add beaglebone-black/some_new_file

Then make a commit (after adding files):

git commit -a -m ”committed a patch from a kind contributor adding feature X”

After your changes are committed, you can push toGitLab:

git push origin

Tagging the official branch If you want to put tag on the current BeagleBoard official branch (this is usually
done to mark a new release), you need to follow these steps:

First make sure you are up to date with official branch:

git checkout main pull origin

26 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Then add the actual tag:

git tag new_release

And push it to GitLab:

git push --tags origin main

Additional Resources There are a lot of different nice guides to using Git on the web:

• Understanding Git Conceptually

• git ready: git tips

• https://web.archive.org/web/20121115132047/http://cheat.errtheblog.com/s/git

• https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development_workflow.html Numpy is also evalu-
ating git

• https://github.github.com/training-kit/downloads/github-git-cheat-sheet

• https://skills.github.com/

• Pro Git

Documentation Style Guide

Note: This is currently a work-in-progress placeholder for some notes on how to style the BeagleBoard Doc-
umentation Project.

See the Zephyr Project Documentation Guidelines as a starting point.

ReStructuredText Cheat Sheet

BeagleBoard.org docs site uses ReStructuredText (rst) which is a file format1 for textual data used primarily in
the Python programming language community for technical documentation. It is part of the Docutils project
of the Python Doc-SIG, aimed at creating a set of tools for Python similar to Javadoc for Java or Plain Old
Documentation for Perl. If you are new with rst you may go through this rst cheat sheet234 chapter to gain
enough skills to edit and update any page on the BeagleBoard.org docs site. some things you should keep in
mind while working with rst,

1. like Python, RST syntax is sensitive to indentation !

2. RST requires blank lines between paragraphs

Text formatting With asterisk you can format the text as italic & bold,

1. Single asterisk (*) like *emphasis* gives you italic text

2. Double asterisk (**) like **strong emphasis** gives you bold text

With backquote character (‘) you can format the text as link & inline literal.

1. See Links section on how single backquote can be used to create a link like this.

2. With double back quotes before and after text you can easily create inline lierals.
1 reStructuredText wiki page
2 Sphinx and RST syntax guide (0.9.3)
3 Quick reStructuredText (sourceforge)
4 A two-page cheatsheet for restructured text

1.3. Contribution 27

https://www.sbf5.com/~cduan/technical/git/
http://gitready.com/
https://web.archive.org/web/20121115132047/http://cheat.errtheblog.com/s/git
https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development_workflow.html
https://github.github.com/training-kit/downloads/github-git-cheat-sheet
https://skills.github.com/
https://git-scm.com/book/en/v2
https://docs.zephyrproject.org/latest/contribute/documentation/guidelines.html
www.beagleboard.org
https://en.wikipedia.org/wiki/ReStructuredText
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html#internal-and-external-links
https://docutils.sourceforge.io/docs/user/rst/quickref.html#hyperlink-targets
https://github.com/ralsina/rst-cheatsheet

BeagleBoard Docs, Release 1.0.20230711-wip

Note: backquote can be found below escape key on most keyboards.

Headings For each document we divide sections with headings and in ReStructuredText we can use matching
overline and underline to indicate a heading.

1. Document heading (H1) use #.

2. First heading (H2) use *.

3. Second heading (H3) use =.

4. Third heading (H4) use -.

5. Fourth heading (H5) use ~.

Note: You can include only one (H1) # in a single documentation page.

Make sure the length of your heading symbol is at least (or more) the at least of the heading text, for example:

incorrect H1
①

correct H1
############ ②

① Length of heading symbol # is smaller than the content above.

② Shows the correct way of setting the document title (H1) with #.

Code For adding a code snippet you can use tab indentation to start. For more refined code snippet display
we have the code-block and literalinclude directives as shown below.

Indentation This the simplest way of adding code snippet in ReStructuredText.

Example

This is python code:: ①
②
import numpy as np ③
import math

① Provide title of your code snippet and add :: after the text.

② Empty line after the title is required for this to work.

③ Start adding your code.

Output This is python code:

import numpy as np
import math

Code block Simple indentation only supports python program highlighting but, with code block you can spec-
ify which language is your code written in. code-block also provides better readability and line numbers
support you can useas shown below.

28 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230711-wip

Example

.. code-block:: python ①
:linenos: ②

import numpy as np ③
import math

① Start with adding .. code-block:: and then add language of code like python, bash, javascript, etc.

② Optionally, you can enable line numbers for your code.

③ Start adding your code.

Output

1 import numpy as np
2 import math

Literal include To include the entire code or a code snippet from a program file you can use this directive.

Example

.. literalinclude:: filename.cpp ①
:caption: Example C++ file ②
:linenos: ③
:language: C++ ④
:lines: 2, 4-7 ⑤
:lineno-start: 113 ⑥

① Provide the code file destination.

② Provide caption for the code.

③ Enable line numbers.

④ Set programming language.

⑤ Cherry pick some lines from a big program file.

⑥ Instead of starting line number from 1 start it with some other number. It’s useful when you use :lines:,
:start-after:, and :end-before:.

Annotations We have a plug-in installed that enables annotated code blocks. Below is an example.

Example

.. callout:: ①

.. code-block:: python �

import numpy as np # <1> ③
import math # <2>

.. annotations:: ④

<1> Comment #1 ⑤

<2> Comment #2

.. annotations::

(continues on next page)

1.3. Contribution 29

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

① Indent everything under a `callout`

② Create a normal block for what you want to annotate

③ Add ``<number>`` everywhere you want to annotate. Put it under a␣
↪→comment block if you want the code to run when copied directly.

④ Create an `annotations` block to hold your callout comments

⑤ Create an entry, separating each with a blank line and prefixing them␣
↪→with ``<number>``

Output

import numpy as np # �
import math # �

① Comment #1

② Comment #2

Important: In the example, I inserted the invisible UTF character U+FEFF after the opening < to avoid it
being interpreted as a callout symbol. Be sure to remove that character if you attempt to copy-and-paste the
example.

Links We have three types of links to use in sphinx,

1. External links (http(s) links).

2. Implicit links to title (within same rst file).

3. Explicit links (labels that can be used anywhere in the project).

External links For a simple link to a site the format is

`<www.beagleboard.org>`_

this will be rendered as www.beagleboard.org.

You can also include a label to the link as shown below.

`BeagleBoard.org <www.beagleboard.org>`_

this will be rendered as BeagleBoard.org.

Implicit Links These are basically the headings inside the rst page which can be used as a link to that section
within document.

`Links`_

when rendered it becomes Links

Explicit link
Todo: The terminology Implicit and Explicit is not accurate here.

These are special links you can assign to a specific part of the document and reference anywhere in the project
unlike implicit links which can be used only within the document they are defined. On top of each page you’ll

30 Chapter 1. Introduction

www.beagleboard.org
www.beagleboard.org

BeagleBoard Docs, Release 1.0.20230711-wip

see some text like .. _rst-cheat-sheet: is used to create a label for this chapter. These are called
the explicit links amd you can reference these using ref:.

Note: This can be used inside or outside of the document and the rendered link will take you directly to that
specific section.

:ref:`rst-cheat-sheet`

When rendered it becomes ReStructuredText Cheat Sheet.

YouTube Videos This section shows you the typical way of adding a YouTube video to docs.BeagleBoard.org
in a way that you see on page playable embedded YouTube video when you look at HTML version of the docs
and only a clicable thumnail linked to the YouTube video when you see the PDF.

.. only:: latex

.. image:: https://img.youtube.com/vi/<YouTube_video_ID>/maxresdefault.
↪→jpg ①

:alt: BeagleConnect unboxing YouTube video
:width: 1280
:target: https://www.youtube.com/watch?v=<YouTube_video_ID> ②

.. only:: html

.. raw:: html

<iframe style=”display: block; margin: auto;” width=”1280” height=
↪→”720” style=”align:center”

src=”https://www.youtube.com/embed/<YouTube_video_ID>” ③
title=”YouTube video player”
frameborder=”0”
allow=”accelerometer; autoplay; clipboard-write; encrypted-media;␣

↪→gyroscope; picture-in-picture; web-share”
allowfullscreen>

</iframe>

① ② ③ Here you have to replace the <YouTube_video_ID> with your actual youtube ID.

More

footnotes

1.3. Contribution 31

BeagleBoard Docs, Release 1.0.20230711-wip

32 Chapter 1. Introduction

Chapter 2

BeaglePlay

Important: This is a work in progress, for latest documentation please visit https://docs.beagleboard.org/
latest/

2.1 Introduction

BeaglePlay is an open-source single board computer designed to simplify the process of adding sensors, ac-
tuators, indicators, human interfaces, and connectivity to a reliable embedded system. It features a powerful
64-bit, quad-core processor and innovative connectivity options, including WiFi, Gigabit Ethernet, sub-GHz
wireless, and single-pair Ethernet with power-over-data-line. With compatibility with 1,000s of off-the-shelf
add-ons and a customized Debian Linux image, BeaglePlay makes expansion and customization easy. It also
includes ribbon-cable connections for cameras and touch-screen displays, and a socket for a battery-backed
real-time-clock, making it ideal for human-machine interface designs. With its competitive price and user-
friendly design, we expect BeaglePlay to provide you with a positive development experience. Some of the
real world applications for BeaglePlay include:

• Building/industrial automation gateways

• Digital signage

33

https://docs.beagleboard.org/latest/
https://docs.beagleboard.org/latest/

BeagleBoard Docs, Release 1.0.20230711-wip

• Human Machine Interface (HMI)

• BeagleConnect sensor gateways

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

2.1.1 Detailed overview

BeaglePlay is built around Texas Instruments AM62x Sitara™ Processors which is a Quad-Core Arm® Cortex®-
A53 Human-machine-interaction SoC. It comes with 2GB DDR4 RAM, 16GB eMMC storage, Full size HDMI, USB-A
host port, USB-C power & connectivity port, serial debug interface, and much more.

34 Chapter 2. BeaglePlay

http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230711-wip

Table 2.1: BeaglePlay features
Feature Description
Processor TI AM6254 (multicore A53s with R5, M4s and PRUs)
PMIC TPS6521901
Memory 2GB DDR4
Storage 16GB eMMC
WiFi

• PHY: WL1807MOD (roadmap to next-gen TI CC33XX WiFi
6 & BLE)

• Antennas: 2.4GHz & 5GHz

BLE/SubG
• CC1352P7 M4+M0 with BeagleConnect firmware

• BeagleConnect Wireless enabled

• Antennas: 2.4GHz & SubG IEEE802.15.4 software defined
radio (SDR)

Ethernet
• PHY: Realtek RTL8211F-VD-CG Gigabit Ethernet phy

• Connector: integrated magnetics RJ-45

Single-pair Ethernet
• BeagleConnect Wired enabled

• PHY: DP83TD510E 10Mbit 10BASE-T1L single-pair Ether-
net phy

• Connector: RJ-11 jack

• Power (PoDL): Input: N/A (protection to 12V), Output: 5V
@ 250mA

USB type-C
• PD/CC: None, HS shorted to both sides

• Power: Input: 5V @ 3A, Output: N/A (USB-C DRP Not sup-
ported)

HDMI
• Transmitter: IT66121

• Connector: full-size

Other connectors
• microSD

• USB 2.0 type-A (480Mbit)

• mikroBUS connector (I2C/UART/SPI/MCAN/MCASP/PWM/GPIO)

• Grove connector (I2C/UART/ADC/PWM/GPIO)

• QWIIC connector (I2C)

• CSI connector compatible with BeagleBone AI-64, Rasp-
berry Pi Zero / CM4 (22-pin)

• OLDI connector (40-pin)

AM6254 SoC

The low-cost Texas Instruments AM625 family of application processors are built for Linux® application de-
velopment. With scalable Arm® Cortex®-A53 performance and embedded features, such as: dual-display
support and 3D graphics acceleration, along with an extensive set of peripherals that make the AM62x device
well-suited for a broad range of industrial and automotive applications while offering intelligent features and
optimized power architecture as well.

Some of these applications include:

• Industrial HMI

• EV charging stations

2.1. Introduction 35

BeagleBoard Docs, Release 1.0.20230711-wip

• Touchless building access

• Driver monitoring systems

AM625 processors are industrial-grade in the 13 x 13 mm package (ALW) and can meet the AEC-Q100 automo-
tive standard in the 17.2 x 17.2 mm package (AMC). Industrial and Automotive functional safety requirements
can be addressed using the integrated Cortex-M4F core and dedicated peripherals, which can all be isolated
from the rest of the AM62x processor.

Tip: For more details checkout https://www.ti.com/product/AM625

The 3-port Gigabit Ethernet switch has one internal port and two external ports with Time-Sensitive Networking
(TSN) support. An additional PRU module on the device enables real-time I/O capability for customer’s own
use cases. In addition, the extensive set of peripherals included in AM62x enables system-level connectivity,
such as: USB, MMC/SD, CSI Camera interface, OSPI, CAN-FD and GPMC for parallel host interface to an external
ASIC/FPGA. The AM62x device also employs advanced power management support for portable and power-
sensitive applications.

Board components location

This section describes the key components on the board, their location and function.

Fig. 2.1: BeaglePlay board front components location

36 Chapter 2. BeaglePlay

https://www.ti.com/product/AM625

BeagleBoard Docs, Release 1.0.20230711-wip

Front components location

Table 2.2: BeaglePlay board front components location
Feature Description
RTC Battery BQ32002 Real Time Clock (RTC) Battery holder takes CR1220 3V battery
User LEDs Five user LEDs, Power and boot section provides more details. These LEDs are connect to the AM6254 SoC
JTAG (AM62) AM6254 SoC JTAG debug port
mikroBUS mikroBUS for MikroE Click boards or any compliant add-on
OLDI AM6254 OpenLDI(OLDI) display port
CSI AM6254 Camera Serial Interface (MIPI CSI-2)
Grove SeeedStudio Grove modules connection port
QWIIC SparkFun QWIIC / Adafruit STEMMA-QT port for I2C modules connectivity
User Button Programmable user button, also servers as boot mode slect button (SD Card/eMMC). Press down to select

SD Card as boot medium
SD Card Use to expand storage, boot linux image or flash latest image on eMMC
Reset button Press to reset BeaglePlay board (AM6254 SoC)
JTAG (CC1352) JTAG debug port for CC1352P7
Power button Press to shut-down (OFF), hold down to boot (ON)
Power & Connectivity
LEDs

Indicator LEDs for Power ON, CC1352 RF, and Single-pair connectivity

Single-pair Ethernet Single-pair Ethernet connectivity port with power over data line
GigaBit Ethernet 1Gb/s Wired internet connectivity
HDMI Output Full size HDMI port for connecting to external display monitors
USB-A host port Port to connect USB devices like cameras, keyboard & mouse combos, etc
USB-C port Power and Device data role port

Fig. 2.2: BeaglePlay board back components location

2.1. Introduction 37

BeagleBoard Docs, Release 1.0.20230711-wip

Back components location

Table 2.3: BeaglePlay board back components location
Feature Description
CC1352P7 2.4GHz BLE + SubG IEEE 802.15.4 with 1 x 2.4GHz + 1 x SubG uFL antenna
WL1807MOD Dual band (2.4GHz & 5GHz) WiFi module with 2 x uFL antennas
DP83TD510E Single-pair IEEE 802.3cg 10BASE-T1L Ethernet PHY
RTL8211F Gigabit IEEE 802.11 Ethernet PHY
AM6254 Main SoC
16GB eMMC Flash storage
2GB DDR4 RAM / Memory
BQ32002 Real Time Clock (RTC)
TPS6521901 Power Management IC
IT66121 HDMI Transmitter

2.2 Quick Start Guide

2.2.1 What’s included in the box?

When you purchase a brand new BeaglePlay, In the box you’ll get:

1. BeaglePlay board

2. One (1) sub-GHz antenna

3. Three (3) 2.4GHz/5GHz antennas

4. Plastic standoff hardware

5. Quick-start card

38 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

2.2.2 Attaching antennas

Note: Attaching the antennas can be complicated. This is not the expected BeaglePlay experience and we
hope to fix it in the future. This is necessary if you plan to use any of the wireless connectivity features.

Important: Add documentation on attaching antennas here.

You can watch this video to see how to attach the attennas.

2.2. Quick Start Guide 39

BeagleBoard Docs, Release 1.0.20230711-wip

2.2.3 Tethering to PC

Tip: Checkout Getting Started Guide for,

1. Updating to latest software.

2. Power and Boot.

3. Network connection.

4. Browsing to your Beagle.

5. Troubleshooting.

For tethering to your PC you’ll need a USB-C data cable.

2.2.4 Access VSCode

Once connected, you can browse to 192.168.7.2:3000 to access the VSCode IDE to browse documents and
start programming your BeaglePlay!

Note: You may get a warning about an invalid or self-signed certificate. This is a limitation of not having a
public URL for your board. If you have any questions about this, please as on https://forum.beagleboard.org/
tag/play.

2.2.5 Demos and Tutorials

• Using Serial Console

• Connect WiFi

• Using QWIIC

• Using Grove

40 Chapter 2. BeaglePlay

https://youtu.be/8zeIVd-JRc0
http://192.168.7.2:3000
https://forum.beagleboard.org/tag/play
https://forum.beagleboard.org/tag/play

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.3: Tethering BeaglePlay to PC

Fig. 2.4: BeaglePlay VSCode IDE (192.168.7.2:3000)

2.2. Quick Start Guide 41

BeagleBoard Docs, Release 1.0.20230711-wip

• Using mikroBUS

• Using OLDI Displays

• Using CSI Cameras

• Wireless MCU Zephyr Development

2.3 Design and specifications

If you want to know how the BeaglePlay hardware is designed and what are it’s high-level specifications then
this chapter is for you. We are going to discuss each hardware design element in detail and provide high-level
device specifications in a short and crisp form as well.

Tip: You can download BeaglePlay schematic to have clear view of all the elements that makes up the
BeaglePlay hardware.

BeaglePlay design repository

2.3.1 Block diagram

The block diagram below shows all the parts that makes up your BeaglePlay board. BeaglePlay as mentioned
in previous chapters is based on AM6254 SoC which is shown in the middle. Connection of other parts like
power supply, memory, storage, wifi, ethernet, and others is also clearly shown in the block diagram. This
block diagram shows the high level specifications of the BeaglePlay hardware and the sections below this are
going to show you the individual part in more detail with schematic diagrams.

2 Channel, 10-Bit A/D...

AM62x

MCU_SPI1
CS1

CS0

GPIO
PWM/AN/RST/INT

UART_5
RXD/TXD

I2C3
SDA/SCL

AN1

HDMI Transmitter...
DSS_0

RGB888

MCASP_1
I2S_TX HDMI Type-A

Gigabit Ethernet...RGMII1 RJ45 + Magnetics

IEEE 802.3cg 10BASE-T1L...RMII2 Barrel Jack

BLE/SubG...

WiFi/2.4G MIMO/5G SISO...

Power Source

eMMC 16GB MMC_0

MMC_1 Micro SD Card Socket

V_SEL

USART_6

GPIO
U.FL...

MMC_2

GPIO
WLAN_EN/32k_CLK U.FL...

Current Limit Switch and...
USB_0

GPIO
EN

USB Type-C Connector...

DDR4 8Gb 16bit DDR_0

Grove Connector...

Qwiic Connector

USB_1

PMIC TPS65219...

DP/DM

VDDA_1P8_USB

VDDS_DDR

VDDA_1P8_CSI...

VDDA_1P8_OLDI

VDDSHV2

VDDSHV3

VDDSHV4

VDDSHV5

VDDSHV6

VDDSHV_MCU

VDDS_OSC

1.8V

1.2V

eMMC/
MicroSD/
WiFi/
HDMI/
RGMII/
RMII/
GPIO/
...

VDD_CORE

VDDR_CORE

CSI

0.75V

0.85V

1.8V

BeaglePlay System Block Diagram

Load Switch...

GPIOVSEL_SD

USART_0 DEBUG

I2C2

I2C1

5V

DCDC...

VDD_3V3

FPC 40pin

FPC 22pin

AN2

Buffer...

SPI2

OLDI

VPP 2-PIN Header

LDO... VDD_1V0

VDDSHV0

VDDSHV1

VDDSHV_CANUA...

3.3V
I2C/
UART/
SPI/
GPIO/
...

User Button GPIO

Reset Button

Power Button

4 x User LED GPIO

USB Type-A

25MHz Crystal

32.768kHz Crystal

25MHz Crystal

48MHz Crystal

RTC...32.768kHz Crystal

32.768kHz Crystal

ANT1,ANT2: 2.4~2.5GHz; 5.1~5.8GHz
ANT_2.4G: 2.4~2.5GHz
ANT_SubG: 906~924 MHz

Text is not SVG - cannot display

42 Chapter 2. BeaglePlay

https://git.beagleboard.org/beagleplay/beagleplay

BeagleBoard Docs, Release 1.0.20230711-wip

2.3.2 System on Chip (SoC)

AM62x Sitara™ Processors from Texas Instruments are Human-machine-interaction SoC with Arm® Cortex®-
A53-based edge AI and full-HD dual display. AM6254 which is on your BeaglePlay board has a multi core design
with Quad 64-bit Arm® Cortex®-A53 microprocessor subsystem at up to 1.4 GHz, Single-core Arm® Cortex®-
M4F MCU at up to 400MHz, and Dedicated Device/Power Manager. Talking about the multimedia capabilities of
the processor you can connect upto two display monitors with 1920x1080 @ 60fps each, additionally there is
a OLDI/LVDS (4 lanes - 2x) and 24-bit RGB parallel interface for connecting external display panels. One 4 Lane
CSI camera interface is also available which has support for 1,2,3 or 4 data lane mode up to 2.5Gbps speed.
The list of features is very long and if you are interested to know more about the AM62x SoC you may take a
look at AM62x Sitara™ Processors datasheet.

Fig. 2.5: AM6254 SoC block diagram

2.3.3 Power management

Different parts of the board requires different voltages to operate and to fulfill requirements of all the chips on
BeaglePlay we have Low Drop Out (LDO) voltage regulators for fixed voltage output and Power Management

2.3. Design and specifications 43

https://www.ti.com/product/AM625
https://www.ti.com/lit/ds/symlink/am625.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Integrated Circuit (PMIC) that interface with SoC to generate software programable voltages. 2 x LDOs and 1
x PMIC used on BeaglePlay are shown below.

TLV75801 - LDO

= 0.55V x (1 + 100K / 120K)
= 0.55V x 1.8333
= 1.008V

Vout = Vfb x (1 + R211/ R212)

Vfb=0.55V

0.3A

VDD_1V8

VDD_1V0
R210
10K
1%
R0402

TP27

R212
120K
1%
R0402

FL2120R
1.3A

BLM18PG121SN1D

0402

C204
1uF

C0402
10V

R211
100K
1%
R0402

TLV75801PDBVR
U16

SOT23-5

IN
1

G
N

D
2

EN
3

FB
4

OUT
5

C263
1uF

C0402
10V

U18_FB

Fig. 2.6: TLV75801PDBVR LDO schematic for 1V0 output

TLV62595 - LDO

= 0.6V x (1 + 450K / 100K)

= 3.3V

Vout = Vfb x (1 + R260/ R261)

= 0.6V x 5.5

3A

VDD_3V3

VSYS_5V

C134
22uF

C0805
25V

R138
10K
1%
R0402

R307180K
1%R0402

R261100K
1%R0402

C135
22uF

C0805
25V

R260270K
1%R0402

C133
10uF

C0603
10V

C98120pF
C040225V

L180.47uH

5.0A2520

U12

TLV62595DMQR

vson6_0d5_1d5x1d5x1mm
VSON-6

EN
1

PG
2

FB
3

GND
4

SW
5

VIN
6

TP19

TP26

R137
10K
1%
R0402

VDD_3V3_EN

VDD_3V3_PG

Fig. 2.7: TLV62595DMQR LDO schematic for 3V3 output

TPS65219 - PMIC

2.3.4 General Connectivity and Expansion

One of the main advantage of using a Single Board Computer (SBC) is having direct accessibility of general
purpose input & output (GPIO) pins and other interfaces like I2C, SPI, ADC, PWM. Your BeaglePlay board shines
in this domain as well with mikroBUS connector that can take 1000s of click board from MikroElektronika, Grove
connector allows to connect hundereds of Grove modules from Seeed Studio, and QWIIC connector allows to
connect I2C modules like QWIIC modules from SparkFun or STEMMA QT modules from Adafruit. Note that
you also get one USB-A port and one USB-C port. BeaglePlay’s USB-A port with host support enables you to
connect any USB device like your keyboard & mouse. The USB-C connector allows you to power the board and

44 Chapter 2. BeaglePlay

https://www.mikroe.com/
https://www.seeedstudio.com/grove.html
https://www.sparkfun.com/qwiic
https://www.adafruit.com/category/1005

BeagleBoard Docs, Release 1.0.20230711-wip

0.75V
3.5A

2A

2A

0.4A
0.4A

0.3A
0.3A

VDD_SD
VDDA_0V85

VDDA_1V8
VDD_2V5

VDD_CORE

VSYS_5V

VDD_1V2

VDD_1V8

VSYS_5V

VSYS_5V

VSYS_5V

VDD_3V3

VDD_1V8

VDD_1V8

VDD_3V3 VSYS_5V

VDD_3V3

VDD_3V3

INSD_VOLT_SEL[9]
INRESETSTATz[9,10,11,12,16,19]
INPMIC_LPM_EN0[16]

OUT EXTINTn[16]
OUT MCU_PORz[16,21]

BII2C0_SCL[13,18]
BII2C0_SDA[13,18]
BIPWR_BTN[21]

L170.47uH
5.0A2520

C125
2.2uF

C0402
10V

R124DNP
1%R0402

R55
DNP
1%
R0402

R161
10K
1%
R0402

TP23

C113
2.2uF

C0402
10V

TP18

C49
2.2uF

C0402
10V

R160
10K
1%
R0402

TP24

C53
2.2uF

C0402
10V

R54
10K
1%
R0402

C63
10uF

C0603
10V

TP20

TP25

Buck1

Buck2

Buck3

LDO1
LDO2
LDO3
LDO4

INT LDO

DIGITAL

U17

TPS65219

QFN-32

FB_B1
1

LX_B1_1
2

LX_B1_2
3PVIN_B1_1

4

PVIN_B1_2
5

PVIN_LDO1
6

VLDO1
7

GPO1
8SDA

9 SCL
10

nINT
11

VSEL_SD/VSEL_DDR
12

VSYS
13

VDD1P8
14

AGND
15

GPIO
16

GPO2
17

nRSTOUT
18

VLDO2
19

PVIN_LDO2
20

VLDO3
21

PVIN_LDO34
22

VLDO4
23

FB_B3
24

EN/PB/VSENSE
25

PVIN_B3
26

LX_B3
27

MODE_RESET
28

LX_B2
29

PVIN_B2
30

MODE_STBY
31

FB_B2
32

Thermal Pad
33

C46
2.2uF

C0402
10V

C64
10uF

C0603
10V

R1230R
5%R0402

R228
10K
1%
R0402

R159
10K
1%
R0402

C52
2.2uF

C0402
10V

C60
47uF

C0805
6.3V

C47
2.2uF

C0402
10V

TP21

C50
47uF

C0805
6.3V

C54
47uF

C0805
6.3V

L160.47uH
5.0A2520

C103
2.2uF

C0402
10V

L140.33uH
6.9A2520

C112
2.2uF

C0402
10V

C62
10uF

C0603
10V

TP22

C48
2.2uF

C0402
10V

PWR_BTN
VDD_3V3_EN
PMIC_GPIO

Fig. 2.8: TPS65219 Power Management Integrated Circuit (PMIC) schematic

to connect the board to a PC. You can then connect via SSH or use the pre-installed VisualStudio Code editor
by putting the address 192.168.7.2:3000 in your web browser.

USB A & USB C

3.3V

GND

GNDGND

GNDGND

VSYS_5V

VSYS_5V

VSYS_5V

GND

GND

PwrGrp:VDDA_1P8_USB,
VDDA_3P3_USB

PwrGrp:VDDSHV0
GENERAL

USB0

USB1
PwrGrp:VDDA_1P8_USB,

VDDA_3P3_USB

U1D

AM62xbga425_0d5_13x13mm
BGA425

USB0_DRVVBUS
C20

USB1_DRVVBUS
F18

USB1_VBUS
AB10

USB1_RCALIB
AC9

USB0_VBUS
AC11

USB1_DM
AD10

USB0_DP
AD11

USB1_DP
AE9

USB0_RCALIB
AE10

USB0_DM
AE11

R131499R
0.1%R0402

D25

T
P
D

1
E

1
B

0
4

D
PY

X1SON(2)
3.6V

2
1

A

J13
ST-USB-117A
usb7p_1r4_14x5r72mm

VBUS
1

DM
2

DP
3

GND
4

SH1

5

SH2

6

SH3

7

U4

TVS0500DRVR

SON-6(2x2)

5V

1
GND2

GND13
GND2

4
IN 5

IN1 6
IN27

PADR9410K
1%R0402

R13620K
1%R0402

C111
10uF

C0603
10V

J14
TYPE-C 2.0

USB2_0_TYPE_C

CC1
A5

DP1
A6

DN1
A7

SBU1
A8

A1/B12/GND
B12

A12/B1/GND
B1

A9/B4/VBUS
B4

CC2
B5

DP2
B6

DN2
B7

SBU2
B8

A4/B9/VBUS
B9

S1
S1

S2
S2

S3
S3

S4
S4

S5
S5

S6
S6

C44
10uF

C0603
10V

R1331K
1%R0402

R128
5.1K
1%
R0402

C131
100nF

C0201
10V

R13220K
1%R0402

L490R

L2012

400mA

DLW21SN900HQ2L

2.0x1.2 mm

1 2

34

C130
100nF

C0201
10V

R152
10K
1%
R0402

R129
5.1K
1%
R0402

R130499R
0.1%R0402

D24

T
P
D

1
E

1
B

0
4

D
PY

X1SON(2)
3.6V

2
1

L1390R

L2012

400mA

DLW21SN900HQ2L

2.0x1.2 mm

1 2

34

U8

TPD3S014DBVR
sot23_6

SOT23-6

EN
1

G
N

D
2

IN
3

OUT
4

D1
5

D2
6

C110
100uF

C1206
10V

USB0_DP

USB0_DM

USB1_DM
USB1_DP

CC1
CC2

USB_C_DM

USB_C_DP

USB1_VBUS

USB_A_5V

USB_A_DM

USB_A_DP

USB1_DRVVBUS

Fig. 2.9: USB-A and USB-C

ADC102S051 - 2ch 10bit ADC

mikroBUS

2.3. Design and specifications 45

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_3V3 VDD_3V3A

BI MCU_SPI1_CLK[16]
BI MCU_SPI1_D0[16]
BI MCU_SPI1_D1[16]

BIMCU_SPI1_CS1[16]

FB17120R
1.3A0402

R681K
1%R0402

C233
1uF

C0402
10V

U11

ADC102S051
VSSOP-8

CS
1

VA
2

GND
3

IN2
4

IN1
5DIN
6DOUT
7SCLK
8

C234
100pF

C0402
50V

C56
100nF

C0201
10V

R671K
1%R0402

C235
100pF

C0402
50V

C232
10nF

C0201
6.3V

AIN2 AIN1

Fig. 2.10: ADC102S051 - 12bit Aanalog to Digital Converter (ADC)

Fig. 2.11: mikroBUS connector schematic

46 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Grove

VDD_3V3

BI I2C1_SCL[13]
BI I2C1_SDA[13]

FB27120R

D19

T
P
D
1
E
1
B
0
4
D
PY
2

1

FB25120R

D20

T
P
D
1
E
1
B
0
4
D
PY
2

1

FB3120R
1.3A0402

C253
100nF

C0201
10V

J7

4P-2.0mm-90D
JST4p_smd_2_0_90d

1
2
3

5
6

4

FB26120R
AIN2

VDD_3V3

BI I2C1_SCL[13]
BI I2C1_SDA[13]

FB27120R

D19

T
P
D
1
E
1
B
0
4
D
PY
2

1

FB25120R

D20

T
P
D
1
E
1
B
0
4
D
PY
2

1

FB3120R
1.3A0402

C253
100nF

C0201
10V

J7

4P-2.0mm-90D
JST4p_smd_2_0_90d

1
2
3

5
6

4

FB26120R
AIN2

Fig. 2.12: Grove connector schematic

Qwiic

VDD_3V3

VDD_1V8 VDD_1V8VDD_3V3 VDD_3V3

BI MCU_I2C0_SCL[16]
BI MCU_I2C0_SDA[16]

R226
2.2k
1%
R0402

C255
100nF

C0201
10V

Q6
BSS138W

SOT-323-3

1

3 2

Q7
BSS138W

SOT-323-3

1

3 2

R254
10K
1%
R0402

J18

4P-1.0mm

1
2
3

5
6

4

R255
10K
1%
R0402

FB28120R
FB33120R

D29

T
P
D
1
E
1
B
0
4
D
PY
2

1

T
P
2
9

FB34120R

R186
2.2k
1%
R0402T

P
3
0

FB35120R
1.3A0402

D30

T
P
D
1
E
1
B
0
4
D
PY
2

1

QWIIC_SCL
QWIIC_SDA

Fig. 2.13: QWIIC connnector for I2C modules

2.3.5 Buttons and LEDs

To interact with the Single Board Computers we use buttons for input and LEDs for visual feedback. On your
BeaglePlay board you will find 3 buttons each with a specific purpose: power, reset, and user. For visual
feedback you will find 5 user LEDs near USB-C port and 6 more indicator LEDs near your BeaglePlay’s Single
Pair ethernet port. Schematic diagrams below show how these buttons and LEDs are wired.

Buttons

Table 2.4: BeaglePlay buttons
Power Reset User

BI PWR_BTN[5]

Shield

SW1

TS23M-BN-PT-PF

button2_3p_4d55x2d3x1d88mm

L4.7*W3.5*H1.85mm-90D

S1 S3

1 2
S2

OUT MCU_PORz[5,16]

Shield

SW2

TS23M-BN-PT-PF

button2_3p_4d55x2d3x1d88mm

L4.7*W3.5*H1.85mm-90D

S1 S3

1 2
S2 BI PWR_BTN[5]

Shield

SW1

TS23M-BN-PT-PF

button2_3p_4d55x2d3x1d88mm

L4.7*W3.5*H1.85mm-90D

S1 S3

1 2
S2

LEDs

2.3. Design and specifications 47

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_3V3

INCC1352_LED2[19]

INCC1352_LED1[19]

INLED_USR4[13]

INLED_USR3[13]

INLED_USR2[13]

INLED_USR1[13]

INLED_USR0[13]

INWL_EN[14,20]

LED6
Green
0402

Green

20mA2
1

R206
2.2k
1%
R0402

Q10
DMG1012T-7
SOT5231

3

2

LED7
Green
0402

Green

20mA2
1

R236
2.2k
1%
R0402

R2392.2k
1%R0402

LED8
Yellow
0402

Yellow

20mA2
1

R237
2.2k
1%
R0402

LED10
Yellow
0402

Yellow

20mA2
1

LED9
Yellow
0402

Yellow

20mA2
1

R238
2.2k
1%
R0402

R201
2.2k
1%
R0402

R202
2.2k
1%
R0402

LED11
Red

0402

Red

20mA

2
1

LED3
Green
0402

Green

20mA2
1

R203
2.2k
1%
R0402

LED4
Green
0402

Green

20mA2
1

R204
2.2k
1%
R0402

LED5
Green
0402

Green

20mA2
1

R205
2.2k
1%
R0402

Fig. 2.14: BeaglePlay LEDs

2.3.6 Wired and wireless connectivity

Gigabit ethernet

Place close to each
other to avoid stub.

VDD_1V8

VDD_1V8 VDD_3V3

VDD_1V8

OUT WL_IRQ[14]

IN WL_CLK[9]

IN WL_EN[14,21]

BI WL_CMD[9]

BI WL_D0[9]
BI WL_D1[9]
BI WL_D2[9]
BI WL_D3[9]

INWKUP_CLKOUT0[16]

TP7

TP5

OSC1

DNP

2.5 x 2.0 x 1.0mm

VDD
4

EN
1

GND
2

CLK
3

R300R
5%R0402

R26
10K
1%
R0402

J5
U.FL-R-SMT-1(10)

U-FL3P-SMD-2_6X2_6X1_0MM
1

23

R27
10K
1%
R0402

C256100pF
C040250V

C86
2.2uF

C0402
10V

R31DNP
5%R0201

C84
100nF

C0201
10V

C83
10uF

C0603
10V

C85
100nF

C0201
10V

U5A

WL1807MODGIMOC

100P-13.3*13.4*2mm

GPIO11
2

GPIO9
3

GPIO10
4

GPIO12
5

WL_SDIO_CMD_1V8
6

WL_SDIO_CLK
8

WL_SDIO_D0_1V8
10

WL_SDIO_D1_1V8
11

WL_SDIO_D2_1V8
12

WL_SDIO_D3_1V8
13

WL_IRQ_1V8
14

RF_ANT2
18

RESERVED1
21 RESERVED2
22

GPIO4
25GPIO2
26GPIO1
27

RF_ANT1
32

EXT_32K
36

VIO_IN
38

WLAN_EN
40

BT_EN
41

WL_UART_DBG
42 BT_UART_DBG
43

VBAT_IN
46 VBAT_IN_1
47

BT_HCI_RTS_1V8
50

BT_HCI_CTS_1V8
51

BT_HCI_TX_1V8
52

BT_HCI_RX_1V8
53

BT_AUD_IN
56

BT_AUD_OUT
57

BT_AUD_FSYNC
58

BT_AUD_CLK
60

RESERVED3
62

TP9

C257100pF
C040250V

D74
TPD1E0B04DPY
X1SON(2)
3.6V

2
1

FB1120R
1.3A 0402

TP6

TP10

R23
10K
1%
R0402

TP4

FB2120R
1.3A 0402

C87
DNP

C0201
10V

R22
DNP
1%
R0402

D73
TPD1E0B04DPY
X1SON(2)
3.6V

2
1

R24
10K
1%
R0402

R25
10K
1%
R0402

1

23

BT_AUD_OUT

BT_UART_DBG

WLAN_RS232_TX
WLAN_RS232_RX

WL_UART_DBG

BT_EN

Fig. 2.15: Gigabit ethernet

Single pair ethernet

WL1807MOD - WiFi 2.4G/5G

CC1352P7 - BLE & SubGHz

2.3.7 Memory, Media and Data storage

DDR4

48 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

From 3V3 IO

To 1V8 IO
Current limit 250mA

VDD_1V8

VDD_3V3

VDD_1V0

VDD_1V8

VDD_3V3
VDD_3V3

VSYS_5V

VDD_1V8

VDD_3V3

INPO_EN[13]

OUT PO_OCn[14]

BIMDIO0_MDC[10,16]
BIMDIO0_MDIO[10,16]

INPORz_OUT[9,10,12,16,19]

INRESETSTATz[5,9,10,12,16,19]

IN CLKOUT0[13]

R220
0R
5%
R0402

R1022K
1%R0402

U22

TPS25200DRVT
WSON-6

EN
4

IN
6

E
PA

D
7

GND
5

*FAULT
3

ILIM
2

OUT
1

R276
390K
1%
R0402

R990R
5%R0402

C11
1uF

C0402
10V

R1050R
5%R0402

R223DNP

C254
DNP

C0201
10V

R278
100K
1%
R0402

C5
1uF

C0402
10V

L2

500uH
1A 9.2x6.0 mm

CSTA0950RB-501

1 4

32

R56
49.9K
1%
R0402

C7
100nF

C0201
10V

C13220nF
C040216V

R108DNP
5%R0402

R1060R
5%R0402

R222DNP
5%R0402

R231DNP
5%R0402

D34
12

Q4
DMG1012T-7
SOT5231

3

2

R1112.2k
1%R0402

R59
49.9K
1%
R0402

R224DNP
5%R0402

R1032K
1%R0402

LED2
Green

0402
21

R10049.9R
1%R0402

X2

25MHz

2.5 x 2.0 x 0.6mm

1

43

2
R221
DNP
5%
R0402

OSC2

DNP

2.5 x 2 x 0.8mm

VDD
4

EN
1

GND
2

CLK
3

L1

500uH
1A 9.2x6.0 mm

CSTA0950RB-501

1 4

32

R207
10K
1%
R0402

J2

LPJE158-0CNL
RJ11_6P4C_1d27_21_15x13_8x13_3

S2
S2S1
S12

2

3
3

4
4

5
5

C8
1uF

C0402
10V

C14DNP
C040250V

D46
12

C16
100pF

C0402
50V

R9833R
5%R0201

R1672.2k
1%R0402

C1
33pF

C0402
50V

U14

TVS0500DRVR

SON-6(2x2)

5V

1
GND 2
GND1 3
GND2

4
IN5
IN16
IN2 7

PAD

R10149.9R
1%R0402

C262
100nF

C0201
10V

Q5
CJ3407

SOT-23

1

3 2

Q3
DMG1012T-7
SOT5231

3

2

R109DNP
5%R0402

R1070R
5%R0402

C9
10nF

C0201
6.3V

R3171K
1%R0402

R3181K
1%R0402

C15DNP
C040250V

D53
RB520S30T1G
SOD-523
200mA
30V

12

C17
100pF

C0402
50V

R272
DNP
1%
R0402

C2
33pF

C0402
50V

C4
100nF

C0201
10V

Q12A

BCM857BS-7-F
SOT-363

2

1
6

R1662.2k
1%R0402

C12220nF
C040216V

C10
100nF

C0201
10V

R275DNP
1%R0402

R1040R
5%R0402

Q12B

5

4
3

LED1 0402
Yellow

21

R1102.2k
1%R0402

U13

DP83TD510ERHBR

QFN-32(5*5)

DVDD_1.0
1

CEXT
2

VDDA_3.3_1.8
3

TX+
4

RX+
5

RX-
6

TX-
7

GPIO2
8

XO
9

XI_50MHzIn
10

MDIO
11 MDC
12

RX_D3
13 RX_D2
14 RX_D1
15 RX_D0
16

VDDIO
17

RX_DV_CRS_DV
18

RX_CLK_50MHz_RMII_M
19

RX_ER
20

PWDN_INT
21

TX_CLK
22

TX_EN
23

TX_D0
24

TX_D1
25

TX_D2
26

TX_D3
27

LED_2_TX_ER
28

LED_0
29

CLKOUT_LED_1
30

RST_N_N
31

GPIO1
32

PAD
33

C3
10nF

C0201
6.3V

C236
100nF

C0201
10V

C6
10nF

C0201
6.3V

RMII2_RXD0SPE_RX_D0
RMII2_RXD1SPE_RX_D1

RMII2_CRS_DVSPE_RX_DV_CRS_DV
RMII2_REF_CLKSPE_RX_CLK
RMII2_RX_ERSPE_RX_ER

SPE_TX_D0
SPE_TX_D1

SPE_TX_EN
CLKOUT RMII2_REF_CLK1

XO

XI

TX_P

TX_N

RX_P

RX_N

PSE_P

PSE_N

SPE_INTn

LED2

LED0

GPIO2
GPIO1

SPE_RX_D2

RST_N_N

SPE_RSTn

LED0LED2

RMII2_REF_CLK2 RMII2_REF_CLK

PO_5V

Fig. 2.16: Single pair ethernet

Place close to each
other to avoid stub.

VDD_1V8

VDD_1V8 VDD_3V3

VDD_1V8

OUT WL_IRQ[14]

IN WL_CLK[9]

IN WL_EN[14,21]

BI WL_CMD[9]

BI WL_D0[9]
BI WL_D1[9]
BI WL_D2[9]
BI WL_D3[9]

INWKUP_CLKOUT0[16]

TP7

TP5

OSC1

DNP

2.5 x 2.0 x 1.0mm

VDD
4

EN
1

GND
2

CLK
3

R300R
5%R0402

R26
10K
1%
R0402

J5
U.FL-R-SMT-1(10)

U-FL3P-SMD-2_6X2_6X1_0MM
1

23

R27
10K
1%
R0402

C256100pF
C040250V

C86
2.2uF

C0402
10V

R31DNP
5%R0201

C84
100nF

C0201
10V

C83
10uF

C0603
10V

C85
100nF

C0201
10V

U5A

WL1807MODGIMOC

100P-13.3*13.4*2mm

GPIO11
2

GPIO9
3

GPIO10
4

GPIO12
5

WL_SDIO_CMD_1V8
6

WL_SDIO_CLK
8

WL_SDIO_D0_1V8
10

WL_SDIO_D1_1V8
11

WL_SDIO_D2_1V8
12

WL_SDIO_D3_1V8
13

WL_IRQ_1V8
14

RF_ANT2
18

RESERVED1
21 RESERVED2
22

GPIO4
25GPIO2
26GPIO1
27

RF_ANT1
32

EXT_32K
36

VIO_IN
38

WLAN_EN
40

BT_EN
41

WL_UART_DBG
42 BT_UART_DBG
43

VBAT_IN
46 VBAT_IN_1
47

BT_HCI_RTS_1V8
50

BT_HCI_CTS_1V8
51

BT_HCI_TX_1V8
52

BT_HCI_RX_1V8
53

BT_AUD_IN
56

BT_AUD_OUT
57

BT_AUD_FSYNC
58

BT_AUD_CLK
60

RESERVED3
62

TP9

C257100pF
C040250V

D74
TPD1E0B04DPY
X1SON(2)
3.6V

2
1

FB1120R
1.3A 0402

TP6

TP10

R23
10K
1%
R0402

TP4

FB2120R
1.3A 0402

C87
DNP

C0201
10V

R22
DNP
1%
R0402

D73
TPD1E0B04DPY
X1SON(2)
3.6V

2
1

R24
10K
1%
R0402

R25
10K
1%
R0402

1

23

BT_AUD_OUT

BT_UART_DBG

WLAN_RS232_TX
WLAN_RS232_RX

WL_UART_DBG

BT_EN

Fig. 2.17: WL1807MOD dual-band (2.4G/5G) WiFi

2.3. Design and specifications 49

BeagleBoard Docs, Release 1.0.20230711-wip

Layout Note:

Place C39, C40, C41 close to pin 13, pin 22, pin44.
Place C37 and C38 close to pin 34.

Layout Note:

Place these capacitors close to pin45, pin48.

0
Path

0RF1
RF2

V1

1

V2

0

V3

0
1

20 dBm BOM:
FCC: 890-930 MHz, L52 = 27nH
ETSI: 863-889 MHz, L52 = 18nH

VDD_3V3 MCU_3V3

MCU_3V3

MCU_3V3

MCU_3V3

VDDRF VDDRF

VDDRF

C43
100nF

C0201
10V

L93.9nH

500mA0201

C39
100nF

C0201
10V

J12
U.FL-R-SMT-1(10)

U-FL3P-SMD-2_6X2_6X1_0MM
1

23

C22
100pF

C0201
50V

L7
27nH
120mA
0201

L12
2.5nH
600mA
0201

C33
24pF

C0402
50V

FB5120R
1.3A

BLM18PG121SN1D

0402

0900PC15A0036E BF10_0d5_2x1d25x1mm

B1
B1

6P-L2.0*W1.25*H0.95mm

ANT(2.4GHz)
1

ANT(Sub-GHz)
4

RF P(Sub-GHz)
7

RX TX
5

RF N(2.4GHz)
8

RF N(Sub-GHz)
6

RF P(2.4GHz)
9

GND
2

GND
3

GND
10

C25
100pF

C0201
50V

C18
100pF

C0201
50V

L1112nH
180mA0201

C35
7.5pF

C0402
50V

C28
3pF

C0201
50V

C32
1uF

C0402
10V

C40
100nF

C0201
10V

L36.8uH
110mA

MLZ2012N6R8LT000

0805

C23
10nF

C0201
6.3V

D27
TPD1E0B04DPY
X1SON(2)
3.6V

2
1

L84.7nH

350mA0201

C34
24pF

C0402
50V

X3

32.768kHz

3.2 x 1.5 x 0.9mm

1 2

CC1352P7

U9A

QFN-48

JTAG_TMSC
24

JTAG_TCKC
25

RESET_N
35

DCDC_SW
33

X32K_Q1
8

X32K_Q2
9

DCOUPL
23

VDDS2
13

VDDS3
22

VDDS
44

VDDS_DCDC
34

VDDR
45

VDDR_RF
48

X48M_N
46

X48M_P
47

EGP
49

TX_20DBM_P
5

2_4_GHZ_RF_P
1

2_4_GHZ_RF_N
2

SUB-1_GHZ_RF_P
3

SUB-1_GHZ_RF_N
4

RX_TX
7TX_20DBM_N
6

SKY13317-373LF

U15

SON8

RFC
1

NC
2

EGP
9

V2
6

V1
3

V3
7

RF1
4 RF2
5 RF3
8

L61nH
1.1A0201

C36
7.5pF

C0402
50V

C4512pF
C020125V

C29
4.7pF

C0201
50V

C41
100nF

C0201
10V

C37
22uF

C0603
10V

X4

48MHz

2.0 x 1.6mm

1

4 3

2 L5
12nH
180mA
0201

C30
2.4pF

C0201
25V

C21100pF
C020150V

C19
100pF

C0201
50V

R117
100K
1%
R0402

C24
22uF

C0603
10V

C262.4pF
C020125V

R118DNP
1%R0402DNP

C42
100nF

C0201
10V

C38
100nF

C0201
10V

R119
0R
5%
R0402

C31
3.9pF

C0201
50V

C20
100nF

C0201
10V

J9
U.FL-R-SMT-1(10)

U-FL3P-SMD-2_6X2_6X1_0MM
1

23

C96
22uF

C0603
10V

L101nH
1.1A0201

C270.8pF
C020150V

D28
TPD1E0B04DPY
X1SON(2)
3.6V

2
1

RX/TX

CC1352_RESET_N CC1352_TMS
CC1352_TCK

DIO29_RF_PA

RX/TX

DIO30_RF_SUB1G

Fig. 2.18: CC1352P7 Bluetooth Low Energy (BLW) and SubGHz connectivity

VDD_1V2 VDD_1V2 DDR_VPP

DDR_VREFCA

R1240R
1%R0402

TP11

U2

16Gbit

FBGA-96

V
D
D

B
3

V
D
D

B
9

V
D
D

D
1

NF/UDM_N/UDBI_N
E2

NF/LDM_N/LDBI_N
E7

ZQ
F9

CKE
K2

ODT
K3

CK_T
K7

CK_C
K8

ACT_N
L3 CS_N
L7

TEN
N9

RESET_N
P1

PAR
T3

NF/NC
T7

A0
P3

A1
P7

A2
R3

A3
N7

A4
N3

A5
P8

A6
P2

A7
R8

A8
R2

A9
R7

A10/AP
M3

A11
T2

A12/BC_N
M7

A13
T8

WE_N/A14
L2

CAS_N/A15
M8

RAS_N/A16
L8

BA0
N2

BA1
N8

BG0
M2

V
D
D

G
7

V
D
D

J9

V
D
D

J1

V
S
S
Q

A
2

V
S
S
Q

A
8

V
S
S
Q

C
9

V
S
S
Q

D
2

V
S
S
Q

D
8

V
S
S
Q

E
3

V
S
S
Q

E
8

V
S
S
Q

F1

V
S
S
Q

H
1

V
S
S
Q

H
9

V
D
D

L1

V
D
D

L9

V
D
D

R
1

V
D
D

T
9

V
D
D
Q

A
1

V
D
D
Q

A
9

V
D
D
Q

C
1

V
D
D
Q

D
9

V
D
D
Q

F2

V
D
D
Q

F8

V
D
D
Q

G
1

V
D
D
Q

G
9

V
D
D
Q

J2

V
D
D
Q

J8

V
S
S

B
2

V
S
S

E
1

V
S
S

E
9

V
S
S

G
8

V
S
S

K
1

V
S
S

K
9

V
S
S

M
9

V
S
S

N
1

V
S
S

T
1

V
P
P

B
1

V
P
P

R
9

V
R
E
FC

A
M
1

DQ0
G2

DQ1
F7

DQ2
H3

DQ3
H7

DQ4
H2

DQ5
H8

DQ6
J3

DQ7
J7

DQ8
A3

DQ9
B8

DQ10
C3

DQ11
C7

DQ12
C2

DQ13
C8

DQ14
D3

DQ15
D7

UDQS_T
B7

UDQS_C
A7

LDQS_T
G3

LDQS_C
F3

ALERT_N
P9

DDR_A0 DDR_DQ0
DDR_A1 DDR_DQ1
DDR_A2 DDR_DQ2
DDR_A3 DDR_DQ3
DDR_A4 DDR_DQ4
DDR_A5 DDR_DQ5
DDR_A6 DDR_DQ6
DDR_A7 DDR_DQ7
DDR_A8 DDR_DQ8
DDR_A9 DDR_DQ9
DDR_A10 DDR_DQ10
DDR_A11 DDR_DQ11
DDR_A12 DDR_DQ12
DDR_A13 DDR_DQ13

DDR_DQ14
DDR_A14_WEn DDR_DQ15
DDR_A15_CAS
DDR_A16_RAS DDR_UDQS_P

DDR_UDQS_N
DDR_BA0
DDR_BA1 DDR_LDQS_P

DDR_LDQS_N
DDR_BG0

DDR_UDM
DDR_CLKP
DDR_CLKN DDR_LDM

DDR_CKE DDR_ALERTn

DDR_ODT

DDR_PARITY

DDR_TEN

DDR_CSn
DDR_ACTn
DDR_RESET#

Fig. 2.19: DDR4 Memory

50 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

eMMC/SD

eMMC

GPIO0_72

GPIO1_48

GPIO1_49

GPIO0_71

1.8V

1.8V

1.8V

3.3V

VDD_1V8

VDD_3V3

VDD_1V8

OUT SD_VOLT_SEL[5]

OUT WL_CLK[20]

BI WL_D1[20]
BI WL_D2[20]
BI WL_D3[20]

BI WL_D0[20]

BI WL_CMD[20]

INPORz_OUT[10,11,12,16,19]

INRESETSTATz[5,9,10,11,12,16,19]

INEMMC_RSTn[14]

TP1

R14
10K
1%
R0402

C71100nF
C020110V

R10
49.9K
1%
R0402

R6
49.9K
1%
R0402

C68100nF
C020110V

C73100nF
C020110V

C754.7uF
C04026.3V

PwrGrp:VDDSHV4

MMC0

PwrGrp:VDDSHV5

MMC1

GENERAL
PwrGrp:VDDSHV0

MMC2
PwrGrp:VDDSHV6

U1I

AM62xbga425_0d5_13x13mm
BGA425

MMC1_CMD
A21

MMC1_DAT0
A22

MMC2_SDCD
A23

MMC1_DAT1
B21

MMC1_CLK
B22

MMC2_SDWP
B23

MMC1_SDWP
C17

MMC1_DAT2
C21

MMC2_CMD
C24

MMC1_SDCD
D17

MMC1_DAT3
D22

MMC2_CLK
D25

MMC0_CMD
Y3

MMC0_DAT3
Y4

MMC0_DAT1
AA1MMC0_DAT0
AA2

MMC0_DAT2
AA3

MMC0_CLK
AB1

MMC0_DAT4
AB2

MMC0_DAT5
AC1

MMC0_DAT6
AD2

MMC0_DAT7
AC2

MMC2_DAT0
B24

MMC2_DAT1
C25

MMC2_DAT2
E23

MMC2_DAT3
D24

D47
RB520S30T1G

SOD-523

200mA

30V

12

R11
49.9K
1%
R0402

C67100nF
C020110V

R7
49.9K
1%
R0402

EMMC16G-TB29-PZ90

U3-1

VFBGA-153

CLK
M6

CMD
M5

DAT0
A3

DAT1
A4

DAT2
A5

DAT3
B2

DAT4
B3

DAT5
B4

DAT6
B5

DAT7
B6

RST_n
K5

VCC_E6
E6

VCC_F5
F5

VCC_J10
J10

VCC_K9
K9

VCCQ_C6
C6

VCCQ_M4
M4

VCCQ_N4
N4

VCCQ_P3
P3

VCCQ_P5
P5

VDDI
C2

V
S
S
_E
7

E
7

V
S
S
_G

5
G
5

V
S
S
_H

1
0

H
1
0

V
S
S
_K
8

K
8

V
S
S
Q
_C
4

C
4

V
S
S
Q
_N

2
N
2

V
S
S
Q
_N

5
N
5

V
S
S
Q
_P
4

P
4

V
S
S
Q
_P
6

P
6

RCLK
H5

V
S
S
_J
5

J5

V
S
S
_A
6

A
6

VSF1
E9

VSF2
E10

VSF3
F10

VSF4
K10

R800R
1%R0201

D48
12

R15
10K
1%
R0402

C70100nF
C020110VR160R

1%R0201

R12
49.9K
1%
R0402

R20
49.9K
1%
R0402

C66100nF
C020110V

R8
49.9K
1%
R0402

C72100nF
C020110V

D56
12

C65100nF
C020110V

C74100nF
C020110V

R7933R
5%R0201

C694.7uF
C04026.3V

R9
49.9K
1%
R0402

C76100nF
C020110V

R5
49.9K
1%
R0402

R251
10K
1%
R0402

R13
49.9K
1%
R0402

EMMC_D0
EMMC_D1
EMMC_D2
EMMC_D3
EMMC_D4
EMMC_D5
EMMC_D6
EMMC_D7

EMMC_CMD

EMMC_CLK_S

SD_CD

SD_D0
SD_D1
SD_D2
SD_D3

SD_CMD

EMMC_CLK

SD_CLK

Fig. 2.20: eMMC/SD storage

microSD Card

VDD_3V3_SD
VDD_SD

VDD_3V3 VDD_3V3_SD

VDD_3V3

VDD_3V3

INSD_PWR_EN[13]

INRESETSTATz[5,9,10,11,12,16,19]

C77
4.7uF

C0402
6.3V

R77
10K
1%
R0402

R78
10K
1%
R0402

C78
100nF

C0201
10V

D9

T
P
D
1
E
1
B
0
4
D
PY
2

1

R75
10K
1%
R0402

D16

T
P
D
1
E
1
B
0
4
D
PY
2

1

D14

T
P
D
1
E
1
B
0
4
D
PY
2

1

C51
22uF

C0805
25V

C57
22uF

C0805
25V

U21

TPS22918DBVR
SOT23-6

VIN
1

G
N
D

2

ON
3

CT
4

QOD
5

VOUT
6

C79
100nF

C0201
10V

R60
10K
1%
R0402

R73
10K
1%
R0402

R76
10K
1%
R0402

R21
10K
1%
R0402 J1

ST-TF-003J

MICRO_SD_ST_TF_003A_16_1x14_5mm

DATA2
1

CS
2

DI
3

VDD
4

SCLK
5

VSS
6

DO
7

DATA1
8

CDN
9

G
1

1
0

G
2

1
1

G
3

1
2

G
4

1
3

D17

T
P
D
1
E
1
B
0
4
D
PY
2

1

D15

T
P
D
1
E
1
B
0
4
D
PY
2

1

D13

T
P
D
1
E
1
B
0
4
D
PY
2

1

D50
12

D18

T
P
D
1
E
1
B
0
4
D
PY

X1SON(2)
3.6V

2
1

R74
10K
1%
R0402

D51
RB520S30T1G
SOD-523
200mA
30V

12 SD_CD

SD_D0
SD_D1

SD_D2
SD_D3
SD_CMD

SD_CLK

Fig. 2.21: microSD Card storage slot

Board EEPROM

2.3.8 Multimedia I/O

HDMI

OLDI

CSI

2.3.9 RTC & Debug

RTC

UART Debug Port

AM62x JTAG & TagConnect

CC1352 JTAG & TagConnect

2.3. Design and specifications 51

BeagleBoard Docs, Release 1.0.20230711-wip

VDD_3V3
VDD_3V3

BII2C0_SCL[5,13]
BII2C0_SDA[5,13]

BI EEP_WP[13]

U20

FT24C32A-ELRT

SOT-23-5

SCL
1

SDA
3 VCC

4

VSS
2

WP
5

C266
100nF

C0201
10V

R213
DNP
1%
R0402

R209
10K
1%
R0402

I2C0_SCL
I2C0_SDA

Fig. 2.22: Board EEPROM ID

IO 1.8V
Red

Green

Blue

VDD_3V3
VSYS_5V

VDD_1V2

VDD_1V8

VDD_1V8

VDD_3V3

VDD_1V2

INMCASP1_ACLKX[14]
INMCASP1_AFSX[14]
INMCASP1_AXR0[14]

OUTHDMI_INT[14]

BII2C2_SDA[14,17]
BII2C2_SCL[14,17]

INMCASP1_AXR1[14]
INMCASP1_AXR2[14]
INMCASP1_AXR3[14]

INVOUT0_D16[14]
INVOUT0_D17[14]
INVOUT0_D18[14]
INVOUT0_D19[14]
INVOUT0_D20[14]
INVOUT0_D21[14]
INVOUT0_D22[14]
INVOUT0_D23[14]

C237
10uF

C0402
6.3V

C250
10uF

C0402
6.3V

C249
100nF

C0201
10V

C238
10uF

C0402
6.3V

R89
7.5K
1%
R0402

C245
100nF

C0201
10V

FB22120R
1.3A0402

C275
10uF

C0402
6.3V

R256
10K
1%
R0402

FB360R
5%R0402

C242
100nF

C0201
10V

C247
100nF

C0201
10V

D57

0402
5V

2
1

D63
DNP

SOD-523

200mA

30V

1 2

R64
2.2k
1%
R0402

FB23120R
1.3A0402

FB19120R
1.3A0402

FB20120R
1.3A0402

C269
1nF

C0201
16V

L2390R 100mA
1 2

34

L2190R 100mA
1 2

34

C271
10uF

C0402
6.3V

C104
10uF

C0402
6.3V

D55RB520S30T1G

SOD-523
200mA30V

1 2

D60

0402
5V

2
1

D7

3.6V
X1SON(2)

2
1

C252
10uF

C0402
6.3V

R66
33K
1%
R0402

C248
100nF

C0201
10V

D1N

G_D1

D2P

D0P

G_CLK

G_D2

D1P

D2N

G_D0

D0N

CLKN

SDA

CEC

SCL

G_DDC

Utility

CLKP

TYPE A

GND

+5V

HPD

J4

TYPE_A

hdmi19p_1d155_23_1x7_7x16_4mm

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

R25833R
5%R0201

R65
2.2k
1%
R0402

R63
DNP
1%
R0402

D4
ESDPSA0402V05
0402
5V

2
1

C244
10uF

C0402
6.3V

C61
100nF

C0201
10V

C251
100nF

C0201
10V

L2490R 100mA

0.85x0.65 mm

1 2

34

C240
100nF

C0201
10V

R257
2.2k
1%
R0402

C243
100nF

C0201
10V

FB18120R
1.3A0402

R234
2.2k
1%
R0402

FB24120R
1.3A0402

F1100mA
0603 1

1
2

2

FB390R
5%R0402

FB370R
5%R0402

L2290R 100mA
1 2

34

C276
100nF

C0201
10V

U7

IT66121FN
QFN-64

AVCC12
23

CEC
17

DDCSCL
16

DDCSDA
15

DE
62

DVDD12
28

ENTEST
31

G
N

D
6
5

HPD
14

HSYNC
63

I2S0
5

I2S1
4

I2S2
3

I2S3/SPDIF
2

INT
10

IVDD12_56
56IVDD12_35
35IVDD12_8
8

OVDD_1
1

OVDD_34
34

OVDD33
13

PCADR
32

PCLK
51

PCSCL
12

PCSDA
11

PVCC12
18

PVCC33
19

REXT
20

SCK/MCLK
7

SYSRSTN
33

TX0M
24TX0P
25

TX1M
26TX1P
27

TX2M
29TX2P
30

TXCM
21TXCP
22

VCC33
9

VSYNC
64

WS
6

D9
50

D1
60

D10
49

D11
48

D12
47

D13
46

D14
45

D15
44

D16
43

D17
42

D18
41

D19
40

D2
59

D20
39

D21
38

D22
37

D23
36

D3
58

D4
57

D5
55

D6
54

D7
53

D8
52

D0
61

C239
100nF

C0201
10V

R235
2.2k
1%
R0402

D5

0402
5V

2
1

FB380R
5%R0402

C241
100nF

C0201
10V

HDMI_CEC_D

HDMI_TX2+

HDMI_TX2-
HDMI_TX1+

HDMI_TX1-
HDMI_TX0+

HDMI_TX0-
HDMI_TXC+

HDMI_TXC-

HDMI_DSCL
HDMI_DSDA

DVI_+5V

HDMI_CEC

VOUT0_PCLK

VOUT0_DE
VOUT0_VSYNC
VOUT0_HSYNC

RESETn

HDMI_AVCC

PCADR

VOUT0_D0
VOUT0_D1
VOUT0_D2
VOUT0_D3
VOUT0_D4
VOUT0_D5
VOUT0_D6
VOUT0_D7
VOUT0_D8
VOUT0_D9
VOUT0_D10
VOUT0_D11
VOUT0_D12
VOUT0_D13
VOUT0_D14
VOUT0_D15

TX2P

TX2M

TX1P

TX0P

TX1M

TX0M

TXCM
TXCP

HDMI_HPD

Fig. 2.23: HDMI output

TP_SCL_1V8
TP_SDA_1V8

VSYS_5V

INBL_EN_3V3[13]
INBL_PWM_3V3[13]
INMST_RST_3V3[13]
OUTTP_INT_1V8[14]

BII2C2_SCL[12,14]
BII2C2_SDA[12,14]

R265DNP
1%R0201

R219DNP
1%R0201

C268
10uF

C0603
10V

PwrGrp:VDDA_1P8_OLDI

OLDI

U1L

AM62xbga425_0d5_13x13mm
BGA425

OLDI0_A0P
Y6

OLDI0_A2N
Y8

OLDI0_A0N
AA5

OLDI0_A2P
AA8

OLDI0_A1P
AB4

OLDI0_A1N
AD3

OLDI0_CLK0N
AD4

OLDI0_A5P
AD6

OLDI0_A6P
AD7

OLDI0_A7N
AD8

OLDI0_CLK0P
AE3

OLDI0_A5N
AE5

OLDI0_A6N
AE6

OLDI0_A7P
AE7

OLDI0_A3P
AA7

OLDI0_A3N
AB6

OLDI0_A4P
AC5

OLDI0_A4N
AC6

OLDI0_CLK1P
AD5

OLDI0_CLK1N
AE4

R243
DNP
1%
R0402

R225DNP
1%R0201

R240
10K
1%
R0402

C267
100nF

C0201
10V

R264DNP
1%R0201

R241
10K
1%
R0402

J8

FPC 40pin-0.5mm

fpc40_0d5_25_4x5_25x2mm

1
1

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

2
2

20
20

3
3

4
4

5
5

6
6

7
7

8
8

9
9

PA
D

1
4
2

PA
D

2
4
1

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31
31

32
32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

40
40

FB21120R
1.3A0402

R242
10K
1%
R0402

L20 90R
100mA

0.85x0.65 mm

1 2

34

L15

90R 100mA

0.85x0.65 mm

1 2

34

OLDI0_A3_P
OLDI0_A3_N

OLDI0_A4_P
OLDI0_A4_N

OLDI0_A5_P
OLDI0_A5_N

OLDI0_A0_P

OLDI0_A6_P

OLDI0_A0_N

OLDI0_A1_P
OLDI0_A1_N

OLDI0_A2_P
OLDI0_A2_N

OLDI0_A6_N

OLDI0_A7_P
OLDI0_A7_N

OLDI0_CLK0_P
OLDI0_CLK0_N

OLDI0_CLK1_P
OLDI0_CLK1_N

Fig. 2.24: OLDI display interface

52 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

RPi_NC

VDD_3V3

VDD_1V8VDD_1V8 VDD_3V3VDD_3V3

BICSI0_GPIO1[13]
BICSI0_GPIO2[13]

BIWKUP_I2C0_SCL[16]
BIWKUP_I2C0_SDA[16]

J17
FPC 22P 0.5mm

2
3

2
3

2
4

2
4

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

R169
10K
1%

R0402
C258
10uF

C0603
10V

R250
10K
1%

R0402
C259
100nF

C0201
10V

CSI
PwrGrp:VDDA_1P8_CSIRX

U1K

AM62xbga425_0d5_13x13mm
BGA425

CSI0_ATB_1_H
Y15CSI0_ATB_0_H
AA12

CSI0_RXRCALIB
AA14

CSI0_RXN0
AB14CSI0_RXP0
AC15

CSI0_RXN1
AD14CSI0_RXP1
AE14

CSI0_RXP2
AE13

CSI0_RXN2
AD13

CSI0_RXN3
AB12CSI0_RXP3
AC13

CSI0_RXCLKN
AD15CSI0_RXCLKP
AE15

R1350R
5%R0402

R232
2.2k
1%

R0402

R233
2.2k
1%

R0402

Q8
BSS138W

SOT-323-3

1

32

R153499R
0.1%R0402

Q9
BSS138W

SOT-323-3

1

32

CAM_D0_N
CAM_D0_P

CAM_D1_N
CAM_D1_P

CAM_CK_N
CAM_CK_P

CAM_D2_N
CAM_D2_P

CAM_D3_N
CAM_D3_P

CSI_SCL
CSI_SDA

Fig. 2.25: CSI camera interface

VDD_3V3 VDD_3V3

BIRTC_INT[13]

R162
10K
1%
R0402

R1630R
5%R0402

C264
100nF

C0201
10V

J10
CR1220
bat-cr1220

B
A
T
+

2
B

A
T-

1

C265DNP
C040250V

X7
32.768kHz
3.2 x 1.5 x 0.9mm

1
2

D26

T
P
D

1
E

1
B

0
4

D
PY

2
1

U18

BQ32002

8-SOIC(3.9mm)

X1
1

X2
2

Vbackup
3

GND
4

SDA
5 SCL
6 SQW/INT
7 VCC
8

C261DNP
C040250V

I2C0_SCL
I2C0_SDA

Fig. 2.26: Real Time Clock (RTC)

Pin2: RXD

Add Silkscreen:

Pin3: TXD

Layout Note:

Pin1: GND
VDD_3V3

VDD_3V3

OUTUART0_RXD[13]
INUART0_TXD[13]

U10

SN74LVC2G241DCUR

8-VFSOP

1A
2

2OE
7 1OE

1
VCC

8

GND
4

2A
5 2Y

3
1Y

6

C55100nF
C020110V J6

header3p_2d54_dip

Header 1x3 2.54mm

1
2
3

R70
10K
1%
R0402

D8

T
P
D

1
E

1
B

0
4

D
PY

2
1

D10

T
P
D

1
E

1
B

0
4

D
PY

2
1

D61

RB520S30T1G

SOD-523

200mA
30V

1 2

DEBUG_RXD
DEBUG_TXD

Fig. 2.27: UART debug port

1.8V

VDD_1V8 VDD_1V8

R151
10K
1%
R0402

R158
10K
1%
R0402

R155
10K
1%
R0402

J19
DNP
DNP

1
1

2
2

3
3

4
4

5
5

6
67
78
89
910
10

R156
10K
1%
R0402

R157
10K
1%
R0402

C260
100nF

C0201
10VR154

10K
1%
R0402

MCU GENERAL
PwrGrp:VDDSHV_MCU

U1B

AM62xbga425_0d5_13x13mm
BGA425

EMU1
C11EMU0
E12

TCK
A10

TDI
A11

TRSTN
B10TMS
B11TDO
D12

SOC_EMU1
SOC_TMS SOC_TRST#

SOC_TDI
SOC_TCK SOC_EMU0

SOC_TDO

SOC_EMU0

SOC_TDO
SOC_TDI

SOC_EMU1

SOC_TCK

SOC_TMS
SOC_TRST#

Fig. 2.28: AM62 JTAG debug port and TagConnect interface

2.3. Design and specifications 53

BeagleBoard Docs, Release 1.0.20230711-wip

MCU_3V3

OUTUART6_RXD[13]
INUART6_TXD[13]

INCC1352_BOOT[13]

OUT CC1352_LED2[21]
OUT CC1352_LED1[21]

TP14

J11
DNP
DNP

1
1

2
2

3
3

4
4

5
5

6
67
78
89
910
10

CC1352P7

U9B

QFN-48

DIO_5
10

DIO_6
11

DIO_7
12

DIO_8
14

DIO_9
15

DIO_10
16

DIO_11
17

DIO_12
18

DIO_13
19

DIO_14
20

DIO_15
21

DIO_16
26

DIO_17
27

DIO_18
28

DIO_19
29

DIO_20
30

DIO_21
31

DIO_22
32

DIO_23
36

DIO_24
37

DIO_25
38

DIO_26
39

DIO_27
40

DIO_28
41

DIO_29
42

DIO_30
43

R1210R 5%

TP12

R1200R 5%

CC1352_TDO DIO29_RF_PA
CC1352_TDI DIO30_RF_SUB1G

CC1352_RESET_N
CC1352_TMS

CC1352_TDI
CC1352_TCK

CC1352_TDO

Fig. 2.29: CC1352 JTAG debug port and TagConnect interface

2.3.10 Mechanical Specifications

Dimensions & Weight

Table 2.5: Dimensions & weight
Parameter Value
Size 82.5x80x20mm
Max heigh 20mm
PCB Size 80x80mm
PCB Layers 8 layers
PCB Thickness 1.6mm
RoHS compliant Yes
Weight 55.3g

Fig. 2.30: BeaglePlay board dimensions

54 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.31: BeaglePlay board side dimensions

2.4 Expansion

Note: This chapter is a work in progress and will include information on building expansion hardware for
BeaglePlay.

2.4.1 mikroBUS

2.4.2 Grove

2.4.3 QWIIC

2.4.4 CSI

2.4.5 OLDI

2.5 Demos and tutorials

2.5.1 Using Serial Console

To see the board boot log and access your BeaglePlay’s console you can connect a USB-UART cable as dipicted
in image below and use application like tio to access the conole.

If you are using Linux your USB to UART converter may appear as /dev/ttyUSB. It will be different for Mac
and Windows operatig systems.

[lorforlinux@fedora ~] $ tio /dev/ttyUSB0
tio v2.5
Press ctrl-t q to quit
Connected

Tip: For more information on USB to UART cables, you can checkout Serial Debug Cables section.

2.4. Expansion 55

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.32: Serial debug (USB-UART) cable connection.

2.5.2 Connect WiFi

If you have a monitor and keyboard/mouse combo connected, the easiest way is to use the wpa_gui.

Alternatively, you can use wpa_cli over a shell connection through:

• the serial console,

• VSCode or ssh over a USB network connection,

• VSCode or ssh over an Ethernet connection,

• VSCode or ssh over BeaglePlay WiFi access point, or

• a local Terminal Emulator session.

Once you have a shell connection, follow the wpa_cli instructions.

BeaglePlay WiFi Access Point

Running the default image, your BeaglePlay should be hosting a WiFi access point with the SSID “BeaglePlay-
XXXX”, where XXXX is selected based on a hardware identifier on your board to try to increase the chances it
will be unique.

Tip: The “XXXX” will be a combination of numbers and the letters A through F.

Note: At some point, we plan to introduce a captive portal design that will enable using your smartphone to
provide BeaglePlay local WiFi login information. For now, you’ll need to use a computer and

Step 1. Connect to BeaglePlay-XXXX
Tip: The password is either “BeaglePlay” or “BeagleBone” and the IP address will be 192.168.8.1.

56 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Whatever your computer provides as a mechanism for searching for WiFi access points and connecting to them,
just use that. You will want to have DHCP enabled, but that is the typical default. Connect to the “BeaglePlay-
XXXX” access point and use the password “BeaglePlay” or “BeagleBone”.

Note: The configuration for the access point is in the file system at /etc/hostapd/hostapd.conf.

Once your are connected to the access point, BeaglePlay should provide your computer an IP address and use
192.168.8.1 for itself. It should also be broadcasting the mDNS name “beagleplay.local”.

Step 2. Browse to 192.168.8.1 Once you have connected to the access point, you can simply open VSCode
by browsing to https://192.168.8.1:3000.

Within VSCode, you can press “CTRL-‘” to open a terminal session to get access to a shell connection.

You could also choose to ssh into your board via ssh debian@192.168.8.1 and use the password temppwd.

Important: Once logged in, you should change the default password using the passwd command.

wpa_gui

Simplest way to connect to WiFi is to use wpa_gui tool pre-installed on your BeaglePlay. Follow simple steps
below to connect to any WiFi access point.

Step 1: Starting wpa_gui You can start wpa_gui either from Applications > Internet >
wpa_gui or double click on the wpa_gui desktop application shortcut.

Fig. 2.33: Starting wpa_gui from Applications > Internet > wpa_gui

Step 2: Understanding wpa_gui interface Let’s see the wpa_gui interface in detail,

1. Adapter is the WiFi interface device, it should be wlan0 (on-board WiFi) by default.

2.5. Demos and tutorials 57

https://192.168.8.1:3000

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.34: Starting wpa_gui from Desktop application shortcut

2. Network shows the WiFi access point SSID if you are connected to that network.

3. Current Status tab shows you network information if you are connected to any network.

• Click on Connect to connect if not automatically done.

• Click on Disconnect to disconnect/reset the connection.

• Click on Scan to scan nearby WiFi access points.

4. Manage Network tab shows you all the saved networks and options to manage those.

Step 3: Scanning & Connecting to WiFi access points To scan the WiFi access points around you, just
click on Scan button availale under wpa_gui > Current Status > Scan.

A new window will open up with,

1. SSID (WiFi name)

2. BSSID

3. Frequency

4. Signal strength

5. flags

Now, you just have to double click on the Network you want to connect to as shown below.

Note: SSIDs and BSSIDs are not fully visible in screenshot below but you can change the column length to
see the WiFi names better.

Final step is to type your WiFi access point password under PSK input field and click on Add (as shown in
screenshot below) which will automatically connect your board to WiFi (if password is correct).

58 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.35: wpa_gui interface

Fig. 2.36: Scanning WiFi access points

2.5. Demos and tutorials 59

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.37: Selecting WiFi access point

Fig. 2.38: Connecting to WiFi access point

60 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

wpa_cli (shell)

Swap out “mywifi” and “mypassword” with your network SSID and password, respectively.

debian@BeaglePlay:~$ wpa_cli scan
Selected interface 'wlan0'
OK
debian@BeaglePlay:~$ wpa_cli scan_results
Selected interface 'wlan0'
bssid / frequency / signal level / flags / ssid
68:ff:7b:03:0a:8a 5805 -49 [WPA2-PSK-CCMP][WPS][ESS] mywifi
debian@BeaglePlay:~$ wpa_cli add_network
Selected interface 'wlan0'
1
debian@BeaglePlay:~$ wpa_cli set_network 1 ssid '”mywifi”'
Selected interface 'wlan0'
OK
debian@BeaglePlay:~$ wpa_cli set_network 1 psk '”mypassword”'
Selected interface 'wlan0'
OK
debian@BeaglePlay:~$ wpa_cli enable_network 1
Selected interface 'wlan0'
OK
debian@BeaglePlay:~$ ifconfig wlan0
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.0.245 netmask 255.255.255.0 broadcast 192.168.0.255
inet6 fe80::6e30:2aff:fe29:757d prefixlen 64 scopeid 0x20<link>
inet6 2601:408:c083:b6c0::e074 prefixlen 128 scopeid 0x0<global>
ether 6c:30:2a:29:75:7d txqueuelen 1000 (Ethernet)
RX packets 985 bytes 144667 (141.2 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 52 bytes 10826 (10.5 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Important: The single quotes around the double quotes are needed to make sure the double quotes are
given to wpa_cli. It expects to see them.

Note: For more information about wpa_cli, see https://w1.fi/wpa_supplicant/

To make these changes persistent, you need to edit /etc/wpa_supplicant/wpa_supplicant-wlan0.conf. This is
described in wpa_cli (XFCE).

wpa_cli (XFCE)

Another way of connecting to a WiFi access point is to edit the wpa_supplicant configuration file.

Step 1: Open up terminal Open up a terminal window either from Applications > Terminal
Emulator Or from Task Manager.

Step 2: Setup credentials To setup credentials of your WiFi access point follow these steps,

1. Execute sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf, which
will open up wpa_supplicant-wlan0.conf inside nano (terminal based) text editor. 2. Edit
wpa_supplicant-wlan0.conf to add SSID (WiFi name) & PSK (WiFi password) of your WiFi access
point.

2.5. Demos and tutorials 61

https://w1.fi/wpa_supplicant/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.39: Open terminal from Applications > Terminal Emulator

Fig. 2.40: Open terminal from Task Manager

62 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

....
network={

ssid=”WiFi Name”
psk=”WiFi Password”
....

}

3. Now save the details using ctrl + O then enter.

4. To exit out of the nano text editor use ctrl + X.

Fig. 2.41: Run: $ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

Step 3: Reconfigure wlan0 The WiFi doesn’t automatically connect to your WiFi access point after you add
the credentials to wpa_supplicant-wlan0.conf.

1. To connect you can either execute sudo wpa_cli -i wlan0 reconfigure

2. Or Reboot your device by executing reboot inside your terminal window.

3. Execute ping 8.8.8.8 to check your connection. Use ctrl + C to quit.

debian@BeaglePlay:~$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=118 time=5.83 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=118 time=7.27 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=118 time=5.30 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=118 time=5.28 ms
64 bytes from 8.8.8.8: icmp_seq=5 ttl=118 time=9.04 ms
64 bytes from 8.8.8.8: icmp_seq=6 ttl=118 time=7.52 ms
64 bytes from 8.8.8.8: icmp_seq=7 ttl=118 time=5.39 ms
64 bytes from 8.8.8.8: icmp_seq=8 ttl=118 time=5.94 ms
^C
--- 8.8.8.8 ping statistics ---
8 packets transmitted, 8 received, 0% packet loss, time 7008ms
rtt min/avg/max/mdev = 5.281/6.445/9.043/1.274 ms

2.5. Demos and tutorials 63

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.42: Add SSID and PSK

Fig. 2.43: Save credentials (ctrl + O) and Exit (ctrl + X)

64 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 2.44: Connect to WiFi by running $ sudo wpa_cli -i wlan0 reconfigure

Fig. 2.45: To check connection try running $ ping 8.8.8.8

2.5. Demos and tutorials 65

BeagleBoard Docs, Release 1.0.20230711-wip

2.5.3 Using Grove

See QWIIC, STEMMA and Grove Add-ons in Linux.

A link to the appropriate I2C controller can be found at /dev/play/grove/i2c.

2.5.4 Using mikroBUS

Using boards with ClickID

Steps:

1. Identify if mikroBUS add-on includes an ID. If not, ID must be supplied.

2. Identify if mikroBUS add-on is supported by the kernel. If not, kernel module must be added.

3. Identify how driver exposes the data: IIO, net, etc.

4. Connect and power

5. Verify and utilize

What is mikroBUS? mikroBUS is an open standard for add-on boards for sensors, connectivity, displays,
storage and more with over 1,400 available from just a single source, MikroE. With the flexibility of all of the
most common embedded serial busses, UART, I2C and SPI, along with ADC, PWM and GPIO functions, it is a
great solution for connecting all sorts of electronics.

Note: Learn more at https://www.mikroe.com/mikrobus

What is ClickID? ClickID enables mikroBUS add-on boards to be identified along with the configuration re-
quired to use it with the mikroBUS Linux driver. The configuration portion is called a manifest.

Note: Learn more at https://github.com/MikroElektronika/click_id

BeaglePlay’s Linux kernel is patched with a mikrobus driver that automatically reads the ClickID and loads a
driver, greatly simplifying usage.

Does my add-on have ClickID? Look for the “ID” logo on the board. It should be on the side with the pins
sticking out, near the AN pin.

Todo: Need an image of the logo

If your add-on has ClickID, simply connect it while BeaglePlay is powered off and then apply power.

Example of examining boot log to see a ClickID was detected.

debian@BeaglePlay:~$ dmesg | grep mikrobus
[2.096254] mikrobus:mikrobus_port_register: registering port mikrobus-0
[2.096325] mikrobus mikrobus-0: mikrobus port 0 eeprom empty probing␣
↪→default eeprom
[2.663698] mikrobus_manifest:mikrobus_manifest_attach_device: parsed␣
↪→device 1, driver=opt3001, protocol=3, reg=44
[2.663711] mikrobus_manifest:mikrobus_manifest_parse: Ambient 2 Click␣
↪→manifest parsed with 1 devices
[2.663783] mikrobus mikrobus-0: registering device : opt3001

66 Chapter 2. BeaglePlay

https://www.mikroe.com/click
https://www.mikroe.com/mikrobus
https://github.com/MikroElektronika/click_id

BeagleBoard Docs, Release 1.0.20230711-wip

To use the add-on, see TBD below.

What if my add-on doesn’t have ClickID?

It is still possible a manifest has been created for your add-on as we have created over 100 of them. You
can install the existing manifest files onto your BeaglePlay.

sudo apt update
sudo apt install bbb.io-clickid-manifests
cat /lib/firmware/mikrobus/amibient-light-click.mnfb > /sys/bus/mikrobus/
↪→devices/mikrobus-0/new_device

Note: We will be adding a link to the mikrobus-0 device at /dev/play/mikrobus in the near future,
but you can find it for now at /sys/bus/mikrobus/devices/mikrobus-0. If you need to supply
an ID (manifest), this is the directory where you will do it.

Manifesto: https://git.beagleboard.org/beagleconnect/manifesto

Patched Linux with out-of-tree Mikrobus driver: https://git.beagleboard.org/beagleboard/linux

Note: It’ll forget on reboot… need to have a boot service.

Todo: To make it stick, …

Using boards with Linux drivers

IIO driver https://docs.kernel.org/driver-api/iio/intro.html

debian@BeaglePlay:~$ iio_info
Library version: 0.24 (git tag: v0.24)
Compiled with backends: local xml ip usb
IIO context created with local backend.
Backend version: 0.24 (git tag: v0.24)
Backend description string: Linux BeaglePlay 5.10.168-ti-arm64-r104
↪→#1bullseye SMP Thu Jun 8 23:07:22 UTC 2023 aarch64
IIO context has 2 attributes:

local,kernel: 5.10.168-ti-arm64-r104
uri: local:

IIO context has 2 devices:
iio:device0: opt3001

1 channels found:
illuminance: (input)

2 channel-specific attributes found:
attr 0: input value: 163.680000
attr 1: integration_time value: 0.800000

2 device-specific attributes found:
attr 0: current_timestamp_clock value:␣

↪→realtime

attr 1: integration_time_available value: 0.
↪→1 0.8

No trigger on this device
iio:device1: adc102s051

2 channels found:
voltage1: (input)

(continues on next page)

2.5. Demos and tutorials 67

https://git.beagleboard.org/beagleconnect/manifesto
https://git.beagleboard.org/beagleboard/linux
https://docs.kernel.org/driver-api/iio/intro.html

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

2 channel-specific attributes found:
attr 0: raw value: 4084
attr 1: scale value: 0.805664062

voltage0: (input)
2 channel-specific attributes found:

attr 0: raw value: 2440
attr 1: scale value: 0.805664062

No trigger on this device

Storage driver

Network driver

How does ClickID work?

Disabling the mikroBUS driver

If you’d like to use other means to control the mikroBUS connector, you might want to disable the mikroBUS
driver. This is most easily done by enabling a deivce tree overlay at boot.

Todo: Document kernel version that integrates this overlay and where to get update instructions.

Note: To utilize the overlay with these instructions, make sure to have TBD version of kernel, modules and
firmware installed. Use uname -a to determine the currently running kernel version. See TBD for information
on how to update.

Apply overlay to disable mikrobus0 instance.

echo ” fdtoverlays /overlays/k3-am625-beagleplay-release-mikrobus.dtbo” |␣
↪→sudo tee -a /boot/firmware/extlinux/extlinux.conf
sudo shutdown -r now

Log back in after reboot and verify the device driver did not capture the busses.

debian@BeaglePlay:~$ ls /dev/play
grove mikrobus qwiic
debian@BeaglePlay:~$ ls /dev/play/mikrobus/
i2c
debian@BeaglePlay:~$ ls /sys/bus/mikrobus/devices/
debian@BeaglePlay:~$ ls /proc/device-tree/chosen/overlays/
k3-am625-beagleplay-release-mikrobus name
debian@BeaglePlay:~$

To re-enable.

sudo sed -e '/release-mikrobus/ s/^#*/#/' -i /boot/firmware/extlinux/
↪→extlinux.conf
sudo shutdown -r now

Verify driver is enabled again.

debian@BeaglePlay:~$ ls /sys/bus/mikrobus/devices/
mikrobus-0
debian@BeaglePlay:~$ ls /proc/device-tree/chosen/overlays/

(continues on next page)

68 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

ls: cannot access '/proc/device-tree/chosen/overlays/': No such file or␣
↪→directory
debian@BeaglePlay:~$

Todo:

• How do turn off the driver?

• How do turn on spidev?

• How do I enable GPIO?

• How do a provide a manifest?

Todo:

• Needs udev

• Needs live description

2.5.5 Using QWIIC

See QWIIC, STEMMA and Grove Add-ons in Linux.

A link to the appropriate I2C controller can be found at /dev/play/qwiic/i2c.

2.5.6 Using OLDI Displays

2.5.7 Using CSI Cameras

2.5.8 Wireless MCU Zephyr Development

BeaglePlay includes a Texas Instruments CC1352P7 wireless microcontroller (MCU) that can be programmed
using the Linux Foundation Zephyr RTOS.

Developing directly in Zephyr will not be ultimately required for end-users who won’t touch the firmware running
on the CC1352 on BeaglePlay™ and will instead use the provided wireless functionality. However, it is important
for early adopters as well as people looking to extend the functionality of the open source design. If you are
one of those people, this is a good place to get started.

Further, BeaglePlay is a reasonable development platform for creating Zephyr-based applications for Beagle-
Connect Freedom. The same Zephyr development environment setup here is also described for targeting
applications on that board.

Install the latest software image for BeaglePlay

Note: These instructions should be generic for BeaglePlay and other boards and only the specifics of which
image was used to test these instructions need be included here moving forward and the detailed instructions
can be referenced elsewhere.

You may want to download and install the latest Debian Linux operating system image for BeaglePlay.

2.5. Demos and tutorials 69

https://www.ti.com/product/CC1352P7
https://www.zephyrproject.org/

BeagleBoard Docs, Release 1.0.20230711-wip

Note: These instructions were validated with the BeagleBoard.org Debian image BeaglePlay Debian 11.6
Flasher 2023-03-10.

1. Load this image to a microSD card using a tool like Etcher.

2. Insert the microSD card into BeaglePlay.

3. Power BeaglePlay via the USB-C connector.

4. Wait for the LEDs to start blinking, then turn off.

5. Remove power from BeaglePlay.

6. IMPORTANT Remove microSD card from BeaglePlay.

7. Apply power to BeaglePlay.

Note: This will flash the CC1352 as well as the eMMC flash on BeaglePlay.

Todo: Describe how to know it is working

Log into BeaglePlay

Please either plug in a keyboard, monitor and mouse or ssh into the board. We can point somewhere else for
instructions on this. You can also point your web browser to the board to log into the Visual Studio Code IDE
environment.

Todo: A big part of what is missing here is to put your BeaglePlay on the Internet such that we can download
things in later steps. That has been initially brushed over.

Flash existing IEEE 802.15.4 radio bridge (WPANUSB) firmware

If you’ve recieved a board fresh from the factory, this is already done and not necessary, unless you want to
restore the contents back to the factory condition.

Background ThisWPANUSB application was originally developed for radio devices with a USB interface. The
CC1352P7 does not have a USB device, so the application was modified to communicate over a UART serial
interface.

For the BeagleConnect Freedom, a USB-to-UART bridge device was used and the USB endpoints were made
compatible with the WPANUSB linux driver which we augmented to support this board. To utilize the existing
WPANUSB Zephyr application and this Linux driver, we chose to encode our UART traffic with HDLC. This has the
advantage of enabing a serial console interface to the Zephyr shell while WPANUSB-specific traffic is directed
to other USB endpoints.

For BeaglePlay, the USB-to-UART bridge is not used, but we largely kept the same WPANUSB application, in-
cluding the HDLC encoding.

Note: Now you know why this WPAN bridge application is called WPANUSB, even though USB isn’t used!

70 Chapter 2. BeaglePlay

https://www.beagleboard.org/distros/beagleplay-debian-11-6-flasher-2023-03-10
https://www.beagleboard.org/distros/beagleplay-debian-11-6-flasher-2023-03-10
https://github.com/finikorg/wpanusb
https://git.beagleboard.org/beagleconnect/linux/wpanusb/
https://en.wikipedia.org/wiki/High-Level_Data_Link_Control
https://simple.wikipedia.org/wiki/USB#How_USB_works

BeagleBoard Docs, Release 1.0.20230711-wip

Steps

1. Ensure the bcfserial driver isn’t blocking the serial port.

echo ” fdtoverlays /overlays/k3-am625-beagleplay-bcfserial-no-
↪→firmware.dtbo” | sudo tee -a /boot/firmware/extlinux/extlinux.
↪→conf
sudo shutdown -r now

Note: The default password is temppwd.

2. Download and flash the WPANUSB Zephyr application firmware onto the CC1352P7 on BeaglePlay from
the releases on git.beagleboard.org or distros on www.beagleboard.org/distros.

cd
wget https://files.beagle.cc/file/beagleboard-public-2021/images/
↪→download
unzip download
build/play/cc2538-bsl.py build/play/wpanusb

3. Ensure the bcfserial driver is set to load.

sudo sed -e '/bcfserial-no-firmware/ s/^#*/#/' -i /boot/firmware/
↪→extlinux/extlinux.conf
sudo shutdown -r now

4. Verify the the 6LoWPAN network is up.

debian@BeaglePlay:~$ lsmod | grep bcfserial
bcfserial 24576 0 ①
mac802154 77824 2 wpanusb,bcfserial
debian@BeaglePlay:~$ ifconfig
SoftAp0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.8.1 netmask 255.255.255.0 broadcast 192.
↪→168.8.255

inet6 fe80::3ee4:b0ff:fe7e:b5f7 prefixlen 64 scopeid␣
↪→0x20<link>

ether 3c:e4:b0:7e:b5:f7 txqueuelen 1000 (Ethernet)
RX packets 4046 bytes 576780 (563.2 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 4953 bytes 5116336 (4.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.

↪→255.255
ether 02:42:f8:29:41:69 txqueuelen 0 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

eth0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether f4:84:4c:fc:5d:13 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0
(continues on next page)

2.5. Demos and tutorials 71

https://git.beagleboard.org/beagleconnect/zephyr/zephyr/-/releases
https://www.beagleboard.org/distros

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 246239 bytes 19948296 (19.0 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 246239 bytes 19948296 (19.0 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

lowpan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1280 ②
inet6 fe80::200:0:0:0 prefixlen 64 scopeid 0x20<link> ③
inet6 2001:db8::2 prefixlen 64 scopeid 0x0<global> ④
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 ␣

↪→txqueuelen 1000 (UNSPEC)
RX packets 107947 bytes 6629290 (6.3 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 2882 bytes 179511 (175.3 KiB) ⑤
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

usb0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.7.2 netmask 255.255.255.0 broadcast 192.

↪→168.7.255
inet6 fe80::1eba:8cff:fea2:ed6b prefixlen 64 scopeid␣

↪→0x20<link>
ether 1c:ba:8c:a2:ed:6b txqueuelen 1000 (Ethernet)
RX packets 9858 bytes 2638440 (2.5 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 4155 bytes 1454082 (1.3 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

usb1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.6.2 netmask 255.255.255.0 broadcast 192.

↪→168.6.255
inet6 fe80::1eba:8cff:fea2:ed6d prefixlen 64 scopeid␣

↪→0x20<link>
ether 1c:ba:8c:a2:ed:6d txqueuelen 1000 (Ethernet)
RX packets 469614 bytes 35385636 (33.7 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 365548 bytes 66523708 (63.4 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.0.161 netmask 255.255.255.0 broadcast 192.

↪→168.0.255
inet6 fe80::3ee4:b0ff:fe7e:b5f6 prefixlen 64 scopeid␣

↪→0x20<link>
inet6 2601:408:c083:b6c0::d00d prefixlen 128 scopeid␣

↪→0x0<global>
ether 3c:e4:b0:7e:b5:f6 txqueuelen 1000 (Ethernet)
RX packets 3188898 bytes 678154090 (646.7 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 1162074 bytes 293237366 (279.6 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

wpan0: flags=195<UP,BROADCAST,RUNNING,NOARP> mtu 123 ⑥

(continues on next page)

72 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 ␣
↪→txqueuelen 300 (UNSPEC)

RX packets 108495 bytes 2539160 (2.4 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 2888 bytes 140523 (137.2 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions␣

↪→0

① You’ll want to see that the bcfserial driver has been loaded.

② There should be a lowpan0 interface.

③ There should be a link-local address for lowpan0.

④ There should be a global address for lowpan0.

⑤ Seeing some packets have been transmitted can give you some confidence.

⑥ The wpan0 interface should be there, but we have a 6LoWPAN adapter on top of it.

Note: You may find Linux-WPAN.org useful.

Setup Zephyr development on BeaglePlay

1. Download and setup Zephyr for BeaglePlay

cd
sudo apt update
sudo apt install --no-install-recommends -y \

gperf \
ccache dfu-util \
libsdl2-dev \
libxml2-dev libxslt1-dev libssl-dev libjpeg62-turbo-dev␣

↪→libmagic1 \
libtool-bin autoconf automake libusb-1.0-0-dev \
python3-tk python3-virtualenv

wget https://github.com/zephyrproject-rtos/sdk-ng/releases/
↪→download/v0.15.1/zephyr-sdk-0.15.1_linux-aarch64_minimal.tar.gz
tar xf zephyr-sdk-0.15.1_linux-aarch64_minimal.tar.gz
rm zephyr-sdk-0.15.1_linux-aarch64_minimal.tar.gz
./zephyr-sdk-0.15.1/setup.sh -t arm-zephyr-eabi -c
west init -m https://git.beagleboard.org/beagleconnect/zephyr/
↪→zephyr --mr sdk zephyr-beagle-cc1352-sdk
cd $HOME/zephyr-beagle-cc1352-sdk
python3 -m virtualenv zephyr-beagle-cc1352-env
echo ”export ZEPHYR_TOOLCHAIN_VARIANT=zephyr” >> $HOME/zephyr-
↪→beagle-cc1352-sdk/zephyr-beagle-cc1352-env/bin/activate
echo ”export ZEPHYR_SDK_INSTALL_DIR=$HOME/zephyr-sdk-0.15.1” >>
↪→$HOME/zephyr-beagle-cc1352-sdk/zephyr-beagle-cc1352-env/bin/
↪→activate
echo ”export ZEPHYR_BASE=$HOME/zephyr-beagle-cc1352-sdk/zephyr” >
↪→> $HOME/zephyr-beagle-cc1352-sdk/zephyr-beagle-cc1352-env/bin/
↪→activate
echo 'export PATH=$HOME/zephyr-beagle-cc1352-sdk/zephyr/scripts:
↪→$PATH' >> $HOME/zephyr-beagle-cc1352-sdk/zephyr-beagle-cc1352-
↪→env/bin/activate
echo ”export BOARD=beagleplay” >> $HOME/zephyr-beagle-cc1352-sdk/
↪→zephyr-beagle-cc1352-env/bin/activate
source $HOME/zephyr-beagle-cc1352-sdk/zephyr-beagle-cc1352-env/
↪→bin/activate

(continues on next page)

2.5. Demos and tutorials 73

https://linux-wpan.org/documentation.html

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

west update
west zephyr-export
pip3 install -r zephyr/scripts/requirements-base.txt

2. Activate the Zephyr build environment

If you exit and come back, you’ll need to reactivate your Zephyr build environment.

source $HOME/zephyr-beagle-cc1352-sdk/zephyr-beagle-cc1352-env/
↪→bin/activate

3. Verify Zephyr setup for BeaglePlay

(zephyr-beagle-cc1352-env) debian@BeaglePlay:~$ cmake --version
cmake version 3.22.1

CMake suite maintained and supported by Kitware (kitware.com/
↪→cmake).
(zephyr-beagle-cc1352-env) debian@BeaglePlay:~$ python3 --version
Python 3.9.2
(zephyr-beagle-cc1352-env) debian@BeaglePlay:~$ dtc --version
Version: DTC 1.6.0
(zephyr-beagle-cc1352-env) debian@BeaglePlay:~$ west --version
West version: v0.14.0
(zephyr-beagle-cc1352-env) debian@BeaglePlay:~$./zephyr-sdk-0.15.1/
↪→arm-zephyr-eabi/bin/arm-zephyr-eabi-gcc --version
arm-zephyr-eabi-gcc (Zephyr SDK 0.15.1) 12.1.0
Copyright (C) 2022 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. ␣
↪→There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A␣
↪→PARTICULAR PURPOSE.

Build applications for BeaglePlay CC1352

Now you can build various Zephyr applications

1. Build and flash Blinky example

cd $HOME/zephyr-beagle-cc1352-sdk/zephyr
west build -d build/play_blinky samples/basic/blinky
west flash -d build/play_blinky

2. Try out Micropython

cd
git clone -b beagleplay-cc1352 https://git.beagleboard.org/
↪→beagleplay/micropython
cd micropython
west build -d play ports/zephyr
west flash -d play
tio /dev/ttyS4

Build applications for BeagleConnect Freedom

1. Build and flash Blinky example

cd $HOME/zephyr-beagle-cc1352-sdk/zephyr
west build -d build/freedom_blinky -b beagleconnect_freedom␣

(continues on next page)

74 Chapter 2. BeaglePlay

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→samples/basic/blinky
west flash -d build/freedom_blinky

2. Try out Micropython

cd
git clone -b beagleplay-cc1352 https://git.beagleboard.org/
↪→beagleplay/micropython
cd micropython
west build -d freedom -b beagleconnect_freedom ports/zephyr
west flash -d freedom
tio /dev/ttyACM0

Important: Nothing below here is tested

1. TODO

west build -d build/sensortest zephyr/samples/boards/beagle_bcf/
↪→sensortest -- -DOVERLAY_CONFIG=overlay-subghz.conf

2. TODO

west build -d build/wpanusb modules/lib/wpanusb_bc -- -DOVERLAY_
↪→CONFIG=overlay-subghz.conf

3. TODO

west build -d build/bcfserial modules/lib/wpanusb_bc -- -
↪→DOVERLAY_CONFIG=overlay-bcfserial.conf -DDTC_OVERLAY_
↪→FILE=bcfserial.overlay

4. TODO

west build -d build/greybus modules/lib/greybus/samples/subsys/
↪→greybus/net -- -DOVERLAY_CONFIG=overlay-802154-subg.conf

Flash applications to BeagleConnect Freedom And then you can flash the BeagleConnect Freedom
boards over USB

1. Make sure you are in Zephyr directory

cd $HOME/bcf-zephyr

2. Flash Blinky

cc2538-bsl.py build/blinky

Debug applications over the serial terminal
Todo: Describe how to handle the serial connection

2.6 Support

2.6.1 Certifications and export control

2.6. Support 75

BeagleBoard Docs, Release 1.0.20230711-wip

Export designations

• HS: 8471504090

• US HS: 8473301180

• EU HS: 8471707000

Size and weight

• Bare board dimensions: 82.5 x 80 x 20 mm

• Bare board weight: 55.3 g

• Full package dimensions: 140 x 100 x 40 mm

• Full package weight: 125.3 g

2.6.2 Additional documentation

Hardware docs

For any hardware document like schematic diagram PDF, EDA files, issue tracker, and more you can checkout
the BeaglePlay design repository.

Software docs

For BeaglePlay specific software projects you can checkout all the BeaglePlay project repositories group.

Support forum

For any additional support you can submit your queries on our forum, https://forum.beagleboard.org/tag/play

Pictures

2.6.3 Change History

Note: This section describes the change history of this document and board. Document changes are not
always a result of a board change. A board change will always result in a document change.

Document Changes

For all changes, see https://git.beagleboard.org/docs/docs.beagleboard.io. Frozen releases tested against spe-
cific hardware and software revisions are noted below.

Table 2.6: BeaglePlay document change history
Rev Changes Date By

76 Chapter 2. BeaglePlay

https://git.beagleboard.org/beagleplay/beagleplay
https://git.beagleboard.org/beagleplay
https://forum.beagleboard.org/tag/play
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Board Changes

For all changes, see https://git.beagleboard.org/beagleplay/beagleplay. Versions released into production are
noted below.

Table 2.7: BeaglePlay board change history
Rev Changes Date By
A2 Initial production version 2023-03-08 JK

2.6. Support 77

https://git.beagleboard.org/beagleplay/beagleplay

BeagleBoard Docs, Release 1.0.20230711-wip

78 Chapter 2. BeaglePlay

Chapter 3

BeagleBone AI-64

BeagleBone® AI-64 brings a complete system for developing artificial intelligence (AI) and machine learning
solutions with the convenience and expandability of the BeagleBone® platform and the peripherals on board
to get started right away learning and building applications. With locally hosted, ready-to-use, open-source fo-
cused tool chains and development environment, a simple web browser, power source and network connection
are all that need to be added to start building performance-optimized embedded applications. Industry-leading
expansion possibilities are enabled through familiar BeagleBone® cape headers, with hundreds of open-source
hardware examples and dozens of readily available embedded expansion options available off-the-shelf.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

3.1 Introduction

This document is the System Reference Manual for BeagleBone AI-64 and covers its use and design. The board
will primarily be referred to in the remainder of this document simply as the board, although it may also be
referred to as AI-64 or BeagleBone AI-64 as a reminder.

This design is subject to change without notice as we will work to keep improving the design as the product
matures based on feedback and experience. Software updates will be frequent and will be independent of the
hardware revisions and as such not result in a change in the revision number.

Make sure you frequently check the BeagleBone AI-64 git repository for the most up to date support documents.

3.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

79

http://creativecommons.org/licenses/by-sa/4.0/
https://git.beagleboard.org/beagleboard/beaglebone-ai-64/

BeagleBoard Docs, Release 1.0.20230711-wip

3.2.1 Document Change History

This table seeks to keep track of major revision cycles in the documentation. Moving forward, we’ll seek to
align these version numbers across all of the various documentation.

Table 3.1: Table 1: Change History
Rev Changes Date By
0.0.1 AI-64 initial prototype September 2021 James Anderson
0.0.2 AI-64 final prototype December 2021 James Anderson
0.0.3 AI-64 initial production release June 9, 2022 Deepak Khatri and Jason Kridner

3.2.2 Board Changes

Be sure to check the board revision history in the schematic file in the BeagleBone AI-64 git repository . Also
check the issues list .

Rev B

We are starting with revision B based on this being an update to the BeagleBone Black AI. However, because
this board ended up being so different, we’ve decided to name it BeagleBone AI-64, rather than simply a new
revision. This refers to the Seeed release on 21 Dec 2021 of “BeagleBone AI-64_SCH_Rev B_211221”. This is
the initial production release.

3.3 Connecting up your BeagleBone AI-64

This section provides instructions on how to hook up your board. This beagle requires a 5V > 3A power supply
to work properly via either USB Type-C power adapter or a barrel jack power adapter.

Recommended adapters:

• 5V @ 3A USB C power supply adapter for SBCs.

• 5V > 3A laptop/mobile adapter with USB-C cable.

All the Fig 3.1 BeagleBone AI-64 connections ports we will use in this chapter are shown in the figure below.

Fig. 3.1: Fig 3.1 BeagleBone AI-64 connections ports

80 Chapter 3. BeagleBone AI-64

https://git.beagleboard.org/beagleboard/beaglebone-ai-64
https://git.beagleboard.org/beagleboard/beaglebone-ai-64/-/issues
https://www.digikey.com/en/products/detail/raspberry-pi/RPI-USB-C-power-supply-White-US/10258760

BeagleBoard Docs, Release 1.0.20230711-wip

3.3.1 Methods of operation

1. Tethered to a PC

2. Standalone development platform in a PC configuration using external peripherals

3.3.2 What’s In the Box

In the box you will find three main items as shown in Fig: BeagleBone AI-64 box content.

• BeagleBone AI-64.

• Instruction card.

A USB-C to USB-C cable is not included bot recommended for the tethered scenario and creates an out of box
experience where the board can be used immediately with no other equipment needed.

Fig. 3.2: Fig: BeagleBone AI-64 box content

3.3.3 Main Connection Scenarios

This section describes how to connect and power the board and serves as a slightly more detailed description
of the Quick Start Guide included in the box.

The board can be configured in several different ways, but we will discuss the two most common scenarios.

• Tethered to a PC via the USB cable

– Board is accessed as a storage drive and virtual Ethernet
connection.

• Standalone Desktop

– Display

– Keyboard and Mouse

– External 5V > 3A power supply

Each of these configurations is discussed in general terms in the following sections.

3.3.4 Tethered To A PC

In this configuration, the board is powered by the PC via a single USB cable. The board is accessed either as
a USB storage drive or via the browser on the connected PC. You need to use either Firefox or Chrome on the
PC, Internet Explorer will not work properly.

3.3. Connecting up your BeagleBone AI-64 81

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.3: Fig: Tethered Configuration

At least 5V @ 3A is required to power the board, In most cases the PC may not be able to supply sufficient
power for the board unless the connection is made over a Type-C to Type-C cable. You should always use an
external 5V > 3A DC power supply connected to the barrel jack if you are unsure that the system can provide
the required power or are otherwise using a USB-A to Type-C cable which will always require power from the
DC barrel jack.

Connect the Cable to the Board

1. Connect the type C USB cable to the board as shown in Fig: USB Connection to the Board. The connector
is on the top side of the board near barrel jack.

Fig. 3.4: Fig: USB Connection to the Board

2. Connect the USB-A end of the cable to your PC or laptop USB port as shown in the Fig: USB Connection
to the PC/Laptop below.

3. The board will power on and the power LED will be on as shown in Fig: Board Power LED below.

4. When the board starts to the booting process started by the process of applying power, the LEDs will
come on in sequence as shown in Fig: Board Boot Status below. It will take a few seconds for the status
LEDs to come on, so be patient. The LEDs will be flashing in an erratic manner as it begins to boot the
Linux kernel.

82 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.5: Fig: USB Connection to the PC/Laptop

Fig. 3.6: Fig: Board Power LED

Fig. 3.7: Fig: Board Boot Status

3.3. Connecting up your BeagleBone AI-64 83

BeagleBoard Docs, Release 1.0.20230711-wip

Accessing the Board as a Storage Drive

The board will appear around a USB Storage drive on your PC after thekernel has booted, which will take a
round 10 seconds. The kernel on the board needs to boot before the port gets enumerated. Once the board
appears as a storage drive, do the following:

1. Open the USB Drive folder.

2. Click on the file named start.htm

3. The file will be opened by your browser on the PC and you should get a display showing the Quick Start
Guide.

4. Your board is now operational! Follow the instructions on your PC screen.

3.3.5 Standalone w/Display and Keyboard/Mouse

In this configuration, the board works more like a PC, totally free from any connection to a PC as shown in Fig:
Desktop Configuration. It allows you to create your code to make the board do whatever you need it to do. It
will however require certain common PC accessories. These accessories and instructions are described in the
following section.

Fig. 3.8: Fig: Desktop Configuration

Ethernet cable and M.2 WiFi + Bluetooth card are optional. They can be used if network access required.

Required Accessories

In order to use the board in this configuration, you will need the following accessories:

• 5V > 3A power supply.

• Display Port or HDMI monitor.

• miniDP-DP or active miniDP-HDMI cable (or a recommended miniDP-DP or active miniDP-HDMI
adapter https://www.amazon.com/dp/B089GF8M87 has been tested and worked beautifully).

• USB wired/wireless keyboard and mouse.

• powered USB HUB (OPTIONAL). The board has only two USB Type-A host ports, so you may need to use
a powered USB Hub if you wish to add additional USB devices, such as a USB WiFi adapter.

• M.2 Bluetooth & WiFi module (OPTIONAL). For wireless connections, a USB WiFi adapter or a recom-
mended M.2 WiFi module can provide wireless networking.

84 Chapter 3. BeagleBone AI-64

https://www.amazon.com/dp/B089GF8M87

BeagleBoard Docs, Release 1.0.20230711-wip

Connecting Up the Board

1. Connect the miniDP to DP or active miniDP to HDMI cable from your BeagleBone AI-64 to your monitor.

Fig. 3.9: Fig: Connect miniDP-DP or active miniDP-HDMI cable to BeagleBone AI-64

2. If you have an Display Port or HDMI monitor with HDMI-HDMI or DP-DP cable you can use adapters as
shown in. Fig: Display adapters.

Fig. 3.10: Fig: Display adapters

3. If you have wired/wireless USB keyboard and mouse such as

seen in FigKeyboard and Mouse below, you need to plug the receiver in the USB host port of the board
as shown in FigKeyboard and Mouse.

4. Connect the Ethernet Cable

If you decide you want to connect to your local area network, an Ethernet cable can be used. Connect the
Ethernet Cable to the Ethernet port as shown in Fig: Ethernet Cable Connection. Any standard 100M Ethernet
cable should work.

5. The final step is to plug in the DC power supply to the DC power jack as shown in Fig: External DC Power
below.

6. The cable needed to connect to your display is a miniDP-DP or active miniDP-HDMI. Connect the miniDP
connector end to the board at this time. The connector is on the top side of the board as shown in Fig:
Connect miniDP to DP or active miniDP to HDMI Cable to the Board below.

The connector is fairly robust, but we suggest that you not use the cable as a leash for your Beagle. Take
proper care not to put too much stress on the connector or cable.

3.3. Connecting up your BeagleBone AI-64 85

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.11: FigKeyboard and Mouse

Fig. 3.12: Fig: Ethernet Cable Connection

Fig. 3.13: Fig: External DC Power

86 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.14: Fig: Connect miniDP to DP or active miniDP to HDMI Cable to the Board

7. Booting the Board

As soon as the power is applied to the board, it will start the booting up process. When the board starts to boot
the LEDs will come on. It will take a few seconds for the status LEDs to come on, so be patient. The LEDs will
be flashing in an erratic manner as it boots the Linux kernel.

Fig. 3.15: Fig: BeagleBone AI-64 LEDs

While the four user LEDS can be over written and used as desired, they do have specific meanings in the image
that is shipped with the board once the Linux kernel has booted.

• USR0 is the heartbeat indicator from the Linux kernel.

• USR1 turns on when the microSD card is being accessed

• USR2 is an activity indicator. It turns on when the kernel is not in the idle loop.

• USR3 turns on when the onboard eMMC is being accessed.

• USR4 is an activity indicator for WiFi.

8. A Booted System

a. The board will have a mouse pointer appear on the screen as it enters the Linux boot step. You may
have to move the physical mouse to get the mouse pointer to appear. The system can come up in
the suspend mode with the monitor in a sleep mode.

b. After a minute or two a login screen will appear. You do not have to do anything at this point.

3.3. Connecting up your BeagleBone AI-64 87

BeagleBoard Docs, Release 1.0.20230711-wip

c. After a minute or two the desktop will appear. It should be similar to the one shown in Fig: Bea-
gleBone XFCE Desktop Screen. HOWEVER, it will change from one release to the next, so do not
expect your system to look exactly like the one in the figure, but it will be very similar.

d. And at this point you are ready to go! Fig: BeagleBone XFCE Desktop Screen shows the desktop
after booting.

Fig. 3.16: Fig: BeagleBone XFCE Desktop Screen

3.4 BeagleBone AI-64 Overview

BeagleBone AI-64 is the latest addition to BeagleBoard.org family and like its predecessors, is designed to
address the open-source Community, early adopters, and anyone interested in a low cost 64-bit Dual Arm®
Cortex®-A72 processor based Single Board Computer (SBC).

It has been equipped with a minimum set of features to allow the user to experience the power of the processor
and is not intended as a full development platform as many of the features and interfaces supplied by the
processor are not accessible from BeagleBone AI-64 via onboard support of some interfaces. It is not a complete
product designed to do any particular function. It is a foundation for experimentation and learning how to
program the processor and to access the peripherals by the creation of your own software and hardware.

It also offers access to many of the interfaces and allows for the use of add-on boards called capes, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

BeagleBone AI-64 is manufactured and warranted by partners listed at https://beagleboard.org/logo for the
benefit of the community and its supporters including the current BeagleBoard.org Foundation board members

• Jason Kridner, principal of JK Embedded Consulting an independent contractor and architect for new
Beagle designs.

• Drew Fustini, independent Linux developer

• Robert Nelson, applications engineer at Digi-Key

• Mark Yoder, professor at Rose-Hulman Institute of Technology

• Kathy Giori, product engineer at ZEDEDA

See bbb.io/about

BeagleBone AI-64 has been designed by Seeed Studio (Seeed Development Limited) under guidance from
BeagleBoard.org Foundation.

88 Chapter 3. BeagleBone AI-64

https://beagleboard.org/logo
https://beagleboard.org/about

BeagleBoard Docs, Release 1.0.20230711-wip

3.4.1 BeagleBone Compatibility

The board is intended to provide functionality well beyond BeagleBone Black or BeagleBone AI, while still
providing compatibility with BeagleBone Black’s expansion headers as much as possible. There are several
significant differences between the three designs.

Table 3.2: Table: BeagleBone Compatibility
Feature AI-64 AI Black
SoC TDA4VM AM5729 AM3358
Arm CPU Cortex-A72 (64-bit) Cortex-A15 (32-bit) Cortex-A8 (32-bit)
Arm cores/MHz 2x 2GHz 2x 1.5GHz 1x 1GHz
RAM 4GB 1GB 512MB
eMMC flash 16GB 16GB 4GB
Size 4” x 3.1” 3.4” x 2.1” .4” x 2.1”
Display miniDP + DSI microHDMI microHDMI
USB host (Type-A) 2x 5Gbps 1x 480Mbps 1x 480Mbps
USB dual-role Type-C 5Gbps Type-C 5Gbps mini-AB 480Mbps
Ethernet 10/100/1000M 10/100/1000M 10/100M
M.2 E-key - -
WiFi/ Bluetooth - AzureWave AW‑CM256SM -

Todo: add cape compatibility details

3.4.2 BeagleBone AI-64 Features and Specification

This section covers the specifications and features of the board and provides a high level description of the
major components and interfaces that make up the board.

Table 3.3: Table: BeagleBone AI-64 Features and Specification
Feature

Processor Texas Instruments TDA4VM
Graphics Engine PowerVR® Series8XE GE8430
SDRAM Memory LPDDR4 3.2GHz (4GB) Kingston Q3222PM1WDGTK-U
Onboard Flash eMMC (16GB) Kingston EMMC16G-TB29-PZ90
PMIC TPS65941213 and TPS65941111 PMICs regulator and one addi-

tional LDO.
Debug Support

2x 3 pin 3.3V TTL header
1. WKUP_UART0: Wake-up domain serial port
2. UART0: Main domain serial port

10-pin JTAG TAG-CONNECT footprint
Power Source USB C or DC Jack (5V, >3A)
PCB 4” x 3.1”
Indicators 1-Power, 5-User Controllable LEDs
USB-3.0 Client Port Access to USB0, SuperSpeed, dual-role mode via USB-C (no power

output)
USB-3.0 Host Port TUSB8041 4-port SuperSpeed hub on USB1, 2xType A Socket, up-

to 2.8A total, depending on power input
Ethernet Gigabit, RJ45, link indicator, speed indicator
SD/MMC Connector microSD , 1.8/3.3V
User Input

1. Reset Button

2. Boot Button

3. Power Button

Video Out miniDP
Audio via miniDP (stereo)
Weight 192gm (with heatsink)
Power Refer to main-board-power section

3.4. BeagleBone AI-64 Overview 89

BeagleBoard Docs, Release 1.0.20230711-wip

3.4.3 Board Component Locations

This section describes the key components on the board. It provides information on their location and function.
Familiarize yourself with the various components on the board.

3.4.4 Board components

Fig: BeagleBone AI-64 board components below shows the locations of the connectors, LEDs, and switches on
the PCB layout of the board.

Fig. 3.17: Fig: BeagleBone AI-64 board components

• DC Power is the main DC input that accepts 5V power.

• Power Button alerts the processor to initiate the power down sequence and is used to power down the
board.

• GigaBit Ethernet is the connection to the LAN.

• Serial Debug ports WKUP_UART0 for early boot from the management MCU and UART0 is for the main
processor.

• USB Client is a USB-C connection to a PC that can also power the board.

• BOOT switch can be used to force a boot from the microSD card if the power is cycled on the board,
removing power and reapplying the power to the board.

• There are five green LEDs that can be used by the user.

• Reset Button allows the user to reset the processor.

• microSD slot is where a microSD card can be installed.

• miniDP connector is where the display is connected to.

• USB Host can be connected different USB interfaces such as Wi-Fi, Bluetooth, Keyboard, etc.

On bottom side we have,

• TI TDA4VM processor.

• 4GB LPDDR4 Dual Data Rate RAM memory.

90 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

• Ethernet PHY physical interface to the network.

• eMMC onboard MMC chip that holds up to 16GB of data.

3.5 BeagleBone AI-64 High Level Specification

Fig: BeagleBone AI-64 Key Components below shows the high level block diagram of BeagleBone AI-64 board
surrounding TDA4VM SoC.

Fig. 3.18: Fig: BeagleBone AI-64 Key Components

3.5.1 Processor

BeagleBone AI-64 uses TI J721E-family TDA4VM system-on-chip (SoC) which is part of the K3 Multicore SoC ar-
chitecture platform and it is targeted for the reliability and low-latency needs of the automotive market provide
for a great general purpose platform suitable for industrial automation, mobile robotics, building automation
and numerous hobby projects.

The SoC designed as a low power, high performance and highly integrated device architecture, adding sig-
nificant enhancement on processing power, graphics capability, video and imaging processing, virtualization
and coherent memory support. In addition, these SoCs support state of the art security and functional safety
features. For the remaining of this section device, SoC, and processor will be used interchangeably.

Some of the main distinguished characteristics of the device are:

3.5. BeagleBone AI-64 High Level Specification 91

https://www.ti.com/product/TDA4VM

BeagleBoard Docs, Release 1.0.20230711-wip

• 64-bit architecture with virtualization and coherent memory support, which leverages full processing
capability of 64-bit Arm® Cortex®-A72

• Fully programmable industrial communication subsystems to enable future-proof designs for customers
that need to adopt the new Gigabit Time-sensitive Networks (TSN) standards, but still need full support
on legacy protocols and continuous system optimization over the product deployment

• Integration of vision hardware processing accelerators to facilitate extensive processing requirements in
low power budget for automotive ADAS and machine vision applications

• Integration of a general-purpose microcontroller unit (MCU) with a dual Arm® Cortex®-R5F MCU subsys-
tem, available for general purpose use as two cores or in lockstep, intended to help customers achieve
functional safety goals for their end products

• Integration of a next-generation fixed and floating-point C71x Digital Signal Processor (DSP) that signifi-
cantly boosts power over a broad range of general signal processing tasks for both general applications
and automotive functions which also incorporates advanced techniques to improve control code effi-
ciency and ease of programming such as branch prediction, protected pipeline, precise exception and
virtual memory management

• Tightly coupled Matrix Multiplication Accelerator (MMA) that extends the C71x DSP architecture’s scalar
and vector facilities enabling deep learning and enhance vision, analytics and wide range of general ap-
plications. The achieved total TOPS (Tera Operations Per Second) performance significantly differentiates
the device for single board computer in machine vision and deep learning applications

• Key display features including flexibility to interface with different panel types (eDP, DSI, DPI) with multi-
layer hardware composition

• Integration of hardware features that help applications to achieve functional safety mechanisms

• Robust security architecture with sandboxed DMSC controller managing all secure configurations with
high performance client-server messaging scheme between secure DMSC and all cores

• Simplified solution for power supply management, enabling lower cost system solution (on-die bias LDOs
and power good comparators for minimal power sequencing requirements consistent with low cost supply
design)

The device is composed of the following main subsystems, across different domains of the SoC,
among others:

• One dual-core 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz and up to 24K DMIPS
(Dhrystone Million Instructions per Second)

• Up to three Microcontroller Units (MCU), based on dual-core Arm Cortex-R5F processor running at up to
1.0 GHz, up to 12K DMIPS

• Up to two TMS320C66x DSP CorePac modules running at up to 1.35 GHz, up to 40 GFLOPS

• One C71x floating point, vector DSP running at up to 1.0 GHz, up to 80 GFLOPS

• One deep-learning MMA, up to 8 TOPS (8b) at 1.0 GHz

• Up to two gigabit dual-core Programmable Real-Time Unit and Industrial Communication Subsystems
(PRU_ICSSG)

• Two Navigator Subsystems (NAVSS) for data movement and control

• One multi-pipeline Display Subsystem (DSS) with one MIPI® Display Serial Interface Controller (DSI)
and shared MIPI D-PHY Transmitter (DPHY_TX), one Embedded DisplayPort Transmitter (EDP) with shared
Serializer/Deserializer (SERDES), and two MIPI Display Pixel Interface (DPI) ports

• Two Camera Streaming Interface Receivers (CSI_RX_IF) with dedicated MIPI D-PHYs (DPHY_RX)

• One Camera Streaming Interface Transmitter (CSI_TX_IF) with MIPI D-PHY Transmitter (DPHY_TX) shared
with DSI

• One Vision Processing Accelerator (VPAC) with image signal processor

• One Depth and Motion Processing Accelerator (DMPAC)

92 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

• One dual-core multi-standard HD Video Decoder (DECODER)

• One dual-core multi-standard HD Video Encoder (ENCODER)

• One Graphics Processing Unit (GPU)

• One Device Management and Security Controller (DMSC)

The device provides a rich set of peripherals such as:

• General connectivity peripherals, including:

– Two 12-bit general purpose Analog-to-Digital Converters (ADC)

– Ten Inter-Integrated Circuit (I2C) interfaces

– Three Improved Inter-Integrated Circuit (I3C) controllers

– Eleven master/slave Multichannel Serial Peripheral Interfaces
(MCSPI)

– Twelve configurable Universal Asynchronous Receiver/Transmitter
(UART) interfaces

– Ten General-Purpose Input/Output (GPIO) modules

• High-speed interfaces, including:

– Two Gigabit Ethernet Switch (CPSW) modules

– Two Dual-Role-Device (DRD) Universal Serial Bus Subsystems (US-
BSS) with integrated PHY

– Four Peripheral Component Interconnect express (PCIe) Gen3 sub-
systems

• Flash memory interfaces, including:

– One Octal SPI (OSPI) interface and one Quad SPI (QSPI) or one
QSPI and one HyperBus^TM^

– One General Purpose Memory Controller (GPMC) with Error Location
Module (ELM) and 8- or 16-bit-wide data bus width (supports
parallel NOR or NAND FLASH devices)

– Three Multimedia Card/Secure Digital (MMCSD) controllers

– One Universal Flash Storage (UFS) interface

• Industrial and control interfaces, including:

– Sixteen Controller Area Network (MCAN) interfaces with flexible
data rate support

– Three Enhanced Capture (ECAP) modules

– Six Enhanced Pulse-Width Modulation (EPWM) subsystems

– Three Enhanced Quadrature Encoder Pulse (EQEP) modules

• Audio peripherals, including:

– One Audio Tracking Logic (ATL)

– Twelve Multichannel Audio Serial Port (MCASP) modules supporting
up to 16 channels with independent TX/RX clock/sync domain

• One Video Processing Front End (VPFE) interface module

The device also integrates:

• Power distribution, reset controls and clock management components

• Power-management techniques for device power consumption minimization:

3.5. BeagleBone AI-64 High Level Specification 93

BeagleBoard Docs, Release 1.0.20230711-wip

– Adaptive Voltage Scaling (AVS)

– Dynamic Frequency Scaling (DFS)

– Gated clocks

– Multiple voltage domains

– Independently controlled power domains for major modules

– Voltage and Temperature Management (VTM) module

– Power-on Reset Generators (PRG)

– Power Sleep Controllers (PSC)

• Optimized interconnect (CBASS) architecture to enable latency-critical real time network and IO applica-
tions

• Control modules (CTRL_MMRs) mainly associated with device top-level configurations such as:

– IO Pad and pin multiplexing configuration

– PLL control and associated High-Speed Dividers (HSDIV)

– Clock selection

– Analog function controls

• Multicore Shared Memory Controller (MSMC)

• DDR Subsystem (DDRSS) with Error Correcting Code (ECC), supporting LPDDR4

• 1KB RAM with ECC support for C71x boot vectors

• 2KB RAM with ECC support for A72 and R5F boot vectors

• 512KB On-Chip SRAM protected by ECC

• One Global Time Counter (GTC) module

• Thirty 32-bit counter timers with compare and capture modes

• Debug and trace capabilities

The device includes different modules for functional safety requirements support:

• MCU island with dual lock step Arm Cortex-R5F

• Safety enabled interconnect with implemented features to help with Freedom From Interference (FFI)

• Twelve Real Time Interrupt (RTI) modules with Windowed Watchdog Timer (WWDT) functionality to mon-
itor processor cores

• Sixteen Dual-Clock Comparators (DCC) to monitor clocking sources during run-time

• Three Error Signaling Modules (ESM) to enable error monitoring

• Temperature monitoring sensors

• ECC on all critical memories

• Dedicated hardware Memory Cyclic Redundancy Check (MCRC) blocks

The device supports the following main security functionalities among others:

• Secure Boot Management

• Public Key Accelerator (PKA) for large vector math operation

• Cryptographic acceleration (AES, 3DES, MD5, SHA1, SHA2-224, 256, 512 operation)

• Trusted Execution Environment (TEE)

• Secure storage support

• On-the-fly encryption and authentication support for OSPI interface

94 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

The device is partitioned into three functional domains as shown in Fig: Device Top-level Block Diagram, each
containing specific processing cores and peripherals:

• Wake-up (WKUP) domain

• Microcontroller (MCU) domain with one of the dual Cortex-R5 cluster

• MAIN domain

Fig. 3.19: Fig: Device Top-level Block Diagram

3.5.2 Memory

Described in the following sections are the three memory devices found on the board.

4GB LPDDR4

A single (1024M x 16bits x 2channels) LPDDR4 4Gb memory device is used. The memory used is:

• Kingston Q3222PM1WDGTK-U

4Kb EEPROM

A single 4Kb EEPROM (24FC04HT-I/OT) is provided on I2C0 that holds the board information. This information
includes board name, serial number, and revision information.

16GB Embedded MMC

A single 16GB embedded MMC (eMMC) device is on the board. The device connects to the MMC1 port of the
processor, allowing for 8bit wide access. Default boot mode for the board will be MMC1 with an option to
change it to MMC0, the SD card slot, for booting from the SD card as a result of removing and reapplying the
power to the board. Simply pressing the reset button will not change the boot mode. MMC0 cannot be used
in 8Bit mode because the lower data pins are located on the pins used by the Ethernet port. This does not
interfere with SD card operation but it does make it unsuitable for use as an eMMC port if the 8 bit feature is
needed.

3.5. BeagleBone AI-64 High Level Specification 95

BeagleBoard Docs, Release 1.0.20230711-wip

MicroSD Connector

The board is equipped with a single microSD connector to act as the secondary boot source for the board and,
if selected as such, can be the primary boot source. The connector will support larger capacity microSD cards.
The microSD card is not provided with the board. Booting from MMC0 will be used to flash the eMMC in the
production environment or can be used by the user to update the SW as needed.

Boot Modes

As mentioned earlier, there are two boot modes:

• eMMC Boot: This is the default boot mode and will allow for the fastest boot time and will enable the
board to boot out of the box using the pre-flashed OS image without having to purchase an microSD card
or an microSD card writer.

• SD Boot: This mode will boot from the microSD slot. This mode can be used to override what is on the
eMMC device and can be used to program the eMMC when used in the manufacturing process or for field
updates.

Todo: This section needsmore work and references to greater detail. Other boot modes are possible. Software
to support USB and serial boot modes is not provided by beagleboard.org._Please contact TI for support of this
feature.

A switch is provided to allow switching between the modes.

• Holding the boot switch down during a removal and reapplication of power without a microSD card in-
serted will force the boot source to be the USB port and if nothing is detected on the USB client port, it
will go to the serial port for download.

• Without holding the switch, the board will boot try to boot from the eMMC. If it is empty, then it will try
booting from the microSD slot, followed by the serial port, and then the USB port.

• If you hold the boot switch down during the removal and reapplication of power to the board, and you
have a microSD card inserted with a bootable image, the board will boot from the microSD card.

Note: Pressing the RESET button on the board will NOT result in a change of the boot mode. You MUST remove
power and reapply power to change the boot mode. The boot pins are sampled during power on reset from
the PMIC to the processor.The reset button on the board is a warm reset only and will not force a boot mode
change.

3.5.3 Power Management

The TPS65941213 and TPS65941111 power management device is used along with a separate LDO to provide
power to the system.

3.5.4 PC USB Interface

The board has a USB type-C connector that connects to USB0 port of the processor.

3.5.5 Serial Debug Ports

Two serial debug ports are provided on board via 3pin micro headers,

1. WKUP_UART0: Wake-up domain serial port

96 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

2. UART0: Main domain serial port

In order to use the interfaces a 3pin micro to 6pin dupont adaptor header is required with a 6 pin USB to TTL
adapter. The header is compatible with the one provided by FTDI and can be purchased for about $$12 to $$20
from various sources. Signals supported are TX and RX. None of the handshake signals are supported.

3.5.6 USB1 Host Port

On the board is a single USB Type A female connector with full LS/FS/HS Host support that connects to USB1
on the processor. The port can provide power on/off control and up to 1.5A of current at 5V. Under USB power,
the board will not be able to supply the full 1.5A, but should be sufficient to supply enough current for a lower
power USB device supplying power between 50 to 100mA.

3.5.7 Power Sources

The board can be powered from two different sources:

• A 5V > 3A power supply plugged into the barrel jack.

• A wall adaptor with 5V > 3A output power.

The power supply is not provided with the board but can be easily obtained from numerous sources. A 5V > 3A
supply is mandatory to have with the board, but if there is a cape plugged into the board or you have a power
hungry device or hub plugged into the host port, then more current may needed from the DC supply.

3.5.8 Reset Button

When pressed and released, causes a reset of the board.

3.5.9 Power Button

This button takes advantage of the input to the PMIC for power down features.

3.5.10 Indicators

There are a total of six green LEDs on the board.

• One green power LED indicates that power is applied and the power management IC is up.

• Five blue LEDs that can be controlled via the SW by setting GPIO pins.

3.6 Connectors

3.6.1 Expansion Connectors

The expansion interface on the board is comprised of two headers P8 (46 pin) & P9 (50 pin). All signals on the
expansion headers are 3.3V unless otherwise indicated.

Note: Do not connect 5V logic level signals to these pins or the board will be damaged.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

3.6. Connectors 97

https://uk.farnell.com/element14/1103004000156/beaglebone-ai-serials-cable/dp/3291081

BeagleBoard Docs, Release 1.0.20230711-wip

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Connector P8

The following tables show the pinout of the P8 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of X Y. You can use these values to directly control the
GPIO pins with the commands shown below.

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset X Y=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset X Y=0

For Example:

+---------+----------+
| Pin | P8.03 |
+=========+==========+
| GPIO | 1 20 |
+---------+----------+

Use the commands below for controlling this pin (P8.03) where X = 1 and Y =␣
↪→20

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset 1 20=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset 1 20=0

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P8.01-P8.02
P8.01 P8.02
GND GND

98 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

P8.03-P8.05
Pin P8.03 P8.04 P8.05
GPIO 1 20 1 48 1 33
BALL AH21 AC29 AH25
REG 0x00011C054 0x00011C0C4 0x00011C088
Page 46 30 50
MODE 0 PRG1_PRU0_GPO19 PRG0_PRU0_GPO5 PRG1_PRU1_GPO12
1 PRG1_PRU0_GPI19 PRG0_PRU0_GPI5 PRG1_PRU1_GPI12
2 PRG1_IEP0_EDC_SYNC_OUT0 ~ PRG1_RGMII2_TD1
3 PRG1_PWM0_TZ_OUT PRG0_PWM3_B2 PRG1_PWM1_A0
4 ~ ~ RGMII2_TD1
5 RMII5_TXD0 RMII3_TXD0 ~
6 MCAN6_TX ~ MCAN7_TX
7 GPIO0_20 GPIO0_48 GPIO0_33
8 ~ GPMC0_AD0 RGMII8_TD1
9 ~ ~ ~
10 VOUT0_EXTPCLKIN ~ VOUT0_DATA12
11 VPFE0_PCLK ~ ~
12 MCASP4_AFSX MCASP0_AXR3 MCASP9_AFSX
13 ~ ~ ~
14 ~ ~ ~
Bootstrap ~ BOOTMODE2 ~

P8.06-P8.09

Pin P8.06 P8.07 P8.08 P8.09
GPIO 1 34 1 15 1 14 1 17
BALL AG25 AD24 AG24 AE24
REG 0x00011C08C 0x00011C03C 0x00011C038 0x00011C044
Page 51 44 44 45
MODE 0 PRG1_PRU1_GPO13 PRG1_PRU0_GPO14 PRG1_PRU0_GPO13 PRG1_PRU0_GPO16
1 PRG1_PRU1_GPI13 PRG1_PRU0_GPI14 PRG1_PRU0_GPI13 PRG1_PRU0_GPI16
2 PRG1_RGMII2_TD2 PRG1_RGMII1_TD3 PRG1_RGMII1_TD2 PRG1_RGMII1_TXC
3 PRG1_PWM1_B0 PRG1_PWM0_A1 PRG1_PWM0_B0 PRG1_PWM0_A2
4 RGMII2_TD2 RGMII1_TD3 RGMII1_TD2 RGMII1_TXC
5 ~ ~ ~ ~
6 MCAN7_RX MCAN5_RX MCAN5_TX MCAN6_RX
7 GPIO0_34 GPIO0_15 GPIO0_14 GPIO0_17
8 RGMII8_TD2 ~ ~ ~
9 ~ RGMII7_TD3 RGMII7_TD2 RGMII7_TXC
10 VOUT0_DATA13 VOUT0_DATA19 VOUT0_DATA18 VOUT0_DATA21
11 VPFE0_DATA8 VPFE0_DATA3 VPFE0_DATA2 VPFE0_DATA5
12 MCASP9_AXR0 MCASP7_AXR1 MCASP7_AXR0 MCASP7_AXR3
13 MCASP4_ACLKR ~ ~ MCASP7_AFSR
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P8.10-P8.13

3.6. Connectors 99

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P8.10 P8.11 P8.12 P8.13
GPIO 1 16 1 60 1 59 1 89
BALL AC24 AB24 AH28 V27
REG 0x00011C040 0x00011C0F4 0x00011C0F0 0x00011C168
Page 44 33 33 56
MODE 0 PRG1_PRU0_GPO15 PRG0_PRU0_GPO17 PRG0_PRU0_GPO16 RGMII5_TD1
1 PRG1_PRU0_GPI15 PRG0_PRU0_GPI17 PRG0_PRU0_GPI16 RMII7_TXD1
2 PRG1_RGMII1_TX_CTL PRG0_IEP0_EDC_SYNC_OUT1 PRG0_RGMII1_TXC I2C3_SCL
3 PRG1_PWM0_B1 PRG0_PWM0_B2 PRG0_PWM0_A2 ~
4 RGMII1_TX_CTL PRG0_ECAP0_SYNC_OUT RGMII3_TXC VOUT1_DATA4
5 ~ ~ ~ TRC_DATA2
6 MCAN6_TX ~ ~ EHRPWM0_B
7 GPIO0_16 GPIO0_60 GPIO0_59 GPIO0_89
8 ~ GPMC0_AD5 ~ GPMC0_A5
9 RGMII7_TX_CTL OBSCLK1 ~ ~
10 VOUT0_DATA20 ~ DSS_FSYNC1 ~
11 VPFE0_DATA4 ~ ~ ~
12 MCASP7_AXR2 MCASP0_AXR13 MCASP0_AXR12 MCASP11_ACLKX
13 MCASP7_ACLKR ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ BOOTMODE7 ~ ~

P8.14-P8.16

Pin P8.14 P8.15 P8.16
GPIO 1 75 1 61 1 62
BALL AF27 AB29 AB28
REG 0x00011C130 0x00011C0F8 0x00011C0FC
Page 37 33 34
MODE 0 PRG0_PRU1_GPO12 PRG0_PRU0_GPO18 PRG0_PRU0_GPO19
1 PRG0_PRU1_GPI12 PRG0_PRU0_GPI18 PRG0_PRU0_GPI19
2 PRG0_RGMII2_TD1 PRG0_IEP0_EDC_LATCH_IN0 PRG0_IEP0_EDC_SYNC_OUT0
3 PRG0_PWM1_A0 PRG0_PWM0_TZ_IN PRG0_PWM0_TZ_OUT
4 RGMII4_TD1 PRG0_ECAP0_IN_APWM_OUT ~
5 ~ ~ ~
6 ~ ~ ~
7 GPIO0_75 GPIO0_61 GPIO0_62
8 ~ GPMC0_AD6 GPMC0_AD7
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_AXR8 MCASP0_AXR14 MCASP0_AXR15
13 ~ ~ ~
14 UART8_CTSn ~ ~
Bootstrap ~ ~ ~

100 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

P8.17-P8.19
Pin P8.17 P8.18 P8.19
GPIO 1 3 1 4 1 88
BALL AF22 AJ23 V29
REG 0x00011C00C 0x00011C010 0x00011C164
Page 40 40 57
MODE 0 PRG1_PRU0_GPO2 PRG1_PRU0_GPO3 RGMII5_TD2
1 PRG1_PRU0_GPI2 PRG1_PRU0_GPI3 UART3_TXD
2 PRG1_RGMII1_RD2 PRG1_RGMII1_RD3 ~
3 PRG1_PWM2_A0 PRG1_PWM3_A2 SYNC3_OUT
4 RGMII1_RD2 RGMII1_RD3 VOUT1_DATA3
5 RMII1_CRS_DV RMII1_RX_ER TRC_DATA1
6 ~ ~ EHRPWM0_A
7 GPIO0_3 GPIO0_4 GPIO0_88
8 GPMC0_WAIT1 GPMC0_DIR GPMC0_A4
9 RGMII7_RD2 RGMII7_RD3 ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP6_AXR0 MCASP6_AXR1 MCASP10_AXR1
13 ~ ~ ~
14 UART1_RXD UART1_TXD ~
Bootstrap ~ ~ ~

P8.20-P8.22

Pin P8.20 P8.21 P8.22
GPIO 1 76 1 30 1 5
BALL AF26 AF21 AH23
REG 0x00011C134 0x00011C07C 0x00011C014
Page 37 49 41
MODE 0 PRG0_PRU1_GPO13 PRG1_PRU1_GPO9 PRG1_PRU0_GPO4
1 PRG0_PRU1_GPI13 PRG1_PRU1_GPI9 PRG1_PRU0_GPI4
2 PRG0_RGMII2_TD2 PRG1_UART0_RXD PRG1_RGMII1_RX_CTL
3 PRG0_PWM1_B0 ~ PRG1_PWM2_B0
4 RGMII4_TD2 SPI6_CS3 RGMII1_RX_CTL
5 ~ RMII6_RXD1 RMII1_TXD0
6 ~ MCAN8_TX ~
7 GPIO0_76 GPIO0_30 GPIO0_5
8 ~ GPMC0_CSn0 GPMC0_CSn2
9 ~ PRG1_IEP0_EDIO_DATA_IN_OUT30 RGMII7_RX_CTL
10 ~ VOUT0_DATA9 ~
11 ~ ~ ~
12 MCASP1_AXR9 MCASP4_AXR3 MCASP6_AXR2
13 ~ ~ MCASP6_ACLKR
14 UART8_RTSn ~ UART2_RXD
Bootstrap ~ ~ ~

P8.23-P8.26

3.6. Connectors 101

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P8.23 P8.24 P8.25 P8.26
GPIO 1 31 1 6 1 35 1 51
BALL AB23 AD20 AH26 AC27
REG 0x00011C080 0x00011C018 0x00011C090 0x00011C0D0
Page 50 41 51 31
MODE 0 PRG1_PRU1_GPO10 PRG1_PRU0_GPO5 PRG1_PRU1_GPO14 PRG0_PRU0_GPO8
1 PRG1_PRU1_GPI10 PRG1_PRU0_GPI5 PRG1_PRU1_GPI14 PRG0_PRU0_GPI8
2 PRG1_UART0_TXD ~ PRG1_RGMII2_TD3 ~
3 PRG1_PWM2_TZ_IN PRG1_PWM3_B2 PRG1_PWM1_A1 PRG0_PWM2_A1
4 ~ ~ RGMII2_TD3 ~
5 RMII6_CRS_DV RMII1_TX_EN ~ ~
6 MCAN8_RX ~ MCAN8_TX MCAN9_RX
7 GPIO0_31 GPIO0_6 GPIO0_35 GPIO0_51
8 GPMC0_CLKOUT GPMC0_WEn RGMII8_TD3 GPMC0_AD2
9 PRG1_IEP0_EDIO_DATA_IN_OUT31 ~ ~ ~
10 VOUT0_DATA10 ~ VOUT0_DATA14 ~
11 GPMC0_FCLK_MUX ~ ~ ~
12 MCASP5_ACLKX MCASP3_AXR0 MCASP9_AXR1 MCASP0_AXR6
13 ~ ~ MCASP4_AFSR ~
14 ~ ~ ~ UART6_RXD
Bootstrap ~ BOOTMODE0 ~ ~

P8.27-P8.29

Pin P8.27 P8.28 P8.29
GPIO 1 71 1 72 1 73
BALL AA28 Y24 AA25
REG 0x00011C120 0x00011C124 0x00011C128
Page 36 36 36
MODE 0 PRG0_PRU1_GPO8 PRG0_PRU1_GPO9 PRG0_PRU1_GPO10
1 PRG0_PRU1_GPI8 PRG0_PRU1_GPI9 PRG0_PRU1_GPI10
2 ~ PRG0_UART0_RXD PRG0_UART0_TXD
3 PRG0_PWM2_TZ_OUT ~ PRG0_PWM2_TZ_IN
4 ~ SPI3_CS3 ~
5 ~ ~ ~
6 MCAN11_RX PRG0_IEP0_EDIO_DATA_IN_OUT30 PRG0_IEP0_EDIO_DATA_IN_OUT31
7 GPIO0_71 GPIO0_72 GPIO0_73
8 GPMC0_AD10 GPMC0_AD11 GPMC0_AD12
9 ~ ~ CLKOUT
10 ~ DSS_FSYNC3 ~
11 ~ ~ ~
12 MCASP1_AFSX MCASP1_AXR5 MCASP1_AXR6
13 ~ ~ ~
14 ~ UART8_RXD UART8_TXD
Bootstrap ~ ~ ~

P8.30-P8.32

102 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P8.30 P8.31 ~ P8.32 ~
GPIO 1 74 1 32 1 63 1 26 1 64
BALL AG26 AJ25 AE29 AG21 AD28
REG 0x00011C12C 0x00011C084 0x00011C100 0x00011C06C 0x00011C104
Page 37 50 34 48 34
MODE 0 PRG0_PRU1_GPO11 PRG1_PRU1_GPO11 PRG0_PRU1_GPO0 PRG1_PRU1_GPO5 PRG0_PRU1_GPO1
1 PRG0_PRU1_GPI11 PRG1_PRU1_GPI11 PRG0_PRU1_GPI0 PRG1_PRU1_GPI5 PRG0_PRU1_GPI1
2 PRG0_RGMII2_TD0 PRG1_RGMII2_TD0 PRG0_RGMII2_RD0 ~ PRG0_RGMII2_RD1
3 ~ ~ ~ ~ ~
4 RGMII4_TD0 RGMII2_TD0 RGMII4_RD0 ~ RGMII4_RD1
5 RMII4_TX_EN RMII2_TX_EN RMII4_RXD0 RMII5_TX_EN RMII4_RXD1
6 ~ ~ ~ MCAN6_RX ~
7 GPIO0_74 GPIO0_32 GPIO0_63 GPIO0_26 GPIO0_64
8 GPMC0_A26 RGMII8_TD0 UART4_CTSn GPMC0_WPn UART4_RTSn
9 ~ EQEP1_I ~ EQEP1_S ~
10 ~ VOUT0_DATA11 ~ VOUT0_DATA5 ~
11 ~ ~ ~ ~ ~
12 MCASP1_AXR7 MCASP9_ACLKX MCASP1_AXR0 MCASP4_AXR0 MCASP1_AXR1
13 ~ ~ ~ ~ ~
14 ~ ~ UART5_RXD TIMER_IO4 UART5_TXD
Bootstrap ~ ~ ~ ~ ~

P8.33-P8.35

Pin P8.33 ~ P8.34 P8.35 | ~
GPIO 1 25 1 111 1 7 1 24 1 116
BALL AH24 AA2 AD22 AD23 Y3
REG 0x00011C068 0x00011C1C0 0x00011C01C 0x00011C064 0x00011C1D4
Page 48 67 41 47 67
MODE 0 PRG1_PRU1_GPO4 SPI0_CS0 PRG1_PRU0_GPO6 PRG1_PRU1_GPO3 SPI1_CS0
1 PRG1_PRU1_GPI4 UART0_RTSn PRG1_PRU0_GPI6 PRG1_PRU1_GPI3 UART0_CTSn
2 PRG1_RGMII2_RX_CTL ~ PRG1_RGMII1_RXC PRG1_RGMII2_RD3 ~
3 PRG1_PWM2_B2 ~ PRG1_PWM3_A1 ~ UART5_RXD
4 RGMII2_RX_CTL ~ RGMII1_RXC RGMII2_RD3 ~
5 RMII2_TXD0 ~ RMII1_TXD1 RMII2_RX_ER ~
6 ~ ~ AUDIO_EXT_REFCLK0 ~ PRG0_IEP0_EDIO_OUTVALID
7 GPIO0_25 GPIO0_111 GPIO0_7 GPIO0_24 GPIO0_116
8 RGMII8_RX_CTL ~ GPMC0_CSn3 RGMII8_RD3 PRG0_IEP0_EDC_LATCH_IN0
9 EQEP1_B ~ RGMII7_RXC EQEP1_A ~
10 VOUT0_DATA4 ~ ~ VOUT0_DATA3 ~
11 VPFE0_DATA13 ~ ~ VPFE0_WEN ~
12 MCASP8_AXR2 ~ MCASP6_AXR3 MCASP8_AXR1 ~
13 MCASP8_ACLKR ~ MCASP6_AFSR MCASP3_AFSR ~
14 TIMER_IO3 ~ UART2_TXD TIMER_IO2 ~
Bootstrap ~ ~ ~ ~ ~

P8.36-P8.38

3.6. Connectors 103

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P8.36 P8.37 ~ P8.38 ~
GPIO 1 8 1 106 1 11 1 105 1 9
BALL AE20 Y27 AD21 Y29 AJ20
REG 0x00011C020 0x00011C1AC 0x00011C02C 0x00011C1A8 0x00011C024
Page 42 58 43 58 42
MODE 0 PRG1_PRU0_GPO7 RGMII6_RD2 PRG1_PRU0_GPO10 RGMII6_RD3 PRG1_PRU0_GPO8
1 PRG1_PRU0_GPI7 UART4_RTSn PRG1_PRU0_GPI10 UART4_CTSn PRG1_PRU0_GPI8
2 PRG1_IEP0_EDC_LATCH_IN1 ~ PRG1_UART0_RTSn ~ ~
3 PRG1_PWM3_B1 UART5_TXD PRG1_PWM2_B1 UART5_RXD PRG1_PWM2_A1
4 ~ ~ SPI6_CS2 CLKOUT ~
5 AUDIO_EXT_REFCLK1 TRC_DATA19 RMII5_CRS_DV TRC_DATA18 RMII5_RXD0
6 MCAN4_TX EHRPWM5_A ~ EHRPWM_TZn_IN4 MCAN4_RX
7 GPIO0_8 GPIO0_106 GPIO0_11 GPIO0_105 GPIO0_9
8 ~ GPMC0_A22 GPMC0_BE0n_CLE GPMC0_A21 GPMC0_OEn_REn
9 ~ ~ PRG1_IEP0_EDIO_DATA_IN_OUT29 ~ ~
10 ~ ~ OBSCLK2 ~ VOUT0_DATA22
11 ~ ~ ~ ~ ~
12 MCASP3_AXR1 MCASP11_AXR5 MCASP3_AFSX MCASP11_AXR4 MCASP3_AXR2
13 ~ ~ ~ ~ ~
14 ~ ~ ~ ~ ~
Boot-
strap

~ ~ ~ ~ ~

P8.39-P8.41
Pin P8.39 P8.40 P8.41
GPIO 1 69 1 70 1 67
BALL AC26 AA24 AD29
REG 0x00011C118 0x00011C11C 0x00011C110
Page 35 36 35
MODE 0 PRG0_PRU1_GPO6 PRG0_PRU1_GPO7 PRG0_PRU1_GPO4
1 PRG0_PRU1_GPI6 PRG0_PRU1_GPI7 PRG0_PRU1_GPI4
2 PRG0_RGMII2_RXC PRG0_IEP1_EDC_LATCH_IN1 PRG0_RGMII2_RX_CTL
3 ~ ~ PRG0_PWM2_B2
4 RGMII4_RXC SPI3_CS0 RGMII4_RX_CTL
5 RMII4_TXD0 ~ RMII4_TXD1
6 ~ MCAN11_TX ~
7 GPIO0_69 GPIO0_70 GPIO0_67
8 GPMC0_A25 GPMC0_AD9 GPMC0_A24
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_AXR3 MCASP1_AXR4 MCASP1_AXR2
13 ~ ~ ~
14 ~ UART2_TXD ~
Bootstrap ~ ~ ~

104 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

P8.42-P8.44
Pin P8.42 P8.43 P8.44
GPIO 1 68 1 65 1 66
BALL AB27 AD27 AC25
REG 0x00011C114 0x00011C108 0x00011C10C
Page 35 34 35
MODE 0 PRG0_PRU1_GPO5 PRG0_PRU1_GPO2 PRG0_PRU1_GPO3
1 PRG0_PRU1_GPI5 PRG0_PRU1_GPI2 PRG0_PRU1_GPI3
2 ~ PRG0_RGMII2_RD2 PRG0_RGMII2_RD3
3 ~ PRG0_PWM2_A2 ~
4 ~ RGMII4_RD2 RGMII4_RD3
5 ~ RMII4_CRS_DV RMII4_RX_ER
6 ~ ~ ~
7 GPIO0_68 GPIO0_65 GPIO0_66
8 GPMC0_AD8 GPMC0_A23 ~
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_ACLKX MCASP1_ACLKR MCASP1_AFSR
13 ~ MCASP1_AXR10 MCASP1_AXR11
14 ~ ~ ~
Bootstrap BOOTMODE6 ~ ~

P8.45-P8.46
Pin P8.45 P8.46
GPIO 1 79 1 80
BALL AG29 Y25
REG 0x00011C140 0x00011C144
Page 38 38
MODE 0 PRG0_PRU1_GPO16 PRG0_PRU1_GPO17
1 PRG0_PRU1_GPI16 PRG0_PRU1_GPI17
2 PRG0_RGMII2_TXC PRG0_IEP1_EDC_SYNC_OUT1
3 PRG0_PWM1_A2 PRG0_PWM1_B2
4 RGMII4_TXC SPI3_CLK
5 ~ ~
6 ~ ~
7 GPIO0_79 GPIO0_80
8 ~ GPMC0_AD13
9 ~ ~
10 ~ ~
11 ~ ~
12 MCASP2_AXR2 MCASP2_AXR3
13 ~ ~
14 ~ ~
Bootstrap ~ BOOTMODE3

Connector P9

The following tables show the pinout of the P9 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of X Y. You can use these values to directly control the
GPIO pins with the commands shown below.

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset X Y=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset X Y=0

(continues on next page)

3.6. Connectors 105

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

For Example:

+---------+----------+
| Pin | P9.11 |
+=========+==========+
| GPIO | 1 1 |
+---------+----------+

Use the commands below for controlling this pin (P9.11) where X = 1 and Y = 1

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset 1 20=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset 1 20=0

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P9.E1-P9.E4
E1 E2 E3 E4
USB1 DP USB1 DN VSYS_5V0 GND

P9.01-P9.05
P9.01 P9.02 P9.03 P9.04 P9.05
GND GND VOUT_3V3 VOUT_3V3 VIN

P9.06-P9.10
P9.06 P9.07 P9.08 P9.09 P9.10
VIN VOUT_SYS VOUT_SYS RESET# RESET#

106 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

P9.11-P9.13
Pin P9.11 P9.12 P9.13
GPIO 1 1 1 45 1 2
BALL AC23 AE27 AG22
REG 0x00011C004 0x00011C0B8 0x00011C008
Page 39 29 40
MODE 0 PRG1_PRU0_GPO0 PRG0_PRU0_GPO2 PRG1_PRU0_GPO1
1 PRG1_PRU0_GPI0 PRG0_PRU0_GPI2 PRG1_PRU0_GPI1
2 PRG1_RGMII1_RD0 PRG0_RGMII1_RD2 PRG1_RGMII1_RD1
3 PRG1_PWM3_A0 PRG0_PWM2_A0 PRG1_PWM3_B0
4 RGMII1_RD0 RGMII3_RD2 RGMII1_RD1
5 RMII1_RXD0 RMII3_CRS_DV RMII1_RXD1
6 ~ ~ ~
7 GPIO0_1 GPIO0_45 GPIO0_2
8 GPMC0_BE1n UART3_RXD GPMC0_WAIT0
9 RGMII7_RD0 ~ RGMII7_RD1
10 ~ ~ ~
11 ~ ~ ~
12 MCASP6_ACLKX MCASP0_ACLKR MCASP6_AFSX
13 ~ ~ ~
14 UART0_RXD ~ UART0_TXD
Bootstrap ~ ~ ~

P9.14-P9.16
Pin P9.14 P9.15 P9.16
GPIO 1 93 1 47 1 94
BALL U27 AD25 U24
REG 0x00011C178 0x00011C0C0 0x00011C17C
Page 56 30 56
MODE 0 RGMII5_RD3 PRG0_PRU0_GPO4 RGMII5_RD2
1 UART3_CTSn PRG0_PRU0_GPI4 UART3_RTSn
2 ~ PRG0_RGMII1_RX_CTL ~
3 UART6_RXD PRG0_PWM2_B0 UART6_TXD
4 VOUT1_DATA8 RGMII3_RX_CTL VOUT1_DATA9
5 TRC_DATA6 RMII3_TXD1 TRC_DATA7
6 EHRPWM2_A ~ EHRPWM2_B
7 GPIO0_93 GPIO0_47 GPIO0_94
8 GPMC0_A9 ~ GPMC0_A10
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP11_AXR0 MCASP0_AXR2 MCASP11_AXR1
13 ~ ~ ~
14 ~ ~ ~
Bootstrap ~ ~ ~

P9.17-P9.18

3.6. Connectors 107

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.17 ~ P9.18 ~
GPIO 1 28 1 115 1 40 1 120
BALL AC21 AA3 AH22 Y2
REG 0x00011C074 0x00011C1D0 0x00011C0A4 0x00011C1E4
Page 49 67 53 68
MODE 0 PRG1_PRU1_GPO7 SPI0_D1 PRG1_PRU1_GPO19 SPI1_D1
1 PRG1_PRU1_GPI7 ~ PRG1_PRU1_GPI19 ~
2 PRG1_IEP1_EDC_LATCH_IN1 I2C6_SCL PRG1_IEP1_EDC_SYNC_OUT0 I2C6_SDA
3 ~ ~ PRG1_PWM1_TZ_OUT ~
4 SPI6_CS0 ~ SPI6_D1 ~
5 RMII6_RX_ER ~ RMII6_TXD1 ~
6 MCAN7_TX ~ PRG1_ECAP0_IN_APWM_OUT ~
7 GPIO0_28 GPIO0_115 GPIO0_40 GPIO0_120
8 ~ ~ ~ PRG0_IEP1_EDC_SYNC_OUT0
9 ~ ~ ~ ~
10 VOUT0_DATA7 ~ VOUT0_PCLK ~
11 VPFE0_DATA15 ~ ~ ~
12 MCASP4_AXR1 ~ MCASP5_AXR1 ~
13 ~ ~ ~ ~
14 UART3_TXD ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.19-P9.20
Pin P9.19 ~ P9.20 ~
GPIO 2 1 1 78 2 2 1 77
BALL W5 AF29 W6 AE25
REG 0x00011C208 0x00011C13C 0x00011C20C 0x00011C138
Page 19 38 19 37
MODE 0 MCAN0_RX PRG0_PRU1_GPO15 MCAN0_TX PRG0_PRU1_GPO14
1 ~ PRG0_PRU1_GPI15 ~ PRG0_PRU1_GPI14
2 ~ PRG0_RGMII2_TX_CTL ~ PRG0_RGMII2_TD3
3 ~ PRG0_PWM1_B1 ~ PRG0_PWM1_A1
4 I2C2_SCL RGMII4_TX_CTL I2C2_SDA RGMII4_TD3
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 GPIO1_1 GPIO0_78 GPIO1_2 GPIO0_77
8 ~ ~ ~ ~
9 ~ ~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASP2_AXR1 ~ MCASP2_AXR0
13 ~ ~ ~ ~
14 ~ UART2_RTSn ~ UART2_CTSn
Bootstrap ~ ~ ~ ~

P9.21-P9.22

108 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.21 ~ P9.22 ~
GPIO 1 39 1 90 1 38 1 91
BALL AJ22 U28 AC22 U29
REG 0x00011C0A0 0x00011C16C 0x00011C09C 0x00011C170
Page 52 56 52 54
MODE 0 PRG1_PRU1_GPO18 RGMII5_TD0 PRG1_PRU1_GPO17 RGMII5_TXC
1 PRG1_PRU1_GPI18 RMII7_TXD0 PRG1_PRU1_GPI17 RMII7_TX_EN
2 PRG1_IEP1_EDC_LATCH_IN0 I2C3_SDA PRG1_IEP1_EDC_SYNC_OUT1 I2C6_SCL
3 PRG1_PWM1_TZ_IN ~ PRG1_PWM1_B2 ~
4 SPI6_D0 VOUT1_DATA5 SPI6_CLK VOUT1_DATA6
5 RMII6_TXD0 TRC_DATA3 RMII6_TX_EN TRC_DATA4
6 PRG1_ECAP0_SYNC_IN EHRPWM1_A PRG1_ECAP0_SYNC_OUT EHRPWM1_B
7 GPIO0_39 GPIO0_90 GPIO0_38 GPIO0_91
8 ~ GPMC0_A6 ~ GPMC0_A7
9 VOUT0_VP2_VSYNC ~ VOUT0_VP2_DE ~
10 VOUT0_VSYNC ~ VOUT0_DE ~
11 ~ ~ VPFE0_DATA10 ~
12 MCASP5_AXR0 MCASP11_AFSX MCASP5_AFSX MCASP10_AXR2
13 ~ ~ ~ ~
14 VOUT0_VP0_VSYNC ~ VOUT0_VP0_DE ~
Bootstrap ~ ~ BOOTMODE1 ~

P9.23-P9.25

Pin P9.23 P9.24 ~ P9.25 ~
GPIO 1 10 1 119 1 13 1 127 1 104
BALL AG20 Y5 AJ24 AC4 W26
REG 0x00011C028 0x00011C1E0 0x00011C034 0x00011C200 0x00011C1A4
Page 42 68 43 69 54
MODE 0 PRG1_PRU0_GPO9 SPI1_D0 PRG1_PRU0_GPO12 UART1_CTSn RGMII6_RXC
1 PRG1_PRU0_GPI9 UART5_RTSn PRG1_PRU0_GPI12 MCAN3_RX ~
2 PRG1_UART0_CTSn I2C4_SCL PRG1_RGMII1_TD1 ~ ~
3 PRG1_PWM3_TZ_IN UART2_TXD PRG1_PWM0_A0 ~ AU-

DIO_EXT_REFCLK2
4 SPI6_CS1 ~ RGMII1_TD1 SPI2_D0 VOUT1_DE
5 RMII5_RXD1 ~ ~ EQEP0_S TRC_DATA17
6 ~ ~ MCAN4_RX ~ EHRPWM4_B
7 GPIO0_10 GPIO0_119 GPIO0_13 GPIO0_127 GPIO0_104
8 GPMC0_ADVn_ALE PRG0_IEP1_EDC_LATCH_IN0 ~ ~ GPMC0_A20
9 PRG1_IEP0_EDIO_DATA_IN_OUT28 ~ RGMII7_TD1 ~ VOUT1_VP0_DE
10 VOUT0_DATA23 ~ VOUT0_DATA17 ~ ~
11 ~ ~ VPFE0_DATA1 ~ ~
12 MCASP3_ACLKX ~ MCASP7_AFSX ~ MCASP10_AXR7
13 ~ ~ ~ ~ ~
14 ~ ~ ~ ~ ~
Boot-
strap

~ ~ ~ ~ ~

P9.26-P9.27

3.6. Connectors 109

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.26 ~ P9.27 ~
GPIO 1 118 1 12 1 46 1 124
BALL Y1 AF24 AD26 AB1
REG 0x00011C1DC 0x00011C030 0x00011C0BC 0x00011C1F4
Page 67 43 30 69
MODE 0 SPI1_CLK PRG1_PRU0_GPO11 PRG0_PRU0_GPO3 UART0_RTSn
1 UART5_CTSn PRG1_PRU0_GPI11 PRG0_PRU0_GPI3 TIMER_IO7
2 I2C4_SDA PRG1_RGMII1_TD0 PRG0_RGMII1_RD3 SPI0_CS3
3 UART2_RXD PRG1_PWM3_TZ_OUT PRG0_PWM3_A2 MCAN2_TX
4 ~ RGMII1_TD0 RGMII3_RD3 SPI2_CLK
5 ~ ~ RMII3_RX_ER EQEP0_B
6 ~ MCAN4_TX ~ ~
7 GPIO0_118 GPIO0_12 GPIO0_46 GPIO0_124
8 PRG0_IEP0_EDC_SYNC_OUT0 ~ UART3_TXD ~
9 ~ RGMII7_TD0 ~ ~
10 ~ VOUT0_DATA16 ~ ~
11 ~ VPFE0_DATA0 ~ ~
12 ~ MCASP7_ACLKX MCASP0_AFSR ~
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.28-P9.29

Pin P9.28 ~ P9.29 ~
GPIO 2 11 1 43 2 14 1 53
BALL U2 AF28 V5 AB25
REG 0x00011C230 0x00011C0B0 0x00011C23C 0x00011C0D8
Page 18 29 68 31
MODE 0 ECAP0_IN_APWM_OUT PRG0_PRU0_GPO0 TIMER_IO1 PRG0_PRU0_GPO10
1 SYNC0_OUT PRG0_PRU0_GPI0 ECAP2_IN_APWM_OUT PRG0_PRU0_GPI10
2 CPTS0_RFT_CLK PRG0_RGMII1_RD0 OBSCLK0 PRG0_UART0_RTSn
3 ~ PRG0_PWM3_A0 ~ PRG0_PWM2_B1
4 SPI2_CS3 RGMII3_RD0 ~ SPI3_CS2
5 I3C0_SDAPULLEN RMII3_RXD1 ~ PRG0_IEP0_EDIO_DATA_IN_OUT29
6 SPI7_CS0 ~ SPI7_D1 MCAN10_RX
7 GPIO1_11 GPIO0_43 GPIO1_14 GPIO0_53
8 ~ ~ ~ GPMC0_AD4
9 ~ ~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR0 ~ MCASP0_AFSX
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ BOOTMODE5 ~

P9.30-P9.31

110 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.30 ~ P9.31 ~
GPIO 2 13 1 44 2 12 1 52
BALL V6 AE28 U3 AB26
REG 0x00011C238 0x00011C0B4 0x00011C234 0x00011C0D4
Page 68 29 18 31
MODE 0 TIMER_IO0 PRG0_PRU0_GPO1 EXT_REFCLK1 PRG0_PRU0_GPO9
1 ECAP1_IN_APWM_OUT PRG0_PRU0_GPI1 SYNC1_OUT PRG0_PRU0_GPI9
2 SYSCLKOUT0 PRG0_RGMII1_RD1 ~ PRG0_UART0_CTSn
3 ~ PRG0_PWM3_B0 ~ PRG0_PWM3_TZ_IN
4 ~ RGMII3_RD1 ~ SPI3_CS1
5 ~ RMII3_RXD0 ~ PRG0_IEP0_EDIO_DATA_IN_OUT28
6 SPI7_D0 ~ SPI7_CLK MCAN10_TX
7 GPIO1_13 GPIO0_44 GPIO1_12 GPIO0_52
8 ~ ~ ~ GPMC0_AD3
9 ~ ~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR1 ~ MCASP0_ACLKX
13 ~ ~ ~ ~
14 ~ ~ ~ UART6_TXD
Bootstrap BOOTMODE4 ~ ~ ~

P9.32-P9.35
P9.32 P9.34
VDD_ADC GND

Pin P9.33 ~ P9.35 ~
GPIO ~ 1 50 ~ 1 55
BALL K24 AC28 K29 AH27
REG 0x00011C140 0x00011C0CC 0x00011C148 0x00011C0E0
Page 20 31 20 32
MODE 0 MCU_ADC0_AIN4 PRG0_PRU0_GPO7 MCU_ADC0_AIN6 PRG0_PRU0_GPO12
1 ~ PRG0_PRU0_GPI7 ~ PRG0_PRU0_GPI12
2 ~ PRG0_IEP0_EDC_LATCH_IN1 ~ PRG0_RGMII1_TD1
3 ~ PRG0_PWM3_B1 ~ PRG0_PWM0_A0
4 ~ PRG0_ECAP0_SYNC_IN ~ RGMII3_TD1
5 ~ ~ ~ ~
6 ~ MCAN9_TX ~ ~
7 ~ GPIO0_50 ~ GPIO0_55
8 ~ GPMC0_AD1 ~ ~
9 ~ ~ ~ ~
10 ~ ~ ~ DSS_FSYNC0
11 ~ ~ ~ ~
12 ~ MCASP0_AXR5 ~ MCASP0_AXR8
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.36-P9.37

3.6. Connectors 111

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.36 ~ P9.37 ~
GPIO ~ 1 56 ~ 1 57
BALL K27 AH29 K28 AG28
REG 0x00011C144 0x00011C0E4 0x00011C138 0x00011C0E8
Page 20 32 20 32
MODE 0 MCU_ADC0_AIN5 PRG0_PRU0_GPO13 MCU_ADC0_AIN2 PRG0_PRU0_GPO14
1 ~ PRG0_PRU0_GPI13 ~ PRG0_PRU0_GPI14
2 ~ PRG0_RGMII1_TD2 ~ PRG0_RGMII1_TD3
3 ~ PRG0_PWM0_B0 ~ PRG0_PWM0_A1
4 ~ RGMII3_TD2 ~ RGMII3_TD3
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 ~ GPIO0_56 ~ GPIO0_57
8 ~ ~ ~ UART4_RXD
9 ~ ~ ~ ~
10 ~ DSS_FSYNC2 ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR9 ~ MCASP0_AXR10
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.38-P9.39

Pin P9.38 ~ P9.39 ~
GPIO ~ 1 58 ~ 1 54
BALL L28 AG27 K25 AJ28
REG 0x00011C13C 0x00011C0EC 0x00011C130 0x00011C0DC
Page ~ 33 20 32
MODE 0 MCU_ADC0_AIN3 PRG0_PRU0_GPO15 MCU_ADC0_AIN0 PRG0_PRU0_GPO11
1 ~ PRG0_PRU0_GPI15 ~ PRG0_PRU0_GPI11
2 ~ PRG0_RGMII1_TX_CTL ~ PRG0_RGMII1_TD0
3 ~ PRG0_PWM0_B1 ~ PRG0_PWM3_TZ_OUT
4 ~ RGMII3_TX_CTL ~ RGMII3_TD0
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 ~ GPIO0_58 ~ GPIO0_54
8 ~ UART4_TXD ~ ~
9 ~ ~ ~ CLKOUT
10 ~ DSS_FSYNC3 ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR11 ~ MCASP0_AXR7
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.40-P9.42

112 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Pin P9.40 ~ P9.41 P9.42 ~
GPIO ~ 1 81 2 0 1 123 1 18
BALL K26 AA26 AD5 AC2 AJ21
REG 0x00011C134 0x00011C148 0x00011C204 0x00011C1F0 0x00011C04C
Page 20 38 69 68 45
MODE 0 MCU_ADC0_AIN1 PRG0_PRU1_GPO18 UART1_RTSn UART0_CTSn PRG1_PRU0_GPO17
1 ~ PRG0_PRU1_GPI18 MCAN3_TX TIMER_IO6 PRG1_PRU0_GPI17
2 ~ PRG0_IEP1_EDC_LATCH_IN0 ~ SPI0_CS2 PRG1_IEP0_EDC_SYNC_OUT1
3 ~ PRG0_PWM1_TZ_IN ~ MCAN2_RX PRG1_PWM0_B2
4 ~ SPI3_D0 SPI2_D1 SPI2_CS0 ~
5 ~ ~ EQEP0_I EQEP0_A RMII5_TXD1
6 ~ MCAN12_TX ~ ~ MCAN5_TX
7 ~ GPIO0_81 GPIO1_0 GPIO0_123 GPIO0_18
8 ~ GPMC0_AD14 ~ ~ ~
9 ~ ~ ~ ~ ~
10 ~ ~ ~ ~ ~
11 ~ ~ ~ ~ VPFE0_DATA6
12 ~ MCASP2_AFSX ~ ~ MCASP3_AXR3
13 ~ ~ ~ ~ ~
14 ~ UART2_RXD ~ ~ ~
Bootstrap ~ ~ ~ ~ ~

P9.43-P9.46
P9.43 P9.44 P9.45 P9.46
GND GND GND GND

3.7 BeagleBone AI-64 Mechanical

3.7.1 Dimensions and Weight

Size: 102.5 x 80 (4” x 3.15”)

Max height: #TODO#

PCB Layers: #TODO#

PCB thickness: 2mm (0.08”)

RoHS Compliant: Yes

Weight: 192gm

3.7.2 Silkscreen and Component Locations

3.8 Pictures

3.9 Support Information

All support for this design is through BeagleBoard.org community at: link: BeagleBoard.org forum .

3.9.1 Hardware Design

You can find all BeagleBone AI-64 hardware files here under the hw folder.

3.7. BeagleBone AI-64 Mechanical 113

https://forum.beagleboard.org/
https://git.beagleboard.org/beagleboard/beaglebone-ai-64

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.20: Fig: Board Dimensions

Fig. 3.21: Fig: Top silkscreen

114 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.22: Fig: Bottom silkscreen

Fig. 3.23: Fig: BeagleBone AI-64 front

Fig. 3.24: Fig: BeagleBone AI-64 back

3.9. Support Information 115

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.25: Fig: BeagleBone AI-64 back with heatsink

Fig. 3.26: Fig: BeagleBone AI-64 front at 45° angle

Fig. 3.27: Fig: BeagleBone AI-64 back at 45° angle

116 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.28: Fig: BeagleBone AI-64 back with heatsink at 45° angle

Fig. 3.29: Fig: BeagleBone AI-64 ports

3.9. Support Information 117

BeagleBoard Docs, Release 1.0.20230711-wip

3.9.2 Software Updates

Follow instructions below to download the latest image for your BeagleBone AI-64:

1. Go to BeagleBoard.org distro page.

2. Filter Software Distributions for BeagleBone AI-64 from dropdown and download the image.

Fig. 3.30: Filter Software Distributions for BeagleBone AI-64

Tip: You can follow the Update board with latest software guide for more information on flashing the down-
loaded image to your board.

To see what SW revision is loaded into the eMMC check /etc/dogtag. It should look something like as shown
below,

` root@BeagleBone:~# cat /etc/dogtag BeagleBoard.org Debian Bullseye
Xfce Image 2022-01-14 `

3.9.3 RMA Support

If you feel your board is defective or has issues, request an Return Merchandise Application (RMA) by filling
out the form at http://beagleboard.org/support/rma . You will need the serial number and revision of the board.
The serial numbers and revisions keep moving. Different boards can have different locations depending on
when they were made. The following figures show the three locations of the serial and revision number.

3.9.4 Troubleshooting video output issues

Warning: When connecting to an HDMI monitor, make sure your miniDP adapter is active. A passive
adapter will not work. See Fig: Display adapters.

118 Chapter 3. BeagleBone AI-64

https://www.beagleboard.org/distros
http://beagleboard.org/support/rma

BeagleBoard Docs, Release 1.0.20230711-wip

Getting Help

If you need some up to date troubleshooting techniques, you can post your queries on link: BeagleBoard.org
forum

3.10 Update software on BeagleBone AI-64

Production boards currently ship with the factory-installed 2022-01-14-8GB image. To upgrade from the soft-
ware image on your BeagleBone AI-64 to the latest, you don’t need to completely reflash the board. If you do
want to reflash it, visit the flashing instructions on the getting started page. Factory Image update (without
reflashing)…

1 sudo apt update
2 sudo apt install --only-upgrade bb-j721e-evm-firmware generic-sys-mods
3 sudo apt upgrade

3.10.1 Update U-Boot:

to ensure only tiboot3.bin is in boot0, the pre-production image we tried to do more in boot0, but failed…

1 sudo /opt/u-boot/bb-u-boot-beagleboneai64/install-emmc.sh
2 sudo /opt/u-boot/bb-u-boot-beagleboneai64/install-microsd.sh
3 sudo reboot

3.10.2 Update Kernel and SGX modules:

1 sudo apt install bbb.io-kernel-5.10-ti-k3-j721e

3.10.3 Update xfce:

1 sudo apt install bbb.io-xfce4-desktop

3.10.4 Update ti-edge-ai 8.2 examples

1 sudo apt install ti-edgeai-8.2-base ti-vision-apps-8.2 ti-vision-apps-eaik-
↪→firmware-8.2

3.10.5 Cleanup:

1 sudo apt autoremove --purge

3.11 Edge AI

3.11.1 Getting Started

3.10. Update software on BeagleBone AI-64 119

https://forum.beagleboard.org/
https://forum.beagleboard.org/

BeagleBoard Docs, Release 1.0.20230711-wip

Hardware setup

BeagleBone® AI-64 has TI’s TDA4VM SoC which houses dual core A72, high performance vision accelerators,
video codec accelerators, latest C71x and C66x DSP, high bandwidth realtime IPs for capture and display,
GPU, dedicated safety island security accelerators. The SoC is power optimized to provide best in class perfor-
mance for perception, sensor fusion, localization and path planning tasks in robotics, industrial and automotive
applications.

For more details visit https://www.ti.com/product/TDA4VM

BeagleBone® AI-64 BeagleBone® AI-64 brings a complete system for developing artificial intelligence (AI)
and machine learning solutions with the convenience and expandability of the BeagleBone® platform and the
peripherals on board to get started right away learning and building applications. With locally hosted, ready-
to-use, open-source focused tool chains and development environment, a simple web browser, power source
and network connection are all that need to be added to start building performance-optimized embedded
applications. Industry-leading expansion possibilities are enabled through familiar BeagleBone® cape headers,
with hundreds of open-source hardware examples and dozens of readily available embedded expansion options
available off-the-shelf.

To run the demos on BeagleBone® AI-64 you will require,

• BeagleBone® AI-64

• USB camera (Any V4L2 compliant 1MP/2MP camera, Eg. Logitech C270/C920/C922)

• Full HD eDP/HDMI display

• Minimum 16GB high performance SD card

• 100Base-T Ethernet cable connected to internet

• UART cable

• External Power Supply or Power Accessory Requirements

a. Nominal Output Voltage: 5VDC

b. Maximum Output Current: 5000 mA

Connect the components to the SK as shown in the image.

USB Camera UVC (USB video class) compliant USB cameras are supported on the BeagleBone® AI-64. The
driver for the same is enabled in linux image. The linux image has been tested with C270/C920/C922 ver-
sions of Logitech USB cameras. Please refer to the TI Edge AI SDK FAQ to stream from multiple USB cameras
simultaneously.

IMX219 Raw sensor IMX219 camera module from Raspberry pi / Arducam is supported by
BeagleBone® AI-64. It is a 8MP sensor with no ISP, which can transmit raw SRGGB8 frames over
CSI lanes at 1080p 60 fps. This camera module can be ordered from https://www.amazon.com/
Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS The camera can be connected to any of the 2 RPi
zero 22 pin camera headers on BB AI-64 as shown below

Todo: IMX219 CSI sensor connection with BeagleBone® AI-64 for Edge AI

Note that the headers have to be lifted up to connect the cameras

Note: To be updated By default IMX219 is disabled. After connecting the camera you can enable it by
specifying the dtb overlay file in /run/media/mmcblk0p1/uenv.txt as below,

name_overlays=k3-j721e-edgeai-apps.dtbo k3-j721e-sk-rpi-cam-imx219.
dtbo

120 Chapter 3. BeagleBone AI-64

https://www.ti.com/product/TDA4VM
https://software-dl.ti.com/jacinto7/esd/edgeai-sdk-j721e/latest/exports/docs/faq.html
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.31: BeagleBone® AI-64 for Edge AI connections

Reboot the board after editing and saving the file.

Two RPi cameras can be connected to 2 headers for multi camera use-cases

Please refer Camera sources (v4l2) to know how to list all the cameras connected and select which one to use
for the demo.

By default imx219 will be configured to capture at 8 bit, but it also supports 10 bit capture in 16 bit container.
To use it in 10 bit mode, below steps are required:

• Modify the /opt/edge_ai_apps/scripts/setup_cameras.sh to set the for-
mat to 10 bit like below

CSI_CAM_0_FMT='[fmt:SRGGB8_1X10/1920x1080]'
CSI_CAM_1_FMT='[fmt:SRGGB8_1X10/1920x1080]'

• Change the imaging binaries to use 10 bit versions

mv /opt/imaging/imx219/dcc_2a.bin /opt/imaging/imx219/dcc_2a_8b.bin
mv /opt/imaging/imx219/dcc_viss.bin /opt/imaging/imx219/dcc_viss_8b.
↪→bin
mv /opt/imaging/imx219/dcc_2a_10b.bin /opt/imaging/imx219/dcc_2a.bin
mv /opt/imaging/imx219/dcc_viss_10b.bin /opt/imaging/imx219/dcc_viss.
↪→bin

• Set the input format in the /opt/edge_ai_apps/configs/
rpiV2_cam_example.yaml as rggb10

Software setup

Preparing SD card image Download the bullseye-xfce-edgeai-arm64 image from the links be-
low and flash it to SD card using Balena etcher tool.

• To use via SD card: bbai64-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

• To flash on eMMC: bbai64-emmc-flasher-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

3.11. Edge AI 121

https://www.balena.io/etcher/
https://rcn-ee.net/rootfs/bb.org/testing/2022-08-02/bullseye-xfce-edgeai-arm64/bbai64-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz
https://rcn-ee.net/rootfs/bb.org/testing/2022-08-02/bullseye-xfce-edgeai-arm64/bbai64-emmc-flasher-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

BeagleBoard Docs, Release 1.0.20230711-wip

The Balena etcher tool can be installed either on Windows/Linux. Just download the etcher image and follow
the instructions to prepare the SD card.

Fig. 3.32: Balena Etcher tool to flash SD card with Processor linux image Linux for Edge AI

The etcher image is created for 16 GB SD cards, if you are using larger SD card, it is possible to expand the
root filesystem to use the full SD card capacity using below steps

#find the SD card device entry using lsblk (Eg: /dev/sdc)
#use the following commands to expand the filesystem
#Make sure you have write permission to SD card or run the commands as root

#Unmount the BOOT and rootfs partition before using parted tool
umount /dev/sdX1
umount /dev/sdX2

#Use parted tool to resize the rootfs partition to use
#the entire remaining space on the SD card
#You might require sudo permissions to execute these steps
parted -s /dev/sdX resizepart 2 '100%'
e2fsck -f /dev/sdX2
resize2fs /dev/sdX2

#replace /dev/sdX in above commands with SD card device entry

Power ON and Boot Ensure that the power supply is disconnected before inserting the SD card. Once the
SD card is firmly inserted in its slot and the board is powered ON, the board will take less than 20sec to boot
and display a wallpaper as shown in the image below.

Todo: BeagleBone® AI-64 wallpaper upon boot

You can also view the boot log by connecting the UART cable to your PC and use a serial port communications
program.

122 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

For Linux OS minicom works well. Please refer to the below documentation on ‘minicom’ for more details.

https://help.ubuntu.com/community/Minicom

When starting minicom, turn on the colors options like below:

sudo minicom -D /dev/ttyUSB2 -c on

For Windows OS Tera Term works well. Please refer to the below documentation on ‘TeraTerm’ for more
details

https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows

Note: Baud rate should be configured to 115200 bps in serial port communication program. You may not see
any log in the UART console if you connect to it after the booting is complete or login prompt may get lost in
between boot logs, press ENTER to get login prompt

As part of the linux systemd /opt/edge_ai_apps/init_script.sh is executed which does the
below,

• This kills weston compositor which holds the display pipe. This step will make the wallpaper showing on
the display disappear and come back

• The display pipe can now be used by ‘kmssink’ GStreamer element while running the demo applications.

• The script can also be used to setup proxies if connected behind a firewall.

Once Linux boots login as root user with no password.

Connect remotely If you don’t prefer the UART console, you can also access the device with the IP address
that is shown on the display.

With the IP address one can ssh directly to the board, view the contents and run the demos.

For best experience we recommend using VSCode which can be downloaded from here.

https://code.visualstudio.com/download

You also require the “Remote development extension pack” installed in VSCode as mentioned here:

https://code.visualstudio.com/docs/remote/ssh

Todo: Microsoft Visual Studio Code for connecting to BeagleBone® AI-64 for Edge AI via SSH

3.11.2 Running Simple demos

This chapter describes how to run Python and C++ demo applications in edge_ai_apps with live camera and
display.

Note: Please note that the Python demos are useful for quick prototyping while C++ demos are similar by
design but tuned for performance.

Running Python based demo applications

Python based demos are simple executable scripts written for image classification, object detection and se-
mantic segmentation. Demos are configured using a YAML file. Details on configuration file parameters can
be found in Demo Configuration file

3.11. Edge AI 123

https://help.ubuntu.com/community/Minicom
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://code.visualstudio.com/download
https://code.visualstudio.com/docs/remote/ssh
https://git.ti.com/cgit/edgeai/edge_ai_apps

BeagleBoard Docs, Release 1.0.20230711-wip

Sample configuration files for out of the box demos can be found in edge_ai_apps/configs this folder
also contains a template config file which has brief info on each configurable parameter edge_ai_apps/
configs/app_config_template.yaml

Here is how a Python based image classification demo can be run,

1 # go to edge-ai-apps folder
2 debian@beaglebone:~$ cd /opt/edge_ai_apps/apps_python
3

4 # enable root (password: temppwd)
5 debian@beaglebone:~$ sudo su
6 [sudo] password for beaglebone:
7

8 # use edge-ai-apps
9 debian@beaglebone:/opt/edge_ai_apps/apps_cpp# sudo ./app_edgeai.py ../

↪→configs/image_classification.yaml

The demo captures the input frames from connected USB camera and passes through pre-processing, inference
and post-processing before sent to display. Sample output for image classification and object detection demos
are as below,

To exit the demo press Ctrl+C.

Building and running C++ based demo applications

C++ apps needs to be built directly on target and requires header files of different deep-learning runtime
framework and its dependencies which are installed in the setup script. The setup script builds the C++ apps
when executed. However one can also follow below steps to clean build C++ apps

debian@beaglebone:/opt/edge_ai_apps/apps_cpp# rm -rf build bin lib
debian@beaglebone:/opt/edge_ai_apps/apps_cpp# mkdir build
debian@beaglebone:/opt/edge_ai_apps/apps_cpp# cd build
debian@beaglebone:/opt/edge_ai_apps/apps_cpp/build# cmake ..
debian@beaglebone:/opt/edge_ai_apps/apps_cpp/build# make -j2

Run the demo once the application is successfully built

debian@beaglebone:/opt/edge_ai_apps/apps_cpp# ./bin/Release/app_edgeai ../
↪→configs/image_classification.yaml

To exit the demo press Ctrl+C.

Note: Both Python and C++ applications are similar by construction and can accept the same config file and
command line arguments

124 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Note: The C++ apps built on Yocto Linux may not run in Docker as there could be a mismatch in Glib and
other related tools. So its highly recommended to rebuild the C++ apps within the Docker environment.

3.11.3 DL models for Edge Inference

Model Downloader Tool

TI Model Zoo is a large collection of deep learning models validated to work on TI processors for edge AI. It
hosts several pre-compiled model artifacts for TI hardware.

Use the Model Downloader Tool to download more models on target as shown,

debian@beaglebone:/opt/edge_ai_apps# ./download_models.sh

The script will launch an interactive menu showing the list of available, pre-imported models for download. The
downloaded models will be placed under /opt/model_zoo/ directory

Fig. 3.33: Model downloader tool menu option to download models

The script can also be used in a non-interactive way as shown below:

debian@beaglebone:/opt/edge_ai_apps# ./download_models.sh --help

Import Custom Models

The BeagleBone® AI-64 Linux for Edge AI also supports importing pre-trained custom models to run inference
on target.

The SDK makes use of pre-compiled DNN (Deep Neural Network) models and performs inference using various
OSRT (open source runtime) such as TFLite runtime, ONNX runtime and Neo AI-DLR. In order to infer a DNN,
SDK expects the DNN and associated artifacts in the below directory structure.

3.11. Edge AI 125

https://github.com/TexasInstruments/edgeai-modelzoo

BeagleBoard Docs, Release 1.0.20230711-wip

TFL-OD-2010-ssd-mobV2-coco-mlperf-300x300
│
├── param.yaml
│
├── artifacts
│ ├── 264_tidl_io_1.bin
│ ├── 264_tidl_net.bin
│ ├── 264_tidl_net.bin.layer_info.txt
│ ├── 264_tidl_net.bin_netLog.txt
│ ├── 264_tidl_net.bin.svg
│ ├── allowedNode.txt
│ └── runtimes_visualization.svg
│
└── model

└── ssd_mobilenet_v2_300_float.tflite

DNN directory structure Each DNN must have the following 3 components:

1. model: This directory contains the DNN being targeted to infer

2. artifacts: This directory contains the artifacts generated after the compilation of DNN for SDK, and
described in DNN compilation for SDK – Basic Instructions

3. param.yaml: A configuration file in yaml format to provide basic information about DNN, and associated
pre and post processing parameters. More details can be find Param file format

Param file format Each DNN has its own pre-process, inference and post-process parameters to get the
correct output. This information is typically available in the training software that was used to train the model.
In order to convey this information to the SDK in a standardized fashion, we have defined a set of parameters
that describe these operations. These parameters are in the param.yaml file.

Please see sample yaml files for various tasks such as image classification, semantic segmentation and object
detection in edgeai-benchmark examples. Descriptions of various parameters are also in the yaml files. If
users want to bring their own model to the SDK, then they need to prepare this information offline and get to
the SDK. In next section we explain how to prepare this information

DNN compilation for SDK – Basic Instructions The BeagleBone® AI-64 Linux for Edge AI supports three
different runtimes to infer a DNN, and user can choose a run time depending on the format of DNN. We recom-
mend users to use different run times and compare the performance and select the one which provides best
performance. User can find the steps to generate the artifacts directory at Edge AI TIDL Tools

DNN compilation for SDK – Advanced Instructions For beginners who are trying to compile models for
the SDK, we recommend the basic instructions given in the previous section. However, DNNs have lot of variety
and some models may need a different kind of preprocessing or postprocessing operations. In order to help
customers deal with different kinds of models, we have prepared amodel zoo in the repository edgeai-modelzoo

For the DNNs which are part of TI’s model zoo, one can find the compilation settings and pre-compiled model
artifacts in edgeai-benchmark repository. Instructions are also given to compile custom models. When using
edgeai-benchmark for model compilation, the yaml file is automatically generated and artifacts are packaged
in the way SDK understands. Please follow the instructions in the repository to get started.

3.11.4 Demo Configuration file

The demo config file uses YAML format to define input sources, models, outputs and finally the flows which de-
fines how everything is connected. Config files for out-of-box demos are kept in edge_ai_apps/configs
folder. The folder contains config files for all the use cases and also multi-input and multi-inference case. The

126 Chapter 3. BeagleBone AI-64

https://github.com/TexasInstruments/edgeai-benchmark/tree/master/examples/configs/yaml
https://github.com/TexasInstruments/edgeai-tidl-tools/blob/master/examples/osrt_python/README.md#model-compilation-on-pc
https://github.com/TexasInstruments/edgeai-modelzoo
https://github.com/TexasInstruments/edgeai-benchmark
https://github.com/TexasInstruments/edgeai-benchmark

BeagleBoard Docs, Release 1.0.20230711-wip

folder also has a template YAML file app_config_template.yaml which has detailed explanation of
all the parameters supported in the config file.

Config file is divided in 4 sections:

1. Inputs

2. Models

3. Outputs

4. Flows

Inputs

The input section defines a list of supported inputs like camera, filesrc etc. Their properties like shown below.

inputs:
input0: #Camera Input

source: /dev/video2 #Device file entry of the␣
↪→camera

format: jpeg #Input data format␣
↪→supported by camera

width: 1280 #Width and Height of the␣
↪→input

height: 720
framerate: 30 #Framerate of the source

input1: #Video Input
source: ../data/videos/video_0000_h264.mp4 #Video file
format: h264 #File encoding format
width: 1280
height: 720
framerate: 25

input2: #Image Input
source: ../data/images/%04d.jpg #Sequence of Image files,␣

↪→printf style formatting is used
width: 1280
height: 720
index: 0 #Starting Index␣

↪→(optional)
framerate: 1

All supported inputs are listed in template config file. Below are the details of most commonly used inputs.

Camera sources (v4l2) v4l2src GStreamer element is used to capture frames from camera sources which
are exposed as v4l2 devices. In Linux, there are many devices which are implemented as v4l2 devices. Not all
of them will be camera devices. You need to make sure the correct device is configured for running the demo
successfully.

init_script.sh is ran as part of systemd, which detects all cameras connected and prints the detail like
below in the UART console:

debian@beaglebone:/opt/edge_ai_apps# ./init_script.sh
USB Camera detected

device = /dev/video18
format = jpeg

CSI Camera 0 detected
device = /dev/video2
name = imx219 8-0010
format = [fmt:SRGGB8_1X8/1920x1080]

(continues on next page)

3.11. Edge AI 127

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

subdev_id = 2
isp_required = yes

IMX390 Camera 0 detected
device = /dev/video18
name = imx390 10-001a
format = [fmt:SRGGB12_1X12/1936x1100 field: none]
subdev_id = /dev/v4l-subdev7
isp_required = yes
ldc_required = yes

script can also be run manually later to get the camera details.

From the above log we can determine that 1 USB camera is connected (/dev/video18), and 1 CSI camera is
connected (/dev/video2) which is imx219 raw sensor and needs ISP. IMX390 camera needs both ISP and LDC.

Using this method, you can configure correct device for camera capture in the input section of config file.

input0:
source: /dev/video18 #USB Camera
format: jpeg #if connected USB camera supports jpeg
width: 1280
height: 720
framerate: 30

input1:
source: /dev/video2 #CSI Camera
format: auto #let the gstreamer negotiate the format
width: 1280
height: 720
framerate: 30

input2:
source: /dev/video2 #IMX219 raw sensor that needs ISP
format: rggb #ISP will be added in the pipeline
width: 1920
height: 1080
framerate: 30
subdev-id: 2 #needed by ISP to control sensor params via ioctls

input3:
source: /dev/video2 #IMX390 raw sensor that needs ISP
width: 1936
height: 1100
format: rggb12 #ISP will be added in the pipeline
subdev-id: 2 #needed by ISP to control sensor params via ioctls
framerate: 30
sen-id: imx390
ldc: True #LDC will be added in the pipeline

Make sure to configure correct format for camera input. jpeg for USB camera that supports MJPEG (Ex.
C270 logitech USB camera). auto for CSI camera to allow gstreamer to negotiate the format. rggb for
sensor that needs ISP.

Video sources H.264 and H.265 encoded videos can be provided as input sources to the demos. Sample
video files are provided under /opt/edge_ai_apps/data/videos/video_0000_h264.mp4
and /opt/edge_ai_apps/data/videos/video_000_h265.mp4

input1:
source: ../data/videos/video_0000_h264.mp4
format: h264
width: 1280

(continues on next page)

128 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

height: 720
framerate: 25

input2:
source: ../data/videos/video_0000_h265.mp4
format: h265
width: 1280
height: 720
framerate: 25

Make sure to configure correct format for video input as shown above. By default the format is set to auto
which will then use the GStreamer bin decodebin instead.

Image sources JPEG compressed images can be provided as inputs to the demos. A sample set of images
are provided under /opt/edge_ai_apps/data/images. The names of the files are numbered se-
quentially and incrementally and the demo plays the files at the fps specified by the user.

input2:
source: ../data/images/%04d.jpg
width: 1280
height: 720
index: 0
framerate: 1

RTSP sources H.264 encoded video streams either coming from a RTSP compliant IP camera or via RTSP
server running on a remote PC can be provided as inputs to the demo.

input0:
source: rtsp://172.24.145.220:8554/test # rtsp stream url, replace this␣

↪→with correct url
width: 1280
height: 720
framerate: 30

Note: Usually video streams from any IP camera will be encrypted and cannot be played back directly without
a decryption key. We tested RTSP source by setting up an RTSP server on a Ubuntu 18.04 PC by referring to
this writeup, Setting up RTSP server on PC

Models

The model section defines a list of models that are used in the demo. Path to the model directory is a required
argument for each model and rest are optional properties specific to given use cases like shown below.

models:
model0:

model_path: ../models/segmentation/ONR-SS-871-deeplabv3lite-mobv2-
↪→cocoseg21-512x512 #Model Directory

alpha: 0.4 ␣
↪→ #alpha for blending segmentation mask (optional)

model1:
model_path: ../models/detection/TFL-OD-202-ssdLite-mobDet-DSP-coco-

↪→320x320
viz_threshold: 0.3 ␣

↪→ #Visualization threshold for adding bounding boxes␣
↪→(optional)

(continues on next page)

3.11. Edge AI 129

https://gist.github.com/Santiago-vdk/80c378a315722a1b813ae5da1661f890

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

model2:
model_path: ../models/classification/TVM-CL-338-mobileNetV2-qat
topN: 5 ␣

↪→ #Number of top N classes (optional)

Below are some of the use case specific properties:

1. alpha: This determines the weight of the mask for blending the semantic segmentation output with the
input image alpha * mask + (1 - alpha) * image

2. viz_threshold: Score threshold to draw the bounding boxes for detected objects in object detection. This
can be used to control the number of boxes in the output, increase if there are too many and decrease
if there are very few

3. topN: Number of most probable classes to overlay on image classification output

The content of the model directory and its structure is discussed in detail in Import Custom Models

Outputs

The output section defines a list of supported outputs.

outputs:
output0: #Display␣

↪→Output
sink: kmssink
width: 1920 #Width and␣

↪→Height of the output
height: 1080
connector: 39 #Connector␣

↪→ID for kmssink (optional)

output1: #Video Output
sink: ../data/output/videos/output_video.mkv #Output␣

↪→video file
width: 1920
height: 1080

output2: #Image Output
sink: ../data/output/images/output_image_%04d.jpg #Image file␣

↪→name, printf style formatting is used
width: 1920
height: 1080

All supported outputs are listed in template config file. Below are the details of most commonly used outputs

Display Sink (kmssink) When you have only one display connected to the SK, kmssink will try to use it
for displaying the output buffers. In case you have connected multiple display monitors (e.g. Display Port
and HDMI), you can select a specific display for kmssink by passing a specific connector ID number. Following
command finds out the connected displays available to use.

Note: Run this command outside docker container. The first number in each line is the connector-id which we
will use in next step.

debian@beaglebone:/opt/edge_ai_apps# modetest -M tidss -c | grep connected
39 38 connected DP-1 530x300 12 38
48 0 disconnected HDMI-A-1 0x0 0 47

From above output, we can see that connector ID 39 is connected. Configure the connector ID in the output
section of the config file.

130 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Video sinks The post-processed outputs can be encoded in H.264 format and stored on disk. Please specify
the location of the video file in the configuration file.

output1:
sink: ../data/output/videos/output_video.mkv
width: 1920
height: 1080

Image sinks The post-processed outputs can be stored as JPEG compressed images. Please specify the
location of the image files in the configuration file. The images will be named sequentially and incrementally
as shown.

output2:
sink: ../data/output/images/output_image_%04d.jpg
width: 1920
height: 1080

Flows

The flows section defines how inputs, models and outputs are connected. Multiple flows can be defined to
achieve multi input, multi inference like below.

flows:
flow0: #First Flow

input: input0 #Input for the Flow
models: [model1, model2] #List of models to be used
outputs: [output0, output0] #Outputs to be used for each model␣

↪→inference output
mosaic: #Positions to place the inference␣

↪→outputs in the output frame
mosaic0:

width: 800
height: 450
pos_x: 160
pos_y: 90

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 90

flow1: #Second Flow
input: input1
models: [model0, model3]
outputs: [output0, output0]
mosaic:

mosaic0:
width: 800
height: 450
pos_x: 160
pos_y: 540

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 540

Each flow should have exactly 1 input, n models to infer the given input and n outputs to render the output
of each inference. Along with input, models and outputs it is required to define n mosaics which are the
position of the inference output in the final output plane. This is needed because multiple inference outputs
can be rendered to same output (Ex: Display).

3.11. Edge AI 131

BeagleBoard Docs, Release 1.0.20230711-wip

Command line arguments Limited set of command line arguments can be provided, run with ‘-h’ or ‘–help’
option to list the supported parameters.

usage: Run : ./app_edgeai.py -h for help

positional arguments:
config Path to demo config file

ex: ./app_edgeai.py ../configs/app_config.yaml

optional arguments:
-h, --help show this help message and exit
-n, --no-curses Disable curses report

default: Disabled
-v, --verbose Verbose option to print profile info on stdout

default: Disabled

3.11.5 Running Advance demos

The same Python and C++ demo applications can be used to run multiple inference models and also work with
multiple inputs with just simple changes in the config file.

From a repo of input sources, output sources and models one can define advance dataflows which connect
them in various configurations. Details on configuration file parameters can be found in Demo Configuration
file

Single input multi inference demo

Here is an example of a single-input, multi-inference demo which takes a camera input and run multiple net-
works on each of them.

debian@beaglebone:/opt/edge_ai_apps/apps_python# ./app_edgeai.py ../configs/
↪→single_input_multi_infer.yaml

Sample output for single input, multi inference demo is as shown below,

Fig. 3.34: Sample output showing single input, mutli-inference output

132 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

We can specify the output window location and sizes as shown in the configuration file,

flows:
flow0:

input: input0
models: [model0, model1, model2, model3]
outputs: [output0, output0, output0, output0]
mosaic:

mosaic0:
width: 800
height: 450
pos_x: 160
pos_y: 90

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 90

mosaic2:
width: 800
height: 450
pos_x: 160
pos_y: 540

mosaic3:
width: 800
height: 450
pos_x: 960
pos_y: 540

Multi input multi inference demo

Here is an example of a multi-input, multi-inference demo which takes a camera input and video input and
runs multiple networks on each of them.

debian@beaglebone:/opt/edge_ai_apps/apps_python# ./app_edgeai.py ../configs/
↪→multi_input_multi_infer.yaml

Sample output for multi input, multi inference demo is as shown below,

We can specify the output window location and sizes as shown in the configuration file,

flows:
flow0:

input: input0
models: [model1, model2]
outputs: [output0, output0]
mosaic:

mosaic0:
width: 800
height: 450
pos_x: 160
pos_y: 90

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 90

flow1:
input: input1
models: [model0, model3]
outputs: [output0, output0]

(continues on next page)

3.11. Edge AI 133

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.35: Sample output showing multi-input, mutli-inference output

(continued from previous page)

mosaic:
mosaic0:

width: 800
height: 450
pos_x: 160
pos_y: 540

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 540

3.11.6 Docker Environment

Docker is a set of “platform as a service” products that uses the OS-level virtualization to deliver software in
packages called containers. Docker container provides a quick start environment to the developer to run the
out of box demos and build applications.

The Docker image is based on Ubuntu 20.04.LTS and contains different open source components like OpenCV,
GStreamer, Python and pip packages which are required to run the demos. The user can choose to install any
additional 3rd party applications and packages as required.

Building Docker image

The docker/Dockerfile in the edge_ai_apps repo describes the recipe for creating the Docker container image.
Feel free to review and update it to include additional packages before building the image.

Note: Building Docker image on target using the provided Dockerfile will take about 15-20minutes to complete
with good internet connection. Building Docker containers on target can be slow and resource constrained. The
Dockerfile provided will build on target without any issues but if you add more packages or build components
from source, running out of memory can be a common problem. As an alternative we highly recommend trying

134 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

QEMU builds for cross-compiling the images for arm64 architecture on a PC and then load the compiled image
on target.

Initiate the Docker image build as shown,

debian@beaglebone:/opt/edge_ai_apps/docker#./docker_build.sh

Running the Docker container

Enter the Docker session as shown,

debian@beaglebone:/opt/edge_ai_apps/docker#./docker_run.sh

This will start a Ubuntu 20.04.LTS image based Docker container and the prompt will change as below,

[docker] debian@beaglebone:/opt/edge_ai_apps#

The Docker container has been created in privilege mode, so that it has root capabilities to all devices on the
target system like Network etc. The container file system also mounts the target file system of /dev, /opt to
access camera, display and other hardware accelerators the SoC has to offer.

Note: It is highly recommended to use the docker_run.sh script to launch the Docker container because this
script will take care of saving any changes made to the filesystem. This will make sure that any modifications
to the Docker filesystem including new package installation, updates to some files and also command history is
saved automatically and is available the next time you launch the container. The container will be committed
only if you exit from the container explicitly. If you restart the board without exiting container, any changes
done from last saved state will be lost.

Note: After building and running the docker container, one needs to run setup_script.sh before
running any of the demo applications. Please refer to Software setup for more details.

Handling proxy settings

If the board running the Docker container is behind a proxy server, the default settings for downloading files
and installing packages via apt-get will not work. If you are running the board from TI network, docker build
and run scripts will automatically detect and configure necessary proxy settings

For other cases, you need to modify the script /usr/bin/setup_proxy.sh to add the custom proxy
settings required for your network.

Additional Docker commands

Note: This section is provided only for additional reference and not required to run out-of-box demos

Commit Docker container

Generally, containers have a short life cycle. If the container has any local changes it is good to save the
changes on top of the existing Docker image. When re-running the Docker image, the local changes can be
restored.

Following commands show how to save the changes made to the last container. Note that this is already done
automatically by docker_run.sh when you exit the container.

3.11. Edge AI 135

BeagleBoard Docs, Release 1.0.20230711-wip

cont_id=`docker ps -q -l`
docker commit $cont_id edge_ai_kit
docker container rm $cont_id

For more information refer: Commit Docker image

Save Docker Image

Docker image can be saved as tar file by using the command below:

docker save --output <pre_built_docker_image.tar>

For more information refer here. Save Docker image

Load Docker image

Load a previously saved Docker image using the command below:

docker load --input <pre_built_docker_image.tar>

For more information refer here. Load Docker image

Remove Docker image

Docker image can be removed by using the command below:

Remove selected image:
docker rmi <image_name/ID>

Remove all image:
docker image prune -a

For more information refer rmi reference and Image prune reference

Remove Docker container

Docker container can be removed by using the command below:

Remove selected container:
docker rm <container_ID>

Remove all container:
docker container prune

For more information refer here. rm reference and Container Prune reference

Relocating Docker Root Location

The default location for Docker files is /var/lib/docker. Any Docker images created will be stored here. This
will be a problem anytime the SD card is updated with a new targetfs. If a secondary storage (SSD or USB based
storage) is available, then it is recommended to relocate the default Docker root location so as to preserve any
existing Docker images. Once the relocation has been done, the Docker content will not be affected by any
future targetfs updates or accidental corruptions of the SD card.

The following steps outline the process for Docker root directory relocation assuming that the current Docker
root is not at the desired location. If the current location is the desired location then exit this procedure.

1. Run ‘Docker info’ command inspect the output. Locate the line with content Docker Root Dir. It will list
the current location.

2. To preserve any existing images, export them to .tar files for importing later into the new location.

3. Inspect the content under /etc/docker to see if there is a file by name daemon.json. If the file is not
present then create /etc/docker/docker.json and add the following content. Update the ‘key:value’ pair

136 Chapter 3. BeagleBone AI-64

https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/rmi/
https://docs.docker.com/engine/reference/commandline/image_prune/
https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/container_prune/

BeagleBoard Docs, Release 1.0.20230711-wip

for the key “graph” to reflect the desired root location. If the file already exists, then make sure that the
line with “graph” exists in the file and points to the desired target location.

{
”graph”: ”/run/media/nvme0n1/docker_root”,
”storage-driver”: ”overlay”,
”live-restore”: true

}

In the configuration above, the key/value pair ‘“graph”: “/run/media/nvme0n1/docker_root”’ defines the
root location ‘/run/media/nvme0n1/docker_root’.

4. Once the daemon.json file has been copied and updated, run the following commands

$ systemctl restart docker
$ docker info

Make sure that the new Docker root appears under Docker Root Dir value.

5. If you exported the existing images in step (2) then import them and they will appear under the new
Docker root.

6. Anytime the SD card is updated with a new targetfs, steps (1), (3), and (4) need to be followed.

Additional references

https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/ps/

3.11.7 Data Flows

The app_edgeai application at a high level can be split into 3 parts,

• Input pipeline - Grabs a frame from camera, video, image or RTSP source

• Output pipeline - Sends the output to display or a file

• Compute pipeline - Performs pre-processing, inference and post-processing

Here are the data flows for each reference demo and the corresponding GStreamer launch strings that
app_edgeai application generates. User can interact with the application via the Demo Configuration file

Image classification

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resizes the
input maintaining the aspect ratio and crops the input to match the resolution required to run the deep learning
network. The “visualization” path is provided to the post-processing module which overlays the detected
classes. Post-processed output is given to HW mosaic plugin which positions and resizes the output window on
an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
↪→675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
↪→017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_0 max-buffers=2 drop=true

(continues on next page)

3.11. Edge AI 137

https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/ps/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.36: GStreamer based data-flow pipeline for image classification demo with USB camera and display

Object Detection

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resizes the
input to match the resolution required to run the deep learning network. The “visualization” path is provided
to the post-processing module which overlays rectangles around detected objects. Post-processed output is
given to HW mosaic plugin which positions and resizes the output window on an empty background before
sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_

(continues on next page)

138 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.37: GStreamer based data-flow pipeline for object detection demo with USB camera and display

Semantic Segmentation

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resize the
input to match the resolution required to run the deep learning network. The “visualization” path is provided to
the post-processing module which blends each segmented pixel to a color map. Post-processed output is given
to HW mosaic plugin which positions and resizes the output window on an empty background before sending
to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-

(continues on next page)

3.11. Edge AI 139

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.38: GStreamer based data-flow pipeline for semantic segmentation demo with USB camera and display

Human Pose Estimation

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resize the
input to match the resolution required to run the deep learning network. The “visualization” path is provided
to the post-processing module which overlays the keypoints and lines to draw the pose. Post-processed output
is given to HW mosaic plugin which positions and resizes the output window on an empty background before
sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video2 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=640, height=640 ! tiovxdlpreproc data-
↪→type=10 target=0 channel-order=0 mean-0=0.000000 mean-1=0.000000 mean-2=0.

(continues on next page)

140 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→000000 scale-0=1.000000 scale-1=1.000000 scale-2=1.000000 tensor-
↪→format=bgr out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true
GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
tiovxmosaic name=mosaic_0 background=/tmp/background_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.39: GStreamer based data-flow pipeline for Human Pose Estimation demo with USB camera and display

Video source

In this demo, a video file is read from a known location and passed to a de-muxer to extract audio and video
streams, the video stream is parsed and raw encoded information is passed to a HW video decoder. Note that
H.264 and H.265 encoded videos are supported, making use of the respective HW decoders. The resulting
output is split into two paths. The “analytics” path resizes the input to match the resolution required to run
the deep learning network. The “visualization” path is provided to the post-processing module which does
the required post process required by the model. Post-processed output is given to HW mosaic plugin which
positions and resizes the output window on an empty background before sending to display.

GStreamer input pipeline:

filesrc location=/opt/edge_ai_apps/data/videos/video_0000_h264.mp4 ! qtdemux␣
↪→! h264parse ! v4l2h264dec ! video/x-raw, format=NV12 ! tiovxmultiscaler␣
↪→name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-

(continues on next page)

3.11. Edge AI 141

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.40: GStreamer based data-flow pipeline with video file input source and display

RTSP source

In this demo, a video file is read from a RTSP source and passed to a de-muxer to extract audio and video
streams, the video stream is parsed and raw encoded information is passed to a video decoder and the resulting
output is split into two paths. The “analytics” path resizes the input to match the resolution required to run
the deep learning network. The “visualization” path is provided to the post-processing module which does
the required post process required by the model. Post-processed output is given to HW mosaic plugin which
positions and resizes the output window on an empty background before sending to display.

GStreamer input pipeline:

rtspsrc location=rtsp://172.24.145.220:8554/test latency=0 buffer-mode=auto !
↪→ rtph264depay ! h264parse ! v4l2h264dec ! video/x-raw, format=NV12 !

(continues on next page)

142 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.41: GStreamer based data-flow pipeline with RTSP based video file source and display

RPiV2 Camera Sensor (IMX219)

In this demo, raw frames in SRGGB8 format are captured form RPiV2 (imx219) camera sensor. VISS (Vision
Imaging Subsystem) is used to process the raw frames and get the output in NV12, VISS also cotrols the sensor
parameters like exposure, gain etc.. via v4l2 ioctls. The NV12 output is split into two paths. The “analytics”
path resizes the input to match the resolution required to run the deep learning network. The “visualization”
path is provided to the post-processing module which does the required post process required by the model.
Post-processed output is given to HWmosaic plugin which positions and resizes the output window on an empty
background before sending to display.

GStreamer input pipeline:

3.11. Edge AI 143

BeagleBoard Docs, Release 1.0.20230711-wip

v4l2src device=/dev/video2 io-mode=5 ! video/x-bayer, width=1920,␣
↪→height=1080, format=rggb ! tiovxisp device=/dev/v4l-subdev2 dcc-isp-file=/
↪→opt/imaging/imx219/dcc_viss.bin dcc-2a-file=/opt/imaging/imx219/dcc_2a.bin␣
↪→format-msb=7 ! video/x-raw, format=NV12 ! tiovxmultiscaler ! video/x-raw,␣
↪→width=1280, height=720 ! tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.42: GStreamer based data-flow pipeline with IMX219 sensor, ISP and display

IMX390 Camera Sensor

In this demo, raw frames in SRGGB12 format are captured from IMX390 camera sensor. VISS (Vision Imaging
Subsystem) is used to process the raw frames and get the output in NV12, VISS also controls the sensor
parameters like exposure, gain etc.. via v4l2 ioctls. This is followed by LDC (Lens Distortion Correction) required
due to the fisheye lens. The NV12 output is split into two paths. The “analytics” path resizes the input to
match the resolution required to run the deep learning network. The “visualization” path is provided to the

144 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

post-processing module which does the required post process required by the model. Post-processed output
is given to HW mosaic plugin which positions and resizes the output window on an empty background before
sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 ! queue leaky=2 ! video/x-bayer, width=1936,␣
↪→height=1100, format=rggb12 ! tiovxisp sink_0::device=/dev/v4l-subdev7␣
↪→sensor-name=IMX390-UB953_D3 dcc-isp-file=/opt/imaging/imx390/dcc_viss.bin␣
↪→sink_0::dcc-2a-file=/opt/imaging/imx390/dcc_2a.bin format-msb=11 ! video/x-
↪→raw, format=NV12 ! tiovxldc dcc-file=/opt/imaging/imx390/dcc_ldc.bin␣
↪→sensor-name=IMX390-UB953_D3 ! video/x-raw, format=NV12, width=1920,␣
↪→height=1080 !tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=3 target=0 channel-order=0 tensor-format=bgr out-pool-size=4 !␣
↪→application/x-tensor-tiovx ! appsink name=pre_0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
tiovxmosaic name=mosaic_0 background=/tmp/background_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 3.43: GStreamer based data-flow pipeline with IMX390 sensor, ISP, LDC and display

Video output

In this demo, a frame is grabbed from an input source and split into two paths. The “analytics” path resizes the
input to match the resolution required to run the deep learning network. The “visualization” path is provided
to the post-processing module which does the required post process required by the model. Post-processed

3.11. Edge AI 145

BeagleBoard Docs, Release 1.0.20230711-wip

output is given to HW mosaic plugin which positions and resizes the output window on an empty background.
Finally the video is encoded using the H.264 HW encoder and written to a video file.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! v4l2h264enc␣
↪→bitrate=10000000 ! h264parse ! matroskamux ! filesink location=/opt/edge_
↪→ai_apps/data/output/videos/output_video.mkv

Fig. 3.44: GStreamer based data-flow pipeline with video file input source and display

Single Input Multi inference

In this demo, a frame is grabbed from an input source and split into multiple paths. Each path is further split
into two sub-paths one for analytics and another for visualization. Each path can run any type of network,
image classification, object detection, semantic segmentation and using any supported run-time.

146 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

For example the below GStreamer pipeline splits the input into 4 paths for running 4 deep learning networks.
First is a semantic segmentation network, followed by object detection network, followed by two image classifi-
cation networks. If we look at the image classification path, the analytics sub-path resizes the input to maintain
the aspect ratio and crops the input to match the resolution required to run the deep learning network. The
visualization sub-path is provided to the post-processing module which overlays the detected classes. Post-
processed output from all the 4 paths is given to HW mosaic plugin which positions and resizes the output
windows on an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 ! tee name=tee_
↪→split0
tee_split0. ! queue ! tiovxmultiscaler name=split_01
tee_split0. ! queue ! tiovxmultiscaler name=split_02
tee_split0. ! queue ! tiovxmultiscaler name=split_03
tee_split0. ! queue ! tiovxmultiscaler name=split_04
split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_0␣
↪→max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→1 max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_1␣
↪→max-buffers=2 drop=true
split_03. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=1 mean-0=128.
↪→000000 mean-1=128.000000 mean-2=128.000000 scale-0=0.007812 scale-1=0.
↪→007812 scale-2=0.007812 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_2 max-buffers=2 drop=true
split_03. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_2␣
↪→max-buffers=2 drop=true
split_04. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
↪→675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
↪→017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_3 max-buffers=2 drop=true
split_04. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_3␣
↪→max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_1 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_1
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_2 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_2

(continues on next page)

3.11. Edge AI 147

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_3 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_3
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=640 sink_
↪→0::height=360
sink_1::startx=960 sink_1::starty=180 sink_1::width=640 sink_
↪→1::height=360
sink_2::startx=320 sink_2::starty=560 sink_2::width=640 sink_
↪→2::height=360
sink_3::startx=960 sink_3::starty=560 sink_3::width=640 sink_
↪→3::height=360
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Multi Input Multi inference

In this demo, a frame is grabbed from multiple input sources and split into multiple paths. The multiple input
sources could be either multiple cameras or a combination of camera, video, image, RTSP source. Each path
is further split into two sub-paths one for analytics and another for visualization. Each path can run any type
of network, image classification, object detection, semantic segmentation and using any supported run-time.

For example the below GStreamer pipeline splits two inputs into 4 paths for running 2 deep learning networks.
First is a object detection network, followed by image classification networks. If we look at the image classifi-
cation path, the analytics sub-path resizes the input to maintain the aspect ratio and crops the input to match
the resolution required to run the deep learning network. The visualization sub-path is provided to the post-
processing module which overlays the detected classes. Post-processed output from all the 4 paths is given to
HW mosaic plugin which positions and resizes the output windows on an empty background before sending to
display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 ! tee name=tee_
↪→split0
tee_split0. ! queue ! tiovxmultiscaler name=split_01
tee_split0. ! queue ! tiovxmultiscaler name=split_02
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_0␣
↪→max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=1 mean-0=128.
↪→000000 mean-1=128.000000 mean-2=128.000000 scale-0=0.007812 scale-1=0.
↪→007812 scale-2=0.007812 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_1 max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_1␣
↪→max-buffers=2 drop=true

filesrc location=/opt/edge_ai_apps/data/videos/video_0000_h264.mp4 ! qtdemux␣
↪→! h264parse ! v4l2h264dec ! video/x-raw, format=NV12 ! tee name=tee_split1

(continues on next page)

148 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

tee_split1. ! queue ! tiovxmultiscaler name=split_11
tee_split1. ! queue ! tiovxmultiscaler name=split_12
split_11. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→2 max-buffers=2 drop=true
split_11. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_2␣
↪→max-buffers=2 drop=true
split_12. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
↪→675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
↪→017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_3 max-buffers=2 drop=true
split_12. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_3␣
↪→max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_1 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_1
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_2 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_2
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_3 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_3
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=640 sink_
↪→0::height=360
sink_1::startx=960 sink_1::starty=180 sink_1::width=640 sink_
↪→1::height=360
sink_2::startx=320 sink_2::starty=560 sink_2::width=640 sink_
↪→2::height=360
sink_3::startx=960 sink_3::starty=560 sink_3::width=640 sink_
↪→3::height=360
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

3.11.8 Performance Visualization Tool

The performance visualization tool can be used to view all the performance statistics recorded when running the
edge AI C++ demo application. This includes the CPU and HWA loading, DDR bandwidth, Junction Temperatures
and FPS obtained. Refer to Available options for details on the performance metrics available to be plotted.

This tool works as follows:

• Logging: When running the application, the performance statistics can be recorded and stored in log
files. This is done automatically when running the C++ application, but the Python application does not
generate logs. However a standalone binary executable is provided that can be run in parallel with the
Python application, which will generate these performance logs.

3.11. Edge AI 149

BeagleBoard Docs, Release 1.0.20230711-wip

• Visualization: There is a Python script which parses these logs and plots graphs, which can be easily
viewed by a visiting a URL in any browser. This script uses Streamlit package to update the graphs in
real-time, as the Edge AI application runs in parallel. However, since Streamlit is not supported in the
SDK out of box, this script needs to run on docker. Please refer to Docker Environment for building and
running a docker container.

3.11.9 Generating Performance Logs

Each log file contains real-time values for some performance metrics, averaged over a 2s window. The temper-
ature sensor values are sampled in real time, every 2s. The performance visualization tool then parses these
log files one by one based on the modification timestamps.

The edge AI C++ demo will automatically generate log files and store them in the directory ../perf_logs,
that is, one level up from where the C++ app is run. For example, if the app is run from edge_ai_apps/
apps_cpp, the logs will be stored in edge_ai_apps/perf_logs.

Similarly, there is a binary executable that can be compiled that does the same logging standalone. The source
for this is available under edge_ai_apps/scripts/perf_stats/. The README.md file has simple
instructions to build and run this standalone logger binary. After building it, use following command to print
the statistics on the terminal as well as save them in log files that can be parsed.

debian@beaglebone:/opt/edge_ai_apps/scripts/perf_stats/build# ../bin/Release/
↪→ti_perfstats -l

3.11.10 Running the Visualization tool

To use this tool, simply start a docker session and then run the command given below. This script expects some
log files to be present in the directory edge_ai_apps/perf_logs after running any C++ demo. One
can also bring up this tool while running the demo but it might affect the performance of the demo itself as it
consumes a bit of ARM cycles during launch but stabilizes over a certain duration.

[docker] debian@beaglebone:/opt/edge_ai_apps# streamlit run scripts/perf_vis.
↪→py --theme.base=”light”

This script also accepts the log directory as a command line argument as follows:

[docker] debian@beaglebone:/opt/edge_ai_apps# streamlit run scripts/perf_vis.
↪→py --theme.base=”light” -- -D <path/to/logs/directory/>

A network URL can be seen in the terminal output. The graphs can be viewed by visiting this URL in any
browser. The plotted graphs will keep updating based on the available log files.

To exit press Ctrl+C in the terminal.

Available options

Average frames per second (FPS) recorded by the application is displayed by default. Using the checkboxes in
the sidebar, one can select which performance metrics to view. There are 14 metrics available to be plotted,
as seen from the above image:

• CPU Load: Total loading for the A72(mpu1_0), R5F(mcu2_0/1), C66x(c6x_1/2) and C71x(c7x_1) DSPs.

• HWA Load: Loading (percentage) for the various available hardware accelerators.

• DDR Bandwidth: Average read, write and total bandwidth recorded in the previous 2s interval.

• Junction Temperatures: The live temperatures recorded at various junctions

• Task Table: A separate graph for each cpu showing the loading due to various tasks running on it.

• Heap Table: A separate graph for each cpu showing the heap memory usage statistics.

150 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 3.45: Performance visualizer dashboard showing CPU and HWA loading, DDR bandwidth, Junction Temper-
atures and the FPS obtained

For the first three metrics, there is a choice to view line graphs with a 30s history or bar graphs with only the
real-time values. The remaining eleven have real-time bar graphs as the only option.

3.11.11 SDK Components

The BeagleBone® AI-64 Linux for Edge AI can be divided into 3 parts, Applications, BeagleBone® AI-64 Linux
and Processor SDK RTOS. Users can get the latest application updates and bug fixes from the public repositories
(GitHub and git.ti.com) which aligns with the SDK releases done quarterly. One can also build every component
from source by following the steps in the TI Edge AI SDK development flow.

Fig. 3.46: BeagleBone® AI-64 Linux for Edge AI components

Edge AI Applications

The edge AI applications are designed for users to quickly evaluate various Deep Learning networks on TDA4
SoC. The user can run standalone examples and Jupyter notebook applications to evaluate inference models

3.11. Edge AI 151

https://software-dl.ti.com/jacinto7/esd/edgeai-sdk-j721e/latest/exports/docs/development_flow.html

BeagleBoard Docs, Release 1.0.20230711-wip

either from TI Edge AI Model Zoo or a custom network. Once a network is finalized for performance and accuracy
it can also be easily integrated in a typical capture-inference-display usecase using example GStreamer based
applications for rapid prototyping and deployment.

edgeai-tidl-tools This application repository provides standalone Python and C/C++ examples to quickly
evaluate inference models using TFLite, ONNX and NeoAI-DLR runtime using file based inputs. It also houses
the Jupyter notebooks similar to TI Edge AI Cloud which can be executed right on the TDA4VM Starter Kit.

For more details on using this application repo please refer to the documentation and source code found here:
https://github.com/TexasInstruments/edgeai-tidl-tools

edgeai-modelzoo This repo provides collection of example Deep Neural Network (DNN) Models for various
computer vision tasks. A few example models are packaged as part of the SDK to run out-of-box demos. More
can be downloaded using a download script made available in the edge_ai_apps repo.

For more details on the pre-imported models and related documentation please visit: https://github.com/
TexasInstruments/edgeai-modelzoo

edge_ai_apps These are plug-and-play Deep Learning applications which support running open source run-
time frameworks such as TFLite, ONNX and NeoAI-DLR with a live camera and display. They help connect
realtime camera, video or RTSP sources to DL inference to live display, bitstream or RTSP sinks.

The latest source code with fixes can be pulled from: https://git.ti.com/cgit/edgeai/edge_ai_apps

edgeai-gst-plugins This repo provides the source of custom GStreamer plugins which helps offload tasks
to TDA4 hardware accelerators and advanced DSPs with the help of edgeai-tiovx-modules. The repo gets
downloaded, built and installed as part of the Software setup step.

Source code and documentation: https://github.com/TexasInstruments/edgeai-gst-plugins

edgeai-tiovx-modules This repo provides OpenVx modules which help access underlying hardware accel-
erators in the TDA4 SoC and serves as a bridge between GStreamer custom elements and underlying OpenVx
custom kernels. The repo gets downloaded, built and installed as part of the Software setup step.

Source code and documentation: https://github.com/TexasInstruments/edgeai-tiovx-modules

Processor SDK RTOS

The BeagleBone® AI-64 Linux for Edge AI gets all the HWA drivers, optimized libraries, OpenVx framework and
more from Processor SDK RTOS

For more information visit Processor SDK RTOS Getting Started Guide.

BeagleBone® AI-64 Linux

The BeagleBone® AI-64 Linux for Edge AI gets all the Linux kernel, filesystem, device-drivers and more from
BeagleBone® AI-64 Linux

For more information visit BeagleBone® AI-64 Linux Software Developer’s Guide.

3.11.12 Datasheet

This chapter describes the performance measurements of the Edge AI Inference demos.

Performance data of the demos can be auto generated by running following command on target:

152 Chapter 3. BeagleBone AI-64

https://github.com/TexasInstruments/edgeai-modelzoo
https://dev.ti.com/edgeai/
https://github.com/TexasInstruments/edgeai-tidl-tools
https://github.com/TexasInstruments/edgeai-modelzoo
https://github.com/TexasInstruments/edgeai-modelzoo
https://git.ti.com/cgit/edgeai/edge_ai_apps
https://github.com/TexasInstruments/edgeai-gst-plugins
https://github.com/TexasInstruments/edgeai-tiovx-modules
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_overview.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_02_00_03/exports/docs/devices/J7/linux/index.html

BeagleBoard Docs, Release 1.0.20230711-wip

debian@beaglebone:/opt/edge_ai_apps/tests# ./gen_data_sheet.sh

The performance measurements includes the following

1. FPS : Effective framerate at which the application runs

2. Total time : Average time taken to process each frame, which includes pre-processing, inference and
post-processing time

3. Inference time : Average time taken to infer each frame

4. CPU loading : Loading on different CPU cores present

5. DDR BW : DDR read and write BW used

6. HWA Loading : Loading on different Hardware accelerators present

Following are the latest performance numbers of the C++ demos:

Source : USB Camera

Capture Framerate : 30 fps Resolution : 720p format : JPEG

Fig. 3.47: GStreamer based data-flow pipeline with USB camera input and display output

3.11. Edge AI 153

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.80 33.22 3.02 21.60 1596 619 2215 9.0 20.0 9.0 6.0 1.0 22.17 0 0 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.69 33.19 1.04 15.93 1425 563 1988 5.0 22.0 9.0 6.0 1.0 21.90 0 0 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.69 33.25 5.00 10.24 1534 570 2104 15.0 29.0 9.0 6.0 1.0 22.67 0 0 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.58 33.21 2.02 22.80 1522 617 2139 6.0 20.0 9.0 6.0 1.0 21.84 0 0 0 0 0 0

Source : Video

Video Framerate : 30 fps Resolution : 720p Encoding : h264

Fig. 3.48: GStreamer based data-flow pipeline with video file input source and display output

154 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.52 33.46 3.03 14.28 990 403 1393 2.0 7.0 4.0 1.0 1.0 10.27 0 0 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.77 33.47 1.07 30.76 746 97 843 2.0 2.0 1.0 1.0 1.0 15.76 0 0 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.56 33.54 5.06 22.58 736 92 828 2.0 2.0 1.0 1.0 1.0 16.9 0 0 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.64 33.47 2.01 33.33 712 110 822 1.0 1.0 0.0 1.0 1.0 15.3 0 0 0 0 0 0

Source : CSI Camera (ov5640)

Capture Framerate : 30 fps Resolution : 720p format : YUYV

Fig. 3.49: GStreamer based data-flow pipeline for with CSI camera (OV5640) input and display output

3.11. Edge AI 155

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

29.57 34.09 3.02 12.21 1671 699 2370 8.0 45.0 9.0 6.0 1.0 21.35 0 0 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

29.41 34.15 1.01 10.27 1502 645 2147 5.0 47.0 9.0 6.0 1.0 20.96 0 0 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

29.36 34.65 5.00 10.5 1610 655 2265 14.0 53.0 9.0 6.0 1.0 21.47 0 0 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

29.38 34.17 2.01 11.66 1596 698 2294 6.0 45.0 9.0 5.0 1.0 21.10 0 0 0 0 0 0

Source : CSI Camera with VISS (imx219)

Capture Framerate : 30 fps Resolution : 1080p format : SRGGB8

Fig. 3.50: GStreamer based data-flow pipeline with IMX219 sensor, ISP and display

156 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.64 33.19 3.01 15.72 1781 853 2634 9.0 16.0 9.0 13.0 1.0 31.78 0 22.37 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.59 33.14 1.04 12.78 1612 798 2410 5.0 18.0 9.0 13.0 1.0 31.65 0 22.31 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.56 33.07 5.00 13.30 1730 809 2539 15.0 25.0 9.0 13.0 1.0 32.6 0 22.19 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.48 33.14 2.01 12.91 1708 852 2560 7.0 16.0 9.0 13.0 1.0 31.83 0 22.26 0 0 0 0

Source : IMX390 over FPD-Link

Capture Framerate : 30 fps Resolution : 1080p format : SRGGB12

Fig. 3.51: GStreamer based data-flow pipeline with IMX390 sensor, ISP, LDC and display

3.11. Edge AI 157

BeagleBoard Docs, Release 1.0.20230711-wip

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.59 33.15 3.09 25.18 2207 1102 3309 10.0 16.0 9.0 14.0 1.0 31.73 0 22.94 0 10.8 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.53 33.15 1.21 16.20 2019 1040 3059 5.0 18.0 9.0 15.0 1.0 32.80 0 23.34 0 10.10 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.43 33.13 5.02 23.7 2201 1067 3268 15.0 25.0 9.0 14.0 1.0 32.80 0 22.88 0 9.95 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.44 33.16 2.12 21.50 2111 1100 3211 7.0 16.0 9.0 15.0 1.0 32.28 0 22.88 0 10.6 0 0

3.11.13 Test Report

Here is the summary of the sanity tests we ran with both Python and C++ demos. Test cases vary with different
inputs, outputs, runtime, models, python/c++ apps.

1. Inputs:

• Camera (Logitech C270, 1280x720, JPEG)

• Camera (Omnivision OV5640, 1280x720, YUV)

• Camera (Rpi v2 Sony IMX219, 1920x1080, RAW)

• Image files (30 images under edge_ai_apps/data/images)

• Video file (10s video 1 file under edge_ai_apps/data/videos)

• RSTP Video Server

2. Outputs:

• Display (eDP or HDMI)

• File write to SD card

3. Inference Type:

• Image classification

• Object detection

• Semantic segmentation

4. Runtime/models:

• DLR

• TFLite

• ONNX

158 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

5. Applications:

• Python

• C++

6. Platform:

• Host OS

• Docker

Demo Apps test report

Single Input Single Output
Category # test case Pass Fail
Host OS - Python 99 99 0
Host OS - C++ 99 99 0

S.No Models Input Output Host OS-C++ Host OS-Python Docker-C++ Docker-Python Comments
1 TVM-CL-3410-gluoncv-mxnet-mobv2 Image Display Pass Pass Pass Pass
2 TVM-CL-3410-gluoncv-mxnet-mobv2 Image Video-Filewrite Fail Fail Fail Fail
3 TVM-CL-3410-gluoncv-mxnet-mobv2 Image Image-Filewrite Pass Pass Pass Pass
4 TVM-CL-3410-gluoncv-mxnet-mobv2 Video Display Pass Pass Pass Pass
5 TVM-CL-3410-gluoncv-mxnet-mobv2 Video Video-Filewrite Pass Pass Pass Pass
6 TVM-CL-3410-gluoncv-mxnet-mobv2 USB Camera Display Pass Pass Pass Pass
7 TVM-CL-3410-gluoncv-mxnet-mobv2 USB Camera Video-Filewrite Pass Pass Pass Pass
8 TVM-CL-3410-gluoncv-mxnet-mobv2 CSI Camera Display Pass Pass Pass Pass
9 TVM-CL-3410-gluoncv-mxnet-mobv2 CSI Camera Video-Filewrite Pass Pass Pass Pass
10 TVM-CL-3410-gluoncv-mxnet-mobv2 RPI Camera Display Pass Pass Pass Pass
11 TVM-CL-3410-gluoncv-mxnet-mobv2 RPI Camera Video-Filewrite Pass Pass Pass Pass
12 TVM-CL-3410-gluoncv-mxnet-mobv2 RTSP - Video Display Pass Pass Pass Pass
13 TVM-CL-3410-gluoncv-mxnet-mobv2 RTSP - Video Video-Filewrite Pass Pass Pass Pass
14 TFL-CL-0000-mobileNetV1-mlperf Image Display Pass Pass Pass Pass
15 TFL-CL-0000-mobileNetV1-mlperf Image Video-Filewrite Fail Fail Fail Fail
16 TFL-CL-0000-mobileNetV1-mlperf Image Image-Filewrite Pass Pass Pass Pass
17 TFL-CL-0000-mobileNetV1-mlperf Video Display Pass Pass Pass Pass
18 TFL-CL-0000-mobileNetV1-mlperf Video Video-Filewrite Pass Pass Pass Pass
19 TFL-CL-0000-mobileNetV1-mlperf USB Camera Display Pass Pass Pass Pass
20 TFL-CL-0000-mobileNetV1-mlperf USB Camera Video-Filewrite Pass Pass Pass Pass
21 TFL-CL-0000-mobileNetV1-mlperf CSI Camera Display Pass Pass Pass Pass
22 TFL-CL-0000-mobileNetV1-mlperf CSI Camera Video-Filewrite Pass Pass Pass Pass
23 TFL-CL-0000-mobileNetV1-mlperf RPI Camera Display Pass Pass Pass Pass
24 TFL-CL-0000-mobileNetV1-mlperf RPI Camera Video-Filewrite Pass Pass Pass Pass
25 TFL-CL-0000-mobileNetV1-mlperf RTSP - Video Display Pass Pass Pass Pass
26 TFL-CL-0000-mobileNetV1-mlperf RTSP - Video Video-Filewrite Pass Pass Pass Pass
27 ONR-CL-6360-regNetx-200mf Image Display Pass Pass Pass Pass
28 ONR-CL-6360-regNetx-200mf Image Video-Filewrite Fail Fail Fail Fail
29 ONR-CL-6360-regNetx-200mf Image Image-Filewrite Pass Pass Pass Pass
30 ONR-CL-6360-regNetx-200mf Video Display Pass Pass Pass Pass
31 ONR-CL-6360-regNetx-200mf Video Video-Filewrite Pass Pass Pass Pass
32 ONR-CL-6360-regNetx-200mf USB Camera Display Pass Pass Pass Pass
33 ONR-CL-6360-regNetx-200mf USB Camera Video-Filewrite Pass Pass Pass Pass
34 ONR-CL-6360-regNetx-200mf CSI Camera Display Pass Pass Pass Pass
35 ONR-CL-6360-regNetx-200mf CSI Camera Video-Filewrite Pass Pass Pass Pass
36 ONR-CL-6360-regNetx-200mf RPI Camera Display Pass Pass Pass Pass
37 ONR-CL-6360-regNetx-200mf RPI Camera Video-Filewrite Pass Pass Pass Pass

continues on next page

3.11. Edge AI 159

BeagleBoard Docs, Release 1.0.20230711-wip

Table 3.4 – continued from previous page
S.No Models Input Output Host OS-C++ Host OS-Python Docker-C++ Docker-Python Comments
38 ONR-CL-6360-regNetx-200mf RTSP - Video Display Pass Pass Pass Pass
39 ONR-CL-6360-regNetx-200mf RTSP - Video Video-Filewrite Pass Pass Pass Pass
40 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Image Display Pass Pass Pass Pass
41 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Image Video-Filewrite Fail Fail Fail Fail
42 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Image Image-Filewrite Pass Pass Pass Pass
43 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Video Display Pass Pass Pass Pass
44 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Video Video-Filewrite Pass Pass Pass Pass
45 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 USB Camera Display Pass Pass Pass Pass
46 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 USB Camera Video-Filewrite Pass Pass Pass Pass
47 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 CSI Camera Display Pass Pass Pass Pass
48 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 CSI Camera Video-Filewrite Pass Pass Pass Pass
49 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RPI Camera Display Pass Pass Pass Pass
50 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RPI Camera Video-Filewrite Pass Pass Pass Pass
51 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RTSP - Video Display Pass Pass Pass Pass
52 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RTSP - Video Video-Filewrite Pass Pass Pass Pass
53 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Display Pass Pass Pass Pass
54 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Video-Filewrite Fail Fail Fail Fail
55 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Image-Filewrite Pass Pass Pass Pass
56 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Video Display Pass Pass Pass Pass
57 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Video Video-Filewrite Pass Pass Pass Pass
58 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 USB Camera Display Pass Pass Pass Pass
59 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 USB Camera Video-Filewrite Pass Pass Pass Pass
60 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 CSI Camera Display Pass Pass Pass Pass
61 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 CSI Camera Video-Filewrite Pass Pass Pass Pass
62 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RPI Camera Display Pass Pass Pass Pass
63 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RPI Camera Video-Filewrite Pass Pass Pass Pass
64 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RTSP - Video Display Pass Pass Pass Pass
65 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RTSP - Video Video-Filewrite Pass Pass Pass Pass
66 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Image Display Pass Pass Pass Pass
67 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Image Video-Filewrite Fail Fail Fail Fail
68 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Image Image-Filewrite Pass Pass Pass Pass
69 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Video Display Pass Pass Pass Pass
70 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Video Video-Filewrite Pass Pass Pass Pass
71 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 USB Camera Display Pass Pass Pass Pass
72 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
73 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 CSI Camera Display Pass Pass Pass Pass
74 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
75 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RPI Camera Display Pass Pass Pass Pass
76 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
77 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RTSP - Video Display Pass Pass Pass Pass
78 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass
79 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Display Pass Pass Pass Pass
80 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Video-Filewrite Fail Fail Fail Fail
81 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Image-Filewrite Pass Pass Pass Pass
82 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Video Display Pass Pass Pass Pass
83 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Video Video-Filewrite Pass Pass Pass Pass
84 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 USB Camera Display Pass Pass Pass Pass
85 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
86 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 CSI Camera Display Pass Pass Pass Pass
87 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
88 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RPI Camera Display Pass Pass Pass Pass
89 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
90 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RTSP - Video Display Pass Pass Pass Pass

continues on next page

160 Chapter 3. BeagleBone AI-64

BeagleBoard Docs, Release 1.0.20230711-wip

Table 3.4 – continued from previous page
S.No Models Input Output Host OS-C++ Host OS-Python Docker-C++ Docker-Python Comments
91 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass
92 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Display Pass Pass Pass Pass
93 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Video-Filewrite Fail Fail Fail Fail
94 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Image-Filewrite Pass Pass Pass Pass
95 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Video Display Pass Pass Pass Pass
96 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Video Video-Filewrite Pass Pass Pass Pass
97 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 USB Camera Display Pass Pass Pass Pass
98 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
99 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 CSI Camera Display Pass Pass Pass Pass
100 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
101 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RPI Camera Display Pass Pass Pass Pass
102 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
103 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RTSP - Video Display Pass Pass Pass Pass
104 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass
105 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Display Pass Pass Pass Pass
106 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Video-Filewrite Fail Fail Fail Fail
107 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Image-Filewrite Pass Pass Pass Pass
108 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Video Display Pass Pass Pass Pass
109 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Video Video-Filewrite Pass Pass Pass Pass
110 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 USB Camera Display Pass Pass Pass Pass
111 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
112 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 CSI Camera Display Pass Pass Pass Pass
113 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
114 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RPI Camera Display Pass Pass Pass Pass
115 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
116 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RTSP - Video Display Pass Pass Pass Pass
117 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass

Single Input Multi Output
Category # test case Pass Fail
Host OS - Python 15 15 0
docker - Python 15 15 0
Host OS - C++ 15 15 0
Docker - C++ 15 15 0

3.11. Edge AI 161

BeagleBoard Docs, Release 1.0.20230711-wip

S.No Models Input Out-
put

Host OS-
C++

Host OS-
Python

Docker-
C++

Docker-
Python

Com-
ments

1 2 Models (TFL-CL, ONR-SS) %04d.jpg Dis-
play

Pass Pass Pass Pass

2 3-Models (TVM-CL, TFL-OD,
ONR-SS)

%04d.jpg Dis-
play

Pass Pass Pass Pass

3 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

%04d.jpg Dis-
play

Pass Pass Pass Pass

4 2 Models (TFL-CL, ONR-SS) video_0000.mp4Dis-
play

Pass Pass Pass Pass

5 3-Models (TVM-CL, TFL-OD,
ONR-SS)

video_0000.mp4Dis-
play

Pass Pass Pass Pass

6 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

video_0000.mp4Dis-
play

Pass Pass Pass Pass

7 2 Models (TFL-CL, ONR-SS) USB_camera Dis-
play

Pass Pass Pass Pass

8 3-Models (TVM-CL, TFL-OD,
ONR-SS)

USB_camera Dis-
play

Pass Pass Pass Pass

9 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

USB_camera Dis-
play

Pass Pass Pass Pass

10 2 Models (TFL-CL, ONR-SS) CSI_camera Dis-
play

Pass Pass Pass Pass

11 3-Models (TVM-CL, TFL-OD,
ONR-SS)

CSI_camera Dis-
play

Pass Pass Pass Pass

12 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

CSI_camera Dis-
play

Pass Pass Pass Pass

13 2 Models (TFL-CL, ONR-SS) rtsp Dis-
play

Pass Pass Pass Pass

14 3-Models (TVM-CL, TFL-OD,
ONR-SS)

rtsp Dis-
play

Pass Pass Pass Pass

15 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

rtsp Dis-
play

Pass Pass Pass Pass

Multi Input Multi Output
Category # test case Pass Fail
Host OS - Python 8 8 0
docker - Python 8 8 0
Host OS - C++ 8 8 0
Docker - C++ 8 8 0

S.No Models Input Output Host
OS-
C++

Host OS-
Python

Docker-
C++

Docker-
Python

Com-
ments

1 2 Models (TVM-CL, TFL-
OD)

%04d.jpg,video_0000.mp4 Display Pass Pass Pass Pass

2 2 Models (TVM-OD, ONR-
SS)

%04d.jpg,rtsp Video-
Filewrite

Pass Pass Pass Pass

3 2 Models (ONR-CL, TVM-
SS)

%04d.jpg,USB_camera Display Pass Pass Pass Pass

4 3-Models (TVM-CL, TFL-
OD, ONR-SS)

%04d.jpg,CSI_camera,rtsp Video-
Filewrite

Pass Pass Pass Pass

5 3-Models (TVM-CL, TFL-
OD, ONR-SS)

video_0000.mp4,rtsp,%04d.jpgDisplay Pass Pass Pass Pass

6 3-Models (TFL-CL, ONR-
CL, TVM-SS)

video_0000.mp4,USB_camera,CSI_cameraVideo-
Filewrite

Pass Pass Pass Pass

7 4-Models (TVM-CL, TFL-
SS, ONR-OD, TFL-CL)

USB_camera,CSI_camera Display Pass Pass Pass Pass

8 4-Models (TVM-SS, TFL-
SS, ONR-SS, ONR-OD)

USB_camera,video_0000.mp4Video-
Filewrite

Pass Pass Pass Pass

Note:

• Video file from RTSP server used for RTSP input test

• Please refer to the TI Edge AI SDK release notes and known issues for more details

162 Chapter 3. BeagleBone AI-64

https://software-dl.ti.com/jacinto7/esd/edgeai-sdk-j721e/latest/exports/docs/release_notes.html

Chapter 4

BeagleBone AI

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

All derivative works are to be attributed to Jason Kridner of BeagleBoard.org.

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

4.1 Introduction

Built on the proven BeagleBoard.org® open source Linux approach, BeagleBone® AI fills the gap between
small SBCs and more powerful industrial computers. Based on the Texas Instruments AM5729, developers
have access to the powerful SoC with the ease of BeagleBone® Black header and mechanical compatibility.
BeagleBone® AI makes it easy to explore how artificial intelligence (AI) can be used in everyday life via TI C66x
digital-signal-processor (DSP) cores and embedded-vision-engine (EVE) cores supported through an optimized
TIDL machine learning OpenCL API with pre-installed tools. Focused on everyday automation in industrial,
commercial and home applications.

163

http://creativecommons.org/licenses/by-sa/4.0/
https://beagleboard.org/about/jkridner

BeagleBoard Docs, Release 1.0.20230711-wip

4.2 Change History

4.2.1 Rev A0

Initial prototype revision. Not taken to production. eMMC flash image provided by Embest.

4.2.2 Rev A1

Second round prototype.

• Fixed size of mounting holes.

• Added LED for WiFi status.

• Added microHDMI.

• Changed eMMC voltage from 3.3V to 1.8V to support HS200.

• Changed eMMC from 4GB to 16GB.

• Changed serial debug header from 6-pin 100mil pitch to 3-pin 1.5mm pitch.

• Switched expansion header from UART4 to UART5. The UART4 pins were used for the microHDMI.

eMMC flash image provided by Embest.

4.2.3 Rev A1a

Alpha pilot-run units and initial production.

• Added pull-down resistor on serial debug header RX line.

164 Chapter 4. BeagleBone AI

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/24

BeagleBoard Docs, Release 1.0.20230711-wip

Alpha pilot-run eMMC flash image: https://debian.beagleboard.org/images/bbai-pilot-20190408.img.xz

Production eMMC flash image: http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.
9-lxqt-armhf-2019-08-03-4gb.img.xz

4.2.4 Rev A2

Proposed changes.

• HW: need pull-down on console uart RX line.

• HW: position of microSD may impact existing case designs.

• HW: P9.13 does not have a GPIO.

• HW: HDMI hotplug detection not working.

• HW: add extra DCAN.

• HW: wire mods required to enable JTAG.

• HW: Small I2C nvmem/eeprom for board identifier.

4.3 Connecting Up Your BeagleBone AI

4.3.1 What’s In the Box

BeagleBone® AI comes in the box with the heat sink and antenna already attached. Developers can get up
and running in five minutes with no microSD card needed. BeagleBone® AI comes preloaded with a Linux
distribution. In the box you will find:

• BeagleBone® AI

• Quick Start Guide

TODO: Add links to the design materials for both

4.3. Connecting Up Your BeagleBone AI 165

https://debian.beagleboard.org/images/bbai-pilot-20190408.img.xz
http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.9-lxqt-armhf-2019-08-03-4gb.img.xz
http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.9-lxqt-armhf-2019-08-03-4gb.img.xz
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/24
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/25
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/22
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/19
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/20
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/21
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/23

BeagleBoard Docs, Release 1.0.20230711-wip

4.3.2 What’s Not in the Box

You will need to purchase:

• USB C cable or USB C to USB A cable

• MicroSD Card (optional)

• Serial cable (optional)

More information or to purchase a replacement heat sink or antenna, please go to these websites:

• Antenna

• Heat Sink

4.3.3 Fans

The pre-attached heat sink has M3 holes spaced 20x20 mm. The height of the heat sink clears the USB type A
socket, and all other components on the board except the 46-way header sockets and the Ethernet socket.

If you run all of the accelerators or have an older software image, you’ll likely need fan. To find a fan, visit the
link to fans in the FAQ.

Caution: BeagleBone AI can run HOT! Even without running the accelerators, getting up to 70C is not
uncommon.

Official BeagleBone Fan Cape: https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/
50AH3704

TODO: create short-links for any long URLs so that text works.

4.3.4 Main Connection Scenarios

This section will describe how to connect the board for use. The board can be configured in several different
ways. Below we will walk through the most common scenarios. NOTE: These connection scenarios are depen-
dent on the software image presently on your BeagleBone® AI. When all else fails, follow the instructions at
https://beagleboard.org/upgrade

• Tethered to a PC via USB C cable

• Standalone Desktop with powered USB hub, display, keyboard and mouse

• Wireless Connection to BeagleBone® AI

4.3.5 Tethered to a PC

The most common way to program BeagleBone® AI is via a USB connection to a PC. If your computer has a USB
C type port, BeagleBone® AI will both communicate and receive power directly from the PC. If your computer
does not support USB C type, you can utilize a powered USB C hub to power and connect to BeagleBone® AI
which in turn will connect to your PC. You can also use a powered USB C hub to power and connect peripheral
devices such as a USB camera. After booting, the board is accessed either as a USB storage device or via the
browser on the PC. You will need Chrome or Firefox on the PC.

NOTE:Start with this image “am57xx-eMMC-flasher-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz” loaded
on your BeagleBone® AI.

1. Locate the USB Type-C connector on BeagleBone® AI

166 Chapter 4. BeagleBone AI

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable
https://bit.ly/2kmXAzF
https://bit.ly/2klxxJa
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#fans
https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/50AH3704
https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/50AH3704
https://beagleboard.org/upgrade

BeagleBoard Docs, Release 1.0.20230711-wip

2. Connect a USB type-C cable to BeagleBone® AI USB type-C port.

3. Connect the other end of the USB cable to the PC USB 3 port.

4.3. Connecting Up Your BeagleBone AI 167

BeagleBoard Docs, Release 1.0.20230711-wip

4. BeagleBone® AI will boot.

5. You will notice some of the 5 user LEDs flashing

6. Look for a new mass storage drive to appear on the PC.

7. Open the drive and open START.HTM with your web browser.

168 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

8. Follow the instructions in the browser window.

4.3. Connecting Up Your BeagleBone AI 169

BeagleBoard Docs, Release 1.0.20230711-wip

9. Go to Cloud9 IDE.

10. Open the directories in the left navigation of Cloud9.

170 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

4.3.6 Standalone w/Display and Keyboard/Mouse

Note: This configuration requires loading the latest debian 9 image from https://elinux.org/Beagleboard:
Latest-images-testing

4.3. Connecting Up Your BeagleBone AI 171

https://elinux.org/Beagleboard:Latest-images-testing
https://elinux.org/Beagleboard:Latest-images-testing

BeagleBoard Docs, Release 1.0.20230711-wip

Load “am57xx-eMMC-flasher-debian-9.13-lxqt-tidl-armhf-2020-08-25-6gb.img.xz” image on the BeagleBone®
AI

Presently, the “Cloud 9” application is broken in debian 10 only for this configuration. We re working on a better
solution.

1. Connect a combo keyboard and mouse to BeagleBone® AI’s USB host port.

2. Connect a microHDMI-to-HDMI cable to BeagleBone® AI’s microHDMI port.

3. Connect the microHDMI-to-HDMI cable to an HDMI monitor.

4. Plug a 5V 3A USB type-C power supply into BeagleBone® AI’s USB type-C port.

5. BeagleBone® AI will boot. No need to enter any passwords.

6. Depending on which software image is loaded, either a Desktop or a login shell will appear on themonitor.

7. Follow the instructions at https://beagleboard.org/upgrade

4.3.7 Wireless Connection

NOTE:Start with this image “am57xx-eMMC-flasher-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz” loaded
on your BeagleBone® AI.

1. Plug a 5V 3A USB type-C power supply into BeagleBone® AI’s USB type-C port.

2. BeagleBone® AI will boot.

3. Connect your PC’s WiFi to SSID “BeagleBone-XXXX” where XXXX varies for your BeagleBone® AI.

4. Use password “BeagleBone” to complete the WiFi connection.

5. Open http://192.168.8.1 in your web browser.

6. Follow the instructions in the browser window.

4.3.8 Connecting a 3 PIN Serial Debug Cable

A 3 PIN serial debug cable can be helpful to debug when you need to view the boot messages through a terminal
program such as putty on your host PC. This cable is not needed for most BeagleBone® AI boot up scenarios.

Cables: https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#
serial-cable

Locate the 3 PIN debug header on BeagleBone® AI, near the USB C connection.

Press the small white connector into the 3 PIN debug header. The pinout is:

• Pin 1 (the pin closest to the screw-hole in the board. It is also marked with a shape on the silkscreen):
GND

• Pin 2: UART1_RX (i.e. this is a BB-AI input pin)

172 Chapter 4. BeagleBone AI

https://beagleboard.org/upgrade
http://192.168.8.1
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable

BeagleBoard Docs, Release 1.0.20230711-wip

• Pin 3: UART1_TX (i.e. BB-AI transmits out on this pin)

4.4 BeagleBone AI Overview

4.4.1 BeagleBone® AI Features

4.4. BeagleBone AI Overview 173

BeagleBoard Docs, Release 1.0.20230711-wip

Main Processor Features of the AM5729 Within BeagleBone® AI

• Dual 1.5GHz ARM® Cortex®-A15 with out-of-order speculative issue 3-way superscalar execution
pipeline for the fastest execution of existing 32-bit code

• 2 C66x Floating-Point VLIW DSP supported by OpenCL

• 4 Embedded Vision Engines (EVEs) supported by TIDL machine learning library

• 2x Dual-Core Programmable Real-Time Unit (PRU) subsystems (4 PRUs total) for ultra low-latency control
and software generated peripherals

• 2x Dual ARM® Cortex®-M4 co-processors for real-time control

• IVA-HD subsystem with support for 4K @ 15fps H.264 encode/decode and other codecs @ 1080p60

• Vivante® GC320 2D graphics accelerator

• Dual-Core PowerVR® SGX544™ 3D GPU

Communications

• BeagleBone Black header and mechanical compatibility

• 16-bit LCD interfaces

• 4+ UARTs

• 2 I2C ports

• 2 SPI ports

• Lots of PRU I/O pins

Memory

• 1GB DDR3L

• 16GB on-board eMMC flash

Connectors

• USB Type-C connector for power and SuperSpeed dual-role controller

• Gigabit Ethernet

• 802.11ac 2.4/5GHz WiFi via the AzureWave AW-CM256SM

Out of Box Software

• Zero-download out of box software environment

174 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

4.4.2 Board Component Locations

4.5 BeagleBone AI High Level Specification

This section provides the high level specification of BeagleBone® AI

4.5.1 Block Diagram

The figure below is the high level block diagram of BeagleBone® AI. For detailed layout information please
check the schematics.

4.5. BeagleBone AI High Level Specification 175

BeagleBoard Docs, Release 1.0.20230711-wip

4.5.2 AM572x Sitara™ Processor

The Texas Instruments AM572x Sitara™ processor family of SOC devices brings high processing performance
through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine
programmable video processing with a highly integrated peripheral set ideal for AI applications. The AM5729
used on BeagleBone® AI is the super-set device of the family.

Programmability is provided by dual-core ARM®Cortex®-A15 RISC CPUs with Arm®Neon™ extension, and two
TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with 4x EVEs). The Arm allows developers
to keep control functions separate from other algorithms programmed on the DSPs and coprocessors, thus
reducing the complexity of the system software.

Texas Instruments AM572x Sitara™ Processor Family Block Diagram*

176 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

MPU Subsystem The Dual Cortex-A15 MPU subsystem integrates the following submodules:

• ARM Cortex-A15 MPCore

– Two central processing units (CPUs)

– ARM Version 7 ISA: Standard ARM instruction set plus Thumb®-2, Jazelle® RCT Java™ accelerator,
hardware virtualization support, and large physical address extensions (LPAE)

– Neon™ SIMD coprocessor and VFPv4 per CPU

– Interrupt controller with up to 160 interrupt requests

– One general-purpose timer and one watchdog timer per CPU – Debug and trace features

– 32-KiB instruction and 32-KiB data level 1 (L1) cache per CPU

• Shared 2-MiB level 2 (L2) cache

4.5. BeagleBone AI High Level Specification 177

BeagleBoard Docs, Release 1.0.20230711-wip

• 48-KiB bootable ROM

• Local power, reset, and clock management (PRCM) module

• Emulation features

• Digital phase-locked loop (DPLL)

DSP Subsystems There are two DSP subsystems in the device. Each DSP subsystem contains the following
submodules:

• TMS320C66x™ Floating-Point VLIW DSP core for audio processing, and general-purpose imaging and
video processing. It extends the performance of existing C64x+™ and C647x™ DSPs through enhance-
ments and new features.

– 32-KiB L1D and 32-KiB L1P cache or addressable SRAM

– 288-KiB L2 cache

• 256-KiB configurable as cache or SRAM

• 32-KiB SRAM

• Enhanced direct memory access (EDMA) engine for video and audio data transfer

• Memory management units (MMU) for address management.

• Interrupt controller (INTC)

• Emulation capabilities

• Supported by OpenCL

EVE Subsystems

• 4 Embedded Vision Engines (EVEs) supported by TIDL machine learning library

178 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

The Embedded Vision Engine (EVE) module is a programmable imaging and vision processing engine. Software
support for the EVE module is available through OpenCL Custom Device model with fixed set of functions. More
information is available http://www.ti.com/lit/wp/spry251/spry251.pdf

PRU-ICSS Subsystems

• 2x Dual-Core Programmable Real-Time Unit (PRU) subsystems (4 PRUs total) for ultra low-latency control
and software generated peripherals. Access to these powerful subsystems is available through through
the P8 and P9 headers. These are detailed in Section 7.

IPU Subsystems There are two Dual Cortex-M4 IPU subsystems in the device available for general purpose
usage, particularly real-time control. Each IPU subsystem includes the following components:

• Two Cortex-M4 CPUs

• ARMv7E-M and Thumb-2 instruction set architectures

• Hardware division and single-cycle multiplication acceleration

• Dedicated INTC with up to 63 physical interrupt events with 16-level priority

• Two-level memory subsystem hierarchy

– L1 (32-KiB shared cache memory)

– L2 ROM + RAM

• 64-KiB RAM

• 16-KiB bootable ROM

• MMU for address translation

• Integrated power management

• Emulation feature embedded in the Cortex-M4

IVA-HD Subsystem

• IVA-HD subsystem with support for 4K @ 15fps H.264 encode/decode and other codecs @ 1080p60 The
IVA-HD subsystem is a set of video encoder and decoder hardware accelerators. The list of supported
codecs can be found in the software development kit (SDK) documentation.

BB2D Graphics Accelerator Subsystem The Vivante® GC320 2D graphics accelerator is the 2D BitBlt
(BB2D) graphics accelerator subsystem on the device with the following features:

• API support:

– OpenWF™, DirectFB

– GDI/DirectDraw

• BB2D architecture:

– BitBlt and StretchBlt

– DirectFB hardware acceleration

– ROP2, ROP3, ROP4 full alpha blending and transparency

– Clipping rectangle support

– Alpha blending includes Java 2 Porter-Duff compositing rules

– 90-, 180-, 270-degree rotation on every primitive

– YUV-to-RGB color space conversion

– Programmable display format conversion with 14 source and 7 destination formats

– High-quality, 9-tap, 32-phase filter for image and video scaling at 1080p

– Monochrome expansion for text rendering

– 32K × 32K coordinate system

4.5. BeagleBone AI High Level Specification 179

http://www.ti.com/lit/wp/spry251/spry251.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Dual-Core PowerVR® SGX544™ 3D GPU The 3D graphics processing unit (GPU) subsystem is based on
POWERVR® SGX544 subsystem from Imagination Technologies. It supports general embedded applications.
The GPU can process different data types simultaneously, such as: pixel data, vertex data, video data, and
general-purpose data. The GPU subsystem has the following features:

• Multicore GPU architecture: two SGX544 cores.

• Shared system level cache of 128 KiB

• Tile-based deferred rendering architecture

• Second-generation universal scalable shader engines (USSE2), multithreaded engines incorporating pixel
and vertex shader functionality

• Present and texture load accelerators

– Enables to move, rotate, twiddle, and scale texture surfaces.

– Supports RGB, ARGB, YUV422, and YUV420 surface formats.

– Supports bilinear upscale.

– Supports source colorkey.

• Fine-grained task switching, load balancing, and power management

• Programmable high-quality image antialiasing

• Bilinear, trilinear, anisotropic texture filtering

• Advanced geometry DMA driven operation for minimum CPU interaction

• Fully virtualized memory addressing for OS operation in a unified memory architecture (MMU)

4.5.3 Memory

1GB DDR3L

Dual 256M x 16 DDR3L memory devices are used, one on each side of the board, for a total of 1 GB. They will
each operate at a clock frequency of up to 533 MHz yielding an effective rate of 1066Mb/s on the DDR3L bus
allowing for 4GB/s of DDR3L memory bandwidth.

16GB Embedded MMC

A single 16GB embedded MMC (eMMC) device is on the board.

microSD Connector

The board is equipped with a single microSD connector to act as a secondary boot source for the board and, if
selected as such, can be the primary booth source. The connector will support larger capacity microSD cards.
The microSD card is not provided with the board.

4.5.4 Boot Modes

Todo: Need info on BBAI boot mode settings

180 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

4.5.5 Power Management

Todo: Need info on BBAI power management

4.5.6 Connectivity

Todo: Add WiFi/Bluetooth/Ethernet

BeagleBone® AI supports the majority of the functions of the AM5729 SOC through connectors or expansion
header pin accessibility. See section 7 for more information on expansion header pinouts. There are a few
functions that are not accessible which are: (TBD)

Todo: This text needs to go somewhere.

Table 4.1: On-board I2C Devices
Address Identifier Description
0x12 U3 TPS6590379 PMIC DVS
0x41 U78 STMPE811Q ADC and GPIO expander
0x47 U13 HD3SS3220 USB Type-C DRP port controller
0x50 U9 24LC32 board ID EEPROM
0x58 U3 TPS6590379 PMIC power registers
0x5a U3 TPS6590379 PMIC interfaces and auxiliaries
0x5c U3 TPS6590379 PMIC trimming and test
0x5e U3 TPS6590379 PMIC OTP

4.6 Detailed Hardware Design

This section provides a detailed description of the Hardware design. This can be useful for interfacing, writing
drivers, or using it to help modify specifics of your own design.

The figure below is the high level block diagram of BeagleBone® AI. For those who may be concerned, this is
the same figure found in section 5. It is placed here again for convenience so it is closer to the topics to follow.

4.6. Detailed Hardware Design 181

BeagleBoard Docs, Release 1.0.20230711-wip

4.6.1 Power Section

Figure ? is the high level block diagram of the power section of the board.

(Block Diagram for Power)

TPS6590379 PMIC

The Texas Instruments TPS6590379ZWSR device is an integrated power-management IC (PMIC) specifically
designed to work well ARM Cortex A15 Processors, such as the AM5729 used on BeagleBone® AI. The datasheet
is located here https://www.ti.com/lit/ds/symlink/tps659037.pdf

The device provides seven configurable step-down converters with up to 6 A of output current for memory,
processor core, input-output (I/O), or preregulation of LDOs. One of these configurable step-down converters
can be combined with another 3-A regulator to allow up to 9 A of output current. All of the step-down converters
can synchronize to an external clock source between 1.7 MHz and 2.7 MHz, or an internal fallback clock at 2.2
MHz.

The TPS659037 device contains seven LDO regulators for external use. These LDO regulators can be supplied
from either a system supply or a preregulated supply. The power-up and power-down controller is configurable
and supports any power-up and power-down sequences (OTP based). The TPS659037 device includes a 32-
kHz RC oscillator to sequence all resources during power up and power down. In cases where a fast start up is
needed, a 16-MHz crystal oscillator is also included to quickly generate a stable 32-kHz for the system. All LDOs
and SMPS converters can be controlled by the SPI or I2C interface, or by power request signals. In addition,
voltage scaling registers allow transitioning the SMPS to different voltages by SPI, I2C, or roof and floor control.

One dedicated pin in each package can be configured as part of the power-up sequence to control external
resources. General-purpose input-output (GPIO) functionality is available and two GPIOs can be configured
as part of the power-up sequence to control external resources. Power request signals enable power mode

182 Chapter 4. BeagleBone AI

https://www.ti.com/lit/ds/symlink/tps659037.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

control for power optimization. The device includes a general-purpose sigma-delta analog-to-digital converter
(GPADC) with three external input channels.

USB-C Power

Below image shows how the USB-C power input is connected to the TPS6590379.

Power Button

4.6. Detailed Hardware Design 183

BeagleBoard Docs, Release 1.0.20230711-wip

4.6.2 eMMC Flash Memory (16GB)

eMMC Device

eMMC Circuit Design

Board ID

A board identifier is placed on the eMMC in the second linear boot partition (/dev/mmcblk1boot1). Reserved
bytes up to 32k (0x8000) are filled with “FF”.

Table 4.2: Board ID
Name Size (bytes) Contents
Header 4 MSB 0xEE3355AA LSB (stored LSB first)
Board Name 8 Name for board in ASCII “BBONE-AI” =

BeagleBone AI
Version 4 Hardware version code for board in ASCII

“00A1” = rev. A1
Serial Number 14 Serial number of the board. This is a 14

character string which is:
WWYYEMAInnnnnn
where:

• WW = 2 digit week of the year of
production

• YY = 2 digit year of production

• EM = Embest

• AI = BeagleBone AI

• nnnnnn = incrementing board
number

debian@beaglebone:/var/lib/cloud9$ sudo hexdump -C /dev/mmcblk1boot1
00000000 aa 55 33 ee 42 42 4f 4e 45 2d 41 49 30 30 41 31 |.U3.BBONE-
↪→AI00A1|
00000010 31 39 33 33 45 4d 41 49 30 30 30 38 30 33 ff ff |1933EMAI000803..
↪→|
00000020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................
↪→|
*
00008000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
↪→|
*
00400000

4.6.3 Wireless Communication: 802.11 ac & Bluetooth: AzureWave AW-CM256SM

Datasheet https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/
AW-CM256SM_DS_Rev%2015_CYW.pdf Wireless connectivity is provided on BeagleBone® AI via the Azure-
Wave Technologies AW-CM256SM IEEE 802.11a/b/g/n/ac Wi-Fi with Bluetooth 4.2 Combo Stamp Module.

This highly integrated wireless local area network (WLAN) solution combines Bluetooth 4.2 and provides a
complete 2.4GHz Bluetooth system which is fully compliant to Bluetooth 4.2 and v2.1 that supports EDR of
2Mbps and 3Mbps for data and audio communications. It enables a high performance, cost effective, low
power, compact solution that easily fits onto the SDIO and UART combo stamp module.

Compliant with the IEEE 802.11a/b/g/n/ac standard, AW-CM256SM uses Direct Sequence Spread Spectrum
(DSSS), Orthogonal Frequency Division Multiplexing (OFDM), BPSK, QPSK, CCK and QAM baseband modulation
technologies. Compare to 802.11n technology, 802.11ac provides a big improvement on speed and range.

184 Chapter 4. BeagleBone AI

https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/AW-CM256SM_DS_Rev%2015_CYW.pdf
https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/AW-CM256SM_DS_Rev%2015_CYW.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

The AW-CM256SM module adopts a Cypress solution. The module design is based on the Cypress CYP43455
single chip.

WLAN on the AzureWave AW-CM256SM

High speed wireless connection up to 433.3Mbps transmit/receive PHY rate using 80MHz bandwidth,

• 1 antennas to support 1(Transmit) and 1(Receive) technology and Bluetooth

• WCS (Wireless Coexistence System)

• Low power consumption and high performance

• Enhanced wireless security

• Fully speed operation with Piconet and Scatternet support

• 12mm(L) x 12mm(W) x1.65mm(H) LGA package

• Dual - band 2.4 GHz and 5GHz 802.11 a/b/g/n/ac

• External Crystal

Bluetooth on the AzureWave AW-CM256S

• 1 antennas to support 1(Transmit) and 1(Receive) technology and Bluetooth

• Fully qualified Bluetooth BT4.2

• Enhanced Data Rate(EDR) compliant for both 2Mbps and 3Mbps supported

• High speed UART and PCM for Bluetooth

4.6.4 HDMI

The HDMI interface is aligned with the HDMI TMDS single stream standard v1.4a (720p@60Hz to 1080p@24Hz)
and the HDMI v1.3 (1080p @60Hz): 3 data channels, plus 1 clock channel is supported (differential).

TODO: Verify it isn’t better than this. Doesn’t seem right.

4.6.5 PRU-ICSS

The Texas Instruments AM5729 Sitara™ provides 2 Programmable Real-Time Unit Subsystem and Industrial
Communciation Subsystems. (PRU-ICSS1 and PRU-ICSS2).

Within each PRU-ICSS are dual 32-bit Load / Store RISC CPU cores: Programmable Real-Time Units (PRU0
and PRU1), shared data and instruction memories, internal peripheral modules and an interrupt controller.
Therefore the SoC is providing a total of 4 PRU 32-bit RISC CPU’s:

• PRU-ICSS1 PRU0

• PRU-ICSS1 PRU1

• PRU-ICSS2 PRU0

• PRU-ICSS2 PRU1

The programmable nature of the PRUs, along with their access to pins, events and all SoC resources, provides
flexibility in implementing fast real-time responses, specialized data handling operations, peripheral interfaces
and in off-loading tasks from the other processor cores of the SoC.

4.6. Detailed Hardware Design 185

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS Features

Each of the 2 PRU-ICSS (PRU-ICSS1 and PRU-ICSS2) includes the following main features:

• 2 Independent programmable real-time (PRU) cores (PRU0 and PRU1)

• 21x Enhanced GPIs (EGPIs) and 21x Enhanced GPOs (EGPOs) with asynchronous capture and serial sup-
port per each PRU CPU core

• One Ethernet MII_RT module (PRU-ICSS_MII_RT) with two MII ports and configurable connections to PRUs

• 1 MDIO Port (PRU-ICSS_MII_MDIO)

• One Industrial Ethernet Peripheral (IEP) to manage/generate Industrial Ethernet functions

• 1 x 16550-compatible UART with a dedicated 192 MHz clock to support 12Mbps Profibus

• 1 Industrial Ethernet timer with 7/9 capture and 8 compare events

• 1 Enhanced Capture Module (ECAP)

• 1 Interrupt Controller (PRU-ICSS_INTC)

• A flexible power management support

• Integrated switched central resource with programmable priority

• Parity control supported by all memories

PRU-ICSS Block Diagram

Below is a high level block diagram of one of the PRU-ICSS Subsystems

4.6.6 PRU-ICSS Resources and FAQ’s

Resources

• Great resources for PRU and BeagleBone® has been compiled here https://beagleboard.org/pru

• The PRU Cookbook provides examples and getting started information PRU Cookbook

• Detailed specification is available at http://processors.wiki.ti.com/index.php/PRU-ICSS

186 Chapter 4. BeagleBone AI

https://beagleboard.org/pru
http://processors.wiki.ti.com/index.php/PRU-ICSS

BeagleBoard Docs, Release 1.0.20230711-wip

FAQ

• Q: Is it possible to configure the Ethernet MII to be accessed via a PRU MII?

• A: TBD

PRU-ICSS1 Pin Access

The table below shows which PRU-ICSS1 signals can be accessed on BeagleBone® AI and on which connector
and pins they are accessible from. Some signals are accessible on the same pins. Signal Names reveal which
PRU-ICSS Subsystem is being addressed. pr1 is PRU-ICSS1 and pr2 is PRU-ICSS2

4.6. Detailed Hardware Design 187

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
4.
3:
PR
U-
IC
SS
1
Pi
n
Ac
ce
ss

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
pr
u0
_g
po
0

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
6

NA
pr
1_
pr
u0
_g
po
1

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
3

NA
pr
1_
pr
u0
_g
po
2

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
5

NA
pr
1_
pr
u0
_g
po
3

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
6

P
8_
12

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
4

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
4

P
8_
11

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
5

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
4

P
9_
15

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
6

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
2

NA
pr
1_
pr
u0
_g
po
7

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
3

NA
pr
1_
pr
u0
_g
po
8

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
5

NA
pr
1_
pr
u0
_g
po
9

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
2

NA
pr
1_
pr
u0
_g
po
10

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
6

NA
pr
1_
pr
u0
_g
po
11

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
3

NA
pr
1_
pr
u0
_g
po
12

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
4

NA
pr
1_
pr
u0
_g
po
13

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
1

NA
pr
1_
pr
u0
_g
po
14

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
3

NA
pr
1_
pr
u0
_g
po
15

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
5

NA
pr
1_
pr
u0
_g
po
16

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
1

NA
pr
1_
pr
u0
_g
po
17

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
2

P
9_
26

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
18

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
6

NA
pr
1_
pr
u0
_g
po
19

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
D
2

NA
pr
1_
pr
u0
_g
po
20

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
D
3

NA
pr
1_
pr
u0
_g
pi
0

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
6

NA
pr
1_
pr
u0
_g
pi
1

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
3

NA
pr
1_
pr
u0
_g
pi
2

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
5

NA
pr
1_
pr
u0
_g
pi
3

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
6

P
8_
12

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
4

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
4

P
8_
11

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
5

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
4

P
9_
15

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
6

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
2

NA
pr
1_
pr
u0
_g
pi
7

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
3

NA
pr
1_
pr
u0
_g
pi
8

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
5

NA
pr
1_
pr
u0
_g
pi
9

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
2

NA
pr
1_
pr
u0
_g
pi
10

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
6

NA
pr
1_
pr
u0
_g
pi
11

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
3

NA
pr
1_
pr
u0
_g
pi
12

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
4

NA
pr
1_
pr
u0
_g
pi
13

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
1

NA
co
nt
inu
es
on
ne
xt
pa
ge

188 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

4.
3
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
pr
u0
_g
pi
14

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
3

NA
pr
1_
pr
u0
_g
pi
15

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
5

NA
pr
1_
pr
u0
_g
pi
16

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
1

NA
pr
1_
pr
u0
_g
pi
17

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
2

P
9_
26

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
18

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
6

NA
pr
1_
pr
u0
_g
pi
19

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
D
2

NA
pr
1_
pr
u0
_g
pi
20

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
D
3

NA
pr
1_
pr
u1
_g
po
0

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E
2

NA
pr
1_
pr
u1
_g
po
1

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
2

P
9_
20

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
2

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F
4

P
9_
19

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
3

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
1

P
9_
41

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
4

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E
4

NA
pr
1_
pr
u1
_g
po
5

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F
5

P
8_
18

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
6

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E
6

P
8_
19

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
7

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
3

P
8_
13

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
8

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F
6

NA
pr
1_
pr
u1
_g
po
9

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
5

P
8_
14

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
10

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
2

P
9_
42

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
11

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
3

P
9_
27

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
12

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
4

NA
pr
1_
pr
u1
_g
po
13

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
2

NA
pr
1_
pr
u1
_g
po
14

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
6

P
9_
14

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
15

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
5

P
9_
16

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
16

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
3

P
8_
15

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
17

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
3

P
8_
26

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
18

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
4

P
8_
16

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
19

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
5

NA
pr
1_
pr
u1
_g
po
20

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
4

NA
pr
1_
pr
u1
_g
pi
0

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E
2

NA
pr
1_
pr
u1
_g
pi
1

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
2

P
9_
20

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
2

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F
4

P
9_
19

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
3

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
1

P
9_
41

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
4

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E
4

NA
pr
1_
pr
u1
_g
pi
5

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F
5

P
8_
18

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
6

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E
6

P
8_
19

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
7

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
3

P
8_
13

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
8

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F
6

NA
co
nt
inu
es
on
ne
xt
pa
ge

4.6. Detailed Hardware Design 189

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

4.
3
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
pr
u1
_g
pi
9

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
5

P
8_
14

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
10

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
2

P
9_
42

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
11

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
3

P
9_
27

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
12

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
4

NA
pr
1_
pr
u1
_g
pi
13

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
2

NA
pr
1_
pr
u1
_g
pi
14

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
6

P
9_
14

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
15

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
5

P
9_
16

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
16

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
3

P
8_
15

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
17

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
3

P
8_
26

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
18

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
4

P
8_
16

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
19

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
5

NA
pr
1_
pr
u1
_g
pi
20

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
4

NA
pr
1_
m
ii_
m
t0
_c
lk

M
II0
Tr
an
sm
it
Cl
oc
k

I
U
5

NA
pr
1_
m
ii0
_t
xe
n

M
II0
Tr
an
sm
it
En
ab
le

O
V
3

NA
pr
1_
m
ii0
_t
xd
3

M
II0
Tr
an
sm
it
D
at
a

O
V
5

NA
pr
1_
m
ii0
_t
xd
2

M
II0
Tr
an
sm
it
D
at
a

O
V
4

NA
pr
1_
m
ii0
_t
xd
1

M
II0
Tr
an
sm
it
D
at
a

O
Y
2

NA
pr
1_
m
ii0
_t
xd
0

M
II0
Tr
an
sm
it
D
at
a

O
W
2

NA
pr
1_
m
ii0
_r
xd
v

M
II0
D
at
a
Va
lid

I
V
2

NA
pr
1_
m
ii_
m
r0
_c
lk

M
II0
Re
ce
iv
e
Cl
oc
k

I
Y
1

NA
pr
1_
m
ii0
_r
xd
3

M
II0
Re
ce
iv
e
D
at
a

I
W
9

NA
pr
1_
m
ii0
_r
xd
2

M
II0
Re
ce
iv
e
D
at
a

I
V
9

NA
pr
1_
m
ii0
_c
rs

M
II0
Ca
rr
ie
rS
en
se

I
V
7

NA
pr
1_
m
ii0
_r
xe
r

M
II0
Re
ce
iv
e
Er
ro
r

I
U
7

NA
pr
1_
m
ii0
_r
xd
1

M
II0
Re
ce
iv
e
D
at
a

I
V
6

NA
pr
1_
m
ii0
_r
xd
0

M
II0
Re
ce
iv
e
D
at
a

I
U
6

NA
pr
1_
m
ii0
_c
ol

M
II0
Co
lli
si
on
D
et
ec
t

I
V
1

NA
pr
1_
m
ii0
_r
xl
in
k

M
II0
Re
ce
iv
e
Li
nk

I
U
4

NA
pr
1_
m
ii_
m
t1
_c
lk

M
II1
Tr
an
sm
it
Cl
oc
k

I
C
1

P
9_
41

M
O
D
E
1
1

pr
1_
m
ii1
_t
xe
n

M
II1
Tr
an
sm
it
En
ab
le

O
E
4

NA
pr
1_
m
ii1
_t
xd
3

M
II1
Tr
an
sm
it
D
at
a

O
F
5

P
8_
18

M
O
D
E
1
1

pr
1_
m
ii1
_t
xd
2

M
II1
Tr
an
sm
it
D
at
a

O
E
6

P
8_
19

M
O
D
E
1
1

pr
1_
m
ii1
_t
xd
1

M
II1
Tr
an
sm
it
D
at
a

O
D
5

P
8_
14

M
O
D
E
1
1

pr
1_
m
ii1
_t
xd
0

M
II1
Tr
an
sm
it
D
at
a

O
C
2

P
9_
42

M
O
D
E
1
1

pr
1_
m
ii_
m
r1
_c
lk

M
II1
Re
ce
iv
e
Cl
oc
k

I
C
3

P
9_
27

M
O
D
E
1
1

pr
1_
m
ii1
_r
xd
v

M
II1
D
at
a
Va
lid

I
C
4

NA
pr
1_
m
ii1
_r
xd
3

M
II1
Re
ce
iv
e
D
at
a

I
B
2

NA
co
nt
inu
es
on
ne
xt
pa
ge

190 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

4.
3
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
m
ii1
_r
xd
2

M
II1
Re
ce
iv
e
D
at
a

I
D
6

P
9_
14

M
O
D
E
1
1

pr
1_
m
ii1
_r
xd
1

M
II1
Re
ce
iv
e
D
at
a

I
C
5

P
9_
16

M
O
D
E
1
1

pr
1_
m
ii1
_r
xd
0

M
II1
Re
ce
iv
e
D
at
a

I
A
3

P
8_
15

M
O
D
E
1
1

pr
1_
m
ii1
_r
xe
r

M
II1
Re
ce
iv
e
Er
ro
r

I
B
3

P
8_
26

M
O
D
E
1
1

pr
1_
m
ii1
_r
xl
in
k

M
II1
Re
ce
iv
e
Li
nk

I
B
4

P
8_
16

M
O
D
E
1
1

pr
1_
m
ii1
_c
ol

M
II1
Co
lli
si
on
D
et
ec
t

I
B
5

NA
pr
1_
m
ii1
_c
rs

M
II1
Ca
rr
ie
rS
en
se

I
A
4

NA
pr
1_
m
di
o_
m
dc
lk

M
D
IO
Cl
oc
k

O
D
3

P
8_
13

M
O
D
E
1
1

pr
1_
m
di
o_
da
ta

M
D
IO
D
at
a

IO
F
6

NA
pr
1_
ed
c_
la
tc
h0
_i
n

La
tc
h
In
pu
t0

I
A
G
3
/E
2

NA
pr
1_
ed
c_
la
tc
h1
_i
n

La
tc
h
In
pu
t1

I
A
G
5

NA
pr
1_
ed
c_
sy
nc
0_
ou
t

SY
NC
0
O
ut
pu
t

O
A
F
2
/D

2
P
9_
20

M
O
D
E
1
1

pr
1_
ed
c_
sy
nc
1_
ou
t

SY
NC
1
O
ut
pu
t

O
A
F
6

NA
pr
1_
ed
io
_l
at
ch
_i
n

La
tc
h
In
pu
t

I
A
F
3

NA
pr
1_
ed
io
_s
of

St
ar
tO
fF
ra
m
e

O
A
F
4
/F
4

P
9_
19

M
O
D
E
1
1

pr
1_
ed
io
_d
at
a_
in
0

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
F
1
/E
1

NA
pr
1_
ed
io
_d
at
a_
in
1

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
3
/G

2
NA

pr
1_
ed
io
_d
at
a_
in
2

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
5
/H

7
NA

pr
1_
ed
io
_d
at
a_
in
3

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
1
/G

1
NA

pr
1_
ed
io
_d
at
a_
in
4

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
2
/G

6
P
9_
26

M
O
D
E
1
0

P
8_
34

M
O
D
E
1
2

pr
1_
ed
io
_d
at
a_
in
5

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
6
/F
2

P
8_
36

M
O
D
E
1
2

pr
1_
ed
io
_d
at
a_
in
6

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
D
2
/F
3

NA
pr
1_
ed
io
_d
at
a_
in
7

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
D
3
/D

1
P
8_
15

M
O
D
E
1
2

p
r1
_e
di
o_
da
ta
_o
ut
0

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
F
1
/E
1

NA
p
r1
_e
di
o_
da
ta
_o
ut
1

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
3
/G

2
NA

p
r1
_e
di
o_
da
ta
_o
ut
2

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
5
/H

7
NA

p
r1
_e
di
o_
da
ta
_o
ut
3

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
1
/G

1
NA

p
r1
_e
di
o_
da
ta
_o
ut
4

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
2
/G

6
P
9_
26

M
O
D
E
1
1

P
8_
34

M
O
D
E
1
3

p
r1
_e
di
o_
da
ta
_o
ut
5

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
6
/F
2

P
8_
36

M
O
D
E
1
3

p
r1
_e
di
o_
da
ta
_o
ut
6

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
D
2
/F
3

NA
p
r1
_e
di
o_
da
ta
_o
ut
7

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
D
3
/D

1
P
8_
15

M
O
D
E
1
3

pr
1_
ua
rt
0_
ct
s_
n

UA
RT
Cl
ea
r-T
o-
Se
nd

I
G
1
/F
1
1

P
8_
45

M
O
D
E
1
0

pr
1_
ua
rt
0_
rt
s_
n

UA
RT
Re
ad
y-
To
-S
en
d

O
G
6
/G

1
0

P
8_
34

M
O
D
E
1
1

P
8_
46

M
O
D
E
1
0

pr
1_
ua
rt
0_
rx
d

UA
RT
Re
ce
iv
e
D
at
a

I
F
2
/F
1
0

P
8_
36

M
O
D
E
1
1

P
8_
43

M
O
D
E
1
0

pr
1_
ua
rt
0_
tx
d

UA
RT
Tr
an
sm
it
D
at
a

O
F
3
/G

1
1

P
8_
44

M
O
D
E
1
0

pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

Ca
pt
ur
e
In
pu
t/P
W
M
O
ut
pu
t

IO
D
1
/E
9

P
8_
15

M
O
D
E
1
1

P
8_
41

M
O
D
E
1
0

4.6. Detailed Hardware Design 191

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS2 Pin Access

The table below shows which PRU-ICSS2 signals can be accessed on BeagleBone® AI and on which connector
and pins they are accessible from. Some signals are accessible on the same pins. Signal Names reveal which
PRU-ICSS Subsystem is being addressed. pr1 is PRU-ICSS1 and pr2 is PRU-ICSS2

192 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
4.
4:
PR
U-
IC
SS
2
Pi
n
Ac
ce
ss

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

p
r2
_p
ru
0_
gp
o0

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
G
11
/A
C5

P8
_4
4

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o1

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E9
/A
B4

P8
_4
1

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o2

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F9
/A
D
4

P8
_4
2

M
O
D
E1
3

P8
_2
1

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o3

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F8
/A
C4

P8
_3
9

M
O
D
E1
3

P8
_2
0

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o4

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E7
/A
C7

P8
_4
0

M
O
D
E1
3

P8
_2
5

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o5

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E8
/A
C6

P8
_3
7

M
O
D
E1
3

P8
_2
4

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o6

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
9/
AC
9

P8
_3
8

M
O
D
E1
3

P8
_5

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o7

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
7/
AC
3

P8
_3
6

M
O
D
E1
3

P8
_6

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o8

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
8/
AC
8

P8
_3
4

M
O
D
E1
3

P8
_2
3

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o9

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A5
/A
D
6

P8
_3
5

M
O
D
E1
3

P8
_2
2

M
O
D
E1
3

pr
2_
pr
u0
_g
po
10

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C6
/A
B8

P8
_3
3

M
O
D
E1
3

P8
_3

M
O
D
E1
3

pr
2_
pr
u0
_g
po
11

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C8
/A
B5

P8
_3
1

M
O
D
E1
3

P8
_4

M
O
D
E1
3

pr
2_
pr
u0
_g
po
12

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C7
/B
18

P8
_3
2

M
O
D
E1
3

pr
2_
pr
u0
_g
po
13

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B7
/F
15

P8
_4
5

M
O
D
E1
3

pr
2_
pr
u0
_g
po
14

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B8
/B
19

P9
_1
1

M
O
D
E1
3

P9
_1
1

M
O
D
E1
3

pr
2_
pr
u0
_g
po
15

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A7
/C
17

P8
_1
7

M
O
D
E1
3

P9
_1
3

M
O
D
E1
3

pr
2_
pr
u0
_g
po
16

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A8
/C
15

P8
_2
7

M
O
D
E1
3

pr
2_
pr
u0
_g
po
17

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C9
/A
16

P8
_2
8

M
O
D
E1
3

pr
2_
pr
u0
_g
po
18

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A9
/A
19

P8
_2
9

M
O
D
E1
3

pr
2_
pr
u0
_g
po
19

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B9
/A
18

P8
_3
0

M
O
D
E1
3

pr
2_
pr
u0
_g
po
20

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
10
/F
14

P8
_4
6

M
O
D
E1
3

P8
_8

M
O
D
E1
3

p
r2
_p
ru
0_
gp
i0

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
G
11
/A
C5

P8
_4
4

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i1

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
E9
/A
B4

P8
_4
1

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i2

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
F9
/A
D
4

P8
_4
2

M
O
D
E1
2

P8
_2
1

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i3

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
F8
/A
C4

P8
_3
9

M
O
D
E1
2

P8
_2
0

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i4

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
E7
/A
C7

P8
_4
0

M
O
D
E1
2

P8
_2
5

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i5

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
E8
/A
C6

P8
_3
7

M
O
D
E1
2

P8
_2
4

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i6

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
9/
AC
9

P8
_3
8

M
O
D
E1
2

P8
_5

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i7

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
7/
AC
3

P8
_3
6

M
O
D
E1
2

P8
_6

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i8

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
8/
AC
8

P8
_3
4

M
O
D
E1
2

P8
_2
3

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i9

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A5
/A
D
6

P8
_3
5

M
O
D
E1
2

P8
_2
2

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
10

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C6
/A
B8

P8
_3
3

M
O
D
E1
2

P8
_3

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
11

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C8
/A
B5

P8
_3
1

M
O
D
E1
2

P8
_4

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
12

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C7
/B
18

P8
_3
2

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
13

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
B7
/F
15

P8
_4
5

M
O
D
E1
2

co
nt
inu
es
on
ne
xt
pa
ge

4.6. Detailed Hardware Design 193

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

4.
4
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

pr
2_
pr
u0
_g
pi
14

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
B8
/B
19

P9
_1
1

M
O
D
E1
2

P9
_1
1

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
15

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A7
/C
17

P8
_1
7

M
O
D
E1
2

P9
_1
3

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
16

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A8
/C
15

P8
_2
7

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
17

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C9
/A
16

P8
_2
8

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
18

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A9
/A
19

P8
_2
9

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
19

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
B9
/A
18

P8
_3
0

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
20

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
10
/F
14

P8
_4
6

M
O
D
E1
2

P8
_8

M
O
D
E1
2

p
r2
_p
ru
1_
gp
o0

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V1
/D
17

P8
_3
2

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o1

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U4
/A
A3

NA
p
r2
_p
ru
1_
gp
o2

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U3
/A
B9

NA
p
r2
_p
ru
1_
gp
o3

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V2
/A
B3

NA
p
r2
_p
ru
1_
gp
o4

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
Y1
/A
A4

NA
p
r2
_p
ru
1_
gp
o5

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
W
9/
D
18

P9
_2
5

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o6

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V9
/E
17

P8
_9

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o7

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V7
/C
14

P9
_3
1

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o8

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U7
/G
12

P9
_1
8

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o9

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V6
/F
12

P9
_1
7

M
O
D
E1
3

pr
2_
pr
u1
_g
po
10

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U6
/B
12

P9
_3
1

M
O
D
E1
3

pr
2_
pr
u1
_g
po
11

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U5
/A
11

P9
_2
9

M
O
D
E1
3

pr
2_
pr
u1
_g
po
12

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V5
/B
13

P9
_3
0

M
O
D
E1
3

pr
2_
pr
u1
_g
po
13

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V4
/A
12

P9
_2
6

M
O
D
E1
3

pr
2_
pr
u1
_g
po
14

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V3
/E
14

P9
_4
2

M
O
D
E1
3

pr
2_
pr
u1
_g
po
15

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
Y2
/A
13

P8
_1
0

M
O
D
E1
3

pr
2_
pr
u1
_g
po
16

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
W
2/
G
14

P8
_7

M
O
D
E1
3

pr
2_
pr
u1
_g
po
17

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E1
1

P8
_2
7

M
O
D
E1
3

pr
2_
pr
u1
_g
po
18

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F1
1

P8
_4
5

M
O
D
E1
3

pr
2_
pr
u1
_g
po
19

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
G
10

P8
_4
6

M
O
D
E1
3

pr
2_
pr
u1
_g
po
20

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F1
0

P8
_4
3

M
O
D
E1
3

p
r2
_p
ru
1_
gp
i0

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V1
/D
17

P8
_3
2

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i1

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U4
/A
A3

NA
p
r2
_p
ru
1_
gp
i2

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U3
/A
B9

NA
p
r2
_p
ru
1_
gp
i3

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V2
/A
B3

NA
p
r2
_p
ru
1_
gp
i4

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
Y1
/A
A4

NA
p
r2
_p
ru
1_
gp
i5

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
W
9/
D
18

P9
_2
5

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i6

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V9
/E
17

P8
_9

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i7

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V7
/C
14

P9
_3
1

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i8

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U7
/G
12

P9
_1
8

M
O
D
E1
2

co
nt
inu
es
on
ne
xt
pa
ge

194 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

4.
4
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

p
r2
_p
ru
1_
gp
i9

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V6
/F
12

P9
_1
7

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
10

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U6
/B
12

P9
_3
1

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
11

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U5
/A
11

P9
_2
9

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
12

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V5
/B
13

P9
_3
0

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
13

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V4
/A
12

P9
_2
8

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
14

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V3
/E
14

P9
_4
2

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
15

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
Y2
/A
13

P8
_1
0

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
16

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
W
2/
G
14

P8
_7

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
17

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E1
1

P8
_2
7

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
18

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F1
1

P8
_4
5

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
19

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
G
10

P8
_4
6

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
20

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F1
0

P8
_4
3

M
O
D
E1
2

pr
2_
e
dc
_l
at
ch
0_
in

La
tc
h
In
pu
t0

I
F9

P8
_4
2

M
O
D
E1
0

pr
2_
e
dc
_l
at
ch
1_
in

La
tc
h
In
pu
t1

I
F8

P8
_3
9

M
O
D
E1
0

pr
2_
e
dc
_s
yn
c0
_o
ut

SY
NC
0
O
ut
pu
t

O
E7

P8
_4
0

M
O
D
E1
0

pr
2_
e
dc
_s
yn
c1
_o
ut

SY
NC
1
O
ut
pu
t

O
E8

P8
_3
7

M
O
D
E1
0

pr
2_
e
di
o_
la
tc
h_
in

La
tc
h
In
pu
t

I
D
9

P8
_3
8

M
O
D
E1
0

pr
2_
ed
io
_s
of

St
ar
tO
fF
ra
m
e

O
D
7

P8
_3
6

M
O
D
E1
0

pr
2
_u
ar
t0
_c
ts
_n

UA
RT
C
le
ar
-T
o-
Se
nd

I
D
8

P8
_3
4

M
O
D
E1
0

pr
2
_u
ar
t0
_r
ts
_n

UA
RT
R
ea
dy
-T
o-
Se
nd

O
A5

P8
_3
5

M
O
D
E1
0

p
r2
_u
ar
t0
_r
xd

UA
RT
R
ec
ei
ve
D
at
a

I
C6

P8
_3
3

M
O
D
E1
0

p
r2
_u
ar
t0
_t
xd

UA
RT
Tr
an
sm
it
D
at
a

O
C8

P8
_3
1

M
O
D
E1
0

pr
2
_e
ca
p0
_e
ca
p_
ca
pi
n_
ap
w
m
_o

C
ap
tu
re
In
p
ut
/P
W
M
ou
tp
ut

IO
C7

P8
_3
2

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n0

Et
he
rn
et
D
ig
ita
lI
np
ut

I
B7

P8
_4
5

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n1

Et
he
rn
et
D
ig
ita
lI
np
ut

I
B8

P9
_1
1

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n2

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A7

P8
_1
7

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n3

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A8

P8
_2
7

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n4

Et
he
rn
et
D
ig
ita
lI
np
ut

I
C9

P8
_2
8

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n5

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A9

P8
_2
9

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n6

Et
he
rn
et
D
ig
ita
lI
np
ut

I
B9

P8
_3
0

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n7

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A1
0

P8
_4
6

M
O
D
E1
0

pr
2_
ed
io
_d
at
a_
ou
t0

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
B7

P8
_4
5

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t1

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
B8

P9
_1
1

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t2

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A7

P8
_1
7

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t3

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A8

P8
_2
7

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t4

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
C9

P8
_2
8

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t5

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A9

P8
_2
9

M
O
D
E1
1

co
nt
inu
es
on
ne
xt
pa
ge

4.6. Detailed Hardware Design 195

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

4.
4
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

pr
2_
ed
io
_d
at
a_
ou
t6

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
B9

P8
_3
0

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t7

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A1
0

P8
_4
6

M
O
D
E1
1

pr
2_
m
ii
1_
co
l

M
II1
Co
ll
is
io
n
D
et
ec
t

I
D
18

P9
_2
5

M
O
D
E1
1

pr
2_
m
ii
1_
cr
s

M
II1
C
ar
rie
rS
en
se

I
E1
7

P8
_9

M
O
D
E1
1

pr
2_
m
di
o
_m
dc
lk

M
D
IO
Cl
oc
k

O
C
14
/A
B3

P9
_3
1

M
O
D
E1
1

p
r2
_m
di
o_
da
ta

M
D
IO
D
at
a

IO
D
14
/A
A4

P9
_2
9

M
O
D
E1
1

p
r2
_m
ii
0_
rx
er

M
II0
R
ec
ei
ve
Er
ro
r

I
G
12

P9
_1
8

M
O
D
E1
1

pr
2
_m
ii_
m
t0
_c
lk

M
II0
Tr
an
sm
it
Cl
oc
k

I
F1
2

P9
_1
7

M
O
D
E1
1

p
r2
_m
ii
0_
tx
en

M
II0
Tr
an
sm
it
En
ab
le

O
B1
2

P9
_3
1

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d3

M
II0
Tr
an
sm
it
D
at
a

O
A1
1

P9
_2
9

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d2

M
II0
Tr
an
sm
it
D
at
a

O
B1
3

P9
_3
0

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d1

M
II0
Tr
an
sm
it
D
at
a

O
A1
2

P9
_2
8

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d0

M
II0
Tr
an
sm
it
D
at
a

O
E1
4

P9
_4
2

M
O
D
E1
1

pr
2
_m
ii_
m
r0
_c
lk

M
II0
R
ec
ei
ve
Cl
oc
k

I
A1
3

P8
_1
0

M
O
D
E1
1

p
r2
_m
ii
0_
rx
dv

M
II0
D
at
a
Va
lid

I
G
14

P8
_7

M
O
D
E1
1

p
r2
_m
ii
0_
rx
d3

M
II0
R
ec
ei
ve
D
at
a

I
F1
4

P8
_8

M
O
D
E1
1

p
r2
_m
ii
0_
rx
d2

M
II0
R
ec
ei
ve
D
at
a

I
A1
9

NA
p
r2
_m
ii
0_
rx
d1

M
II0
R
ec
ei
ve
D
at
a

I
A1
8

NA
p
r2
_m
ii
0_
rx
d0

M
II0
R
ec
ei
ve
D
at
a

I
C1
5

NA
pr
2
_m
ii0
_
rx
lin
k

M
II0
R
ec
ei
ve
Li
nk

I
A1
6

NA
pr
2_
m
ii
0_
cr
s

M
II0
C
ar
rie
rS
en
se

I
B1
8

NA
pr
2_
m
ii
0_
co
l

M
II0
Co
ll
is
io
n
D
et
ec
t

I
F1
5

NA
p
r2
_m
ii
1_
rx
er

M
II1
R
ec
ei
ve
Er
ro
r

I
B1
9

P9
_1
1

M
O
D
E1
1

pr
2
_m
ii1
_
rx
lin
k

M
II1
R
ec
ei
ve
Li
nk

I
C1
7

P9
_1
3

M
O
D
E1
1

pr
2
_m
ii_
m
t1
_c
lk

M
II1
Tr
an
sm
it
Cl
oc
k

I
AC
5

NA
p
r2
_m
ii
1_
tx
en

M
II1
Tr
an
sm
it
En
ab
le

O
AB
4

NA
p
r2
_m
ii
1_
tx
d3

M
II1
Tr
an
sm
it
D
at
a

O
AD
4

P8
_2
1

M
O
D
E1
1

p
r2
_m
ii
1_
tx
d2

M
II1
Tr
an
sm
it
D
at
a

O
AC
4

P8
_2
0

M
O
D
E1
1

p
r2
_m
ii
1_
tx
d1

M
II1
Tr
an
sm
it
D
at
a

O
AC
7

P8
_2
5

M
O
D
E1
1

p
r2
_m
ii
1_
tx
d0

M
II1
Tr
an
sm
it
D
at
a

O
AC
6

P8
_2
4

M
O
D
E1
1

pr
2
_m
ii_
m
r1
_c
lk

M
II1
R
ec
ei
ve
Cl
oc
k

I
AC
9

P8
_5

M
O
D
E1
1

p
r2
_m
ii
1_
rx
dv

M
II1
D
at
a
Va
lid

I
AC
3

P8
_6

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d3

M
II1
R
ec
ei
ve
D
at
a

I
AC
8

P8
_2
3

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d2

M
II1
R
ec
ei
ve
D
at
a

I
AD
6

P8
_2
2

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d1

M
II1
R
ec
ei
ve
D
at
a

I
AB
8

P8
_3

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d0

M
II1
R
ec
ei
ve
D
at
a

I
AB
5

P8
_4

M
O
D
E1
1

en
d

en
d

en
d

en
d

en
d

en
d

en
d

en
d

196 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

4.6.7 User LEDs

There are 5 User Programmable LEDs on BeagleBone® AI. These are connected to GPIO pins on the processor.

The table shows the signals used to control the LEDs from the processor. Each LED is user programmable.
However, there is a Default Functions assigned in the device tree for BeagleBone® AI:

LED GPIO SIGNAL DEFAULT FUNCTION
D2 GPIO3_17 Heartbeat When Linux is Running
D3 GPIO5_5 microSD Activity
D4 GPIO3_15 CPU Activity
D5 GPIO3_14 eMMC Activity
D8 GPIO3_7 WiFi/Bluetooth Activity

4.7 Connectors

4.7. Connectors 197

BeagleBoard Docs, Release 1.0.20230711-wip

4.7.1 Expansion Connectors

The expansion interface on the board is comprised of two 46 pin connectors, the P8 and P9 Headers. All signals
on the expansion headers are 3.3V unless otherwise indicated.

Note: Do not connect 5V logic level signals to these pins or the board will be damaged.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Figure ? shows the location of the expansion connectors.

198 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

The location and spacing of the expansion headers are the same as on BeagleBone Black.

Connector P8

The following tables show the pinout of the P8 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT
WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Table 4.5: P8.01-P8.02
P8.01 P8.02
GND GND

Table 4.6: P8.03-P8.05
P8.03 P8.04 P8.05

GPIO 24 25 193
BALL AB8 AB5 AC9
REG 0x179C 0x17A0 0x178C
MODE 0 mmc3_dat6 mmc3_dat7 mmc3_dat2
1 spi4_d0 spi4_cs0 spi3_cs0
2 uart10_ctsn uart10_rtsn uart5_ctsn
3
4 vin2b_de1 vin2b_clk1 vin2b_d3
5
6
7
8
9 vin5a_hsync0 vin5a_vsync0 vin5a_d3
10 ehrpwm3_tripzone_input eCAP3_in_PWM3_out eQEP3_index
11 pr2_mii1_rxd1 pr2_mii1_rxd0 pr2_mii_mr1_clk
12 pr2_pru0_gpi10 pr2_pru0_gpi11 pr2_pru0_gpi6
13 pr2_pru0_gpo10 pr2_pru0_gpo11 pr2_pru0_gpo6
14 gpio1_24 gpio1_25 gpio7_1
15 Driver off Driver off Driver off

4.7. Connectors 199

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.7: P8.06-P8.09
P8.06 P8.07 P8.08 P8.09

GPIO 194 165 166 178
BALL AC3 G14 F14 E17
REG 0x1790 0x16EC 0x16F0 0x1698
MODE0 mmc3_dat3 mcasp1_axr14 mcasp1_axr15 xref_clk1
1 spi3_cs1 mcasp7_aclkx mcasp7_fsx mcasp2_axr9
2 uart5_rtsn mcasp7_aclkr mcasp7_fsr mcasp1_axr5
3 mcasp2_ahclkx
4 vin2b_d2 mcasp6_ahclkx
5
6
7 vin6a_d9 vin6a_d8 vin6a_clk0
8
9 vin5a_d2
10 eQEP3_strobe timer11 timer12 timer14
11 pr2_mii1_rxdv pr2_mii0_rxdv pr2_mii0_rxd3 pr2_mii1_crs
12 pr2_pru0_gpi7 pr2_pru1_gpi16 pr2_pru0_gpi20 pr2_pru1_gpi6
13 pr2_pru0_gpo7 pr2_pru1_gpo16 pr2_pru0_gpo20 pr2_pru1_gpo6
14 gpio7_2 gpio6_5 gpio6_6 gpio6_18
15 Driver off Driver off Driver off Driver off

Table 4.8: P8.10-P8.13
P8.10 P8.11 P8.12 P8.13

GPIO 164 75 74 107
BALL A13 AH4 AG6 D3
REG 0x16E8 0x1510 0x150C 0x1590
MODE 0 mcasp1_axr13 vin1a_d7 vin1a_d6 vin2a_d10
1 mcasp7_axr1
2
3 vout3_d0 vout3_d1 mdio_mclk
4 vout3_d16 vout3_d17 vout2_d13
5
6
7 vin6a_d10
8
9 kbd_col7
10 timer10 eQEP2B_in eQEP2A_in ehrpwm2B
11 pr2_mii_mr0_clk pr1_mdio_mdclk
12 pr2_pru1_gpi15 pr1_pru0_gpi4 pr1_pru0_gpi3 pr1_pru1_gpi7
13 pr2_pru1_gpo15 pr1_pru0_gpo4 pr1_pru0_gpo3 pr1_pru1_gpo7
14 gpio6_4 gpio3_11 gpio3_10 gpio4_11
15 Driver off Driver off Driver off Driver off

Table 4.9: P8.14-P8.16
P8.14 P8.15 P8.16

GPIO 109 99 125
BALL D5 D1 B4
REG 0x1598 0x1570 0x15BC
MODE 0 vin2a_d12 vin2a_d2 vin2a_d21
1
2 vin2b_d2
3 rgmii1_txc rgmii1_rxd2
4 vout2_d11 vout2_d21 vout2_d2
5 emu12 vin3a_fld0
6 vin3a_d13
7
8 mii1_rxclk uart10_rxd mii1_col
9 kbd_col8 kbd_row6
10 eCAP2_in_PWM2_out eCAP1_in_PWM1_out

continues on next page

200 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.9 – continued from previous page
P8.14 P8.15 P8.16

11 pr1_mii1_txd1 pr1_ecap0_ecap_capin_apwm_o pr1_mii1_rxlink
12 pr1_pru1_gpi9 pr1_edio_data_in7 pr1_pru1_gpi18
13 pr1_pru1_gpo9 pr1_edio_data_out7 pr1_pru1_gpo18
14 gpio4_13 gpio4_3 gpio4_29
15 Driver off Driver off Driver off
2nd BALL A3
2nd REG 0x15B4
2nd MODE 0 vin2a_d19
2nd 1
2nd 2 vin2b_d4
2nd 3 rgmii1_rxctl
2nd 4 vout2_d4
2nd 5
2nd 6 vin3a_d11
2nd 7
2nd 8 mii1_txer
2nd 9
2nd 10 ehrpwm3_tripzone_input
2nd 11 pr1_mii1_rxd0
2nd 12 pr1_pru1_gpi16
2nd 13 pr1_pru1_gpo16
2nd 14 gpio4_27
2nd 15 Driver off

Table 4.10: P8.17-P8.19
P8.17 P8.18 P8.19

GPIO 242 105 106
BALL A7 F5 E6
REG 0x1624 0x1588 0x158C
MODE 0 vout1_d18 vin2a_d8 vin2a_d9
1
2 emu4
3 vin4a_d2
4 vin3a_d2 vout2_d15 vout2_d14
5 obs11 emu18 emu19
6 obs27
7
8 mii1_rxd3 mii1_rxd0
9 kbd_col5 kbd_col6
10 pr2_edio_data_in2 eQEP2_strobe ehrpwm2A
11 pr2_edio_data_out2 pr1_mii1_txd3 pr1_mii1_txd2
12 pr2_pru0_gpi15 pr1_pru1_gpi5 pr1_pru1_gpi6
13 pr2_pru0_gpo15 pr1_pru1_gpo5 pr1_pru1_gpo6
14 gpio8_18 gpio4_9 gpio4_10
15 Driver off Driver off Driver off

4.7. Connectors 201

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.11: P8.20-P8.22
P8.20 P8.21 P8.22

GPIO 190 189 23
BALL AC4 AD4 AD6
REG 0x1780 0x177C 0x1798
MODE 0 mmc3_cmd mmc3_clk mmc3_dat5
1 spi3_sclk spi4_d1
2 uart10_txd
3
4 vin2b_d6 vin2b_d7 vin2b_d0
5
6
7
8
9 vin5a_d6 vin5a_d7 vin5a_d0
10 eCAP2_in_PWM2_out ehrpwm2_tripzone_input ehrpwm3B
11 pr2_mii1_txd2 pr2_mii1_txd3 pr2_mii1_rxd2
12 pr2_pru0_gpi3 pr2_pru0_gpi2 pr2_pru0_gpi9
13 pr2_pru0_gpo3 pr2_pru0_gpo2 pr2_pru0_gpo9
14 gpio6_30 gpio6_29 gpio1_23
15 Driver off Driver off Driver off

Table 4.12: P8.23-P8.26
P8.23 P8.24 P8.25 P8.26

GPIO 22 192 191 124
BALL AC8 AC6 AC7 B3
REG 0x1794 0x1788 0x1784 0x15B8
MODE 0 mmc3_dat4 mmc3_dat1 mmc3_dat0 vin2a_d20
1 spi4_sclk spi3_d0 spi3_d1
2 uart10_rxd uart5_txd uart5_rxd vin2b_d3
3 rgmii1_rxd3
4 vin2b_d1 vin2b_d4 vin2b_d5 vout2_d3
5 vin3a_de0
6 vin3a_d12
7
8 mii1_rxer
9 vin5a_d1 vin5a_d4 vin5a_d5
10 ehrpwm3A eQEP3B_in eQEP3A_in eCAP3_in_PWM3_out
11 pr2_mii1_rxd3 pr2_mii1_txd0 pr2_mii1_txd1 pr1_mii1_rxer
12 pr2_pru0_gpi8 pr2_pru0_gpi5 pr2_pru0_gpi4 pr1_pru1_gpi17
13 pr2_pru0_gpo8 pr2_pru0_gpo5 pr2_pru0_gpo4 pr1_pru1_gpo17
14 gpio1_22 gpio7_0 gpio6_31 gpio4_28
15 Driver off Driver off Driver off Driver off

Table 4.13: P8.27-P8.29
P8.27 P8.28 P8.29

GPIO 119 115 118
BALL E11 D11 C11
REG 0x15D8 0x15C8 0x15D4
MODE 0 vout1_vsync vout1_clk vout1_hsync
1
2
3 vin4a_vsync0 vin4a_fld0 vin4a_hsync0
4 vin3a_vsync0 vin3a_fld0 vin3a_hsync0
5
6
7
8 spi3_sclk spi3_cs0 spi3_d0
9
10

continues on next page

202 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.13 – continued from previous page
P8.27 P8.28 P8.29

11
12 pr2_pru1_gpi17
13 pr2_pru1_gpo17
14 gpio4_23 gpio4_19 gpio4_22
15 Driver off Driver off Driver off
2nd BALL A8 C9 A9
2nd REG 0x1628 0x162C 0x1630
2nd MODE0 vout1_d19 vout1_d20 vout1_d21
2nd 1
2nd 2 emu15 emu16 emu17
2nd 3 vin4a_d3 vin4a_d4 vin4a_d5
2nd 4 vin3a_d3 vin3a_d4 vin3a_d5
2nd 5 obs12 obs13 obs14
2nd 6 obs28 obs29 obs30
2nd 7
2nd 8
2nd 9
2nd 10 pr2_edio_data_in3 pr2_edio_data_in4 pr2_edio_data_in5
2nd 11 pr2_edio_data_out3 pr2_edio_data_out4 pr2_edio_data_out5
2nd 12 pr2_pru0_gpi16 pr2_pru0_gpi17 pr2_pru0_gpi18
2nd 13 pr2_pru0_gpo16 pr2_pru0_gpo17 pr2_pru0_gpo18
2nd 14 gpio8_19 gpio8_20 gpio8_21
2nd 15 Driver off Driver off Driver off

Table 4.14: P8.30-P8.32
P8.30 P8.31 P8.32

GPIO 116 238 239
BALL B10 C8 C7
REG 0x15CC 0x1614 0x1618
MODE 0 vout1_de vout1_d14 vout1_d15
1
2 emu13 emu14
3 vin4a_de0 vin4a_d14 vin4a_d15
4 vin3a_de0 vin3a_d14 vin3a_d15
5 obs9 obs10
6 obs25 obs26
7
8 spi3_d1
9
10 pr2_uart0_txd pr2_ecap0_ecap_capin_apwm_o
11
12 pr2_pru0_gpi11 pr2_pru0_gpi12
13 pr2_pru0_gpo11 pr2_pru0_gpo12
14 gpio4_20 gpio8_14 gpio8_15
15 Driver off Driver off Driver off
2nd BALL B9 G16 D17
2nd REG 0x1634 0x173C 0x1740
2nd MODE 0 vout1_d22 mcasp4_axr0 mcasp4_axr1
2nd 1
2nd 2 emu18 spi3_d0 spi3_cs0
2nd 3 vin4a_d6 uart8_ctsn uart8_rtsn
2nd 4 vin3a_d6 uart4_rxd uart4_txd

continues on next page

4.7. Connectors 203

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.14 – continued from previous page
P8.30 P8.31 P8.32

2nd 5 obs15
2nd 6 obs31 vout2_d18 vout2_d19
2nd 7
2nd 8 vin4a_d18 vin4a_d19
2nd 9 vin5a_d13 vin5a_d12
2nd 10 pr2_edio_data_in6
2nd 11 pr2_edio_data_out6
2nd 12 pr2_pru0_gpi19 pr2_pru1_gpi0
2nd 13 pr2_pru0_gpo19 pr2_pru1_gpo0
2nd 14 gpio8_22
2nd 15 Driver off Driver off Driver off

Table 4.15: P8.33-P8.35
P8.33 P8.34 P8.35

GPIO 237 235 236
BALL C6 D8 A5
REG 0x1610 0x1608 0x160C
MODE 0 vout1_d13 vout1_d11 vout1_d12
1
2 emu12 emu10 emu11
3 vin4a_d13 vin4a_d11 vin4a_d12
4 vin3a_d13 vin3a_d11 vin3a_d12
5 obs8 obs6 obs7
6 obs24 obs22 obs23
7 obs_dmarq2
8
9
10 pr2_uart0_rxd pr2_uart0_cts_n pr2_uart0_rts_n
11
12 pr2_pru0_gpi10 pr2_pru0_gpi8 pr2_pru0_gpi9
13 pr2_pru0_gpo10 pr2_pru0_gpo8 pr2_pru0_gpo9
14 gpio8_13 gpio8_11 gpio8_12
15 Driver off Driver off Driver off
2nd BALL AF9 G6 AD9
2nd REG 0x14E8 0x1564 0x14E4
2nd MODE0 vin1a_fld0 vin2a_vsync0 vin1a_de0
2nd 1 vin1b_vsync1 vin1b_hsync1
2nd 2
2nd 3 vin2b_vsync1 vout3_d17
2nd 4 vout3_clk vout2_vsync vout3_de
2nd 5 uart7_txd emu9 uart7_rxd
2nd 6
2nd 7 timer15 uart9_txd timer16
2nd 8 spi3_d1 spi4_d1 spi3_sclk
2nd 9 kbd_row1 kbd_row3 kbd_row0
2nd 10 eQEP1B_in ehrpwm1A eQEP1A_in
2nd 11 pr1_uart0_rts_n
2nd 12 pr1_edio_data_in4
2nd 13 pr1_edio_data_out4
2nd 14 gpio3_1 gpio4_0 gpio3_0
2nd 15 Driver off Driver off Driver off

204 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.16: P8.36-P8.38
P8.36 P8.37 P8.38

GPIO 234 232 233
BALL D7 E8 D9
REG 0x1604 0x15FC 0x1600
MODE 0 vout1_d10 vout1_d8 vout1_d9
1
2 emu3 uart6_rxd uart6_txd
3 vin4a_d10 vin4a_d8 vin4a_d9
4 vin3a_d10 vin3a_d8 vin3a_d9
5 obs5
6 obs21
7 obs_irq2
8
9
10 pr2_edio_sof pr2_edc_sync1_out pr2_edio_latch_in
11
12 pr2_pru0_gpi7 pr2_pru0_gpi5 pr2_pru0_gpi6
13 pr2_pru0_gpo7 pr2_pru0_gpo5 pr2_pru0_gpo6
14 gpio8_10 gpio8_8 gpio8_9
15 Driver off Driver off Driver off
2nd BALL F2 A21 C18
2nd REG 0x1568 0x1738 0x1734
2nd MODE 0 vin2a_d0 mcasp4_fsx mcasp4_aclkx
2nd 1 mcasp4_fsr mcasp4_aclkr
2nd 2 spi3_d1 spi3_sclk
2nd 3 uart8_txd uart8_rxd
2nd 4 vout2_d23 i2c4_scl i2c4_sda
2nd 5 emu10
2nd 6 vout2_d17 vout2_d16
2nd 7 uart9_ctsn
2nd 8 spi4_d0 vin4a_d17 vin4a_d16
2nd 9 kbd_row4 vin5a_d14 vin5a_d15
2nd 10 ehrpwm1B
2nd 11 pr1_uart0_rxd
2nd 12 pr1_edio_data_in5
2nd 13 pr1_edio_data_out5
2nd 14 gpio4_1
2nd 15 Driver off Driver off Driver off

4.7. Connectors 205

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.17: P8.39-P8.41
P8.39 P8.40 P8.41

GPIO 230 231 228
BALL F8 E7 E9
REG 0x15F4 0x15F8 0x15EC
MODE 0 vout1_d6 vout1_d7 vout1_d4
1
2 emu8 emu9 emu6
3 vin4a_d22 vin4a_d23 vin4a_d20
4 vin3a_d22 vin3a_d23 vin3a_d20
5 obs4 obs2
6 obs20 obs18
7
8
9
10 pr2_edc_latch1_in pr2_edc_sync0_out pr1_ecap0_ecap_capin_apwm_o
11
12 pr2_pru0_gpi3 pr2_pru0_gpi4 pr2_pru0_gpi1
13 pr2_pru0_gpo3 pr2_pru0_gpo4 pr2_pru0_gpo1
14 gpio8_6 gpio8_7 gpio8_4
15 Driver off Driver off Driver off

Table 4.18: P8.42-P8.44
P8.42 P8.43 P8.44

GPIO 229 226 227
BALL F9 F10 G11
REG 0x15F0 0x15E4 0x15E8
MODE 0 vout1_d5 vout1_d2 vout1_d3
1
2 emu7 emu2 emu5
3 vin4a_d21 vin4a_d18 vin4a_d19
4 vin3a_d21 vin3a_d18 vin3a_d19
5 obs3 obs0 obs1
6 obs19 obs16 obs17
7 obs_irq1 obs_dmarq1
8
9
10 pr2_edc_latch0_in pr1_uart0_rxd pr1_uart0_txd
11
12 pr2_pru0_gpi2 pr2_pru1_gpi20 pr2_pru0_gpi0
13 pr2_pru0_gpo2 pr2_pru1_gpo20 pr2_pru0_gpo0
14 gpio8_5 gpio8_2 gpio8_3
15 Driver off Driver off Driver off

Table 4.19: P8.45-P8.46
P8.45 P8.46

GPIO 224 225
BALL F11 G10
REG 0x15DC 0x15E0
MODE 0 vout1_d0 vout1_d1
1
2 uart5_rxd uart5_txd
3 vin4a_d16 vin4a_d17
4 vin3a_d16 vin3a_d17
5
6
7
8 spi3_cs2
9
10 pr1_uart0_cts_n pr1_uart0_rts_n

continues on next page

206 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.19 – continued from previous page
P8.45 P8.46

11
12 pr2_pru1_gpi18 pr2_pru1_gpi19
13 pr2_pru1_gpo18 pr2_pru1_gpo19
14 gpio8_0 gpio8_1
15 Driver off Driver off
2nd BALL B7 A10
2nd REG 0x161C 0x1638
2nd MODE 0 vout1_d16 vout1_d23
2nd 1
2nd 2 uart7_rxd emu19
2nd 3 vin4a_d0 vin4a_d7
2nd 4 vin3a_d0 vin3a_d7
2nd 5
2nd 6
2nd 7
2nd 8 spi3_cs3
2nd 9
2nd 10 pr2_edio_data_in0 pr2_edio_data_in7
2nd 11 pr2_edio_data_out0 pr2_edio_data_out7
2nd 12 pr2_pru0_gpi13 pr2_pru0_gpi20
2nd 13 pr2_pru0_gpo13 pr2_pru0_gpo20
2nd 14 gpio8_16 gpio8_23
2nd 15 Driver off Driver off

TODO: Notes regarding the resistors on muxed pins.

Connector P9

The following tables show the pinout of the P9 expansion header. The SW is responsible for setting the default
function of each pin. Refer to the processor documentation for more information on these pins and detailed
descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of
signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

In the table are the following notations:

PWR_BUT is a 5V level as pulled up internally by the TPS6590379. It is activated by pulling the signal to GND.

4.7. Connectors 207

BeagleBoard Docs, Release 1.0.20230711-wip

TODO: (Actually, on BeagleBone AI, I believe PWR_BUT is pulled to 3.3V, but activation is still done by pulling
the signal to GND. Also, a quick grounding of PWR_BUT will trigger a system event where shutdown can occur,
but there is no hardware power-off function like on BeagleBone Black via this signal. It does, however, act as
a hardware power-on.)

TODO: (On BeagleBone Black, SYS_RESET was a bi-directional signal, but it is only an output from BeagleBone
AI to capes on BeagleBone AI.)

Table 4.20: P9.01-P9.05
P9.01 P9.02 P9.03 P9.04 P9.05
GND GND VOUT_3V3 VOUT_3V3 VIN

Table 4.21: P9.06-P9.10
P9.06 P9.07 | P9.08 | P9.09 | P9.10
VIN VOUT_SYS VOUT_SYS RESET# RESET#

Table 4.22: P9.11-P9.13
P9.11 P9.12 P9.13

GPIO 241 128 172
BALL B19 B14 C17
REG 0x172C 0x16AC 0x1730
MODE 0 mcasp3_axr0 mcasp1_aclkr mcasp3_axr1
1 mcasp7_axr2
2 mcasp2_axr14 mcasp2_axr15
3 uart7_ctsn uart7_rtsn
4 uart5_rxd uart5_txd
5
6 vout2_d0
7 vin6a_d1 vin6a_d0
8 vin4a_d0
9 vin5a_fld0
10 i2c4_sda
11 pr2_mii1_rxer pr2_mii1_rxlink
12 pr2_pru0_gpi14 pr2_pru0_gpi15
13 pr2_pru0_gpo14 pr2_pru0_gpo15
14 gpio5_0
15 Driver off Driver off Driver off
2nd BALL B8 AB10**
2nd REG 0x1620 0x1680
2nd MODE 0 vout1_d17 usb1_drvvbus
2nd 1
2nd 2 uart7_txd
2nd 3 vin4a_d1
2nd 4 vin3a_d1
2nd 5
2nd 6
2nd 7 timer16
2nd 8
2nd 9
2nd 10 pr2_edio_data_in1
2nd 11 pr2_edio_data_out1
2nd 12 pr2_pru0_gpi14
2nd 13 pr2_pru0_gpo14
2nd 14 gpio8_17 gpio6_12

continues on next page

208 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.22 – continued from previous page
P9.11 P9.12 P9.13

2nd 15 Driver off Driver off

Table 4.23: P9.14-P9.16
P9.14 P9.15 P9.16

GPIO 121 76 122
BALL D6 AG4 C5
REG 0x15AC 0x1514 0x15B0
MODE 0 vin2a_d17 vin1a_d8 vin2a_d18
1 vin1b_d7
2 vin2b_d6 vin2b_d5
3 rgmii1_txd0 rgmii1_rxc
4 vout2_d6 vout3_d15 vout2_d5
5
6 vin3a_d9 vin3a_d10
7
8 mii1_txd2 mii1_txd3
9 kbd_row2
10 ehrpwm3A eQEP2_index ehrpwm3B
11 pr1_mii1_rxd2 pr1_mii1_rxd1
12 pr1_pru1_gpi14 pr1_pru0_gpi5 pr1_pru1_gpi15
13 pr1_pru1_gpo14 pr1_pru0_gpo5 pr1_pru1_gpo15
14 gpio4_25 gpio3_12 gpio4_26
15 Driver off Driver off Driver off

Table 4.24: P9.17-P9.19
P9.17 P9.18 P9.19

GPIO 209 208 195
BALL B24 G17 R6
REG 0x17CC 0x17C8 0x1440
MODE 0 spi2_cs0 spi2_d0 gpmc_a0
1 uart3_rtsn uart3_ctsn
2 uart5_txd uart5_rxd vin3a_d16
3 vout3_d16
4 vin4a_d0
5
6 vin4b_d0
7 i2c4_scl
8 uart5_rxd
9
10
11
12
13
14 gpio7_17 gpio7_16 gpio7_3
15 Driver off Driver off Driver off
2nd BALL F12 G12 F4
2nd REG 0x16B8 0x16B4 0x157C
2nd MODE 0 mcasp1_axr1 mcasp1_axr0 vin2a_d5
2nd 1
2nd 2
2nd 3 uart6_txd uart6_rxd
2nd 4 vout2_d18
2nd 5 emu15
2nd 6
2nd 7 vin6a_hsync0 vin6a_vsync0

continues on next page

4.7. Connectors 209

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.24 – continued from previous page
P9.17 P9.18 P9.19

2nd 8 uart10_rtsn
2nd 9 kbd_col2
2nd 10 i2c5_scl i2c5_sda eQEP2A_in
2nd 11 pr2_mii_mt0_clk pr2_mii0_rxer pr1_edio_sof
2nd 12 pr2_pru1_gpi9 pr2_pru1_gpi8 pr1_pru1_gpi2
2nd 13 pr2_pru1_gpo9 pr2_pru1_gpo8 pr1_pru1_gpo2
2nd 14 gpio5_3 gpio5_2 gpio4_6
2nd 15 Driver off Driver off Driver off

Table 4.25: P9.20-P9.22
P9.20 P9.21 P9.22

GPIO 196 67 179
BALL T9 AF8 B26
REG 0x1444 0x14F0 0x169C
MODE 0 gpmc_a1 vin1a_vsync0 xref_clk2
1 vin1b_de1 mcasp2_axr10
2 vin3a_d17 mcasp1_axr6
3 vout3_d17 mcasp3_ahclkx
4 vin4a_d1 vout3_vsync mcasp7_ahclkx
5 uart7_rtsn
6 vin4b_d1 vout2_clk
7 i2c4_sda timer13
8 uart5_txd spi3_cs0 vin4a_clk0
9
10 eQEP1_strobe timer15
11
12
13
14 gpio7_4 gpio3_3 gpio6_19
15 Driver off Driver off Driver off
2nd BALL D2 B22 A26
2nd REG 0x1578 0x17C4 0x17C0
2nd MODE 0 vin2a_d4 spi2_d1 spi2_sclk
2nd 1 uart3_txd uart3_rxd
2nd 2
2nd 3
2nd 4 vout2_d19
2nd 5 emu14
2nd 6
2nd 7
2nd 8 uart10_ctsn
2nd 9 kbd_col1
2nd 10 ehrpwm1_synco
2nd 11 pr1_edc_sync0_out
2nd 12 pr1_pru1_gpi1
2nd 13 pr1_pru1_gpo1
2nd 14 gpio4_5 gpio7_15 gpio7_14
2nd 15 Driver off Driver off Driver off

210 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.26: P9.23-P9.25
P9.23 P9.24 P9.25

GPIO 203 175 177
BALL A22 F20 D18
REG 0x17B4 0x168C 0x1694
MODE 0 spi1_cs1 gpio6_15 xref_clk0
1 mcasp1_axr9 mcasp2_axr8
2 sata1_led dcan2_rx mcasp1_axr4
3 spi2_cs1 uart10_txd mcasp1_ahclkx
4 mcasp5_ahclkx
5
6 vout2_vsync
7 vin6a_d0
8 vin4a_vsync0 hdq0
9 i2c3_scl clkout2
10 timer2 timer13
11 pr2_mii1_col
12 pr2_pru1_gpi5
13 pr2_pru1_gpo5
14 gpio7_11 gpio6_15 gpio6_17
15 Driver off Driver off Driver off

Table 4.27: P9.26-P9.29
P9.26 P9.27 P9.28 P9.29

GPIO 174 111 113 139
BALL E21 C3 A12 A11
REG 0x1688 0x15A0 0x16E0 0x16D8
MODE 0 gpio6_14 vin2a_d14 mcasp1_axr11 mcasp1_axr9
1 mcasp1_axr8 mcasp6_fsx mcasp6_axr1
2 dcan2_tx mcasp6_fsr
3 uart10_rxd rgmii1_txd3 spi3_cs0 spi3_d1
4 vout2_d9
5
6 vout2_hsync
7 vin6a_d12 vin6a_d14
8 vin4a_hsync0 mii1_txclk
9 i2c3_sda
10 timer1 eQEP3B_in timer8 timer6
11 pr1_mii_mr1_clk pr2_mii0_txd1 pr2_mii0_txd3
12 pr1_pru1_gpi11 pr2_pru1_gpi13 pr2_pru1_gpi11
13 pr1_pru1_gpo11 pr2_pru1_gpo13 pr2_pru1_gpo11
14 gpio6_14 gpio4_15 gpio4_17 gpio5_11
15 Driver off Driver off Driver off Driver off
2nd BALL AE2 J14 D14
2nd REG 0x1544 0x16B0 0x16A8
2nd MODE 0 vin1a_d20 mcasp1_fsr mcasp1_fsx
2nd 1 vin1b_d3 mcasp7_axr3
2nd 2
2nd 3
2nd 4 vout3_d3
2nd 5
2nd 6 vin3a_d4 vout2_d1
2nd 7 vin6a_de0
2nd 8 vin4a_d1
2nd 9 kbd_col5
2nd 10 pr1_edio_data_in4 i2c4_scl i2c3_scl
2nd 11 pr1_edio_data_out4 pr2_mdio_data

continues on next page

4.7. Connectors 211

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.27 – continued from previous page
P9.26 P9.27 P9.28 P9.29

2nd 12 pr1_pru0_gpi17
2nd 13 pr1_pru0_gpo17
2nd 14 gpio3_24 gpio5_1 gpio7_30
2nd 15 Driver off Driver off Driveroff

Table 4.28: P9.30-P9.31
P9.30 P9.31

GPIO 140 138
BALL B13 B12
REG 0x16DC 0x16D4
MODE 0 mcasp1_axr10 mcasp1_axr8
1 mcasp6_aclkx mcasp6_axr0
2 mcasp6_aclkr
3 spi3_d0 spi3_sclk
4
5
6
7 vin6a_d13 vin6a_d15
8
9
10 timer7 timer5
11 pr2_mii0_txd2 pr2_mii0_txen
12 pr2_pru1_gpi12 pr2_pru1_gpi10
13 pr2_pru1_gpo12 pr2_pru1_gpo10
14 gpio5_12 gpio5_10
15 Driver off Driver off
2nd BALL C14
2nd REG 0x16A4
2nd MODE 0 mcasp1_aclkx
2nd 1
2nd 2
2nd 3
2nd 4
2nd 5
2nd 6
2nd 7 vin6a_fld0
2nd 8
2nd 9
2nd 10 i2c3_sda
2nd 11 pr2_mdio_mdclk
2nd 12 pr2_pru1_gpi7
2nd 13 pr2_pru1_gpo7
2nd 14 gpio7_31
2nd 15 Driver off

Todo: This table needs entries

Table 4.29: P9.32-P9.40
P9.32 P9.33 P9.34 P9.35 P9.36 P9.37 P9.38 P9.39 P9.40

Row 1 P9.32 P9.33 P9.34 P9.35 P9.36 P9.37 P9.38 P9.39 P9.40

212 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

Table 4.30: P9.41-P9.42
P9.41 P9.42

GPIO 180 114
BALL C23 E14
REG 0x16A0 0x16E4
MODE 0 xref_clk3 mcasp1_axr12
1 mcasp2_axr11 mcasp7_axr0
2 mcasp1_axr7
3 mcasp4_ahclkx spi3_cs1
4 mcasp8_ahclkx
5
6 vout2_de
7 hdq0 vin6a_d11
8 vin4a_de0
9 clkout3
10 timer16 timer9
11 pr2_mii0_txd0
12 pr2_pru1_gpi14
13 pr2_pru1_gpo14
14 gpio6_20 gpio4_18
15 Driver off Driver off
2nd BALL C1 C2
2nd REG 0x1580 0x159C
2nd MODE 0 vin2a_d6 vin2a_d13
2nd 1
2nd 2
2nd 3 rgmii1_txctl
2nd 4 vout2_d17 vout2_d10
2nd 5 emu16
2nd 6
2nd 7
2nd 8 mii1_rxd1 mii1_rxdv
2nd 9 kbd_col3 kbd_row8
2nd 10 eQEP2B_in eQEP3A_in
2nd 11 pr1_mii_mt1_clk pr1_mii1_txd0
2nd 12 pr1_pru1_gpi3 pr1_pru1_gpi10
2nd 13 pr1_pru1_gpo3 pr1_pru1_gpo10
2nd 14 gpio4_7 gpio4_14
2nd 15 Driver off Driver off

Todo: Table entries needed

Table 4.31: P9.43-P9.46
P9.43 P9.44 P9.45 P9.46

Row 1 P9.43 P9.44 P9.45 P9.46

4.7.2 Serial Debug

Todo: Need info on BealgeBone AI serial debug

4.7. Connectors 213

BeagleBoard Docs, Release 1.0.20230711-wip

4.7.3 USB 3 Type-C

Todo: Need info on BealgeBone AI USB Type-C connection

4.7.4 USB 2 Type-A

Todo: Need info on BealgeBone AI USB Type-A connection

4.7.5 Gigabit Ethernet

Todo: Need info on BealgeBone AI USB Gigabit Ethernet connection

4.7.6 Coaxial

Todo: Need info on BealgeBone AI u.FL antenna connection

4.7.7 microSD Memory

Todo: Need info on BealgeBone AI uSD card slot

4.7.8 microHDMI

Todo: Need info on BealgeBone AI uHDMI connection

4.8 Cape Board Support

There is a Cape Headers Google Spreadsheet which has a lot of detail regarding various boards and cape add-on
boards.

See also https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

TODO

4.8.1 BeagleBone® Black Cape Compatibility

TODO

See https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec for now.

214 Chapter 4. BeagleBone AI

https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

BeagleBoard Docs, Release 1.0.20230711-wip

4.8.2 EEPROM

TODO

4.8.3 Pin Usage Consideration

TODO

4.8.4 GPIO

TODO

4.8.5 I2C

TODO

4.8.6 UART or PRU UART

This section is about both UART pins on the header and PRU UART pins on the headers we will include a chart
and later some code

Table 4.32: UART
Function Pin ABC Ball Pinctrl Register Mode
uart3_txd P9.21 B22 0x17C4 1
uart3_rxd P9.22 A26 0x17C0 1
uart5_txd P9.13 C17 0x1730 4
uart5_rxd P9.11 B19 0x172C 4
uart5_ctsn P8.05 AC9 0x178C 2
uart5_rtsn P8.06 AC3 0x1790 2
uart8_txd P8.37 A21 0x1738 3
uart8_rxd P8.38 C18 0x1734 3
uart8_ctsn P8.31 G16 0x173C 3
uart8_rtsn P8.32 D17 0x1740 3
uart10_txd P9.24 F20 0x168C 3
uart10_rxd P9.26 E21 0x1688 3
uart10_ctsn P8.03 AB8 0x179C 2
uart10_rtsn P8.04 AB5 0x17A0 2
uart10_txd P9.24 F20 0x168C 3
uart10_rxd P9.26 E21 0x1688 3
uart10_ctsn P9.20 D2 0x1578 8
uart10_rtsn P9.19 F4 0x157C 8

Table 4.33: PRU UART
Function Pin ABC Ball Pinctrl Register Mode
pr2_uart0_txd P8.31 C8 0x1614 10
pr2_uart0_rxd P8.33 C6 0x1610 10
pr2_uart0_cts_n P8.34 D8 0x1608 10
pr2_uart0_rts_n P8.35 A5 0x160C 10
pr1_uart0_rxd P8.43 F10 0x15E4 10
pr1_uart0_txd P8.44 G11 0x15E8 10
pr1_uart0_cts_n P8.45 F11 0x15DC 10
pr1_uart0_rts_n P8.46 G10 0x15E0 10

TODO

4.8. Cape Board Support 215

BeagleBoard Docs, Release 1.0.20230711-wip

4.8.7 SPI

TODO

4.8.8 Analog

TODO

4.8.9 PWM, TIMER, eCAP or PRU PWM/eCAP

TODO

4.8.10 eQEP

TODO

4.8.11 CAN

TODO

4.8.12 McASP (audio serial like I2S and AC97)

TODO

4.8.13 MMC

TODO

4.8.14 LCD

TODO

4.8.15 PRU GPIO

TODO

4.8.16 CLKOUT

TODO

4.8.17 Expansion Connector Headers

TODO: discuss header options for working with the expansion connectors per https://git.beagleboard.org/
beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1

4.8.18 Signal Usage

TODO

216 Chapter 4. BeagleBone AI

https://git.beagleboard.org/beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1
https://git.beagleboard.org/beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1

BeagleBoard Docs, Release 1.0.20230711-wip

4.8.19 Cape Power

TODO

4.8.20 Mechanical

TODO

4.9 Mechanical Information

• Board Dimensions: 8.9cm x 5.4cm x 1.5cm

• Board Net Weight 48g

• Packaging Dimensions: 13.8cm x 10cm x 4cm

• Gross Weight (including packaging): 110g

• 3D STEP model: https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/Mechanical

4.10 Pictures

BeagleBone AI Back of Board Image

4.9. Mechanical Information 217

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/Mechanical

BeagleBoard Docs, Release 1.0.20230711-wip

4.11 Support Information

TODO: Reference https://docs.beagleboard.org/latest/intro/support/index.html and https://beagleboard.org/
resources

Related TI documentation: http://www.ti.com/tool/BEAGLE-3P-BBONE-AI

4.12 Terms and Conditions

4.12.1 REGULATORY, COMPLIANCE, AND EXPORT INFORMATION

• Country of origin: PRC

• FCC: 2ATUT-BBONE-AI

• CE: TBD

• CNHTS: 8543909000

• USHTS: 8473301180

• MXHTS: 84733001

• TARIC: 8473302000

• ECCN: 5A992.C

• CCATS: Z1613110/G180570

• RoHS/REACH: TBD

218 Chapter 4. BeagleBone AI

https://docs.beagleboard.org/latest/intro/support/index.html
https://beagleboard.org/resources
https://beagleboard.org/resources
http://www.ti.com/tool/BEAGLE-3P-BBONE-AI
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/regulatory/Validation_Z1613110.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

• Volatility: TBD

BeagleBone AI is annotated to comply with Part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation. Changes or modifications
not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly
approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou
les modifications pas expressément approuvés par la partie responsible de la conformité ont pu vider l’autorité
de l’utilisateur pour actionner l’équipement.

4.12.2 WARRANTY AND DISCLAIMERS

The design materials referred to in this document are *NOT SUPPORTED* and DO NOT constitute a reference
design. Support of the open source developer community is provided through the resources defined at https:
//docs.beagleboard.org/latest/intro/support/index.html.

THERE IS NO WARRANTY FOR THE DESIGN MATERIALS, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
DESIGN MATERIALS “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE DESIGN MATERIALS IS WITH YOU.
SHOULD THE DESIGN MATERIALS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

This board was designed as an evaluation and development tool. It was not designed with any other application
in mind. As such, the design materials that are provided which include schematic, BOM, and PCB files, may
or may not be suitable for any other purposes. If used, the design material becomes your responsibility as
to whether or not it meets your specific needs or your specific applications and may require changes to meet
your requirements.

Additional terms

BeagleBoard.org Foundation and logo-licensed manufacturers (together, henceforth identified as “Supplier”)
provide BeagleBone AI under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user
indemnifies Supplier from all claims arising from the handling or use of the goods.

Should BeagleBone AI not meet the specifications indicated in the System Reference Manual, BeagleBone
AI may be returned within 90 days from the date of delivery to the distributor of purchase for a full refund.
THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN
LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET
FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.

Please read the System Reference Manual and, specifically, the Warnings and Restrictions notice in the Sys-
tems Reference Manual prior to handling the product. This notice contains important safety information about
temperatures and voltages.

No license is granted under any patent right or other intellectual property right of Supplier covering or relating
to any machine, process, or combination in which such Supplier products or services might be or are used.
The Supplier currently deals with a variety of customers for products, and therefore our arrangement with the
user is not exclusive. The Supplier assume no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.

4.12. Terms and Conditions 219

https://docs.beagleboard.org/latest/intro/support/index.html
https://docs.beagleboard.org/latest/intro/support/index.html

BeagleBoard Docs, Release 1.0.20230711-wip

4.12.3 Warnings and Restrictions

For Feasibility Evaluation Only, in Laboratory/Development Environments

BeagleBone AI is not a complete product. It is intended solely for use for preliminary feasibility evaluation
in laboratory/development environments by technically qualified electronics experts who are familiar with the
dangers and application risks associated with handling electrical mechanical components, systems and sub-
systems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk

You acknowledge, represent, and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but
not limited to Food and Drug Administration regulations, if applicable) which relate to your products
and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of
BeagleBone AI for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all
such laws and other applicable regulatory requirements, and also to assure the safety of any activities to
be conducted by you and/or your employees, affiliates, contractors or designees, using BeagleBone AI.
Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between Bea-
gleBone AI and any human body are designed with suitable isolation and means to safely limit accessible
leakage currents to minimize the risk of electrical shock hazard.

3. Since BeagleBone AI is not a completed product, it may not meet all applicable regulatory and safety
compliance standards which may normally be associated with similar items. You assume full responsi-
bility to determine and/or assure compliance with any such standards and related certifications as may
be applicable. You will employ reasonable safeguards to ensure that your use of BeagleBone AI will not
result in any property damage, injury or death, even if BeagleBone AI should fail to perform as described
or expected.

Certain Instructions

It is important to operate BeagleBone AI within Supplier’s recommended specifications and environmental con-
siderations per the user guidelines. Exceeding the specified BeagleBone AI ratings (including but not limited
to input and output voltage, current, power, and environmental ranges) may cause property damage, personal
injury or death. If there are questions concerning these ratings please contact the Supplier representative
prior to connecting interface electronics including input power and intended loads. Any loads applied outside
of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent
damage to BeagleBone AI and/or interface electronics. Please consult the System Reference Manual prior to
connecting any load to BeagleBone AI output. If there is uncertainty as to the load specification, please contact
the Supplier representative. During normal operation, some circuit components may have case temperatures
greater than 60 C as long as the input and output are maintained at a normal ambient operating temperature.
These components include but are not limited to linear regulators, switching transistors, pass transistors, and
current sense resistors which can be identified using BeagleBone AI’s schematic located at the link in Beagle-
Bone AI’s System Reference Manual. When placing measurement probes near these devices during normal
operation, please be aware that these devices may be very warm to the touch. As with all electronic evalua-
tion tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found
in development environments should use BeagleBone AI.

Agreement to Defend, Indemnify and Hold Harmless

You agree to defend, indemnify and hold Supplier, its licensors and their representatives harmless from and
against any and all claims, damages, losses, expenses, costs and liabilities (collectively, “Claims”) arising out
of or in connection with any use of BeagleBone AI that is not in accordance with the terms of the agreement.

220 Chapter 4. BeagleBone AI

BeagleBoard Docs, Release 1.0.20230711-wip

This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and
even if BeagleBone AI fails to perform as described or expected.

Safety-Critical or Life-Critical Applications

If you intend to evaluate the components for possible use in safety critical applications (such as life support)
where a failure of the Supplier’s product would reasonably be expected to cause severe personal injury or
death, such as devices which are classified as FDA Class III or similar classification, then you must specifically
notify Supplier of such intent and enter into a separate Assurance and Indemnity Agreement.

4.12. Terms and Conditions 221

BeagleBoard Docs, Release 1.0.20230711-wip

222 Chapter 4. BeagleBone AI

Chapter 5

BeagleBone Black

BeagleBone Black is a low-cost, community-supported development platform for developers and hobbyists.
Boot Linux in under 10 seconds and get started on development in less than 5 minutes with just a single USB
cable.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

223

http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230711-wip

5.1 Introduction

This document is the System Reference Manual for the BeagleBone Black and covers its use and design. The
board will primarily be referred to in the remainder of this document simply as the board, although it may also
be referred to as the BeagleBone Black as a reminder. There are also references to the original BeagleBone as
well, and will be referenced as simply BeagleBone.

This design is subject to change without notice as we will work to keep improving the design as the product
matures based on feedback and experience. Software updates will be frequent and will be independent of the
hardware revisions and as such not result in a change in the revision number.

Make sure you check the docs repository frequently for the most up to date information.

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/beaglebone-black

5.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

5.2.1 Document Change History

Table 5.1: AsciiDoc Change History
Rev Changes Date By
A4 Preliminary January 4, 2013 GC
A5 Production release January 8.2013 GC
A5.1

1. Added information on Power button and the battery ac-
cess points.

2. Final production released version.

April 1 2013 GC

A5.2
1. Edited version.
2. Added numerous pictures of the Rev A5A board.

April 23 2013 GC

A5.3
1. Updated serial number locations.
2. Corrected the feature table for 4 UARTS
3. Corrected eMMC pin table to match other tables in the
manual.

April 30, 2013 GC

A5.4
1. Corrected revision listed in section 2. Rev A5A is the initial
production release.

2. Added all the locations of the serial numbers
3. Made additions to the compatibility list.
4. Corrected «table-7» for LED GPIO pins.
5. Fixed several typos.
6. Added some additional information about LDOs and Step-
Down converters.

7. Added short section on HDMI.

May 12, 2013 GC

continues on next page

224 Chapter 5. BeagleBone Black

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/beaglebone-black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.1 – continued from previous page
Rev Changes Date By
A5.5

1. Release of the A5B version.
2. The LEDS were dimmed by changing the resistors.
3. The serial termination mode was incorporated into the
PCB.

May 20, 2013 GC

A5.6
1. Added information on Rev A5C
2. Added PRU/ICSS options to tables for P8 and P9.
3. Added section on USB Host Correct modes on «table-15».
4. Fixed a few typos

June 16, 2013 GC

A5.7
1. Updated assembly revision to A6.
2. PCB change to add buffer to the reset line and ground the
oscillator GND pin.

3. Added resistor on PCB for connection of OSC_GND to
board GND.

August 9, 2013 GC

A6
1. Added Rev A6 changes.

October 11, 2013 GC

A6A
1. Added Rev A6A changes

December 17, 2013 GC

B
1. Changed the processor to the AM3358BZCZ

January 20, 2013 GC

C
1. Changed the eMMC from 2GB to 4GB.
2. Added additional supplier to DDR2 and eMMC.

March 21,2014 GC

C.1
1. Added note to recommend powering off the board with
the power

March 22, 2014 GC

C.2 Numerous community edits and format changes to asciidoc. May 6, 2020 JK
C.3 Added information for board rev C3. August 24, 2021 JK

5.2.2 Board Changes

Rev C3a

PCB revision C.

• New USB Type-A connector.

Rev C3

PCB revision C.

• Updated microSD card cage due to availability. See https://git.beagleboard.org/beagleboard/
beaglebone-black/-/issues/6. Added series resistors and depopulated C5.

5.2. Change History 225

https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/6
https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/6

BeagleBoard Docs, Release 1.0.20230711-wip

• Added reset option (GPIO1_8) for Ethernet PHY to avoid possible start-up issue. See https://git.
beagleboard.org/beagleboard/beaglebone-black/-/issues/4.

• Added series resistors to MMC1 lines and depopulated C24.

• Connected pin A6 of J5 on U13 (eMMC IC) to DGND.

• Changed USB1_VBUS series resistor to 0 ohm.

• Change required PCB revision to C.

Initial boxes mistakenly say rev C1.

Rev C2

PCB revision B6.

• Update memories based on availability. See https://github.com/beagleboard/beaglebone-black/commit/
74914bd01efeb61376ec3dda4bf9143ad2bb635c.

– DDR3:

∗ Kingston D2516EC4BXGGB-U

– eMMC:

∗ Kingston MMC04G-M627-X02U

Rev C1

PCB revision B6.

• Update memories based on availability. See https://github.com/beagleboard/beaglebone-black/commit/
5787736d816832cc8cc9629d19f334b6a12e67f9.

– DDR3:

∗ Micron MT41K256M16TW-107:P

– eMMC:

∗ Micron MTFC4GACAJCN-1M WT

∗ Kingston EMMC04G-S100-A08U

Rev C

• Changed the eMMC from 2GB to 4GB.

2GB devices are getting harder to get as they are being phased out. This required us to move to 4GB. We now
have two sources for the device. This will however, require an increase in the price of the board.

Rev B

• Changed the processor to the AM3358BZCZ100.

Rev A6A

• Added connection from 32KHz OSC_GND to system ground and changed C106 to 1uF.

• Changes C25 to 2.2uF. This resolved an issue we were seeing in a few boards where the board would not
boot in 1 in 20 tries.

• Change required PCB revision to B6.

226 Chapter 5. BeagleBone Black

https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/4
https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/4
https://github.com/beagleboard/beaglebone-black/commit/74914bd01efeb61376ec3dda4bf9143ad2bb635c
https://github.com/beagleboard/beaglebone-black/commit/74914bd01efeb61376ec3dda4bf9143ad2bb635c
https://github.com/beagleboard/beaglebone-black/commit/5787736d816832cc8cc9629d19f334b6a12e67f9
https://github.com/beagleboard/beaglebone-black/commit/5787736d816832cc8cc9629d19f334b6a12e67f9

BeagleBoard Docs, Release 1.0.20230711-wip

Rev A6

• In random instances there could be a glitch in the SYS_RESETn signal from the processor where the
SYS_RESETn signal was taken high for a momentary amount of time before it was supposed to. To
prevent this, the signal was ORed with the PORZn (Power On reset).

• Noise issues were observed in other design where the clock oscillator was getting hit due to a suspected
issue in ground bounce. A zero ohm resistor was added to connect the OSC_GND to the system ground.

There are no new features added as a result of these changes.

Rev A5C

We were seeing some fallout in production test where we were seeing some jitter on the HDMI display test. It
started showing up on our second production run. R46, R47, R48 were changed to 0 ohm from 33 ohm. R45
was taken from 330 ohm to 22 ohm.

We do not know of any boards that were shipped with this issue as this issue was caught in production test.
No impact on features or functionality resulted from this change.

Rev A5B

There is no operational difference between the Rev A5A and the Rev A5B. There were two changes made to
the A5B version.

• Due to complaints about the brightness of the LEDs keeping people awake at night, the LEDs were
dimmed. Resistors were changed from 820 ohms to 4.75K ohms.

• The PCB revision was updated to incorporate the hand mod that was being done on the board during
manufacturing. The resistor was incorporated into the next revision of the PCB.

The highest supported resolution is now listed as 1920x1080@24Hz. This was not a result of any hardware
changes but only updated software. The A5A version also supports this resolution.

Rev A5A

This is the initial production release of the board. We will be tracking changes from this point forward.

5.3 Connecting Up Your BeagleBone Black

This section provides instructions on how to hook up your board. Two scenarios will be discussed:

1. Tethered to a PC and

2. As a standalone development platform in a desktop PC configuration.

5.3.1 What’s In the Box

In the box you will find three main items as shown in «figure-1».

• BeagleBone Black

• miniUSB to USB Type A Cable

• Instruction card with link to the support WIKI address.

This is sufficient for the tethered scenario and creates an out of box experience where the board can be used
immediately with no other equipment needed.

5.3. Connecting Up Your BeagleBone Black 227

mailto:1920x1080@24Hz

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.1: In the Box

5.3.2 Main Connection Scenarios

This section will describe how to connect the board for use. This section is basically a slightly more detailed
description of the Quick Start Guide that came in the box. There is also a Quick Start Guide document on the
board that should also be referred to. The intent here is that someone looking to purchase the board will be
able to read this section and get a good idea as to what the initial set up will be like.

The board can be configured in several different ways, but we will discuss the two most common scenarios as
described in the Quick Start Guide card that comes in the box.

• Tethered to a PC via the USB cable

– Board is accessed as a storage drive

– Or a RNDIS Ethernet connection.

• Standalone desktop

– Display

– Keyboard and mouse

– External 5V power supply

Each of these configurations is discussed in general terms in the following sections.

For an up-to-date list of confirmed working accessories please go to BeagleBone_Black_Accessories

5.3.3 Tethered To A PC

In this configuration, the board is powered by the PC via the provided USB cable–no other cables are required.
The board is accessed either as a USB storage drive or via the browser on the PC. You need to use either Firefox
or Chrome on the PC, Internet Explorer will not work properly. «figure-2» shows this configuration.

All the power for the board is provided by the PC via the USB cable. In some instances, the PC may not be able
to supply sufficient power for the board. In that case, an external 5VDC power supply can be used, but this
should rarely be necessary.

228 Chapter 5. BeagleBone Black

https://elinux.org/Beagleboard:BeagleBone_Black_Accessories

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.2: Tethered Configuration

Connect the Cable to the Board

1. Connect the small connector on the USB cable to the board as shown in figure-3. The connector is on
the bottom side of the board.

Fig. 5.3: USB Connection to the Board

2. Connect the large connector of the USB cable to your PC or laptop USB port.

3. The board will power on and the power LED will be on as shown in figure below.

4. When the board starts to the booting process started by the process of applying power, the LEDs will
come on in sequence as shown in figure-5 below. It will take a few seconds for the status LEDs to come
on, so be patient. The LEDs will be flashing in an erratic manner as it begins to boot the Linux kernel.

Accessing the Board as a Storage Drive

The board will appear around a USB Storage drive on your PC after the kernel has booted, which will take around
10 seconds. The kernel on the board needs to boot before the port gets enumerated. Once the board appears
as a storage drive, do the following:

1. Open the USB Drive folder.

2. Click on the file named start.htm

3. The file will be opened by your browser on the PC and you should get a display showing the Quick Start
Guide.

4. Your board is now operational! Follow the instructions on your PC screen.

5.3. Connecting Up Your BeagleBone Black 229

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.4: Board Power LED

Fig. 5.5: Board Boot Status

230 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

5.3.4 Standalone w/Display and Keyboard/Mouse

In this configuration, the board works more like a PC, totally free from any connection to a PC as shown in
«figure-6». It allows you to create your code to make the board do whatever you need it to do. It will however
require certain common PC accessories. These accessories and instructions are described in the following
section.

Fig. 5.6: Desktop Configuration

Optionally an Ethernet cable can also be used for network access.

Required Accessories

In order to use the board in this configuration, you will need the following accessories:

• 1 x 5VDC 1A power supply

• 1 x HDMI monitor or a DVI-D monitor. (NOTE: Only HDMI will give you audio capability).

• 1 x Micro HDMI to HDMI cable or a Micro HDMI to DVI-D adapter.

• 1 x USB wireless keyboard and mouse combo.

• 1 x USB HUB (OPTIONAL). The board has only one USB host port, so you may need to use a USB Hub if
your keyboard and mouse requires two ports.

For an up-to-date list of confirmed working accessories please go to BeagleBone_Black_Accessories

Connecting Up the Board

1. Connect the big end of the HDMI cable as shown in figure-7 to your HDMI monitor. Refer to your monitor
Owner’s Manual for the location of your HDMI port. If you have a DVI-D Monitor go to Step 3, otherwise
proceed to Step 4 .

5.3. Connecting Up Your BeagleBone Black 231

https://elinux.org/Beagleboard:BeagleBone_Black_Accessories

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.7: Connect microHDMI Cable to the Monitor

2. If you have a DVI-D monitor you must use a DVI-D to HDMI adapter in addition to your HDMI cable. An
example is shown in figure-8 below from two perspectives. If you use this configuration, you will not
have audio support.

Fig. 5.8: DVI-D to HDMI Adapter

3. If you have a single wireless keyboard and mouse combination such as seen in figure-9 below, you need
to plug the receiver in the USB host port of the board as shown in figure-10 .

Fig. 5.9: Wireless Keyboard and Mouse Combo

If you have a wired USB keyboard requiring two USB ports, you will need a HUB similar to the ones shown in
figure below . You may want to have more than one port for other devices. Note that the board can only supply
up to 500mA, so if you plan to load it down, it will need to be externally powered.

4. Connect the Ethernet Cable

If you decide you want to connect to your local area network, an Ethernet cable can be used. Connect the
Ethernet Cable to the Ethernet port as shown in figure below . Any standard 100M Ethernet cable should work.

5. The final step is to plug in the DC power supply to the DC power jack as shown in figure below.

6. The cable needed to connect to your display is a microHDMI to HDMI. Connect the microHDMI connector
end to the board at this time. The connector is on the bottom side of the board as shown in figure-14
below.

The connector is fairly robust, but we suggest that you not use the cable as a leash for your Beagle. Take
proper care not to put too much stress on the connector or cable.

232 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.10: Connect Keyboard and Mouse Receiver to the Board

Fig. 5.11: Keyboard and Mouse Hubs

Fig. 5.12: Ethernet Cable Connection

5.3. Connecting Up Your BeagleBone Black 233

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.13: External DC Power

Fig. 5.14: Connect microHDMI Cable to the Board

234 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

7. Booting the Board

As soon as the power is applied to the board, it will start the booting up process. When the board starts to boot
the LEDs will come on in sequence as shown in figure-15 below. It will take a few seconds for the status LEDs
to come on, so be patient. The LEDs will be flashing in an erratic manner as it boots the Linux kernel.

Fig. 5.15: Board Boot Status

While the four user LEDs can be overwritten and used as desired, they do have specific meanings in the image
that is shipped with the board once the Linux kernel has booted.

• USER0 is the heartbeat indicator from the Linux kernel.

• USER1 turns on when the microSD card is being accessed

• USER2 is an activity indicator. It turns on when the kernel is not in the idle loop.

• USER3 turns on when the onboard eMMC is being accessed.

8. A Booted System

a. The board will have a mouse pointer appear on the screen as it enters the Linux boot step. You may
have to move the physical mouse to get the mouse pointer to appear. The system can come up in
the suspend mode with the HDMI port in a sleep mode.

b. After a minute or two a login screen will appear. You do not have to do anything at this point.

c. After a minute or two the desktop will appear. It should be similar to the one shown in figure-1.
HOWEVER, it will change from one release to the next, so do not expect your system to look exactly
like the one in the figure, but it will be very similar.

d. And at this point you are ready to go! figure-16 shows the desktop after booting.

9. Powering Down

A. Press the power button momentarily.

B. The system will power down automatically.

C. Remove the power jack.

5.4 BeagleBone Black Overview

The BeagleBone Black is the latest addition to the BeagleBoard.org family and like its predecessors, is designed
to address the Open Source Community, early adopters, and anyone interested in a low cost ARM Cortex-A8
based processor.

5.4. BeagleBone Black Overview 235

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.16: Desktop Screen

It has been equipped with a minimum set of features to allow the user to experience the power of the processor
and is not intended as a full development platform as many of the features and interfaces supplied by the
processor are not accessible from the BeagleBone Black via onboard support of some interfaces. It is not a
complete product designed to do any particular function. It is a foundation for experimentation and learning
how to program the processor and to access the peripherals by the creation of your own software and hardware.

It also offers access to many of the interfaces and allows for the use of add-on boards called capes, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

BeagleBone Black is manufactured and warranted by partners listed at https://beagleboard.org/logo for the
benefit of the community and its supporters.

Jason Kridner of Texas Instruments handles the community promotions and is the spokesman for Beagle-
Board.org.

The board is designed by Gerald Coley of EmProDesign, a charter member of the BeagleBoard.org community.

The PCB layout up through PCB revision B was done by Circuitco and Circuitco is the sole funder of its devel-
opment and transition to production. Later PCB revisions have been made by Embest, a subsidiary of Avent.

The Software is written and supported by the thousands of community members, including Jason Kridner,
employee of Texas Instruments, and Robert Nelson, employee of DigiKey.

5.4.1 BeagleBone Compatibility

The board is intended to be compatible with the original BeagleBone as much as possible. There are several
areas where there are differences between the two designs. These differences are listed below, along with the
reasons for the differences.

• Sitara AM3358BZCZ100, 1GHZ, processor.

– Sorry, we just had to make it faster.

• 512MB DDR3L

– Cost reduction

– Performance boost

– Memory size increase

– Lower power

236 Chapter 5. BeagleBone Black

https://beagleboard.org/logo

BeagleBoard Docs, Release 1.0.20230711-wip

• No Serial port by default

– Cost reduction

– Can be added by buying a TTL to USB Cable that is widely available

– Single largest cost reduction action taken

• No JTAG emulation over USB

– Cost reduction JTAG header is not populated, but can easily be mounted.

– EEPROM Reduced from 32KB to 4KB

– Cost Reduction

• Onboard Managed NAND (eMMC)

– 4GB

– Cost reduction

– Performance boost x8 vs. x4 bits

– Performance boost due to deterministic properties vs. microSD card

• GPMC bus may not be accessible from the expansion headers in some cases

– Result of eMMC on the main board

– Signals are still routed to the expansion connector

– If eMMC is not used, signals can be used via expansion if eMMC is held in reset

• There may be 10 less GPIO pins available

– Result of eMMC

– If eMMC is not used, could still be used

• The power expansion header, for battery and backlight, has been removed

– _*Cost reduction* , space reduction

– Four pins were added to provide access to the battery charger function.

• HDMI interface onboard

– Feature addition

– Audio and video capable

– Micro HDMI

• No three function USB cable

– Cost reduction

• GPIO3_21 has a 24.576 MHZ clock on it.

– This is required by the HDMI Framer for Audio purposes. We needed to run a clock into the processor
to generate the correct clock frequency. The pin on the processor was already routed to the expan-
sion header. In order not to remove this feature on the expansion header, it was left connected. In
order to use the pin as a GPIO pin, you need to disable the clock. While this disables audio to the
HDMI, the fact that you want to use this pin for something else, does the same thing.

5.4.2 BeagleBone Black Features and Specification

This section covers the specifications and features of the board and provides a high level description of the
major components and interfaces that make up the board. table below provides a list of the features.

5.4. BeagleBone Black Overview 237

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.2: BeagleBone Black Features
Feature

Processor Sitara AM3358BZCZ100 1GHz, 2000 MIPS
Graphics Engine SGX530 3D, 20M Polygons/S
SDRAM Memory 512MB DDR3L 800MHZ
Onboard Flash 4GB, 8bit Embedded MMC
PMIC TPS65217C PMIC regulator and one additional LDO.
Debug Support Optional Onboard 20-pin CTI JTAG, Serial Header
Power Source miniUSB USB or DC Jack
PCB 3.4” x 2.1”
Indicators 1-Power, 2-Ethernet, 4-User Controllable LEDs
HS USB 2.0
Client Port

Access to USB0, Client mode via miniUSB

HS USB 2.0 Host
Port

Access to USB1, Type A Socket, 500mA LS/FS/HS

Serial Port UART0 access via 6 pin 3.3V TTL Header. Header is populated
Ethernet 10/100, RJ45
SD/MMC Connec-
tor

microSD , 3.3V

User Input
1. Reset Button
2. Boot Button
3. Power Button

Video Out
1. 16b HDMI, 1280x1024 (MAX)
2. 1024x768,1280x720,1440x900 ,1920x1080@24Hz w/EDID Support

Audio Via HDMI Interface, Stereo
Expansion Con-
nectors 1. Power 5V, 3.3V , VDD_ADC(1.8V)

2. 3.3V I/O on all signals
3. McASP0, SPI1, I2C, GPIO(69 max), LCD, GPMC, MMC1, MMC2, 7
4. AIN _(1.8V MAX)_, 4 Timers, 4 Serial Ports, CAN0,
5. EHRPWM(0,2),XDMA Interrupt, Power button, Expansion Board ID (Up to 4 can
be stacked)

Weight 1.4 oz (39.68 grams)
Power Refer to section-6-1-7

5.4.3 Board Component Locations

This section describes the key components on the board. It provides information on their location and function.
Familiarize yourself with the various components on the board.

Connectors, LEDs, and Switches

figure below shows the locations of the connectors, LEDs, and switches on the PCB layout of the board.

• DC Power is the main DC input that accepts 5V power.

• Power Button alerts the processor to initiate the power down sequence and is used to power down the
board.

• 10/100 Ethernet is the connection to the LAN.

• Serial Debug is the serial debug port.

238 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.17: Connectors, LEDs and Switches

• USB Client is a miniUSB connection to a PC that can also power the board.

• BOOT switch can be used to force a boot from the microSD card if the power is cycled on the board,
removing power and reapplying the power to the board..

• There are four blue LED’s that can be used by the user.

• Reset Button allows the user to reset the processor.

• microSD slot is where a microSD card can be installed.

• microHDMI connector is where the display is connected to.

• USB Host can be connected different USB interfaces such as Wi-Fi, BT, Keyboard, etc.

Key Components

figure below shows the locations of the key components on the PCB layout of the board.

• Sitara AM3358BZCZ100 is the processor for the board.

• Micron 512MB DDR3L or**Kingston 512mB DDR3** is the Dual Data Rate RAM memory.

• TPS65217C PMIC provides the power rails to the various components on the board.

• SMSC Ethernet PHY is the physical interface to the network.

• Micron eMMC is an onboard MMC chip that holds up to 4GB of data.

• HDMI Framer provides control for an HDMI or DVI-D display with an adapter.

5.5 BeagleBone Black High Level Specification

This section provides the high level specification of the BeagleBone Black.

5.5. BeagleBone Black High Level Specification 239

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.18: Key Components

5.5.1 Block Diagram

5.5.2 Processor

The revision B and later boards have moved to the Sitara AM3358BZCZ100 device.

5.5.3 Memory

Described in the following sections are the three memory devices found on the board.

512MB DDR3L

A single 256Mb x16 DDR3L 4Gb (512MB) memory device is used. The memory used is one of two devices:

• MT41K256M16HA-125 from Micron

• D2516EC4BXGGB from Kingston

It will operate at a clock frequency of 400MHz yielding an effective rate of 800MHZ on the DDR3L bus allowing
for 1.6GB/S of DDR3L memory bandwidth.

4KB EEPROM

A single 4KB EEPROM is provided on I2C0 that holds the board information. This information includes board
name, serial number, and revision information. This is the not the same as the one used on the original
BeagleBone. The device was changed for cost reduction reasons. It has a test point to allow the device to be
programmed and otherwise to provide write protection when not grounded.

240 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.19: BeagleBone Black Key Components

5.5. BeagleBone Black High Level Specification 241

BeagleBoard Docs, Release 1.0.20230711-wip

4GB Embedded MMC

A single 4GB embedded MMC (eMMC) device is on the board. The device connects to the MMC1 port of the
processor, allowing for 8bit wide access. Default boot mode for the board will be MMC1 with an option to
change it to MMC0, the SD card slot, for booting from the SD card as a result of removing and reapplying the
power to the board. Simply pressing the reset button will not change the boot mode. MMC0 cannot be used
in 8Bit mode because the lower data pins are located on the pins used by the Ethernet port. This does not
interfere with SD card operation but it does make it unsuitable for use as an eMMC port if the 8 bit feature is
needed.

MicroSD Connector

The board is equipped with a single microSD connector to act as the secondary boot source for the board and,
if selected as such, can be the primary boot source. The connector will support larger capacity microSD cards.
The microSD card is not provided with the board. Booting from MMC0 will be used to flash the eMMC in the
production environment or can be used by the user to update the SW as needed.

Boot Modes

As mentioned earlier, there are four boot modes:

• eMMC Boot: This is the default boot mode and will allow for the fastest boot time and will enable the
board to boot out of the box using the pre-flashed OS image without having to purchase an microSD card
or an microSD card writer.

• SD Boot: This mode will boot from the microSD slot. This mode can be used to override what is on the
eMMC device and can be used to program the eMMC when used in the manufacturing process or for field
updates.

• Serial BooT: This mode will use the serial port to allow downloading of the software direct. A separate
USB to serial cable is required to use this port.

• USB Boot: This mode supports booting over the USB port.

Software to support USB and serial boot modes is not provided by beagleboard.org.Please contact TI for support
of this feature.

A switch is provided to allow switching between the modes.

• Holding the boot switch down during a removal and reapplication of power without a microSD card in-
serted will force the boot source to be the USB port and if nothing is detected on the USB client port, it
will go to the serial port for download.

• Without holding the switch, the board will boot try to boot from the eMMC. If it is empty, then it will try
booting from the microSD slot, followed by the serial port, and then the USB port.

• If you hold the boot switch down during the removal and reapplication of power to the board, and you
have a microSD card inserted with a bootable image, the board will boot from the microSD card.

NOTE: Pressing the RESET button on the board will NOT result in a change of the_ _boot mode. You MUST
remove power and reapply power to change the boot mode.The boot pins are sampled during power on reset
from the PMIC to the processor.The reset button on the board is a warm reset only and will not force a boot
mode change.

5.5.4 Power Management

The TPS65217C power management device is used along with a separate LDO to provide power to the system.
The**TPS65217C** version provides for the proper voltages required for the DDR3L. This is the same device
as used on the original BeagleBone with the exception of the power rail configuration settings which will be
changed in the internal EEPROM to the TPS65217C to support the new voltages.

242 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

DDR3L requires 1.5V instead of 1.8V on the DDR2 as is the case on the original BeagleBone. The 1.8V regulator
setting has been changed to 1.5V for the DDR3L. The LDO3 3.3V rail has been changed to 1.8V to support those
rails on the processor. LDO4 is still 3.3V for the 3.3V rails on the processor. An external LDOTLV70233 provides
the 3.3V rail for the rest of the board.

5.5.5 PC USB Interface

The board has a miniUSB connector that connects the USB0 port to the processor. This is the same connector
as used on the original BeagleBone.

5.5.6 Serial Debug Port

Serial debug is provided via UART0 on the processor via a single 1x6 pin header. In order to use the interface
a USB to TTL adapter will be required. The header is compatible with the one provided by FTDI and can
be purchased for about $$12 to $$20 from various sources. Signals supported are TX and RX. None of the
handshake signals are supported.

5.5.7 USB1 Host Port

On the board is a single USB Type A female connector with full LS/FS/HS Host support that connects to USB1 on
the processor. The port can provide power on/off control and up to 500mA of current at 5V. Under USB power,
the board will not be able to supply the full 500mA, but should be sufficient to supply enough current for a
lower power USB device supplying power between 50 to 100mA.

You can use a wireless keyboard/mouse configuration or you can add a HUB for standard keyboard and mouse
interfacing.

5.5.8 Power Sources

The board can be powered from four different sources:

• A USB port on a PC

• A 5VDC 1A power supply plugged into the DC connector.

• A power supply with a USB connector.

• Expansion connectors

The USB cable is shipped with each board. This port is limited to 500mA by the Power Management IC. It is
possible to change the settings in the TPS65217C to increase this current, but only after the initial boot. And,
at that point the PC most likely will complain, but you can also use a dual connector USB cable to the PC to get
to 1A.

The power supply is not provided with the board but can be easily obtained from numerous sources. A 1A
supply is sufficient to power the board, but if there is a cape plugged into the board or you have a power
hungry device or hub plugged into the host port, then more current may needed from the DC supply.

Power routed to the board via the expansion header could be provided from power derived on a cape. The DC
supply should be well regulated and 5V +/-.25V.

5.5.9 Reset Button

When pressed and released, causes a reset of the board. The reset button used on the BeagleBone Black is a
little larger than the one used on the original BeagleBone. It has also been moved out to the edge of the board
so that it is more accessible.

5.5. BeagleBone Black High Level Specification 243

BeagleBoard Docs, Release 1.0.20230711-wip

5.5.10 Power Button

A power button is provided near the reset button close to the Ethernet connector. This button takes advantage
of the input to the PMIC for power down features. While a lot of capes have a button, it was decided to add this
feature to the board to ensure everyone had access to some new features. These features include:

• Interrupt is sent to the processor to facilitate an orderly shutdown to save files and to un-mount drives.

• Provides ability to let processor put board into a sleep mode to save power.

• Can alert processor to wake up from sleep mode and restore state before sleep was entered.

If you hold the button down longer than 8 seconds, the board will power off if you release the button when the
power LED turns off. If you continue to hold it, the board will power back up completing a power cycle.

We recommend that you use this method to power down the board. It will also help prevent contamination of
the SD card or the eMMC.

If you do not remove the power jack, you can press the button again and the board will power up.

5.5.11 Indicators

There are a total of five blue LEDs on the board.

• One blue power LED indicates that power is applied and the power management IC is up. If this LED
flashes when applying power, it means that an excess current flow was detected and the PMIC has shut
down.

• Four blue LEDs that can be controlled via the SW by setting GPIO pins.

In addition, there are two LEDs on the RJ45 to provide Ethernet status indication. One is yellow (100M Link up
if on) and the other is green (Indicating traffic when flashing).

5.5.12 CTI JTAG Header

A place for an optional 20 pin CTI JTAG header is provided on the board to facilitate the SW development and
debugging of the board by using various JTAG emulators. This header is not supplied standard on the board.
To use this, a connector will need to be soldered onto the board.

If you need the JTAG connector you can solder it on yourself. No other components are needed. The connector is
made by Samtec and the part number is FTR-110-03-G-D-06. You can purchase it from http://www.digikey.com/

5.5.13 HDMI Interface

A single HDMI interface is connected to the 16 bit LCD interface on the processor. The 16b interface was used
to preserve as many expansion pins as possible to allow for use by the user. The NXP TDA19988BHN is used
to convert the LCD interface to HDMI and convert the audio as well. The signals are still connected to the
expansion headers to enable the use of LCD expansion boards or access to other functions on the board as
needed.

The HDMI device does not support HDCP copy protection. Support is provided via EDID to allow the SW to
identify the compatible resolutions. Currently the following resolutions are supported via the software:

• 1280 x 1024

• 1440 x 900

• 1024 x 768

• 1280 x 720

244 Chapter 5. BeagleBone Black

http://www.digikey.com

BeagleBoard Docs, Release 1.0.20230711-wip

5.5.14 Cape Board Support

The BeagleBone Black has the ability to accept up to four expansion boards or capes that can be stacked onto
the expansion headers. The word cape comes from the shape of the board as it is fitted around the Ethernet
connector on the main board. This notch acts as a key to ensure proper orientation of the cape.

The majority of capes designed for the original BeagleBone will work on the BeagleBone Black. The two main
expansion headers will be populated on the board. There are a few exceptions where certain capabilities may
not be present or are limited to the BeagleBone Black. These include:

• GPMC bus may NOT be available due to the use of those signals by the eMMC. If the eMMC is used for
booting only and the file system is on the microSD card, then these signals could be used.

• Another option is to use the microSD or serial boot modes and not use the eMMC.

• The power expansion header is not on the BeagleBone Black so those functions are not supported.

For more information on cape support refer to BeagleBone Black Mechanical section.

5.6 Detailed Hardware Design

This section provides a detailed description of the Hardware design. This can be useful for interfacing, writing
drivers, or using it to help modify specifics of your own design.

Fig. 5.20: BeagleBone Black Block Diagram

5.6. Detailed Hardware Design 245

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.21: High Level Power Block Diagram

5.6.1 Power Section

This section describes the power section of the design and all the functions performed by the TPS65217C.

TPS65217C PMIC

The main Power Management IC (PMIC) in the system is the TPS65217C which is a single chip power man-
agement IC consisting of a linear dual-input power path, three step-down converters, and four LDOs. LDO
stands for Low Drop Out. If you want to know more about an LDO, you can go to http://en.wikipedia.org/wiki/
Low-dropout_regulator .If you want to learn more about step-down converters, you can go to

http://en.wikipedia.org/wiki/DC-to-DC_converter

The system is supplied by a USB port or DC adapter. Three high-efficiency 2.25MHz step-down converters are
targeted at providing the core voltage, MPU, and memory voltage for the board.

The step-down converters enter a low power mode at light load for maximum efficiency across the widest
possible range of load currents. For low-noise applications the devices can be forced into fixed frequency PWM
using the I2C interface. The step-down converters allow the use of small inductors and capacitors to achieve
a small footprint solution size.

LDO1 and LDO2 are intended to support system standby mode. In normal operation, they can support up to
100mA each. LDO3 and LDO4 can support up to 285mA each.

By default only LDO1 is always ON but any rail can be configured to remain up in SLEEP state. In particular the
DCDC converters can remain up in a low-power PFMmode to support processor suspendmode. The TPS65217C
offers flexible power-up and power-down sequencing and several house-keeping functions such as power-good
output, pushbutton monitor, hardware reset function and temperature sensor to protect the battery.

For more information on the TPS65217C, refer to http://www.ti.com/product/tps65217C

DC Input

A 5VDC supply can be used to provide power to the board. The power supply current depends on how many
and what type of add-on boards are connected to the board. For typical use, a 5VDC supply rated at 1A should
be sufficient. If heavier use of the expansion headers or USB host port is expected, then a higher current supply
will be required.

246 Chapter 5. BeagleBone Black

http://en.wikipedia.org/wiki/Low-dropout_regulator
http://en.wikipedia.org/wiki/Low-dropout_regulator
http://en.wikipedia.org/wiki/DC-to-DC_converter
http://www.ti.com/product/tps65217C

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.22: TPS65217C Block Diagram

5.6. Detailed Hardware Design 247

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.23: TPS65217 DC Connection

The connector used is a 2.1MM center positive x 5.5mm outer barrel. The 5VDC rail is connected to the
expansion header. It is possible to power the board via the expansion headers from an add-on card. The 5VDC
is also available for use by the add-on cards when the power is supplied by the 5VDC jack on the board.

USB Power

The board can also be powered from the USB port. A typical USB port is limited to 500mA max. When powering
from the USB port, the VDD_5V rail is not provided to the expansion headers, so capes that require the 5V rail
to supply the cape direct, bypassing the TPS65217C, will not have that rail available for use. The 5VDC supply
from the USB port is provided on the SYS_5V, the one that comes from the**TPS65217C**, rail of the expansion
header for use by a cape. Figure 24 is the connection of the USB power input on the PMIC.

Power Selection

The selection of either the 5VDC or the USB as the power source is handled internally to the TPS65217C and
automatically switches to 5VDC power if both are connected. SW can change the power configuration via the
I2C interface from the processor. In addition, the SW can read the**TPS65217C** and determine if the board
is running on the 5VDC input or the USB input. This can be beneficial to know the capability of the board to
supply current for things like operating frequency and expansion cards.

It is possible to power the board from the USB input and then connect the DC power supply. The board will
switch over automatically to the DC input.

Power Button

A power button is connected to the input of the TPS65217C. This is a momentary switch, the same type of
switch used for reset and boot selection on the board.

248 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.24: USB Power Connections

5.6. Detailed Hardware Design 249

BeagleBoard Docs, Release 1.0.20230711-wip

If you push the button the TPS65217C will send an interrupt to the processor. It is up to the processor to then
pull the**PMIC_POWER_EN** pin low at the correct time to power down the board. At this point, the PMIC is
still active, assuming that the power input was not removed. Pressing the power button will cause the board
to power up again if the processor puts the board in the power off mode.

In power off mode, the RTC rail is still active, keeping the RTC powered and running off the main power input. If
you remove that power, then the RTC will not be powered. You also have the option of using the battery holes
on the board to connect a battery if desired as discussed in the next section.

If you push and hold the button for greater than 8 seconds, the PMIC will power down. But you must release
the button when the power LED turns off. Holding the button past that point will cause the board to power
cycle.

Battery Access Pads

Four pads are provided on the board to allow access to the battery pins on the TPS65217C. The pads can be
loaded with a 4x4 header or you may just wire a battery into the pads. In addition they could provide access
via a cape if desired. The four signals are listed below in table-3 .

Table 5.3: BeagleBone Black Battery Pins
PIN DESIGNA-

TION
FUNCTION

BAT TP5 Battery connection point
SENSE TP6 Battery voltage sense input, connect to BAT directly at the battery termi-

nal.
TS TP7 Temperature sense input. Connect to NTC thermistor to sense battery tem-

perature.
GND TP8 System ground.

There is no fuel gauge function provided by the TPS65217C. That would need to be added if that function was
required. If you want to add a fuel gauge, an option is to use 1-wire SPI or I2C device. You will need to add this
using the expansion headers and place it on an expansion board.

NOTE: Refer to the TPS65217C documentation + before connecting anything to these pins.

Power Consumption

The power consumption of the board varies based on power scenarios and the board boot processes. Measure-
ments were taken with the board in the following configuration:

• DC powered and USB powered

• HDMI monitor connected

• USB HUB

• 4GB USB flash drive

• Ethernet connected @ 100M

• Serial debug cable connected

Table 5.4: BeagleBone Black Power Consumption(mA@5V)
MODE USB DC DC+USB
Reset TBD TBD TBD
Idling @ UBoot 210 210 210
Kernel Booting (Peak) 460 460 460
Kernel Idling 350 350 350
Kernel Idling Display Blank 280 280 280

continues on next page

250 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.4 – continued from previous page
MODE USB DC DC+USB
Loading a Webpage 430 430 430

The current will fluctuate as various activates occur, such as the LEDs on and microSD/eMMC accesses.

Processor Interfaces

The processor interacts with the TPS65217C via several different signals. Each of these signals is described
below.

I2C0

I2C0 is the control interface between the processor and the TPS65217C. It allows the processor to control the
registers inside the TPS65217C for such things as voltage scaling and switching of the input rails.

PMIC_POWR_EN

On power up the VDD_RTC rail activates first. After the RTC circuitry in the processor has activated it instructs
the**TPS65217C** to initiate a full power up cycle by activating the PMIC_POWR_EN signal by taking it HI. When
powering down, the processor can take this pin low to start the power down process.

LDO_GOOD

This signal connects to the RTC_PORZn signal, RTC power on reset. The small n indicates that the signal is an
active low signal. Word processors seem to be unable to put a bar over a word so the **n* is commonly used
in electronics. As the RTC circuitry comes up first, this signal indicates that the LDOs, the 1.8V VRTC rail, is up
and stable. This starts the power up process.

PMIC_PGOOD

Once all the rails are up, the PMIC_PGOOD signal goes high. This releases the PORZn signal on the processor
which was holding the processor reset.

WAKEUP

The WAKEUP signal from the TPS65217C is connected to the EXT_WAKEUP signal on the processor. This is
used to wake up the processor when it is in a sleep mode. When an event is detected by the TPS65217C, such
as the power button being pressed, it generates this signal.

PMIC_INT

The PMIC_INT signal is an interrupt signal to the processor. Pressing the power button will send an interrupt to
the processor allowing it to implement a power down mode in an orderly fashion, go into sleep mode, or cause
it to wake up from a sleep mode. All of these require SW support.

Power Rails

VRTC Rail

The VRTC rail is a 1.8V rail that is the first rail to come up in the power sequencing. It provides power to the
RTC domain on the processor and the I/O rail of the TPS65217C. It can deliver up to 250mA maximum.

VDD_3V3A Rail

The VDD_3V3A rail is supplied by the TPS65217C and provides the 3.3V for the processor rails and can provide
up to 400mA.

VDD_3V3B Rail

The current supplied by the VDD_3V3A rail is not sufficient to power all of the 3.3V rails on the board. So a
second LDO is supplied, U4, a TL5209A, which sources the VDD_3V3B rail. It is powered up just after the
VDD_3V3A rail.

VDD_1V8 Rail

5.6. Detailed Hardware Design 251

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.25: Power Rails

252 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

The VDD_1V8 rail can deliver up to 400mA and provides the power required for the 1.8V rails on the processor
and the HDMI framer. This rail is not accessible for use anywhere else on the board.

VDD_CORE Rail

The VDD_CORE rail can deliver up to 1.2A at 1.1V. This rail is not accessible for use anywhere else on the board
and connects only to the processor. This rail is fixed at 1.1V and should not be adjusted by SW using the PMIC.
If you do, then the processor will no longer work.

VDD_MPU Rail

The VDD_MPU rail can deliver up to 1.2A. This rail is not accessible for use anywhere else on the board and
connects only to the processor. This rail defaults to 1.1V and can be scaled up to allow for higher frequency
operation. Changing of the voltage is set via the I2C interface from the processor.

VDDS_DDR Rail

The VDDS_DDR rail defaults to**1.5V** to support the DDR3L rails and can deliver up to 1.2A. It is possible to
adjust this voltage rail down to 1.35V for lower power operation of the DDR3L device. Only DDR3L devices can
support this voltage setting of 1.35V.

Power Sequencing

The power up process is consists of several stages and events. figure-26 describes the events that make up
the power up process for the processor from the PMIC. This diagram is used elsewhere to convey additional
information. I saw no need to bust it up into smaller diagrams. It is from the processor datasheet supplied by
Texas Instruments.

Fig. 5.26: Power Rail Power Up Sequencing

figure-27 the voltage rail sequencing for the TPS65217C as it powers up and the voltages on each rail. The
power sequencing starts at 15 and then goes to one. That is the way the TPS65217C is configured. You can
refer to the TPS65217C datasheet for more information.

5.6. Detailed Hardware Design 253

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.27: TPS65217C Power Sequencing Timing

Power LED

The power LED is a blue LED that will turn on once the TPS65217C has finished the power up procedure. If you
ever see the LED flash once, that means that the**TPS65217C** started the process and encountered an issue
that caused it to shut down. The connection of the LED is shown in figure-25.

TPS65217C Power Up Process

Figure below shows the interface between the TPS65217C and the processor. It is a cut from the PDF form of
the schematic and reflects what is on the schematic.

Fig. 5.28: Power Processor Interfaces

When voltage is applied, DC or USB, the TPS65217C connects the power to the SYS output pin which drives
the switchers and LDOs in the TPS65217C.

At power up all switchers and LDOs are off except for the VRTC LDO (1.8V), which provides power to the VRTC
rail and controls the RTC_PORZn input pin to the processor, which starts the power up process of the processor.
Once the RTC rail powers up, the RTC_PORZn pin, driven by the LDO_PGOOD signal from the TPS65217C, of
the processor is released.

Once the RTC_PORZn reset is released, the processor starts the initialization process. After the RTC stabilizes,
the processor launches the rest of the power up process by activating the PMIC_POWER_EN signal that is
connected to the TPS65217C which starts the TPS65217C power up process.

The LDO_PGOOD signal is provided by the**TPS65217C** to the processor. As this signal is 1.8V from the
TPS65217C by virtue of the TPS65217C VIO rail being set to 1.8V, and the RTC_PORZ signal on the processor
is 3.3V, a voltage level shifter, U4, is used. Once the LDOs and switchers are up on the TPS65217C, this signal
goes active releasing the processor. The LDOs on the TPS65217C are used to power the VRTC rail on the
processor.

254 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Processor Control Interface

figure-28 above shows two interfaces between the processor and the TPS65217C used for control after the
power up sequence has completed.

The first is the I2C0 bus. This allows the processor to turn on and off rails and to set the voltage levels of each
regulator to supports such things as voltage scaling.

The second is the interrupt signal. This allows the TPS65217C to alert the processor when there is an event,
such as when the power button is pressed. The interrupt is an open drain output which makes it easy to
interface to 3.3V of the processor.

Low Power Mode Support

This section covers three general power down modes that are available. These modes are only described from
a Hardware perspective as it relates to the HW design.

RTC Only

In this mode all rails are turned off except the VDD_RTC. The processor will need to turn off all the rails to
enter this mode. The VDD_RTC staying on will keep the RTC active and provide for the wakeup interfaces to
be active to respond to a wake up event.

RTC Plus DDR

In this mode all rails are turned off except the VDD_RTC and the VDDS_DDR, which powers the DDR3L memory.
The processor will need to turn off all the rails to enter this mode. The VDD_RTC staying on will keep the RTC
active and provide for the wakeup interfaces to be active to respond to a wake up event.

The VDDS_DDR rail to the DDR3L is provided by the 1.5V rail of the TPS65217C and with VDDS_DDR active,
the DDR3L can be placed in a self refresh mode by the processor prior to power down which allows the memory
data to be saved.

Currently, this feature is not included in the standard software release. The plan is to include it in future
releases.

Voltage Scaling

For a mode where the lowest power is possible without going to sleep, this mode allows the voltage on the ARM
processor to be lowered along with slowing the processor frequency down. The I2C0 bus is used to control the
voltage scaling function in the TPS65217C.

5.6.2 Sitara AM3358BZCZ100 Processor

The board is designed to use the Sitara AM3358BZCZ100 processor in the 15 x 15 package. Earlier revisions
of the board used the XM3359AZCZ100 processor.

Description

Figure below shows is a high level block diagram of the processor. For more information on the processor, go
to http://www.ti.com/product/am3358

High Level Features

5.6. Detailed Hardware Design 255

http://www.ti.com/product/am3358

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.29: Sitara AM3358BZCZ Block Diagram

256 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.5: Processor Features
Operating Systems Linux, Android, Win-

dows Embedded
CE,QNX,ThreadX

MMC/SD 3

Standby Power 7 mW CAN 2
ARM CPU 1 ARM Cortex-A8 UART (SCI) 6
ARM MHz (Max.) 275,500,600,800,1000 ADC 8-ch 12-bit
ARM MIPS (Max.) 1000,1200,2000 PWM (Ch) 3
Graphics Acceleration 1 3D eCAP 3
Other Hardware Ac-
celeration

2 PRU-ICSS,Crypto Accelera-
tor

eQEP 3

On-Chip L1 Cache 64 KB (ARM Cortex-A8) RTC 1
On-Chip L2 Cache 256 KB (ARM Cortex- A8) I2C 3
Other On-Chip Mem-
ory

128 KB McASP 2

Display Options LCD SPI 2
General Purpose
Memory

1 16-bit (GPMC, NAND flash,
NOR Flash, SRAM)

DMA (Ch) 64-Ch EDMA

DRAM 1 16-bit (LPDDR-400,DDR2-
532, DDR3-400)

IO Supply (V) 1.8V(ADC), 3.3V

USB Ports 2 Operating Tempera-
ture Range (C)

40 to 90

Documentation

Full documentation for the processor can be found on the TI website at http://www.ti.com/product/am3358 for
the current processor used on the board. Make sure that you always use the latest datasheets and Technical
Reference Manuals (TRM).

Crystal Circuitry

Fig. 5.30: Processor Crystals

Reset Circuitry

figure-31 is the board reset circuitry. The initial power on reset is generated by the TPS65217C power man-
agement IC. It also handles the reset for the Real Time Clock.

5.6. Detailed Hardware Design 257

http://www.ti.com/product/am3358

BeagleBoard Docs, Release 1.0.20230711-wip

The board reset is the SYS_RESETn signal. This is connected to the NRESET_INOUT pin of the processor. This
pin can act as an input or an output. When the reset button is pressed, it sends a warm reset to the processor
and to the system.

On the revision A5D board, a change was made. On power up, the NRESET_INOUT signal can act as an output.
In this instance it can cause the SYS_RESETn line to go high prematurely. In order to prevent this, the PORZn
signal from the TPS65217C is connected to the SYS_RESETn line using an open drain buffer. These ensure that
the line does not momentarily go high on power up.

Fig. 5.31: Board Reset Circuitry

This change is also in all revisions after A5D.

DDR3L Memory

The BeagleBone Black uses a single MT41K256M16HA-125 512MB DDR3L device from Micron that interfaces
to the processor over 16 data lines, 16 address lines, and 14 control lines. On rev C we added the Kingston
KE4CN2H5A-A58 device as a source for the DDR3L device**.**

The following sections provide more details on the design.

Memory Device

The design supports the standard DDR3 and DDR3L x16 devices and is built using the DDR3L. A single x16
device is used on the board and there is no support for two x8 devices. The DDR3 devices work at 1.5V and
the DDR3L devices can work down to

1.35V to achieve lower power. The DDR3L comes in a 96-BALL FBGA package with 0.8 mil pitch. Other standard
DDR3 devices can also be supported, but the DDR3L is the lower power device and was chosen for its ability
to work at 1.5V or 1.35V. The standard frequency that the DDR3L is run at on the board is 400MHZ.

DDR3L Memory Design

figure-32 is the schematic for the DDR3L memory device. Each of the groups of signals is described in the
following lines.

Address Lines: Provide the row address for ACTIVATE commands, and the column address and auto pre-
charge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective

258 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank
(A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code
during a LOAD MODE command. Address inputs are referenced to VREFCA. A12/BC#: When enabled in the
mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop
(on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop).

Bank Address Lines: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command
is being applied. BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD
MODE command. BA[2:0] are referenced to VREFCA.

CK and CK# Lines: are differential clock inputs. All address and control input signals are sampled on the
crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced
to the crossings of CK and CK#.

Clock Enable Line: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks
on the DRAM. The specific circuitry that is enabled/disabled is dependent upon the DDR3 SDRAM configuration
and operating mode. Taking CKE LOW provides PRECHARGE power-down and SELF REFRESH operations (all
banks idle) or active power-down (row active in any bank). CKE is synchronous for powerdown entry and exit
and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE,
RESET#, and ODT) are disabled during powerdown. Input buffers (excluding CKE and RESET#) are disabled
during SELF REFRESH. CKE is referenced to VREFCA.

Fig. 5.32: DDR3L Memory Design

Chip Select Line: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All
commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with

5.6. Detailed Hardware Design 259

BeagleBoard Docs, Release 1.0.20230711-wip

multiple ranks. CS# is considered part of the command code. CS# is referenced to VREFCA.

Input Data Mask Line: DM is an input mask signal for write data. Input data is masked when DM is sampled
HIGH along with the input data during a write access. Although the DM ball is input-only, the DM loading is
designed to match that of the DQ and DQS balls. DM is referenced to VREFDQ.

On-die Termination Line: ODT enables (registered HIGH) and disables (registered LOW) termination resis-
tance internal to the DDR3L SDRAM. When enabled in normal operation, ODT is only applied to each of the
following balls: DQ[7:0], DQS, DQS#, and DM for the x8; DQ[3:0], DQS, DQS#, and DM for the x4. The ODT
input is ignored if disabled via the LOAD MODE command. ODT is referenced to VREFCA.

Power Rails

The DDR3L memory device and the DDR3 rails on the processor are supplied by the**TPS65217C**. Default
voltage is 1.5V but can be scaled down to 1.35V if desired.

VREF

The VREF signal is generated from a voltage divider on the**VDDS_DDR** rail that powers the processor DDR
rail and the DDR3L device itself. Figure 33 below shows the configuration of this signal and the connection to
the DDR3L memory device and the processor.

Fig. 5.33: DDR3L VREF Design

5.6.3 4GB eMMC Memory

The eMMC is a communication and mass data storage device that includes a Multi-MediaCard (MMC) interface,
a NAND Flash component, and a controller on an advanced 11-signal bus, which is compliant with the MMC
system specification. The nonvolatile eMMC draws no power to maintain stored data, delivers high performance
across a wide range of operating temperatures, and resists shock and vibration disruption.

One of the issues faced with SD cards is that across the different brands and even within the same brand, per-
formance can vary. Cards use different controllers and different memories, all of which can have bad locations
that the controller handles. But the controllers may be optimized for reads or writes. You never know what you
will be getting. This can lead to varying rates of performance. The eMMC card is a known controller and when
coupled with the 8bit mode, 8 bits of data instead of 4, you get double the performance which should result in
quicker boot times.

The following sections describe the design and device that is used on the board to implement this interface.

260 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

eMMC Device

The device used is one of two different devices:

• Micron MTFC4GLDEA 0M WT

• Kingston KE4CN2H5A-A58

The package is a 153 ball WFBGA device on both devices.

eMMC Circuit Design

figure-34 is the design of the eMMC circuitry. The eMMC device is connected to the MMC1 port on the processor.
MMC0 is still used for the microSD card as is currently done on the original BeagleBone. The size of the eMMC
supplied is now 4GB.

The device runs at 3.3V both internally and the external I/O rails. The VCCI is an internal voltage rail to the
device. The manufacturer recommends that a 1uF capacitor be attached to this rail, but a 2.2uF was chosen
to provide a little margin.

Pullup resistors are used to increase the rise time on the signals to compensate for any capacitance on the
board.

Fig. 5.34: eMMC Memory Design

The pins used by the eMMC1 in the boot mode are listed below in Table 6.

Fig. 5.35: eMMC Boot Pins

For eMMC devices the ROM will only support raw mode. The ROM Code reads out raw sectors from image or
the booting file within the file system and boots from it. In raw mode the booting image can be located at
one of the four consecutive locations in the main area: offset 0x0 / 0x20000 (128 KB) / 0x40000 (256 KB) /
0x60000 (384 KB). For this reason, a booting image shall not exceed 128KB in size. However it is possible to
flash a device with an image greater than 128KB starting at one of the aforementioned locations. Therefore
the ROM Code does not check the image size. The only drawback is that the image will cross the subsequent
image boundary. The raw mode is detected by reading sectors #0, #256, #512, #768. The content of these
sectors is then verified for presence of a TOC structure. In the case of a GP Device, a Configuration Header

5.6. Detailed Hardware Design 261

BeagleBoard Docs, Release 1.0.20230711-wip

(CH)*must* be located in the first sector followed by a GP header. The CH might be void (only containing a
CHSETTINGS item for which the Valid field is zero).

The ROM only supports the 4-bit mode. After the initial boot, the switch can bemade to 8-bit mode for increasing
the overall performance of the eMMC interface.

5.6.4 Board ID EEPROM

The BeagleBone is equipped with a single 32Kbit(4KB) 24LC32AT-I/OT EEPROM to allow the SW to identify the
board. Table 7 below defined the contents of the EEPROM.

Table 5.6: EEPROM Contents
Name Size (bytes) Contents
Header 4 0xAA, 0x55, 0x33, EE
Board Name 8 Name for board in ASCII: A335BNLT
Version 4 Hardware version code for board in ASCII: 00A3 for Rev A3, 00A4

for Rev A4, 00A5 for Rev A5, 00A6 for Rev A6,00B0 for Rev B,
and 00C0 for Rev C.

Serial Number 12 Serial number of the board. This is a 12 character string which is:
WWYY4P16nnnn where, WW = 2 digit week of the year of produc-
tion YY = 2 digit year of production BBBK = BeagleBone Black nnnn
= incrementing board number

Configuration Op-
tion

32 Codes to show the configuration setup on this board. All FF

RSVD 6 FF FF FF FF FF FF
RSVD 6 FF FF FF FF FF FF
RSVD 6 FF FF FF FF FF FF
Available 4018 Available space for other non-volatile codes/data

Fig. 5.36: EEPROM Design Rev A5

The EEPROM is accessed by the processor using the I2C 0 bus. TheWP pin is enabled by default. By grounding
the test point, the write protection is removed.

The first 48 locations should not be written to if you choose to use the extras storage space in the EEPROM for
other purposes. If you do, it could prevent the board from booting properly as the SW uses this information to
determine how to set up the board.

5.6.5 Micro Secure Digital

The microSD connector on the board will support a microSD card that can be used for booting or file storage
on the BeagleBone Black.

262 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

microSD Design

Fig. 5.37: microSD Design

The signalsMMC0-3 are the data lines for the transfer of data between the processor and themicroSD connector.

The MMC0_CLK signal clocks the data in and out of the microSD card.

The MMCO_CMD signal indicates that a command versus data is being sent.

There is no separate card detect pin in the microSD specification. It uses MMCO_DAT3 for that function. How-
ever, most microSD connectors still supply a CD function on the connectors. In the BeagleBone Black design,
this pin is connected to theMMC0_SDCD pin for use by the processor. You can also change the pin to GPIO0_6,
which is able to wake up the processor from a sleep mode when an microSD card is inserted into the connector.

Pullup resistors are provided on the signals to increase the rise times of the signals to overcome PCB capaci-
tance.

Power is provided from the VDD_3V3B rail and a 10uF capacitor is provided for filtering.

5.6.6 6.6 User LEDs

There are four user LEDs on the BeagleBone Black. These are connected to GPIO pins on the processor. Figure
37 shows the interfaces for the user LEDs.

Resistors R71-R74 were changed to 4.75K on the revision A5B and later boards.

Table 5.7: User LED Control Signals/Pins
LED GPIO SIGNAL PROC PIN
USR0 GPIO1_21 V15
USR1 GPIO1_22 U15
USR2 GPIO1_23 T15
USR3 GPIO1_24 V16

A logic level of “1” will cause the LEDs to turn on.

5.6.7 Boot Configuration

The design supports two groups of boot options on the board. The user can switch between these modes via
the Boot button. The primary boot source is the onboard eMMC device. By holding the Boot button, the user
can force the board to boot from the microSD slot. This enables the eMMC to be overwritten when needed or
to just boot an alternate image. The following sections describe how the boot configuration works.

In most applications, including those that use the provided demo distributions available from beagleboard.org

5.6. Detailed Hardware Design 263

http://beagleboard.org/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.38: User LEDs

the processor-external boot code is composed of two stages. After the primary boot code in the processor ROM
passes control, a secondary stage (secondary program loader – “SPL” or “MLO”) takes over. The SPL stage
initializes only the required devices to continue the boot process, and then control is transferred to the third
stage “U-boot”. Based on the settings of the boot pins, the ROM knows where to go and get the SPL and UBoot
code. In the case of the BeagleBone Black, that is either eMMC or microSD based on the position of the boot
switch.

Boot Configuration Design

figure-38 shows the circuitry that is involved in the boot configuration process. On power up, these pins are
read by the processor to determine the boot order. S2 is used to change the level of one bit from HI to LO which
changes the boot order.

It is possible to override these setting via the expansion headers. But be careful not to add too much load such
that it could interfere with the operation of the HDMI interface or LCD panels. If you choose to override these
settings, it is strongly recommended that you gate these signals with the SYS_RESETn signal. This ensures that
after coming out of reset these signals are removed from the expansion pins.

5.6.8 Default Boot Options

Based on the selected option found in figure-39 below, each of the boot sequences for each of the two settings
is shown.

The first row in «figure-39» is the default setting. On boot, the processor will look for the eMMC on the MMC1
port first, followed by the microSD slot on MMC0, USB0 and UART0. In the event there is no microSD card and
the eMMC is empty, UART0 or USB0 could be used as the board source.

If you have a microSD card from which you need to boot from, hold the boot button down. On boot, the
processor will look for the SPIO0 port first, then microSD on the MMC0 port, followed by USB0 and UART0. In
the event there is no microSD card and the eMMC is empty, USB0 or UART0 could be used as the board source.

5.6.9 10/100 Ethernet

The BeagleBone Black is equipped with a 10/100 Ethernet interface. It uses the same PHY as is used on the
original BeagleBone. The design is described in the following sections.

264 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.39: Processor Boot Configuration Design

Fig. 5.40: Processor Boot Configuration

5.6. Detailed Hardware Design 265

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.1 Ethernet Processor Interface

Fig. 5.41: Ethernet Processor Interface

This is the same interface as is used on the BeagleBone. No changes were made in this design for the board.

Ethernet Connector Interface

The off board side of the PHY connections are shown in Figure 41 below.

This is the same interface as is used on the BeagleBone. No changes were made in this design for the board.

Ethernet PHY Power, Reset, and Clocks

VDD_3V3B Rail

The VDD_3V3B rail is the main power rail for the LAN8710A. It originates at the VD_3V3B regulator and is the
primary rail that supports all of the peripherals on the board. This rail also supplies the VDDIO rails which set
the voltage levels for all of the I/O signals between the processor and the**LAN8710A**.

VDD_PHYA Rail

A filtered version of VDD_3V3B rail is connected to the VDD rails of the LAN8710 and the termination resistors
on the Ethernet signals. It is labeled as VDD_PHYA. The filtering inductor helps block transients that may be
seen on the VDD_3V3B rail.

PHY_VDDCR Rail

The PHY_VDDCR rail originates inside the LAN8710A. Filter and bypass capacitors are used to filter the rail.
Only circuitry inside the LAN8710A uses this rail.

SYS_RESET

The reset of the LAN8710A is controlled via the SYS_RESETn signal, the main board reset line.

Clock Signals

A crystal is used to create the clock for the LAN8710A. The processor uses the RMII_RXCLK signal to provide
the clocking for the data between the processor and the LAN8710A.

266 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.42: Ethernet Connector Interface

Fig. 5.43: Ethernet PHY, Power, Reset, and Clocks

5.6. Detailed Hardware Design 267

BeagleBoard Docs, Release 1.0.20230711-wip

5.6.10 LAN8710A Mode Pins

There are mode pins on the LAN8710A that sets the operational mode for the PHY when coming out of reset.
These signals are also used to communicate between the processor and the LAN8710A. As a result, these
signals can be driven by the processor which can cause the PHY not to be initialized correctly. To ensure that
this does not happen, three low value pull up resistors are used. Figure 43 below shows the three mode pin
resistors.

Fig. 5.44: Ethernet PHY Mode Pins

This will set the mode to be 111, which enables all modes and enables auto-negotiation.

5.6.11 HDMI Interface

The BeagleBone Black has an onboard HDMI framer that converts the LCD signals and audio signals to drive a
HDMI monitor. The design uses an NXP TDA19988 HDMI Framer.

The following sections provide more detail into the design of this interface.

Supported Resolutions

The maximum resolution supported by the BeagleBone Black is 1280x1024 @ 60Hz. Table 9 below shows the
supported resolutions. Not all resolutions may work on all monitors, but these have been tested and shown to
work on at least one monitor. EDID is supported on the BeagleBone Black. Based on the EDID reading from
the connected monitor, the highest compatible resolution is selected.

Table 5.8: HDMI Supported Monitor Resolutions
RESOLUTION AUDIO
800 x 600 @60Hz
800 x 600 @56Hz
640 x 480 @75Hz
640 x 480 @60Hz YES

continues on next page

268 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.8 – continued from previous page
RESOLUTION AUDIO
720 x 400 @70Hz
1280 x 1024 @75Hz
1024 x 768 @75Hz
1024 x 768 @70Hz
1024 x 768 @60Hz
800 x 600 @75Hz
800 x 600 @72Hz
720 x 480 @60Hz YES
1280 x 720 @60Hz YES
1920 x 1080 @24Hz YES

NOTE: The updated software image used on the Rev A5B and later boards added support for 1920x1080@24HZ.

Audio is limited to CEA supported resolutions. LCD panels only activate the audio in CEA modes. This is a
function of the specification and is not something that can be fixed on the board via a hardware change or a
software change.

HDMI Framer

The TDA19988 is a High-Definition Multimedia Interface (HDMI) 1.4a transmitter. It is backward compatible
with DVI 1.0 and can be connected to any DVI 1.0 or HDMI sink. The HDCP mode is not used in the design. The
non-HDCP version of the device is used in the BeagleBone Black design.

This device provides additional embedded features like CEC (Consumer Electronic Control). CEC is a single
bidirectional bus that transmits CEC over the home appliance network connected through this bus. This elimi-
nates the need of any additional device to handle this feature. While this feature is supported in this device, as
of this point, the SW to support this feature has not been implemented and is not a feature that is considered
critical. It can be switched to very low power Standby or Sleep modes to save power when HDMI is not used.
TDA19988 embeds I~2~C-bus master interface for DDC-bus communication to read EDID. This device can be
controlled or configured via I~2~C-bus interface.

HDMI Video Processor Interface

The Figure 44 shows the connections between the processor and the HDMI framer device. There are 16 bits of
display data, 5-6-5 that is used to drive the framer. The reason for 16 bits is that allows for compatibility with
display and LCD capes already available on the original BeagleBone. The unused bits on the TDA19988 are
tied low. In addition to the data signals are the VSYNC, HSYNC, DE, and PCLK signals that round out the video
interface from the processor.

HDMI Control Processor Interface

In order to use the TDA19988, the processor needs to setup the device. This is done via the I2C interface
between the processor and the TDA19988. There are two signals on the TDA19988 that could be used to set
the address of the TDA19988. In this design they are both tied low. The I2C interface supports both 400kHz
and 100KhZ operation. Table 10 shows the I2C address.

Interrupt Signal

There is a HDMI_INT signal that connects from the TDA19988 to the processor. This signal can be used to alert
the processor in a state change on the HDMI interface.

5.6. Detailed Hardware Design 269

mailto:1920x1080@24HZ

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.45: HDMI Framer Processor Interface

Fig. 5.46: TDA19988 I2C Address

270 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Audio Interface

There is an I2S audio interface between the processor and the TDA19988. Stereo audio can be transported over
the HDMI interface to an audio equipped display. In order to create the required clock frequencies, an external
24.576MHz oscillator,*Y4*, is used. From this clock, the processor generates the required clock frequencies for
the TDA19988.

There are three signals used to pass data from the processor to the TDA19988. SCLK is the serial clock.
SPI1_CS0 is the data pin to the TDA199888. SPI1_D0 is the word sync pin. These signals are configured as
I2S interfaces.

Audio is limited to CEA supported resolutions. LCD panels only activate the audio in CEA modes. This is a
function of the specification and is not something that can be fixed on the board via a hardware change or a
software change.

In order to create the correct clock frequencies, we had to add an external 24.576MHz oscillator. Unfortunately
this had to be input into the processor using the pin previously used for GPIO3_21. In order to keep GPIO3_21
functionality, we provided a way to disable the oscillator if the need was there to use the pin on the expansion
header. Figure 45 shows the oscillator circuitry.

Fig. 5.47: 24.576MHZ Oscillator

Power Connections

figure-46 shows the power connections to the TDA19988 device. All voltage rails for the device are at 1.8V. A
filter is provided to minimize any noise from the 1.8V rail getting back into the device.

All of the interfaces between the processor and the TDA19988 are 3.3V tolerant allowing for direct connection.

HDMI Connector Interface

figure-47 shows the design of the interface between the HDMI Framer and the connector.

The connector for the HDMI interface is a microHDMI. It should be noted that this connector has a different
pinout than the standard or mini HDMI connectors. D6 and D7 are ESD protection devices.

5.6.12 USB Host

The board is equipped with a single USB host interface accessible from a single USB Type A female connector.
«figure-48» is the design of the USB Host circuitry.

Power Switch

U8 is a switch that allows the power to the connector to be turned on or off by the processor. It also has an
over current detection that can alert the processor if the current gets too high via the**USB1_OC** signal. The
power is controlled by the USB1_DRVBUS signal from the processor.

5.6. Detailed Hardware Design 271

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.48: HDMI Power Connections

Fig. 5.49: Connector Interface Circuitry

272 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.50: USB Host circuit

ESD Protection

U9 is the ESD protection for the signals that go to the connector.

Filter Options

FB7 and**FB8** were added to assist in passing the FCC emissions test. The USB1_VBUS signal is used by the
processor to detect that the 5V is present on the connector. FB7 is populated and FB8 is replaced with a .1
ohm resistor.

5.6.13 PRU-ICSS

The PRU-ICSSmodule is located inside the AM3358 processor. Access to these pins is provided by the expansion
headers and is multiplexed with other functions on the board. Access is not provided to all of the available
pins.

All documentation is located at http://github.com/beagleboard/am335x_pru_package_

This feature is not supported by Texas Instruments.

PRU-ICSS Features

The features of the PRU-ICSS include:

Two independent programmable real-time (PRU) cores:

• 32-Bit Load/Store RISC architecture

• 8K Byte instruction RAM (2K instructions) per core

• 8K Bytes data RAM per core

• 12K Bytes shared RAM

• Operating frequency of 200 MHz

• PRU operation is little endian similar to ARM processor

• All memories within PRU-ICSS support parity

• Includes Interrupt Controller for system event handling

• Fast I/O interface

16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the BeagleBone Black).

5.6. Detailed Hardware Design 273

http://github.com/beagleboard/am335x_pru_package

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS Block Diagram

Fig. 5.51: PRU-ICSS Block Diagram

PRU-ICSS Pin Access

Both PRU 0 and PRU1 are accessible from the expansion headers. Some may not be usable without first
disabling functions on the board like LCD for example. Listed below is what ports can be accessed on each
PRU.

• 8 outputs or 9 inputs

• 13 outputs or 14 inputs

• UART0_TXD, UART0_RXD, UART0_CTS, UART0_RTS

Table 5.9: P8 PRU0 and PRU1 Access
PIN PROC NAME
11 R12 GPIO1_13 pr1_pru0_pru_r30_15

(Output)
12 T12 GPIO1_12 pr1_pru0_pru_r30_14

(Output)
15 U13 GPIO1_15 pr1_pru0_pru_r31_15

(Input)
16 V13 GPIO1_14 pr1_pru0_pru_r31_14

(Input)
20 V9 GPIO1_31 pr1_pru1_pru_r30_13

(Output)
pr1_pru1_pru_r31_13
(INPUT)

21 U9 GPIO1_30 pr1_pru1_pru_r30_12
(Output)

pr1_pru1_pru_r31_12
(INPUT)

27 U5 GPIO2_22 pr1_pru1_pru_r30_8
(Output)

pr1_pru1_pru_r31_8
(INPUT)

28 V5 GPIO2_24 pr1_pru1_pru_r30_10
(Output)

pr1_pru1_pru_r31_10
(INPUT)

29 R5 GPIO2_23 pr1_pru1_pru_r30_9
(Output)

pr1_pru1_pru_r31_9
(INPUT)

39 T3 GPIO2_12 pr1_pru1_pru_r30_6
(Output)

pr1_pru1_pru_r31_6
(INPUT)

continues on next page

274 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.9 – continued from previous page
PIN PROC NAME
40 T4 GPIO2_13 pr1_pru1_pru_r30_7

(Output)
pr1_pru1_pru_r31_7
(INPUT)

41 T1 GPIO2_10 pr1_pru1_pru_r30_4
(Output)

pr1_pru1_pru_r31_4
(INPUT)

42 T2 GPIO2_11 pr1_pru1_pru_r30_5
(Output)

pr1_pru1_pru_r31_5
(INPUT)

43 R3 GPIO2_8 pr1_pru1_pru_r30_2
(Output)

pr1_pru1_pru_r31_2
(INPUT)

44 R4 GPIO2_9 pr1_pru1_pru_r30_3
(Output)

pr1_pru1_pru_r31_3
(INPUT)

45 R1 GPIO2_6 pr1_pru1_pru_r30_0
(Output)

pr1_pru1_pru_r31_0
(INPUT)

46 R2 GPIO2_7 pr1_pru1_pru_r30_1
(Output)

pr1_pru1_pru_r31_1
(INPUT)

Table 5.10: P9 PRU0 and PRU1 Access
PIN PROC NAME
17 A16 I2C1_SCL pr1_uart0_txd
18 B16 I2C1_SDA pr1_uart0_rxd
19 D17 I2C2_SCL pr1_uart0_rts_n
20 D18 I2C2_SDA pr1_uart0_cts_n
21 B17 UART2_TXD pr1_uart0_rts_n
22 A17 UART2_RXD pr1_uart0_cts_n
24 D15 UART1_TXD pr1_uart0_txd pr1_pru0_pru_r31_16

(Input)
25 A14 GPIO3_21 pr1_pru0_pru_r30_5

(Output)
pr1_pru0_pru_r31_5
(Input)

26 D16 UART1_RXD pr1_uart0_rxd pr1_pru1_pru_r31_16
27 C13 GPIO3_19 pr1_pru0_pru_r30_7

(Output)
pr1_pru0_pru_r31_7
(Input)

28 C12 SPI1_CS0 eCAP2_in_PWM2_out pr1_pru0_pru_r30_3
(Output)

pr1_pru0_pru_r31_3
(Input)

29 B13 SPI1_D0 pr1_pru0_pru_r30_1
(Output)

pr1_pru0_pru_r31_1
(Input)

30 D12 SPI1_D1 pr1_pru0_pru_r30_2
(Output)

pr1_pru0_pru_r31_2
(Input)

31 A13 SPI1_SCLK pr1_pru0_pru_r30_0
(Output)

pr1_pru0_pru_r31_0
(Input)

Note: GPIO3_21 is also the 24.576MHZ clock input to the processor to enable HDMI audio. To use this pin the
oscillator must be disabled.

5.7 Connectors

This section describes each of the connectors on the board.

5.7. Connectors 275

BeagleBoard Docs, Release 1.0.20230711-wip

5.7.1 Expansion Connectors

The expansion interface on the board is comprised of two 46 pin connectors. All signals on the expansion
headers are _3.3V_ unless otherwise indicated.

NOTE: Do not connect 5V logic level signals to these pins or the board will be damaged.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PINWHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Fig. 5.52: Expansion Connector Location

The location and spacing of the expansion headers are the same as on the original BeagleBone.

Connector P8

table-12 shows the pinout of the P8 expansion header. Other signals can be connected to this connector based
on setting the pin mux on the processor, but this is the default settings on power up. The SW is responsible
for setting the default function of each pin. There are some signals that have not been listed here. Refer to
the processor documentation for more information on these pins and detailed descriptions of all of the pins
listed. In some cases there may not be enough signals to complete a group of signals that may be required to
implement a total interface.

276 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

The PROC column is the pin number on the processor.

The PIN column is the pin number on the expansion header.

The MODE columns are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PINWHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

5.7. Connectors 277

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
5.
11
:
Ex
pa
ns
io
n
He
ad
er
P8
Pi
no
ut

PI
N

PR
OC

NA
M
E

M
OD
E0

M
OD
E1

M
OD
E2

M
OD
E3

M
OD
E4

M
OD
E5

M
OD
E6

M
OD
E7

1,
2

G
ND

3
R9

G
PI
O
1_
6

gp
m
c_
ad
6

m
m
c1
_d
at
6

gp
io
1[
6]

4
T9

G
PI
O
1_
7

gp
m
c_
ad
7

m
m
c1
_d
at
7

gp
io
1[
7]

5
R8

G
PI
O
1_
2

gp
m
c_
ad
2

m
m
c1
_d
at
2

gp
io
1[
2]

6
T8

G
PI
O
1_
3

gp
m
c_
ad
3

m
m
c1
_d
at
3

gp
io
1[
3]

7
R7

TI
M
ER
4

gp
m
c_
ad
vn
_a
le

tim
er
4

gp
io
2[
2]

8
T7

TI
M
ER
7

gp
m
c_
oe
n_
re
n

tim
er
7

gp
io
2[
3]

9
T6

TI
M
ER
5

gp
m
c_
be
0n
_c
le

tim
er
5

gp
io
2[
5]

10
U6

TI
M
ER
6

gp
m
c_
w
en

tim
er
6

gp
io
2[
4]

11
R1
2

G
PI
O
1_
13

gp
m
c_
ad
13

lc
d_
da
ta
18

m
m
c1
_d
at
5

m
m
c2
_d
at
1

eQ
EP
2B
_i
n

pr
1_
pr
u0
_p
ru
_r
30
_1
5

gp
io
1[
13
]

12
T1
2

G
PI
O
1_
12

gp
m
c_
ad
12

lc
d_
da
ta
19

m
m
c1
_d
at
4

m
m
c2
_d
at
0

eQ
EP
2a
_i
n

pr
1_
pr
u0
_p
ru
_r
30
_1
4

gp
io
1[
12
]

13
T1
0

EH
RP
W
M
2B

gp
m
c_
ad
9

lc
d_
da
ta
22

m
m
c1
_d
at
1

m
m
c2
_d
at
5

eh
rp
w
m
2B

gp
io
0[
23
]

14
T1
1

G
PI
O
0_
26

gp
m
c_
ad
10

lc
d_
da
ta
21

m
m
c1
_d
at
2

m
m
c2
_d
at
6

eh
rp
w
m
2_
tr
ip
zo
ne
_i
n

gp
io
0[
26
]

15
U1
3

G
PI
O
1_
15

gp
m
c_
ad
15

lc
d_
da
ta
16

m
m
c1
_d
at
7

m
m
c2
_d
at
3

eQ
EP
2_
st
ro
be

pr
1_
pr
u0
_p
ru
_r
31
_1
5

gp
io
1[
15
]

16
V1
3

G
PI
O
1_
14

gp
m
c_
ad
14

lc
d_
da
ta
17

m
m
c1
_d
at
6

m
m
c2
_d
at
2

eQ
EP
2_
in
de
x

pr
1_
pr
u0
_p
ru
_r
31
_1
4

gp
io
1[
14
]

17
U1
2

G
PI
O
0_
27

gp
m
c_
ad
11

lc
d_
da
ta
20

m
m
c1
_d
at
3

m
m
c2
_d
at
7

eh
rp
w
m
0_
sy
nc
o

gp
io
0[
27
]

18
V1
2

G
PI
O
2_
1

gp
m
c_
cl
k_
m
ux
0

lc
d_
m
em
or
y_
cl
k

gp
m
c_
w
ai
t1

m
m
c2
_c
lk

m
ca
sp
0_
fs
r

gp
io
2[
1]

19
U1
0

EH
RP
W
M
2A

gp
m
c_
ad
8

lc
d_
da
ta
23

m
m
c1
_d
at
0

m
m
c2
_d
at
4

eh
rp
w
m
2A

gp
io
0[
22
]

20
V9

G
PI
O
1_
31

gp
m
c_
cs
n2

gp
m
c_
be
1n

m
m
c1
_c
m
d

pr
1_
pr
u1
_p
ru
_r
30
_1
3

pr
1_
pr
u1
_p
ru
_r
31
_1
3

gp
io
1[
31
]

21
U9

G
PI
O
1_
30

gp
m
c_
cs
n1

gp
m
c_
cl
k

m
m
c1
_c
lk

pr
1_
pr
u1
_p
ru
_r
30
_1
2

pr
1_
pr
u1
_p
ru
_r
31
_1
2

gp
io
1[
30
]

22
V8

G
PI
O
1_
5

gp
m
c_
ad
5

m
m
c1
_d
at
5

gp
io
1[
5]

23
U8

G
PI
O
1_
4

gp
m
c_
ad
4

m
m
c1
_d
at
4

gp
io
1[
4]

24
V7

G
PI
O
1_
1

gp
m
c_
ad
1

m
m
c1
_d
at
1

gp
io
1[
1]

25
U7

G
PI
O
1_
0

gp
m
c_
ad
0

m
m
c1
_d
at
0

gp
io
1[
0]

26
V6

G
PI
O
1_
29

gp
m
c_
cs
n0

gp
io
1[
29
]

27
U5

G
PI
O
2_
22

lc
d_
vs
yn
c

gp
m
c_
a8

pr
1_
pr
u1
_p
ru
_r
30
_8

pr
1_
pr
u1
_p
ru
_r
31
_8

gp
io
2[
22
]

28
V5

G
PI
O
2_
24

lc
d_
pc
lk

gp
m
c_
a1
0

pr
1_
pr
u1
_p
ru
_r
30
_1
0

pr
1_
pr
u1
_p
ru
_r
31
_1
0

gp
io
2[
24
]

29
R5

G
PI
O
2_
23

lc
d_
hs
yn
c

gp
m
c_
a9

pr
1_
pr
u1
_p
ru
_r
30
_9

pr
1_
pr
u1
_p
ru
_r
31
_9

gp
io
2[
23
]

30
R6

G
PI
O
2_
25

lc
d_
ac
_b
ia
s_
en

gp
m
c_
a1
1

gp
io
2[
25
]

31
V4

UA
RT
5_
CT
SN

lc
d_
da
ta
14

gp
m
c_
a1
8

eQ
EP
1_
in
de
x

m
ca
sp
0_
ax
r1

ua
rt
5_
rx
d

ua
rt
5_
ct
sn

gp
io
0[
10
]

32
T5

UA
RT
5_
RT
SN

lc
d_
da
ta
15

gp
m
c_
a1
9

eQ
EP
1_
st
ro
be

m
ca
sp
0_
ah
cl
kx

m
ca
sp
0_
ax
r3

ua
rt
5_
rt
sn

gp
io
0[
11
]

33
V3

UA
RT
4_
RT
SN

lc
d_
da
ta
13

gp
m
c_
a1
7

eQ
EP
1B
_i
n

m
ca
sp
0_
fs
r

m
ca
sp
0_
ax
r3

ua
rt
4_
rt
sn

gp
io
0[
9]

34
U4

UA
RT
3_
RT
SN

lc
d_
da
ta
11

gp
m
c_
a1
5

eh
rp
w
m
1B

m
ca
sp
0_
ah
cl
kr

m
ca
sp
0_
ax
r2

ua
rt
3_
rt
sn

gp
io
2[
17
]

35
V2

UA
RT
4_
CT
SN

lc
d_
da
ta
12

gp
m
c_
a1
6

eQ
EP
1A
_i
n

m
ca
sp
0_
ac
lk
r

m
ca
sp
0_
ax
r2

ua
rt
4_
ct
sn

gp
io
0[
8]

36
U3

UA
RT
3_
CT
SN

lc
d_
da
ta
10

gp
m
c_
a1
4

eh
rp
w
m
1A

m
ca
sp
0_
ax
r0

ua
rt
3_
ct
sn

gp
io
2[
16
]

37
U1

UA
RT
5_
TX
D

lc
d_
da
ta
8

gp
m
c_
a1
2

eh
rp
w
m
1_
tr
ip
zo
ne
_i
n

m
ca
sp
0_
ac
lk
x

ua
rt
5_
tx
d

ua
rt
2_
ct
sn

gp
io
2[
14
]

38
U2

UA
RT
5_
RX
D

lc
d_
da
ta
9

gp
m
c_
a1
3

eh
rp
w
m
0_
sy
nc
o

m
ca
sp
0_
fs
x

ua
rt
5_
rx
d

ua
rt
2_
rt
sn

gp
io
2[
15
]

39
T3

G
PI
O
2_
12

lc
d_
da
ta
6

gp
m
c_
a6

eQ
EP
2_
in
de
x

pr
1_
pr
u1
_p
ru
_r
30
_6

pr
1_
pr
u1
_p
ru
_r
31
_6

gp
io
2[
12
]

40
T4

G
PI
O
2_
13

lc
d_
da
ta
7

gp
m
c_
a7

eQ
EP
2_
st
ro
be

pr
1_
ed
io
_d
at
a_
ou
t7

pr
1_
pr
u1
_p
ru
_r
30
_7

pr
1_
pr
u1
_p
ru
_r
31
_7

gp
io
2[
13
]

41
T1

G
PI
O
2_
10

lc
d_
da
ta
4

gp
m
c_
a4

eQ
EP
2A
_i
n

pr
1_
pr
u1
_p
ru
_r
30
_4

pr
1_
pr
u1
_p
ru
_r
31
_4

gp
io
2[
10
]

42
T2

G
PI
O
2_
11

lc
d_
da
ta
5

gp
m
c_
a5

eQ
EP
2B
_i
n

pr
1_
pr
u1
_p
ru
_r
30
_5

pr
1_
pr
u1
_p
ru
_r
31
_5

gp
io
2[
11
]

43
R3

G
PI
O
2_
8

lc
d_
da
ta
2

gp
m
c_
a2

eh
rp
w
m
2_
tr
ip
zo
ne
_i
n

pr
1_
pr
u1
_p
ru
_r
30
_2

pr
1_
pr
u1
_p
ru
_r
31
_2

gp
io
2[
8]

44
R4

G
PI
O
2_
9

lc
d_
da
ta
3

gp
m
c_
a3

eh
rp
w
m
0_
sy
nc
o

pr
1_
pr
u1
_p
ru
_r
30
_3

pr
1_
pr
u1
_p
ru
_r
31
_3

gp
io
2[
9]

45
R1

G
PI
O
2_
6

lc
d_
da
ta
0

gp
m
c_
a0

eh
rp
w
m
2A

pr
1_
pr
u1
_p
ru
_r
30
_0

pr
1_
pr
u1
_p
ru
_r
31
_0

gp
io
2[
6]

46
R2

G
PI
O
2_
7

lc
d_
da
ta
1

gp
m
c_
a1

eh
rp
w
m
2B

pr
1_
pr
u1
_p
ru
_r
30
_1

pr
1_
pr
u1
_p
ru
_r
31
_1

gp
io
2[
7]

278 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Connector P9

Table-13 lists the signals on connector P9. Other signals can be connected to this connector based on setting
the pin mux on the processor, but this is the default settings on power up.

There are some signals that have not been listed here. Refer to the processor documentation for more infor-
mation on these pins and detailed descriptions of all of the pins listed. In some cases there may not be enough
signals to complete a group of signals that may be required to implement a total interface.

The PROC column is the pin number on the processor.

The PIN column is the pin number on the expansion header.

The MODE columns are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTES:

In the table are the following notations:

PWR_BUT is a 5V level as pulled up internally by the TPS65217C. It is activated by pulling the signal to GND.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PINWHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

• Both of these signals connect to pin 41 of P11. Resistors are installed that allow for the GPIO3_20 con-
nection to be removed by removing R221. The intent is to allow the SW to use either of these signals,
one or the other, on pin 41. SW should set the unused pin in input mode when using the other pin. This
allowed us to get an extra signal out to the expansion header.

• Both of these signals connect to pin 42 of P11. Resistors are installed that allow for the GPIO3_18 con-
nection to be removed by removing R202. The intent is to allow the SW to use either of these signals,
on pin 42. SW should set the unused pin in input mode when using the other pin. This allowed us to get
an extra signal out to the expansion header.

5.7. Connectors 279

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
5.
12
:
Ex
pa
ns
io
n
He
ad
er
P9
Pi
no
ut

PI
N

PR
OC

NA
M
E

M
OD
E0

M
OD
E1

M
OD
E2

M
OD
E3

M
OD
E4

M
OD
E5

M
OD
E6

M
OD
E7

1,
2

G
N
D

3,
4

D
C_
3.
3V

5,
6

V
D
D
_5
V

7,
8

SY
S_
5V

9
PW

R
_B
U
T

10
A
10

SY
S_
R
ES
ET
n

11
T1
7

U
A
RT
4_
R
X
D

gp
m
c_
w
ai
t0

m
ii2
_c
rs

gp
m
c_
cs
n4

rm
ii2
_c
rs
_d
v

m
m
c1
_s
dc
d

ua
rt
4_
rx
d_
m
ux
2

gp
io
0[
30
]

12
U
18

G
PI
O
1_
28

gp
m
c_
be
1n

m
ii2
_c
ol

gp
m
c_
cs
n6

m
m
c2
_d
at
3

gp
m
c_
di
r

m
ca
sp
0_
ac
lk
r_
m
ux
3

gp
io
1[
28
]

13
U
17

U
A
RT
4_
TX
D

gp
m
c_
w
pn

m
ii_
rx
er
r

gp
m
c_
cs
n5

rm
ii2
_r
xe
rr

m
m
c2
_s
dc
d

ua
rt
4_
tx
d_
m
ux
2

gp
io
0[
31
]

14
U
14

EH
R
PW

M
1A

gp
m
c_
a2

m
ii2
_t
xd
3

rg
m
ii2
_t
d3

m
m
c2
_d
at
1

gp
m
c_
a1
8

eh
rp
w
m
1A
_m
ux
1

gp
io
1[
18
]

15
R
13

G
PI
O
1_
16

gp
m
c_
a0

gm
ii2
_t
xe
n

rm
ii2
_t
ct
l

m
ii2
_t
xe
n

gp
m
c_
a1
6

eh
rp
w
m
1_
tr
ip
zo
ne
_i
np
ut

gp
io
1[
16
]

16
T1
4

EH
R
PW

M
1B

gp
m
c_
a3

m
ii2
_t
xd
2

rg
m
ii2
_t
d2

m
m
c2
_d
at
2

gp
m
c_
a1
9

eh
rp
w
m
1B
_m
ux
1

gp
io
1[
19
]

17
A
16

I2
C1
_S
CL

sp
i0
_c
s0

m
m
c2
_s
dw
p

I2
C1
_S
CL

eh
rp
w
m
0_
sy
nc
i

pr
1_
ua
rt
0_
tx
d

gp
io
0[
5]

18
B
16

I2
C1
_S
D
A

sp
i0
_d
1

m
m
c1
_s
dw
p

I2
C1
_S
DA

eh
rp
w
m
0_
tr
ip
zo
ne

pr
1_
ua
rt
0_
rx
d

gp
io
0[
4]

19
D
17

I2
C2
_S
CL

ua
rt
1_
rt
sn

tim
er
5

dc
an
0_
rx

I2
C2
_S
CL

sp
i1
_c
s1

pr
1_
ua
rt
0_
rt
s_
n

gp
io
0[
13
]

20
D
18

I2
C2
_S
D
A

ua
rt
1_
ct
sn

tim
er
6

dc
an
0_
tx

I2
C2
_S
DA

sp
i1
_c
s0

pr
1_
ua
rt
0_
ct
s_
n

gp
io
0[
12
]

21
B
17

U
A
RT
2_
TX
D

sp
i0
_d
0

ua
rt
2_
tx
d

I2
C2
_S
CL

eh
rp
w
m
0B

pr
1_
ua
rt
0_
rt
s_
n

EM
U3
_m
ux
1

gp
io
0[
3]

22
A
17

U
A
RT
2_
R
X
D

sp
i0
_s
cl
k

ua
rt
2_
rx
d

I2
C2
_S
DA

eh
rp
w
m
0A

pr
1_
ua
rt
0_
ct
s_
n

EM
U2
_m
ux
1

gp
io
0[
2]

23
V
14

G
PI
O
1_
17

gp
m
c_
a1

gm
ii2
_r
xd
v

rg
m
ii2
_r
xd
v

m
m
c2
_d
at
0

gp
m
c_
a1
7

eh
rp
w
m
0_
sy
nc
o

gp
io
1[
17
]

24
D
15

U
A
RT
1_
TX
D

ua
rt
1_
tx
d

m
m
c2
_s
dw
p

dc
an
1_
rx

I2
C1
_S
CL

pr
1_
ua
rt
0_
tx
d

pr
1_
pr
u0
_p
ru
_r
31
_1
6

gp
io
0[
15
]

25
A
14

G
PI
O
3_
21

m
ca
sp
0_
ah
cl
kx

eQ
EP
0_
st
ro
be

m
ca
sp
0_
ax
r3

m
ca
sp
1_
ax
r1

EM
U4
_m
ux
2

pr
1_
pr
u0
_p
ru
_r
30
_7

pr
1_
pr
u0
_p
ru
_r
31
_7

gp
io
3[
21
]

26
D
16

U
A
RT
1_
R
X
D

ua
rt
1_
rx
d

m
m
c1
_s
dw
p

dc
an
1_
tx

I2
C1
_S
DA

pr
1_
ua
rt
0_
rx
d

pr
1_
pr
u1
_p
ru
_r
31
_1
6

gp
io
0[
14
]

27
C1
3

G
PI
O
3_
19

m
ca
sp
0_
fs
r

eQ
EP
0B
_i
n

m
ca
sp
0_
ax
r3

m
ca
sp
1_
fs
x

EM
U2
_m
ux
2

pr
1_
pr
u0
_p
ru
_r
30
_5

pr
1_
pr
u0
_p
ru
_r
31
_5

gp
io
3[
19
]

28
C1
2

SP
I1
_C
S0

m
ca
sp
0_
ah
cl
kr

eh
rp
w
m
0_
sy
nc
i

m
ca
sp
0_
ax
r2

sp
i1
_c
s0

eC
AP
2_
in
_P
W
M
2_
ou
t

pr
1_
pr
u0
_p
ru
_r
30
_3

pr
1_
pr
u0
_p
ru
_r
31
_3

gp
io
3[
17
]

29
B
13

SP
I1
_D
0

m
ca
sp
0_
fs
x

eh
rp
w
m
0B

sp
i1
_d
0

m
m
c1
_s
dc
d_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
30
_1

pr
1_
pr
u0
_p
ru
_r
31
_1

gp
io
3[
15
]

30
D
12

SP
I1
_D
1

m
ca
sp
0_
ax
r0

eh
rp
w
m
0_
tr
ip
zo
ne

sp
i1
_d
1

m
m
c2
_s
dc
d_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
30
_2

pr
1_
pr
u0
_p
ru
_r
31
_2

gp
io
3[
16
]

31
A
13

SP
I1
_S
CL
K

m
ca
sp
0_
ac
lk
x

eh
rp
w
m
0A

sp
i1
_s
cl
k

m
m
c0
_s
dc
d_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
30
_0

pr
1_
pr
u0
_p
ru
_r
31
_0

gp
io
3[
14
]

32
VA
D
C

33
C8

A
IN
4

34
A
G
N
D

35
A
8

A
IN
6

36
B
8

A
IN
5

37
B
7

A
IN
2

38
A
7

A
IN
3

39
B
6

A
IN
0

40
C7

A
IN
1

41
D
14

CL
KO
U
T2

xd
m
a_
ev
en
t_
in
tr
1

tc
lk
in

cl
ko
ut
2

tim
er
7_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
31
_1
6

EM
U3
_m
ux
0

gp
io
0[
20
]

D
13

G
PI
O
3_
20

m
ca
sp
0_
ax
r1

eQ
EP
0_
in
de
x

m
ca
sp
1_
ax
r0

em
u3

pr
1_
pr
u0
_p
ru
_r
30
_6

pr
1_
pr
u0
_p
ru
_r
31
_6

gp
io
3[
20
]

42
C1
8

G
PI
O
0_
7

eC
AP
0_
in
_P
W
M
0_
ou
t

ua
rt
3_
tx
d

sp
i1
_c
s1

pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

sp
i1
_s
cl
k

m
m
c0
_s
dw
p

xd
m
a_
ev
en
t_
in
tr
2

gp
io
0[
7]

B
12

G
PI
O
3_
18

m
ca
sp
0_
ac
lk
r

eQ
EP
0A
_i
n

m
ca
sp
0_
ax
r2

m
ca
sp
1_
ac
lk
x

pr
1_
pr
u0
_p
ru
_r
30
_4

pr
1_
pr
u0
_p
ru
_r
31
_4

gp
io
3[
18
]

43
-4
6

G
N
D

280 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

5.7.2 Power Jack

The DC power jack is located next to the RJ45 Ethernet connector as shown in «figure-51». This uses the same
power connector as is used on the original BeagleBone. The connector has a 2.1mm diameter center post
(5VDC) and a 5.5mm diameter outer dimension on the barrel (GND).

Fig. 5.53: 5VDC Power Jack

The board requires a regulated 5VDC +/-.25V supply at 1A. A higher current rating may be needed if capes are
plugged into the expansion headers. Using a higher current power supply will not damage the board.

5.7.3 USB Client

The USB Client connector is accessible on the bottom side of the board under the row of four LEDs as shown
in «figure-52». It uses a 5 pin miniUSB cable, the same as is used on the original BeagleBone. The cable is
provided with the board. The cable can also be used to power the board.

This port is a USB Client only interface and is intended for connection to a PC.

5.7.4 USB Host

There is a single USB Host connector on the board and is shown in Figure 53 below.

The port is USB 2.0 HS compatible and can supply up to 500mA of current. If more current or ports is needed,
then a HUB can be used.

5.7.5 Serial Header

Each board has a debug serial interface that can be accessed by using a special serial cable that is plugged
into the serial header as shown in Figure 54 below.

5.7. Connectors 281

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.54: USB Client

Fig. 5.55: USB Host Connector

282 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.56: Serial Debug Header

Todo: Make all figure references actual references

Two signals are provided, TX and RX on this connector. The levels on these signals are 3.3V. In order to access
these signals, a FTDI USB to Serial cable is recommended as shown in Figure 55 below.

Fig. 5.57: PRU-ICSS Block Diagram

The cable can be purchased from several different places and must be the 3.3V version TTL-232R-3V3. Infor-
mation on the cable itself can be found direct from FTDI at: pdf

Todo: move accessory links to a single common document for all boards.

Pin 1 of the cable is the black wire. That must align with the pin 1 on the board which is designated by the
white dot next to the connector on the board.

Refer to the support WIKI http://elinux.org/BeagleBoneBlack for more sources of this cable and other options
that will work.

Todo: We should include all support information in docs.beagleboard.org now and leave eLinux to others,

5.7. Connectors 283

https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf
http://elinux.org/BeagleBoneBlack

BeagleBoard Docs, Release 1.0.20230711-wip

freeing it as much as possible

Table is the pinout of the connector as reflected in the schematic. It is the same as the FTDI cable which can
be found at https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf with the exception
that only three pins are used on the board. The pin numbers are defined in Table 14. The signals are from the
perspective of the board.

Table 5.13: J1 Serial Header Pins
PIN NUMBER SIGNAL
1 Ground
4 Receive
5 Transmit

Fig. 5.58: Serial Header

5.7.6 HDMI

Access to the HDMI interface is through the HDMI connector that is located on the bottom side of the board as
shown in Figure 57 below.

The connector is microHDMI connector. This was done due to the space limitations we had in finding a place
to fit the connector. It requires a microHDMI to HDMI cable as shown in Figure 58 below. The cable can be
purchased from several different sources.

5.7.7 microSD

A microSD connector is located on the back or bottom side of the board as shown in Figure 59 below. The
microSD card is not supplied with the board.

284 Chapter 5. BeagleBone Black

https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.59: HDMI Connector

Fig. 5.60: HDMI Cable

5.7. Connectors 285

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.61: microSD Connector

286 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

When plugging in the SD card, the writing on the card should be up. Align the card with the connector and
push to insert. Then release. There should be a click and the card will start to eject slightly, but it then should
latch into the connector. To eject the card, push the SD card in and then remove your finger. The SD card will
be ejected from the connector.

Do not pull the SD card out or you could damage the connector.

5.7.8 Ethernet

The board comes with a single 10/100 Ethernet interface located next to the power jack as shown in Figure
below.

Fig. 5.62: Ethernet Connector

The PHY supports AutoMDX which means either a straight or a swap cable can be used.

5.7.9 JTAG Connector

A place for an optional 20 pin CTI JTAG header is provided on the board to facilitate the SW development and
debugging of the board by using various JTAG emulators. This header is not supplied standard on the board.
To use this, a connector will need to be soldered onto the board.

If you need the JTAG connector you can solder it on yourself. No other components are needed. The connector is
made by Samtec and the part number is FTR-110-03-G-D-06. You can purchase it from http://www.digikey.com/

5.8 Cape Board Support

The BeagleBone Black has the ability to accept up to four expansion boards or capes that can be stacked onto
the expansion headers. The word cape comes from the shape of the board as it is fitted around the Ethernet
connector on the main board. This notch acts as a key to ensure proper orientation of the cape.

5.8. Cape Board Support 287

https://www.digikey.com

BeagleBoard Docs, Release 1.0.20230711-wip

This section describes the rules for creating capes to ensure proper operation with the BeagleBone Black and
proper interoperability with other capes that are intended to coexist with each other. Co-existence is not a
requirement and is in itself, something that is impossible to control or administer. But, people will be able to
create capes that operate with other capes that are already available based on public information as it pertains
to what pins and features each cape uses. This information will be able to be read from the EEPROM on each
cape.

This section is intended as a guideline for those wanting to create their own capes. Its intent is not to put limits
on the creation of capes and what they can do, but to set a few basic rules that will allow the SW to administer
their operation with the BeagleBone Black. For this reason there is a lot of flexibility in the specification that we
hope most people will find liberating and in the spirit of Open Source Hardware. I am sure there are others that
would like to see tighter control, more details, more rules and much more order to the way capes are handled.

Over time, this specification will change and be updated, so please refer to the latest version of this manual
prior to designing your own capes to get the latest information.

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN

POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

5.8.1 BeagleBone Black Cape Compatibility

The main expansion headers are the same between the BeagleBone and BeagleBone Black. While the pins are
the same, some of these pins are now used on the BeagleBone Black. The following sections discuss these
pins.

The Power Expansion header was removed from the BeagleBone Black and is not available.

PAY VERY CLOSE ATTENTION TO THIS SECTION AND READ CAREFULLY!!

LCD Pins

The LCD pins are used on the BeagleBone Black to drive the HDMI framer. These signals are listed in Table 15
below.

Table 5.14: P8 LCD Conflict Pins
PIN PROC NAME MODE0
27 U5 GPIO2_22 lcd_vsync
28 V5 GPIO2_24 lcd_pclk
29 R5 GPIO2_23 lcd_hsync
30 R6 GPIO2_25 lcd_ac_bias_en
31 V4 UART5_CTSN lcd_data14
32 T5 UART5_RTSN lcd_data15
33 V3 UART4_RTSN lcd_data13
34 U4 UART3_RTSN lcd_data11
35 V2 UART4_CTSN lcd_data12
36 U3 UART3_CTSN lcd_data10
37 U1 UART5_TXD lcd_data8
38 U2 UART5_RXD lcd_data9
39 T3 GPIO2_12 lcd_data6
40 T4 GPIO2_13 lcd_data7
41 T1 GPIO2_10 lcd_data4
42 T2 GPIO2_11 lcd_data5
43 R3 GPIO2_8 lcd_data2
44 R4 GPIO2_9 lcd_data3
45 R1 GPIO2_6 lcd_data0

continues on next page

288 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.14 – continued from previous page
PIN PROC NAME MODE0
46 R2 GPIO2_7 lcd_data1

If you are using these pins for other functions, there are a few things to keep in mind:

• On the HDMI Framer, these signals are all inputs so the framer will not be driving these pins.

• The HDMI framer will add a load onto these pins.

• There are small filter caps on these signals which could also change the operation of these pins if used
for other functions.

• When used for other functions, the HDMI framer cannot be used.

• There is no way to power off the framer as this would result in the framer being powered through these
input pins which would not a be a good idea.

• These pins are also the SYSBOOT pins. DO NOT drive them before the SYS_RESETN signal goes high. If
you do, the board may not boot because you would be changing the boot order of the processor.

In order to use these pins, the SW will need to reconfigure them to whatever function you need the pins to do.
To keep power low, the HDMI framer should be put in a low power mode via the SW using the I2C0 interface.

eMMC Pins

The BeagleBone Black uses 10 pins to connect to the processor that also connect to the P8 expansion connector.
These signals are listed below in Table 16. The proper mode is MODE2.

Table 5.15: P8 eMMC Conflict Pins
PIN PROC SIGNAL MODE
22 V8 MMC1_DAT5 1
23 U8 MMC1_DAT4 1
24 V7 MMC1_DAT1 1
5 R8 MMC1_DAT2 1
4 T9 MMC1_DAT7 1
3 R9 MMC1_DAT6 1
6 T8 MMC1_DAT3 1
25 U7 MMC1_DAT0 1
20 V9 MMC1_CMD 2
21 U9 MMC1_CLK 2

If using these pins, several things need to be kept in mind when doing so:

• On the eMMC device, these signals are inputs and outputs.

• The eMMC device will add a load onto these pins.

• When used for other functions, the eMMC cannot be used. This means you must boot from the microSD
slot.

• If using these pins, you need to put the eMMC into reset. This requires that the eMMC be accessible from
the processor in order to set the eMMC to accept the eMMC pins.

• DO NOT drive the eMMC pins until the eMMC has been put into reset. This means that if you choose to
use these pins, they must not drive any signal until enabled via Software. This requires a buffer or some
other form of hold off function enabled by a GPIO pin on the expansion header.

On power up, the eMMC is NOT reset. If you hold the Boot button down, this will force a boot from the microSD.
This is not convenient when a cape is plugged into the board. There are two solutions to this issue:

1. Wipe the eMMC clean. This will cause the board to default to microSD boot. If you want to use the eMMC
later, it can be reprogrammed. 2. You can also tie LCD_DATA2 low on the cape during boot. This will be the

5.8. Cape Board Support 289

BeagleBoard Docs, Release 1.0.20230711-wip

same as if you were holding the boot button. However, in order to prevent unforeseen issues, you need to gate
this signal with RESET, when the data is sampled. After set goes high, the signal should be removed from the
pin.

BEFORE the SW reinitializes the pins, it MUST put the eMMC in reset. This is done by taking eMMC_RSTn
(GPIO1_20) LOW after the eMMC has been put into a mode to enable the reset line. This pin does not connect
to the expansion header and is accessible only on the board.

DO NOT automatically drive any conflicting pins until the SW enables it. This puts the SW in control to ensure
that the eMMC is in reset before the signals are used from the cape. You can use a GPIO pin for this. No, we
will not designate a pin for this function. It will be determined on a cape by cape basis by the designer of the
respective cape.

5.8.2 EEPROM

Each cape must have its own EEPROM containing information that will allow the SW to identify the board and to
configure the expansion headers pins as needed. The one exception is proto boards intended for prototyping.
They may or may not have an EEPROM on them. An EEPROM is required for all capes sold in order for them
operate correctly when plugged into the BeagleBone Black.

The address of the EEPROM will be set via either jumpers or a dipswitch on each expansion board. Figure 61
below is the design of the EEPROM circuit.

The EEPROM used is the same one as is used on the BeagleBone and the BeagleBone Black, a CAT24C256. The
CAT24C256 is a 256 kb Serial CMOS EEPROM, internally organized as 32,768 words of 8 bits each. It features
a 64-byte page write buffer and supports the Standard (100 kHz), Fast (400 kHz) and Fast-Plus (1 MHz) I2C
protocol.

Fig. 5.63: Expansion Board EEPROM Without Write Protect

The addressing of this device requires two bytes for the address which is not used on smaller size EEPROMs,
which only require only one byte. Other compatible devices may be used as well. Make sure the device you
select supports 16 bit addressing. The part package used is at the discretion of the cape designer.

EEPROM Address

In order for each cape to have a unique address, a board ID scheme is used that sets the address to be different
depending on the setting of the dipswitch or jumpers on the capes. A two position dipswitch or jumpers is used
to set the address pins of the EEPROM.

It is the responsibility of the user to set the proper address for each board and the position in the stack that the
board occupies has nothing to do with which board gets first choice on the usage of the expansion bus signals.
The process for making that determination and resolving conflicts is left up to the SW and, as of this moment

290 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

in time, this method is a something of a mystery due to the new Device Tree methodology introduced in the
3.8 kernel.

Address line A2 is always tied high. This sets the allowable address range for the expansion cards to 0x54
to**0x57**. All other I2C addresses can be used by the user in the design of their capes. But, these addresses
must not be used other than for the board EEPROM information. This also allows for the inclusion of EEPROM
devices on the cape if needed without interfering with this EEPROM. It requires that A2 be grounded on the
EEPROM not used for cape identification.

I2C Bus

The EEPROMs on each expansion board are connected to I2C2 on connector P9 pins 19 and 20. For this reason
I2C2 must always be left connected and should not be changed by SW to remove it from the expansion header
pin mux settings. If this is done, the system will be unable to detect the capes.

The I2C signals require pullup resistors. Each board must have a 5.6K resistor on these signals. With four capes
installed this will result in an effective resistance of 1.4K if all capes were installed and all the resistors used
were exactly 5.6K. As more capes are added the resistance is reduced to overcome capacitance added to the
signals. When no capes are installed the internal pullup resistors must be activated inside the processor to
prevent I2C timeouts on the I2C bus.

The I2C2 bus may also be used by capes for other functions such as I/O expansion or other I2C compatible
devices that do not share the same address as the cape EEPROM.

EEPROM **********************

The design in Figure 62 has the write protect disabled. If the write protect is not enabled, this does expose
the EEPROM to being corrupted if the I2C2 bus is used on the cape and the wrong address written to. It is
recommended that a write protection function be implemented and a Test Point be added that when grounded,
will allow the EEPROM to be written to. To enable write operation, Pin 7 of the EEPROM must be tied to ground.

When not grounded, the pin is HI via pullup resistor R210 and therefore write protected. Whether or not Write
Protect is provided is at the discretion of the cape designer.

Variable & MAC Memory VDD_3V3B

Fig. 5.64: Expansion Board EEPROM Write Protect

EEPROM Data Format

Table below shows the format of the contents of the expansion board EEPROM. Data is stored in Big Endian
with the least significant value on the right. All addresses read as a single byte data from the EEPROM, but two
byte addressing is used. ASCII values are intended to be easily read by the user when the EEPROM contents
are dumped.

5.8. Cape Board Support 291

BeagleBoard Docs, Release 1.0.20230711-wip

Table 5.16: Expansion Board EEPROM
Name Offset Size (bytes) Contents
Header 0 4 0xAA, 0x55, 0x33, 0xEE
EEPROM Revision 4 2 Revision number of the overall format of this EEPROM in ASCII =A1
Board Name 6 32 Name of board in ASCII so user can read it when the EEPROM is dumped. Up to developer of the board as to what they call the board..
Version 38 4 Hardware version code for board in ASCII.Version format is up to the developer.i.e. 02.1…00A1….10A0
Manufacturer 42 16 ASCII name of the manufacturer. Company or individual’s name.
Part Number 58 16 ASCII Characters for the part number. Up to maker of the board.
Number of Pins 74 2 Number of pins used by the daughter board including the power pins used. Decimal value of total pins 92 max, stored in HEX.
Serial Number 76 12 Serial number of the board. This is a 12 character string which is: WWYY&&&&nnnn where, WW = 2 digit week of the year of production, YY = 2 digit year of production , &&&&=Assembly code to let the manufacturer document the assembly number or product. A way to quickly tell from reading the serial number what the board is. Up to the developer to determine. nnnn = incrementing board number for that week of production
Pin Usage 88 148 Two bytes for each configurable pins of the 74 pins on the expansion connectors, MSB LSB Bit order: 15..14 ….. 1..0 Bit 15….Pin is used or not…0=Unused by cape 1=Used by cape Bit 14-13…Pin Direction…..1 0=Output 01=Input 11=BDIR Bits 12-7…Reserved……..should be all zeros Bit 6….Slew Rate …….0=Fast 1=Slow Bit 5….Rx Enable…….0=Disabled 1=Enabled Bit 4….Pull Up/Dn Select….0=Pulldown 1=PullUp Bit 3….Pull Up/DN enabled…0=Enabled 1=Disabled Bits 2-0 …Mux Mode Selection…Mode 0-7
VDD_3V3B Current 236 2 Maximum current in milliamps. This is HEX value of the current in decimal 1500mA=0x05 0xDC 325mA=0x01 0x45
VDD_5V Current 238 2 Maximum current in milliamps. This is HEX value of the current in decimal 1500mA=0x05 0xDC 325mA=0x01 0x45
SYS_5V Current 240 2 Maximum current in milliamps. This is HEX value of the current in decimal 1500mA=0x05 0xDC 325mA=0x01 0x45
DC Supplied 242 2 Indicates whether or not the board is supplying voltage on the VDD_5V rail and the current rating 000=No 1-0xFFFF is the current supplied storing the decimal equivalent in HEX format
Available 244 32543 Available space for other non-volatile codes/data to be used as needed by the manufacturer or SW driver. Could also store presets for use by SW.

Pin Usage

Table 18 is the locations in the EEPROM to set the I/O pin usage for the cape. It contains the value to be written
to the Pad Control Registers. Details on this can be found in section 9.2.2 of the AM3358 Technical Reference
Manual, The table is left blank as a convenience and can be printed out and used as a template for creating a
custom setting for each cape. The 16 bit integers and all 16 bit fields are to be stored in Big Endian format.

Bit 15 PIN USAGE is an indicator and should be a 1 if the pin is used or 0 if it is unused.

Bits 14-7 RESERVED is not to be used and left as 0.

Bit 6 SLEW CONTROL 0=Fast 1=Slow

Bit 5 RX Enabled 0=Disabled 1=Enabled

Bit 4 PU/PD 0=Pulldown 1=Pullup.

Bit 3 PULLUP/DN 0=Pullup/pulldown enabled 1= Pullup/pulldown disabled

Bit 2-0 MUX MODE SELECT Mode 0-7. (refer to TRM)

Refer to the TRM for proper settings of the pin MUX mode based on the signal selection to be used.

The AIN0-6 pins do not have a pin mux setting, but they need to be set to indicate if each of the pins is used
on the cape. Only bit 15 is used for the AIN signals.

292 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
5.
17
:
EE
PR
O
M
Pi
n
Us
ag
e

+
+

+
15

14
13

12
11

10
9

8
7

6
5

O
ff
se
t

Co
nn

N
am

e
Pi
n
U
sa
ge

Ty
pe

+
R
es
er
ve
d

+
+

S
L
E
W

R
X

P
U
-
P
D

P
U
/D

E
N

M
ux

M
od
e

88
P9
-2
2

U
A
RT
2_
R
X
D

+
+

+
+

+
+

+
+

+
+

+
90

P9
-2
1

U
A
RT
2_
TX
D

+
+

+
+

+
+

+
+

+
+

+
92

P9
-1
8

I2
C1
_S
D
A

+
+

+
+

+
+

+
+

+
+

+
94

P9
-1
7

I2
C1
_S
CL

+
+

+
+

+
+

+
+

+
+

+
96

P9
-4
2

G
PI
O
0_
7

+
+

+
+

+
+

+
+

+
+

+
98

P8
-3
5

U
A
RT
4_
CT
SN

+
+

+
+

+
+

+
+

+
+

+
10
0

P8
-3
3

U
A
RT
4_
RT
SN

+
+

+
+

+
+

+
+

+
+

+
10
2

P8
-3
1

U
A
RT
5_
CT
SN

+
+

+
+

+
+

+
+

+
+

+
10
4

P8
-3
2

U
A
RT
5_
RT
SN

+
+

+
+

+
+

+
+

+
+

+
10
6

P9
-1
9

I2
C2
_S
CL

+
+

+
+

+
+

+
+

+
+

+
10
8

P9
-2
0

I2
C2
_S
D
A

+
+

+
+

+
+

+
+

+
+

+
11
0

P9
-2
6

U
A
R
*T
1_
R
X
D

+
+

+
+

+
+

+
+

+
+

+
11
2

P9
-2
4

U
A
RT
1_
TX
D

+
+

+
+

+
+

+
+

+
+

+
11
4

P9
-4
1

CL
KO
U
T2

+
+

+
+

+
+

+
+

+
+

+
11
6

P8
-1
9

EH
R
PW

M
2A

+
+

+
+

+
+

+
+

+
+

+
11
8

P8
-1
3

EH
R
PW

M
2B

+
+

+
+

+
+

+
+

+
+

+
12
0

P8
-1
4

G
PI
O
0_
26

+
+

+
+

+
+

+
+

+
+

+
12
2

P8
-1
7

G
PI
O
0_
27

+
+

+
+

+
+

+
+

+
+

+
12
4

P9
-1
1

U
A
RT
4_
R
X
D

+
+

+
+

+
+

+
+

+
+

+
12
6

P9
-1
3

U
A
RT
4_
TX
D

+
+

+
+

+
+

+
+

+
+

+
12
8

P8
-2
5

G
PI
O
1_
0

+
+

+
+

+
+

+
+

+
+

+
13
0

P8
-2
4

G
PI
O
1_
1

+
+

+
+

+
+

+
+

+
+

+
13
2

P8
-5

G
PI
O
1_
2

+
+

+
+

+
+

+
+

+
+

+
13
4

P8
-6

G
PI
O
1_
3

+
+

+
+

+
+

+
+

+
+

+
13
6

P8
-2
3

G
PI
O
1_
4

+
+

+
+

+
+

+
+

+
+

+
13
8

P8
-2
2

G
PI
O
1_
5

+
+

+
+

+
+

+
+

+
+

+
14
0

P8
-3

G
PI
O
1_
6

+
+

+
+

+
+

+
+

+
+

+
14
2

P8
-4

G
PI
O
1_
7

+
+

+
+

+
+

+
+

+
+

+
14
4

P8
-1
2

G
PI
O
1_
12

+
+

+
+

+
+

+
+

+
+

+
14
6

P8
-1
1

G
PI
O
1_
13

+
+

+
+

+
+

+
+

+
+

+
14
8

P8
-1
6

G
PI
O
1_
14

+
+

+
+

+
+

+
+

+
+

+
15
0

P8
-1
5

G
PI
O
1_
15

+
+

+
+

+
+

+
+

+
+

+
15
2

P9
-1
5

G
PI
O
1_
16

+
+

+
+

+
+

+
+

+
+

+

5.8. Cape Board Support 293

BeagleBoard Docs, Release 1.0.20230711-wip

15
14

13
12

11
10

9
8

7
6

5
O
ff
se
t

Co
nn

Na
m
e

Pi
n
Us
ag
e

Ty
pe

+
Re
se
rv
e

+
+

S
L
E
W

R
X

P
U
-P
D

P
U
/D
E
N

M
ux
M
od
e

15
4

P9
-2
3

G
PI
O
1_
17

15
6

P9
-1
4

EH
RP
W
M
1A

15
8

P9
-1
6

EH
RP
W
M
1B

16
0

P9
-1
2

G
PI
O
1_
28

16
2

P8
-2
6

G
PI
O
1_
29

16
4

P8
-2
1

G
PI
O
1_
30

16
6

P8
-2
0

G
PI
O
1_
31

16
8

P8
-1
8

G
PI
O
2_
1

17
0

P8
-7

TI
M
ER
4

17
2

P8
-9

TI
M
ER
5

+
+

+
+

+
+

+
+

+
+

+
17
4

P8
-1
0

TI
M
ER
6

+
+

+
+

+
+

+
+

+
+

+
17
6

P8
-8

TI
M
ER
7

+
+

+
+

+
+

+
+

+
+

+
17
8

P8
-4
5

G
PI
O
2_
6

+
+

+
+

+
+

+
+

+
+

+
18
0

P8
-4
6

G
PI
O
2_
7

+
+

+
+

+
+

+
+

+
+

+
18
2

P8
-4
3

G
PI
O
2_
8

+
+

+
+

+
+

+
+

+
+

+
18
4

P8
-4
4

G
PI
O
2_
9

+
+

+
+

+
+

+
+

+
+

+
18
6

P8
-4
1

G
PI
O
2_
10

+
+

+
+

+
+

+
+

+
+

+
18
8

P8
-4
2

G
PI
O
2_
11

+
+

+
+

+
+

+
+

+
+

+
19
0

P8
-3
9

G
PI
O
2_
12

+
+

+
+

+
+

+
+

+
+

+
19
2

P8
-4
0

G
PI
O
2_
13

+
+

+
+

+
+

+
+

+
+

+
19
4

P8
-3
7

UA
RT
5_
TX
‘+
‘

+
+

+
+

+
+

+
+

+
+

+
19
6

P8
-3
8

UA
RT
5_
RX
‘+
‘

+
+

+
+

+
+

+
+

+
+

+
19
8

P8
-3
6

UA
RT
3_
CT
SN

+
+

+
+

+
+

+
+

+
+

+
20
0

P8
-3
4

UA
RT
3_
RT
SN

+
+

+
+

+
+

+
+

+
+

+
20
2

P8
-2
7

G
PI
O
2_
22

+
+

+
+

+
+

+
+

+
+

+
20
4

P8
-2
9

G
PI
O
2_
23

+
+

+
+

+
+

+
+

+
+

+
20
6

P8
-2
8

G
PI
O
2_
24

+
+

+
+

+
+

+
+

+
+

+
20
8

P8
-3
0

G
PI
O
2_
25

+
+

+
+

+
+

+
+

+
+

+
21
0

P9
-2
9

SP
I1
_D
0

+
+

+
+

+
+

+
+

+
+

+
21
2

P9
-3
0

SP
I1
_D
1

+
+

+
+

+
+

+
+

+
+

+
21
4

P9
-2
8

SP
I1
_C
S0

+
+

+
+

+
+

+
+

+
+

+
21
6

P9
-2
7

G
PI
O
3_
19

+
+

+
+

+
+

+
+

+
+

+
21
8

P9
-3
1

SP
I1
_S
CL
K

+
+

+
+

+
+

+
+

+
+

+
22
0

P9
-2
5

G
PI
O
3_
21

+
+

+
+

+
+

+
+

+
+

+
+

+
+

15
14

13
12

11
10

9
8

7
6

5
O
ff
se
t

Co
nn

Na
m
e

Pi
n
Us
ag
e

Ty
pe

Re
se
rv
e

S
L
E
W

R
X

P
U
-P
D

P
U
/D
E
N

M
ux
M
od
e

+
+

+
+

0
0

0
0

0
0

0
0

0
0

22
2

P9
-3
9

AI
N0

+
+

+
+

+
+

+
+

+
+

+
22
4

P9
-4
0

AI
N1

+
+

+
+

+
+

+
+

+
+

+
22
6

P9
-3
7

AI
N2

+
+

+
+

+
+

+
+

+
+

+
22
8

P9
-3
8

AI
N3

+
+

+
+

+
+

+
+

+
+

+
23
0

P9
-3
3

AI
N4

+
+

+
+

+
+

+
+

+
+

+
23
2

P9
-3
6

AI
N5

+
+

+
+

+
+

+
+

+
+

+
23
4

P9
-3
5

AI
N6

+
+

+
+

+
+

+
+

+
+

+

294 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

5.8.3 Pin Usage Consideration

This section covers things to watch for when hooking up to certain pins on the expansion headers.

Boot PIN

There are 16 pins that control the boot mode of the processor that are exposed on the expansion headers.
Figure 63 below shows those signals as they appear on the BeagleBone Black.:

Fig. 5.65: Boot signals

If you plan to use any of these signals, then on power up, these pins should not be driven. If you do, it can
affect the boot mode of the processor and could keep the processor from booting or working correctly.

If you are designing a cape that is intended to be used as a boot source, such as a NAND board, then you should
drive the pins to reconfigure the boot mode, but only at reset. After the reset phase, the signals should not
be driven to allow them to be used for the other functions found on those pins. You will need to override the
resistor values in order to change the settings. The DC pull-up requirement should be based on the AM3358
Vih min voltage of 2 volts and AM3358 maximum input leakage current of 18uA. Also take into account any
other current leakage paths on these signals which could be caused by your specific cape design.

The DC pull-down requirement should be based on the AM3358 Vil max voltage of 0.8 volts and AM3358
maximum input leakage current of 18uA plus any other current leakage paths on these signals.

5.8. Cape Board Support 295

BeagleBoard Docs, Release 1.0.20230711-wip

5.8.4 Expansion Connectors

A combination of male and female headers is used for access to the expansion headers on the main board.
There are three possible mounting configurations for the expansion headers:

• Single no board stacking but can be used on the top of the stack.

• Stacking-up to four boards can be stacked on top of each other.

• Stacking with signal stealing-up to three boards can be stacked on top of each other, but certain boards
will not pass on the signals they are using to prevent signal loading or use by other cards in the stack.

The following sections describe how the connectors are to be implemented and used for each of the different
configurations.

Non-Stacking Headers-Single Cape

For non-stacking capes single configurations or where the cape can be the last board on the stack, the two 46
pin expansion headers use the same connectors. Figure 64 is a picture of the connector. These are dual row
23 position 2.54mm x 2.54mm connectors.

Fig. 5.66: Single Expansion Connector

The connector is typically mounted on the bottom side of the board as shown in Figure 65. These are very
common connectors and should be easily located. You can also use two single row 23 pin headers for each of
the dual row headers.

Fig. 5.67: Single Cape Expansion Connector

It is allowed to only populate the pins you need. As this is a non-stacking configuration, there is no need for
all headers to be populated. This can also reduce the overall cost of the cape. This decision is up to the cape
designer.

For convenience listed in Table 19 are some possible choices for part numbers on this connector. They have
varying pin lengths and somemay bemore suitable than others for your use. It should be noted, that the longer
the pin and the further it is inserted into the BeagleBone Black connector, the harder it will be to remove due
to the tension on 92 pins. This can be minimized by using shorter pins or removing those pins that are not
used by your particular design. The first item in**Table 18** is on the edge and may not be the best solution.
Overhang is the amount of the pin that goes past the contact point of the connector on the BeagleBone Black

Table 5.19: Single Cape Connectors
SUPPLIER PARTNUMBER LENGTH(in) OVERHANG(in)
Major League TSHC-123-D-03-145-G-LF .145 .004
Major League TSHC-123-D-03-240-G-LF .240 .099
Major League TSHC-123-D-03-255-G-LF .255 .114

The G in the part number is a plating option. Other options may be used as well as long as the contact area is
gold. Other possible sources are Sullins and Samtec for these connectors. You will need to ensure the depth

296 Chapter 5. BeagleBone Black

http://www.mlelectronics.com/
http://www.mlelectronics.com/
http://www.mlelectronics.com/

BeagleBoard Docs, Release 1.0.20230711-wip

into the connector is sufficient

Main Expansion Headers-Stacking

For stacking configuration, the two 46 pin expansion headers use the same connectors. Figure 66 is a picture
of the connector. These are dual row 23 position 2.54mm x 2.54mm connectors.

Fig. 5.68: Expansion Connector

The connector is mounted on the top side of the board with longer tails to allow insertion into the BeagleBone
Black. Figure 67 is the connector configuration for the connector.

Fig. 5.69: Stacked Cape Expansion Connector

For convenience listed in Table 18 are some possible choices for part numbers on this connector. They have
varying pin lengths and somemay bemore suitable than others for your use. It should be noted, that the longer
the pin and the further it is inserted into the BeagleBone Black connector, the harder it will be to remove due
to the tension on 92 pins. This can be minimized by using shorter pins. There are most likely other suppliers
out there that will work for this connector as well. If anyone finds other suppliers of compatible connectors
that work, let us know and they will be added to this document. The first item in**Table 19** is on the edge
and may not be the best solution. Overhang is the amount of the pin that goes past the contact point of the
connector on the BeagleBone Black.

The third part listed in Table 20 will have insertion force issues.

Table 5.20: Stacked Cape Connectors
SUPPLIER PARTNUMBER TAIL LENGTH(in) OVERHANG(in)
Major League SSHQ-123-D-06-G-LF .190 0.049
Major League SSHQ-123-D-08-G-LF .390 0.249
Major League SSHQ-123-D-10-G-LF .560 0.419

There are also different plating options on each of the connectors above. Gold plating on the contacts is the
minimum requirement. If you choose to use a different part number for plating or availability purposes, make
sure you do not select the “LT” option.

Other possible sources are Sullins and Samtec but make sure you select one that has the correct mating depth.

StackedStealing

Figure 68 is the connector configuration for stackable capes that does not provide all of the signals upwards
for use by other boards. This is useful if there is an expectation that other boards could interfere with the
operation of your board by exposing those signals for expansion. This configuration consists of a combination
of the stacking and nonstacking style connectors.

5.8. Cape Board Support 297

http://www.mlelectronics.com/
http://www.mlelectronics.com/
http://www.mlelectronics.com/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.70: Stacked w/Signal Stealing Expansion Connector

Retention Force

The length of the pins on the expansion header has a direct relationship to the amount of force that is used
to remove a cape from the BeagleBone Black. The longer the pins extend into the connector the harder it is
to remove. There is no rule that says that if longer pins are used, that the connector pins have to extend all
the way into the mating connector on the BeagleBone Black, but this is controlled by the user and therefore is
hard to control. We have also found that if you use gold pins, while more expensive, it makes for a smoother
finish which reduces the friction.

This section will attempt to describe the tradeoffs and things to consider when selecting a connector and its
pin length.

Figure 69 shows the key measurements used in calculating how much the pin extends past the contact point
on the connector, what we call overhang.

Fig. 5.71: Connector Pin Insertion Depth

To calculate the amount of the pin that extends past the Point of Contact, use the following formula:

Overhang=Total Pin Length- PCB thickness (.062) - contact point (.079)

The longer the pin extends past the contact point, the more force it will take to insert and remove the board.
Removal is a greater issue than the insertion.

5.8.5 8.5 Signal Usage

Based on the pin muxing capabilities of the processor, each expansion pin can be configured for different
functions. When in the stacking mode, it will be up to the user to ensure that any conflicts are resolved
between multiple stacked cards. When stacked, the first card detected will be used to set the pin muxing of

298 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

each pin. This will prevent other modes from being supported on stacked cards and may result in them being
inoperative.

In «section-7-1» of this document, the functions of the pins are defined as well as the pin muxing options.
Refer to this section for more information on what each pin is. To simplify things, if you use the default name as
the function for each pin and use those functions, it will simplify board design and reduce conflicts with other
boards.

Interoperability is up to the board suppliers and the user. This specification does not specify a fixed function on
any pin and any pin can be used to the full extent of the functionality of that pin as enabled by the processor.

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE
PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

5.8.6 8.6 Cape Power

This section describes the power rails for the capes and their usage.

Main Board Power

The Table 1 describes the voltages from the main board that are available on the expansion connectors and
their ratings. All voltages are supplied by connector**P9**. The current ratings listed are per pin.

Table 5.21: Expansion Voltages
Current Name P9 P9 Name Current
250mA VDD_3V3B 3 4 VDD_3V3B 250mA
1000mA VDD_5V 5 6 VDD_5V 1000mA
250mA SYS_5V 7 8 SYS_5V 250mA

The VDD_3V3B rail is supplied by the LDO on the BeagleBone Black and is the primary power rail for expansion
boards. If the power requirement for the capes exceeds the current rating, then locally generated voltage rail
can be used. It is recommended that this rail be used to power any buffers or level translators that may be
used.

VDD_5V is the main power supply from the DC input jack. This voltage is not present when the board is powered
via USB. The amount of current supplied by this rail is dependent upon the amount of current available. Based
on the board design, this rail is limited to 1A per pin from the main board.

The SYS_5V rail is the main rail for the regulators on the main board. When powered from a DC supply or USB,
this rail will be 5V. The available current from this rail depends on the current available from the USB and DC
external supplies.

Power

A cape can have a jack or terminals to bring in whatever voltages may be needed by that board. Care should
be taken not to let this voltage be fed back into any of the expansion header pins.

It is possible to provide 5V to the main board from an expansion board. By supplying a 5V signal into the
VDD_5V rail, the main board can be supplied. This voltage must not exceed 5V. You should not supply any
voltage into any other pin of the expansion connectors. Based on the board design, this rail is limited to 1A
per pin to the BeagleBone Black.

There are several precautions that need to be taken when working with the expansion headers to prevent
damage to the board.

1. Do not apply any voltages to any I/O pins when the board is not powered on. 2. Do not drive any external
signals into the I/O pins until after the VDD_3V3B rail is up. 3. Do not apply any voltages that are generated

5.8. Cape Board Support 299

BeagleBoard Docs, Release 1.0.20230711-wip

from external sources. 4. If voltages are generated from the VDD_5V signal, those supplies must not become
active until after the VDD_3V3B rail is up. 5. If you are applying signals from other boards into the expansion
headers, make sure you power the board up after you power up the BeagleBone Black or make the connections
after power is applied on both boards.

Powering the processor via its I/O pins can cause damage to the processor.

5.8.7 8.7 Mechanical

This section provides the guidelines for the creation of expansion boards from amechanical standpoint. Defined
is a standard board size that is the same profile as the BeagleBone Black. It is expected that the majority of
expansion boards created will be of standard size. It is possible to create boards of other sizes and in some
cases this is required, as in the case of an LCD larger than the BeagleBone Black board.

Standard Cape Size

Fig. 5.72: Cape Board Dimensions

A slot is provided for the Ethernet connector to stick up higher than the cape when mounted. This also acts as
a key function to ensure that the cape is oriented correctly. Space is also provided to allow access to the user
LEDs and reset button on the main board.

Some people have inquired as to the difference in the radius of the corners of the BeagleBone Black and why
they are different. This is a result of having the BeagleBone fit into the Altoids style tin.

It is not required that the cape be exactly like the BeagleBone Black board in this respect.

Extended Cape Size

Capes larger than the standard board size are also allowed. A good example would be an LCD panel. There
is no practical limit to the sizes of these types of boards. The notch for the key is also not required, but it is
up to the supplier of these boards to ensure that the BeagleBone Black is not plugged in incorrectly in such a

300 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

manner that damage would be caused to the BeagleBone Black or any other capes that may be installed. Any
such damage will be the responsibility of the supplier of such a cape to repair.

As with all capes, the EEPROM is required and compliance with the power requirements must be adhered to.

Enclosures

There are numerous enclosures being created in all different sizes and styles. The mechanical design of these
enclosures is not being defined by this specification.

The ability of these designs to handle all shapes and sizes of capes, especially when you consider up to four can
be mounted with all sorts of interface connectors, it is difficult to define a standard enclosure that will handle
all capes already made and those yet to be defined.

If cape designers want to work together and align with one enclosure and work around it that is certainly
acceptable. But we will not pick winners and we will not do anything that impedes the openness of the platform
and the ability of enclosure designers and cape designers to innovate and create new concepts.

5.9 BeagleBone Black Mechanical

5.9.1 Dimensions and Weight

Size: 3.5” x 2.15” (86.36mm x 53.34mm)

Max height: .187” (4.76mm)

PCB Layers: 6

PCB thickness: .062”

RoHS Compliant: Yes

Weight: 1.4 oz

5.9.2 Silkscreen and Component Locations

5.10 Pictures

5.11 Support Information

All support for this design is through the BeagleBoard.org community at: beagleboard@googlegroups.com or
http://beagleboard.org/discuss

5.11.1 Hardware Design

Design documentation can be found on the eMMC of the board under the documents/hardware directory when
connected using the USB cable. Provided there is:

• Schematic in PDF

• Schematic in OrCAD (Cadence Design Entry CIS 16.3)

• PCB Gerber

• PCB Layout (Allegro)

• Bill of Material

• System Reference Manual (This document).

5.9. BeagleBone Black Mechanical 301

mailto:beagleboard@googlegroups.com
http://beagleboard.org/discuss

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.73: Board Dimensions

302 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.74: Component Side Silkscreen

5.11. Support Information 303

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.75: Circuit Side Silkscreen

304 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.76: Top Side

Fig. 5.77: Bottom Side

5.11. Support Information 305

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.78: 45 Degree Top

306 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

This directory is not always kept up to date in every SW release due to the frequency of changes of the SW.
The best solution is to download the files from http://www.beagleboard.org/distros

We do not track SW revision of what is in the eMMC. SW is tracked separately from the HW due to the frequency
of changes which would require massive relabeling of boards due to the frequent SW changes. You should
always use the latest SW revision.

To see what SW revision is loaded into the eMMC follow the instructions at https://elinux.org/Beagleboard:
Updating_The_Software#Checking_The_Angstrom_Image_Version

5.11.2 Software Updates

It is a good idea to always use the latest software. Instructions for how to update your software to the latest
version can be found at:

http://elinux.org/BeagleBoneBlack#Updating_the_eMMC_Software

5.11.3 RMA Support

If you feel your board is defective or has issues, request an RMA by filling out the form at http://beagleboard.
org/support/rma . You will need the serial number and revision of the board. The serial numbers and revisions
keep moving. Different boards can have different locations depending on when they were made. The following
figures show the three locations of the serial and revision number.

Fig. 5.79: Initial Serial Number and Revision Locations

5.11.4 Trouble Shooting HDMI Issues

Many people are having issues with getting HDMI to work on their TV/Display. Unfortunately, we do not have
the resources to buy all the TVs and Monitors on the market today nor go to eBay and buy all of the TVs and
monitors made over the last five years to thoroughly test each and every one. We are depending on community
members to help us get these tested and information provided on how to get them to work.

One would think that if it worked on a lot of different TVs and monitors it would work on most if not all of them,
assuming they meet the specification. However, there are other issues that could also result in these various
TVs and monitors not working. The intent is that this page will be useful in navigating some of these issues.
As others also find solutions, as long as we know about them, they will be added here as well. For access to

5.11. Support Information 307

http://www.beagleboard.org/distros
https://elinux.org/Beagleboard:Updating_The_Software#Checking_The_Angstrom_Image_Version
https://elinux.org/Beagleboard:Updating_The_Software#Checking_The_Angstrom_Image_Version
http://elinux.org/BeagleBoneBlack#Updating_the_eMMC_Software
http://beagleboard.org/support/rma
http://beagleboard.org/support/rma

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 5.80: Second Phase Serial Number and Revision Location

Fig. 5.81: Third Phase Serial Number and Revision Location

308 Chapter 5. BeagleBone Black

BeagleBoard Docs, Release 1.0.20230711-wip

the most up to date troubleshooting capabilities, go to the support wiki at http://www.elinux.org/Beagleboard:
BeagleBoneBlack_HDMI

The early release of the Software had some issues in the HDMI driver. Be sure and use the latest SW to take
advantage of the improvements.

http://www.elinux.org/Beagleboard:BeagleBoneBlack#Software_Resources

EDID

EDID is the way the board requests information from the display and determines all the resolutions that it
can support. The driver on the board will then look at these timings and find the highest resolution that is
compatible with the board and uses that resolution for the display. For more information on EDID, you can take
a look at http://en.wikipedia.org/wiki/Extended_display_identification_data

If the board is not able to read the EDID, for whatever reason, it does not have this information. A few possible
reasons for this are:

• Bad cable

• Cable not plugged in all the way on both ends

• Display not powered on. (It should still work powered off, but some displays do not).

DISPLAY SOURCE SELECTION

One easy thing to overlook is that you need to select the display source that matches the port you are using
on the TV. Some displays may auto select, so you may need to disconnect the other inputs until you are sure
the display works with the board.

OUT OF SEQUENCE

Sometimes the display and the board can get confused. One way to prevent this is after everything is cabled
up and running, you can power cycle the display, with the board still running. You can also try resetting the
board and let it reboot to resync with the TV.

OVERSCAN

Some displays use what is called overscan. This can be seen in TVs and not so much on Monitors. It causes
the image to be missing on the edges, such that you cannot see them displayed. Some higher end displays
allow you to disable overscan.

Most TVs have a mode that allows you to adjust the image. These are options like Normal, Wide, Zoom, or Fit.
Normal seems to be the best option as it does not chop of the edges. The other ones will crop of the edges.

Taking a Nap

In some cases the board can come up in a power down/screen save mode. No display will be present. This is
due to the board believing that it is asleep. To come out of this, you will need to hit the keyboard or move the
mouse.

Once working, the board will time out and go back to sleep again. This can cause the display to go into a power
down mode as well. You may need to turn the display back on again. Sometimes, it may take a minute or so
for the display to catch up and show the image.

5.11. Support Information 309

http://www.elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://www.elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://www.elinux.org/Beagleboard:BeagleBoneBlack#Software_Resources
http://en.wikipedia.org/wiki/Extended_display_identification_data

BeagleBoard Docs, Release 1.0.20230711-wip

AUDIO

Audio will only work on TV resolutions. This is due to the way the specification was written. Some displays have
built in speakers and others require external. Make sure you have a TV resolution and speakers are connected
if they are not built in. The SW should default to a TV resolution giving audio support. The HDMI driver should
default to the highest audio supported resolution.

Getting Help

If you need some up to date troubleshooting techniques, we have aWiki set up at http://elinux.org/Beagleboard:
BeagleBoneBlack_HDMI

310 Chapter 5. BeagleBone Black

http://elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://elinux.org/Beagleboard:BeagleBoneBlack_HDMI

Chapter 6

BeagleBone Blue

To optimize BeagleBone for education, BeagleBone Blue was created that integrates many components for
robotics and machine control, including connectors for off-the-shelf robotic components. For education, this
means you can quickly start talking about topics such as programming and control theory, without needing
to spend so much time on electronics. The goal is to still be very hackable for learning electronics as well,
including being fully open hardware.

BeagleBone Blue’s legacy is primarily from contributions to BeagleBone Black robotics by UCSD Flow Control
and Coordinated Robotics Lab, Strawson Design, Octavo Systems, WowWee, National Instruments LabVIEW
and of course the BeagleBoard.org Foundation.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

311

http://robotics.ucsd.edu/
http://robotics.ucsd.edu/
http://www.strawsondesign.com/
http://octavosystems.com/
http://www.wowwee.com/mip/
http://www.ni.com/labview/
https://beagleboard.org/about
http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230711-wip

6.1 BeagleBone Blue Pinouts

312 Chapter 6. BeagleBone Blue

BeagleBoard Docs, Release 1.0.20230711-wip

• Connector pinout details from schematic(s)

• Pin Table with some Blue : Black corelation.

6.1.1 UT1

UART (/dev/ttyS1)

config-pin P9.24 uart
config-pin P9.26 uart

6.1.2 GPS

UART (/dev/ttyS2)

config-pin P9.21 uart
config-pin P9.22 uart

6.2 SSH

If you don’t have ssh installed, install it. (google is your friend) Then ssh debian@192.168.7.2 The board will
tell you what the password is, on my it was temppwd.

To change your password use the command password it will ask you what your current password is, then ask
for the replacement. Then it will say it was too simple and you have to do it again. Normal stuff.

If you want to insist on using your simple password, try this.

6.2. SSH 313

https://git.beagleboard.org/beagleboard/beaglebone-blue/-/blob/master/BeagleBone_Blue_sch.pdf
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/blob/master/BeagleBone_Blue_Pin_Table.csv

BeagleBoard Docs, Release 1.0.20230711-wip

sudo -s
(become superuser/root)
enter your password
password debian
(put your simple password in)

exit
(exit from superuser/root)

When you are running as root, password is more compliant and will accept simple password

6.3 WiFi Setup

On my network, I’m set up as ip 192.168.1.*. To turn your wifi on, do the following.

sudo -s
(become superuser/root)
cd /etc/network/
ifconfig
(Note the wifi inet address, if it is already set, you are done!)
connmanctl
tether wifi off
enable wifi
scan wifi
services
(at this point you should see your network appear along with other stuff, in␣
↪→my case it was ”AR Crystal wifi_f45eab2f1ee1_6372797774616c_managed_psk”)
nano interfaces
(or whatever editor you like)
remove the comment # from the wifi lines so it now appears like
##connman: WiFi
#
connmanctl
connmanctl> tether wifi off
connmanctl> enable wifi
connmanctl> scan wifi
connmanctl> services
connmanctl> agent on
connmanctl> connect wifi_f45eab2f1ee1_6372797774616c_managed_psk
connmanctl> quit
exit
note that you will need to fill in your own network data

6.4 IP settings

You will usually want to have a fixed ip if you are doing robotics, so you have a standard ip to connect to. If you
are already connected in dhcp you can borrow some of the settings from that to use in your new configurations.

route

make a note of the default one, (in the example below 192.168.1.1)

cat /etc/resolv.conf

make a note of the nameserver, (in the example below 8.8.8.8)

In my case I wanted 192.168.1.7 to do this,

314 Chapter 6. BeagleBone Blue

BeagleBoard Docs, Release 1.0.20230711-wip

sudo -s
connmanctl config wifi_f45eab2f1ee1_6372797774616c_managed_psk --ipv4 manual␣
↪→192.168.1.7 255.255.255.0 192.168.1.1 --nameservers 8.8.8.8
exit

the –ipv4 says to use ipv4 settings (as opposed to ipv6), the manual means we are setting the values.
192.168.1.7 is the ip address we want. (use your own of course). 255.255.255.0 is the network mask
192.168.1.1 is the route to the internet. (You’re might be different, but this is common). –nameservers 8.8.8.8
says where to find the ip address for a given domain name. the 8.8.8.8 says use’s googles

6.5 Flashing Firmware

6.5.1 Overview

Most Beaglebones have a built in 4 GB SD card known as a eMMC (embedded MMC). When the boards are made
the eMMC is “flashed” with some version of the BeagleBone OS that is usually outdated. Therefore, whenever
receiving the BeagleBone it is recommend that you update the eMMC with the last version of the BeagleBone
OS or a specific version of it if someone tells you otherwise.

6.5.2 Required Items

1. Micro sd card. 4 GB minimum

2. Micro sd card reader or a built in sd card reader for your PC

3. BeagleBone image you want to flash.

4. Etcher utility for your PC’s OS.

6.5.3 Steps Overview

1. Burn the image you want to flash onto a micro sd card using the Etcher utility.

2. Boot the BeagleBone like normal and place the micro sd card into the board once booted.

3. Update the micro sd card image so its in “flashing” mode.

4. Insert micro sd card, remove power from the BeagleBone, hold sd card select button, power up board

5. Let the board flash

6.5.4 Windows PCs

1. Download the BeagleBone OS image you want to use.

2. Use the Etcher utility to burn the BeagleBone image you want to use on the micro sd card you plan on
using.

3. Make sure you don’t have the micro sd card plugged into your board.

4. Boot the board

5. Connect to the board via serial or ssh so that your on the command prompt.

6. Plug the micro sd card into the board.

7. Type dmesg in the terminal window

8. The last line from the output should say something like (the numbering may differ slightly):

• ”[2805.442940] mmcblk0: p1”

6.5. Flashing Firmware 315

https://etcher.io/
https://www.beagleboard.org/distros
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230711-wip

9. You want to take the above and combine it together by removing the : and space. For the above example
it will change to “mmcblk0p1”

10. In the terminal window enter the following commands:

mkdir sd_tmp
sudo mount /dev/mmcblk0p1 sd_tmp
sudo su
echo ”cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh” >> sd_
↪→tmp/boot/uEnv.txt
exit
sudo umount sd_tmp

11. Now power off your board

12. Hold the update button labeled SD (the one by itself) to boot off the sdcard.

13. Restart (RST button) or power up (while still pushing SD button).

Flashing can take some minutes. ## Linux/Mac PCs 1. Download the BeagleBone OS image you want to
use. 1. Use the Etcher utility to burn the BeagleBone image you want to use on the micro sd card you
plan on using. 1. On the SD card edit the file /boot/uEnv.txt in order for the SD card contents to
be flashed onto the firmware eMMC. (Otherwise the BBBL will do no more than boot the SD image.) Un-
comment the line containing init-eMMC-flasher-v<number>.sh either manually or using these
commands substituting X with what your SD card shows in /dev/: * sudo mount /dev/emmcblkXp1
/mnt * cd /mnt * sed -i 's_#[]*\(cmdline=init=/opt/scripts/tools/eMMC/
init-eMMC-flasher-v[0-9]\+.*\.sh\)_\1_' boot/uEnv.txt

1. Eject the sdcard from your computer.

2. Put it into your BeagleBoneBlue.

3. If your board was already powered on then power it off

4. Hold the update button labeled SD (the one by itself) to boot off the sdcard.

5. Restart (RST button) or power up (while still pushing SD button).

Flashing can take some minutes.

How to tell if it is flashing?

At first a blue heartbeat is shown indicating the image is booted. On flash procedure start, the blue user LEDs
light up in a “larson scanner” or “cylon” pattern (back and forth).

When finished, either all blue LEDs are on or the board is already switched off.

If the LEDs are on for a long time then it may indicate failure e.g. wrong image. Can be verified if boot fails,
i.e. board turns off again shortly after power up.

6.6 Play with the code

The board has some code built in to the system that can allow you to try out the various options. They all start
with rc

rc_balance rc_dsm_passthrough rc_test_encoders
rc_battery_monitor rc_kill rc_test_filters
rc_benchmark_algebra rc_spi_loopback rc_test_imu
rc_bind_dsm rc_startup_routine rc_test_motors
rc_blink rc_test_adc rc_test_polynomial
rc_calibrate_dsm rc_test_algebra rc_test_servos
rc_calibrate_escs rc_test_barometer rc_test_time
rc_calibrate_gyro rc_test_buttons rc_test_vector

(continues on next page)

316 Chapter 6. BeagleBone Blue

https://www.beagleboard.org/distros
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

rc_calibrate_mag rc_test_cape rc_uart_loopback
rc_check_battery rc_test_dmp rc_version
rc_check_model rc_test_drivers
rc_cpu_freq rc_test_dsm

Try them out to try out the various functions of the board. The source code for these tests and demos is at
Robotics cape installer at github

6.7 BeagleBone Blue tests

6.7.1 ADC

• Grove Rotary Angle Sensor See output on adc_1 source

rc_test_adc

6.7.2 GP0

• Grove single GPIO output modules like LED Socket Kit

cd /sys/class/gpio;echo 49 >export;cd gpio49;echo out >direction;while sleep␣
↪→1;do echo 0 >value;sleep 1;echo 1 >value;done

• Grove single GPIO input modules like IR Distance Interrupter or Touch Sensor

cd /sys/class/gpio;echo 49 >export;cd gpio49;echo in >direction;watch -n0␣
↪→cat value

6.7.3 GP1

• Grove single GPIO output modules like LED Socket Kit

cd /sys/class/gpio;echo 97 >export;cd gpio97;echo out >direction;while sleep␣
↪→1;do echo 0 >value;sleep 1;echo 1 >value;done

• Grove single GPIO input modules like IR Distance Interrupter or Touch Sensor

cd /sys/class/gpio;echo 97 >export;cd gpio97;echo in >direction;watch -n0␣
↪→cat value

6.7.4 UT1

• Grove GPS

tio /dev/ttyO1 -b 9600

6.7.5 GPS

• GPS Receiver - EM-506

tio /dev/ttyO2 -b 4800

6.7. BeagleBone Blue tests 317

https://github.com/StrawsonDesign/Robotics_Cape_Installer
http://wiki.seeed.cc/Grove-Rotary_Angle_Sensor/
https://git.beagleboard.org/beagleboard/librobotcontrol/-/blob/v1.1/examples/src/rc_test_adc.c
http://wiki.seeed.cc/Grove-LED_Socket_Kit/
http://wiki.seeed.cc/Grove-IR_Distance_Interrupter_v1.2/
http://wiki.seeed.cc/Grove-Touch_Sensor/
http://wiki.seeed.cc/Grove-LED_Socket_Kit/
http://wiki.seeed.cc/Grove-IR_Distance_Interrupter_v1.2/
http://wiki.seeed.cc/Grove-Touch_Sensor/
http://wiki.seeed.cc/Grove-GPS/
https://www.sparkfun.com/products/12751

BeagleBoard Docs, Release 1.0.20230711-wip

6.7.6 I2C

Grove I2C modules

The Linux kernel source has some basic IIO SYSFS interface documentation which might provide a little help
for understanding reading these entries. The ELC2017 conference also had an IIO presentation.

• Digital Light Sensor

cd /sys/bus/i2c/devices/i2c-1;echo tsl2561 0x29 >new_device;watch -n0 cat 1-
↪→0029/iio\:device0/in_illuminance0_input

• Temperature & Humidity Sensor

cd /sys/bus/i2c/devices/i2c-1;echo th02 0x40 >new_device;watch -n0 cat 1-
↪→0040/iio\:device0/in_temp_raw

6.7.7 Motors

rc_test_motors

6.8 Accessories

Todo: We are going to work on a unified accessories page for all the boards and it should replace this.

6.8.1 Chassis and kits

• EduMIP

• Pololu Romi Chassis with geared motors

– Wheel encoders

– Chassis - Black

• Sprout Runt Rover

6.8.2 Cases

6.8.3 Cable assemblies and sub-assemblies

Beware; purchased pre-made connector assembly wire colors may not reflect true pin designations. These
assemblies are readily available from Digi-Key, SparkFun, Hobby King, Pololu and Cables and Connectors.

JST Connector Bundle

Renaissance Robotics JST Jumper Bundle

Four of the 2-pin JST ZH (1.5mm pitch) connectors, with 150mm 28AWG wires, for motors,
Eight of the 4-pin JST SH (1mm pitch) connectors, with 150mm 28AWG wires, for encoders, UART, I2C, CAN,
PWR, and
Four of the 6-pin JST SH (1mm pitch) connectors, with 150mm 28AWG wires, for SPI, GPS, GPIO, ADC.
Renaissance Robotics JST Jumper Bundle

318 Chapter 6. BeagleBone Blue

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-iio
http://elinux.org/images/b/ba/ELC_2017_-_Industrial_IO_and_You-_Nonsense_Hacks%21.pdf
http://wiki.seeed.cc/Grove-Digital_Light_Sensor/
http://wiki.seeed.cc/Grove-TemptureAndHumidity_Sensor-High-Accuracy_AndMini-v1.0/
https://www.renaissancerobotics.com/edumip.html
https://www.pololu.com/category/202/romi-chassis-and-accessories
https://www.pololu.com/product/3542
https://www.pololu.com/product/3500
https://www.servocity.com/sprout
https://www.digikey.com
https://sparkfun.com
https://hobbyking.com
https://www.pololu.com
http://cablesandconnectors.com
https://www.renaissancerobotics.com/JST_Jumper_Bundle.html

BeagleBoard Docs, Release 1.0.20230711-wip

Conrad BeagleBoard Kabel BB-Blue-Kabelset

10x 4-Pin JST-SH
6x 6-Pin JST-SH
4x 2-Pin JST-ZH
1x 3-Pin JST-ZH
BeagleBoard Kabel BB-Blue-Kabelset (Conrad.de)

6.8.4 UART, I2C, CAN, Quadrature encoders, PWR

4-wire JST-SH (1mm pitch)

• 4-wire Grove cable (Digi-Key)

• Hobby King SKU 258000190-0

• SparkFun PN 10359

• Cables and Connectors 4” ribbon PN #4904

• Digi-Key wires

• Digi-Key housings

6.8.5 SPI, GPIO, ADC

6-wire JST-SH (1mm pitch)

• Hobby King SKU 258000192-0

• SparkFun PN 10361

• Cables and Connectors 50cm length PN #49406

• Digi-Key wires

• Digi-Key housings

• 6-wire Grove cable (4 populated) (Digi-Key)

6.8.6 Motors

2-wire JST-ZH (1.5mm pitch)

• Digi-Key wires

• Digi-Key receptacle

6.8.7 DSM

3-wire JST-ZH (1.5mm pitch)

• Pololu PN# 2411

microUSB

standard

6.8. Accessories 319

https://www.conrad.de/de/beagleboard-kabel-bb-blue-kabelset-1606596.html
https://www.seeedstudio.com/Grove-Universal-4-Pin-to-BeagleBone-Blue-4-Pin-Female-JST-SH-Convertion-Cable-(10-pcs-pack)-p-3026.html
https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/114991495/1597-1622-ND/8558386
https://hobbyking.com/en_us/jst-sh-4pin-male-with-pig-tail.html
https://www.sparkfun.com/products/10359
http://www.cablesandconnectors.com/search/search.php?k=49404
https://www.digikey.com/products/en?keywords=ASSHSSH28K305
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-04V-S-B/455-1379-ND/759868
https://hobbyking.com/en_us/jst-sh-6pin-male-with-pig-tail.html
https://www.sparkfun.com/products/10361
http://www.cablesandconnectors.com/search/search.php?k=49406
https://www.digikey.com/products/en?keywords=ASSHSSH28K305
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-06V-S-B/455-1381-ND/759870
https://www.seeedstudio.com/Grove-Universal-4-Pin-to-BeagleBone-Blue-6-Pin-Female-JST-SH-Convertion-Cable-(10-pcs-pack)-p-3027.html
https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/114991496/1597-1623-ND/8558387
http://www.digikey.com/product-detail/en/jst-sales-america-inc/ASZHSZH28K152/455-3079-ND/6009455
http://www.digikey.com/product-detail/en/jst-sales-america-inc/ZHR-2/455-1366-ND/566476
https://www.pololu.com/product/2411

BeagleBoard Docs, Release 1.0.20230711-wip

Batteries

2S1P LiPo with 3-wire JST-XH (2.5mm pitch) charge connection

• Hobby King 1000mAh 2S 20C LiPo

• Hobby King 1600mAh 2S 20C LiPo

6.8.8 Power supplies

12V with 5.5mm/2.1mm center positive

• Jameco: supply and power cord

• Hobby King 12V 3A supply

6.8.9 Motors

Servo motors

6V DC

• Parallax Inc. 900-00005 Standard Servo

• Hobby King SKU HD-1900A

• TowerPro SG92R-7

DC motors

6V, typically geared

• SparkFun Hobby Gearmotor - 200 RPM (Pair)

• SparkFun Hobby Motor - Gear

6.8.10 Radio remotes

• Hobby King OrangeRX satellite receiver

• Spektrum DSM2 Remote Receiver

6.8.11 GPS

• Sparkfun GPS Receiver - EM-506 (48 Channel)

• Adafruit Ultimate GPS breakout

• Ublox Neo-M8N GPS with Compass

• SeeedStudio Grove - GPS

6.8.12 Replacement antennas

• LSR PIFA

• LSR Dipole: antenna and cable

• Anaren U.FL 2.4GHz 6MM Antenna

• TI approved antennas

320 Chapter 6. BeagleBone Blue

https://hobbyking.com/en_us/turnigy-1000mah-2s-20c-lipo-pack.html
https://hobbyking.com/en_us/turnigy-1600mah-2s-20c-losi-mini-sct-pack-part-losb1212.html
http://www.jameco.com/z/TR9CE4100LCP-A-Globtek-50W-12V-4-16A-AC-to-DC-Regulated-Switching-Wall-Adapter_2229247.html?CID=GOOG&gclid=CL-2js2-n9ICFQQdaQodMgsLMA
http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?search_type=jamecoall&catalogId=10001&freeText=38050&langId=-1&productId=38050&storeId=10001&ddkey=http:StoreCatalogDrillDownView
https://hobbyking.com/en_us/12v-3a-interchangeable-plug-adapter.html
http://www.digikey.com/product-detail/en/900-00005/900-00005-ND/361277?WT.mc_id=IQ_7595_G_pla361277&wt.srch=1&wt.medium=cpc&WT.srch=1&gclid=CJz-qdC9n9ICFRO4wAodOjYLuQ
https://hobbyking.com/en_us/power-hd-1900a-servo-1-7kg-0-08sec-9g.html
http://www.towerpro.com.tw/product/sg92r-7/
https://www.sparkfun.com/products/13302
https://www.sparkfun.com/products/11696
https://hobbyking.com/en_us/orangerx-r110x-dsmx-dsm2-compatible-satellite-receiver.html
https://www.spektrumrc.com/Products/Default.aspx?ProdID=SPM9545
https://www.sparkfun.com/products/12751
https://www.adafruit.com/product/746
https://hobbyking.com/en_us/ublox-neo-m8n-gps-with-compass.html
https://www.seeedstudio.com/Grove-GPS-p-959.html
https://www.digikey.com/product-detail/en/laird-wireless-thermal-systems/001-0014/001-0014-ND/4732758
https://www.digikey.com/product-detail/en/laird-wireless-thermal-systems/001-0001/001-0001-ND/2696493
https://www.digikey.com/product-detail/en/lsr/080-0001/080-0001-ND/2696495
http://www.digikey.com/product-detail/en/anaren/66089-2406/1173-1024-ND/3069146
http://www.ti.com/lit/ug/swru437/swru437.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

6.8.13 USB devices

USB cameras

• Logitech C270

• Logitech C920

6.8.14 SPI devices

SPI TFT displays

• Adafruit 2.4” LCD breakout

6.8.15 I2C devices

• See One Liner Module Tests

• See Using I2C with Linux drivers

6.8.16 UART devices

Computer serial adapters

• Sparkfun FTDI Cable 5V VCC-3.3V I/O

• Adafruit FTDI Serial TTL-232 USB Cable

6.8.17 Bluetooth devices

• WowWee Groove Cube Speaker

6.9 Frequently Asked Questions (FAQs)

6.9.1 Are there any books to help me get started?

The book BeagleBone Robotic Projects, Second Edition specifically covers how to get started building robots
with BeagleBone Blue.

For more general books on BeagleBone, Linux and other related topics, see https://beagleboard.org/books.

6.9.2 What system firmware should I use for starting to explore my BeagleBone
Blue?

Download the latest ‘IoT’ image from https://www.beagleboard.org/distros. As of this writing, that image is
https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz.

Use http://etcher.io for writing that image to a 4GB or larger microSD card.

Power-up your BeagleBone Blue with the newly created microSD card to run this firmware image.

6.9. Frequently Asked Questions (FAQs) 321

https://www.amazon.com/Logitech-Desktop-Widescreen-Calling-Recording/dp/B004FHO5Y6
https://www.amazon.com/Logitech-Widescreen-Calling-Recording-Desktop/dp/B006JH8T3S
https://www.adafruit.com/products/2478
https://www.sparkfun.com/products/9717
https://www.adafruit.com/product/70
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/One-Liner-Module-Tests#grove-i2c-modules
https://github.com/jadonk/BeagleBone-Robotic-Projects-Second-Edition
https://beagleboard.org/books
https://www.beagleboard.org/distros
https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz
http://etcher.io

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.3 What is the name of the access point SSID and password default on Bea-
gleBone Blue?

SSID: BeagleBone-XXXX where XXXX is based upon the board’s assigned unique hardware address
Password: BeagleBone

6.9.4 I’ve connected to BeagleBone Blue’s access point. How do I get logged into
the board?

Browse to http://192.168.8.1:3000 to open the Cloud9 IDE and get access to the Linux command prompt.

If you’ve connected via USB instead, the address will be either http://192.168.6.2:3000 or http://192.168.7.2:
3000, depending on the USB networking drivers provided by your operating system.

6.9.5 How do I connect BeagleBone Blue to my own WiFi network?

From the bash command prompt in Linux:

sudo -s (become superuser/root)

connmanctl
connmanctl> tether wifi off (not really necessary on latest images)
connmanctl> enable wifi (not really necessary)
connmanctl> scan wifi
connmanctl> services (at this point you should see your network
appear along with other stuff, in my case it was ”AR Crystal wifi_

↪→f45eab2f1ee1_6372797774616c_managed_psk”)
connmanctl> agent on
connmanctl> connect wifi_f45eab2f1ee1_6372797774616c_managed_psk
connmanctl> quit

6.9.6 Where can I find examples and APIs for programming BeagleBone Blue?

Programming in C: http://www.strawsondesign.com/#!manual-install

Programming in Python: https://github.com/mcdeoliveira/rcpy

Programming in Simulink: https://www.mathworks.com/hardware-support/beaglebone-blue.html

6.9.7 My BeagleBone Blue fails to run successful tests

You’ve tried to run rc_test_drivers to ensure your board is working for DOA warranty tests, but it errors.
You should first look to fixing your bootloader as described http://strawsondesign.com/docs/librobotcontrol/
installation.html#installation_s5

6.9.8 I’m running an image off of amicroSD card. How do I write it to the on-board
eMMC flash?

Refer to the “Flashing Firmware” page: https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/
Flashing-firmware

Meanwhile, as root, run the /opt/scripts/tools/eMMC/bbb-eMMC-flasher-eewiki-ext4.sh script which will create
a copy of the system in your microSD to a new single ext4 partition on the on-board eMMC.

322 Chapter 6. BeagleBone Blue

http://192.168.8.1:3000
http://192.168.6.2:3000
http://192.168.7.2:3000
http://192.168.7.2:3000
http://www.strawsondesign.com/#!manual-install
https://github.com/mcdeoliveira/rcpy
https://www.mathworks.com/hardware-support/beaglebone-blue.html
http://strawsondesign.com/docs/librobotcontrol/installation.html#installation_s5
http://strawsondesign.com/docs/librobotcontrol/installation.html#installation_s5
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Flashing-firmware
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Flashing-firmware

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.9 I’ve written the latest image to a uSD card, but some features aren’t work-
ing. How do I make it run properly?

It is possible you are running an old bootloader off of the eMMC. While power is completely off, hold the SD
button (near the servo headers) while applying power. You can release the button as soon the power LED
comes on. This will make sure the bootloader is loaded from microSD and not eMMC.

Verify the running image using version.sh via:

sudo /opt/scripts/tools/version.sh

The version.sh output will tell you which version of bootloader is on the eMMC or microSD. Future versions of
version.sh might further inform you if the SD button was properly asserted on power-up.

One you’ve booted the latest image, you can update the bootloader on the eMMC using
/opt/scripts/tools/developers/update_bootloader.sh. Better yet, read the above FAQ on flashing firmware.

6.9.10 I’ve got my on-board eMMC flash configured in a nice way. How do I copy
that to other BeagleBone Blue boards?

As root, run the /opt/scripts/tools/eMMC/beaglebone-black-make-microSD-flasher-from-eMMC.sh script with a
blank 4GB or larger microSD card installed and wait for the script to complete execution.

Remove the microSD card.

Boot your other BeagleBone Blue boards off of this newly updated microSD card and wait for the flashing
process to complete. You’ll know it successfully started when you see the “larson scanner” running on the
LEDs. You’ll know it successfully completed when it shuts off the board.

Remove the microSD card.

Reboot your newly flashed board.

6.9.11 I have some low-latency I/O tasks. How do I get started programming the
BeagleBone PRUs?

There is a “Hello, World” app at https://gist.github.com/jadonk/2ecf864e1b3f250bad82c0eae12b7b64 that will
get you blinking the USRx LEDS.

The libroboticscape software provides examples that are pre-built and included in the BeagleBone Blue soft-
ware images for running the servo/ESC outputs and fourth quadrature encoder input. You can use those
firmware images as a basis for building your own: https://github.com/StrawsonDesign/Robotics_Cape_Installer/
tree/master/pru_firmware

You can find some more at https://beagleboard.org/pru

6.9.12 Are there available mechanical models?

A community contributed model is available at https://grabcad.com/library/beaglebone-blue-1

6.9.13 What is the operating temperature range?

‘0..70‘ due to processor, else ‘-20..70‘

6.9. Frequently Asked Questions (FAQs) 323

https://github.com/RobertCNelson/boot-scripts/blob/master/tools/version.sh
https://github.com/RobertCNelson/boot-scripts/issues/93
https://github.com/RobertCNelson/boot-scripts/blob/master/tools/developers/update_bootloader.sh
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Frequently-Asked-Questions-(FAQ)#Im_running_an_image_off_of_a_microSD_card_How_do_I_write_it_to_the_onboard_eMMC_flash
https://github.com/RobertCNelson/boot-scripts/blob/master/tools/eMMC/beaglebone-black-make-microSD-flasher-from-eMMC.sh
https://gist.github.com/jadonk/2ecf864e1b3f250bad82c0eae12b7b64
https://github.com/StrawsonDesign/Robotics_Cape_Installer
https://github.com/StrawsonDesign/Robotics_Cape_Installer/tree/master/pru_firmware
https://github.com/StrawsonDesign/Robotics_Cape_Installer/tree/master/pru_firmware
https://beagleboard.org/pru
https://grabcad.com/library/beaglebone-blue-1

BeagleBoard Docs, Release 1.0.20230711-wip

6.9.14 What is the DC motor drive strength?

This is dictated by the 2 cell LiPo battery input, the TB6612FNG motor drivers and the JST-ZH connectors

• Voltage: 6V-8.4V (typical)

• Current: 1A (maximum for connectors) / 1.2A (maximum average from drivers) / 3.2A (peak from drivers)
per channel

324 Chapter 6. BeagleBone Blue

http://www.pololu.com/file/0J86/TB6612FNG.pdf
http://www.jst-mfg.com/product/detail_e.php?series=287

Chapter 7

BeagleBone (all)

BeagleBone boards are intended to be bare-bones, with a balance of features to enable rapid prototyping and
provide a solid reference for building end products.

The most popular design is BeagleBone Black, a staple reference for an open hardware embedded Linux single
board computer.

BeagleBone AI-64 is our most powerful design with tremendousmachine learning inference performance, 64-bit
processing and a mixture of microcontrollers for various types of highly-reliable and low-latency control.

For simplicity of developing small, mobile robotics, check out BeagleBone Blue, a highly integrated board with
motor drivers, battery support, altimeter, gyroscope, accelerometer, and much more to get started developing
quickly.

The System Reference Manual for each BeagleBone board is below. Older boards are supported with links to
their latest PDF-formatted System Reference Manual and the latest boards are included both here and in the
downloadable beagleboard-docs.pdf linked on the bottom-left of your screen.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

All boards received without RMA approval will not be worked on.

• BeagleBone (original)

• BeagleBone Black

• BeagleBone Blue

• BeagleBone AI

• BeagleBone AI-64

325

http://creativecommons.org/licenses/by-sa/4.0/
https://git.beagleboard.org/beagleboard/beaglebone/-/blob/master/BeagleBone_SRM_A6_0_1.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

326 Chapter 7. BeagleBone (all)

Chapter 8

Capes

Note: This page is under development.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

Capes are add-on boards for BeagleBone or PocketBeagle families of boards. Using a Cape add-on board, you
can easily add sensors, communication peripherals, and more.

Please visit BeagleBoard.org - Cape for the list of currently available Cape add-on boards.

In the BeagleBone board family, there are many variants, such as BeagleBone Black, BeagleBone AI, Beagle-
Bone AI-64 and compatibles such as SeeedStudio BeagleBone Green, SeeedStudio BeagleBone Green Wireless,
SeeedStudio BeagleBone Green Gateway and more.

The BeagleBone cape interface spec enables a common set of device tree overlays and software to be utilized
on each of these different BeagleBone boards.

Each hardware has different internal pin assignments and the number of peripherals in the SoC, but the device
tree overlay absorbs these differences.

The user of the Cape add-on boards are essentially able to use it across the corresponding Boards without
changing any code at all.

Find the instructions below on using each cape:

• BeagleBoard.org BeagleBone Relay Cape

8.1 BeagleBone cape interface spec

This page is a fork of BeagleBone cape interface spec page on elinux. This is the new official home.

327

http://creativecommons.org/licenses/by-sa/4.0/
https://beagleboard.org/capes
https://beagleboard.org/green
https://beagleboard.org/green-wireless
https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.1 Background and overview

Important: Resources

• See Device Tree: Supporting Similar Boards - The BeagleBone Example blog post on BeagleBoard.org

• See spreadsheet with pin header details

• See elinux.org Cape Expansion Headers for BeagleBone page

• See BeagleBone Black System Reference Manual Connectors section

• See BeagleBone AI System Reference Manual Connectors section

• See BeagleBone AI-64 System Reference Manual Connectors section

Note: Below, when mentioning “Black”, this is true for all AM3358-based BeagleBone boards. “AI” is AM5729-
based. “AI-64” is TDA4VM-based.

The device tree symbols for the BeagleBone Cape Compatibility Layer are provided in BeagleBoard-DeviceTrees
at:

• Black: bbb-bone-buses.dtsi

• AI: bbai-bone-buses.dtsi

• AI-64: k3-j721e-beagleboneai-64-bone-buses.dtsi

The udev rules used to create the userspace symlinks for the BeagleBone Cape Compatibility Layer are provided
in usr-customizations at:

More details can be found in Methodology.

Note: Legend

• D : Digital general purpose input and output (GPIO)

• I : Inter-integrated circuit bus (I2C) ports

• S : Serial peripheral interface (SPI) ports

• U : Universal asynchronous reciever/transmitter (UART) serial ports

• C : CAN

• A : Analog inputs

• E : PWM

• Q : Capture/EQEP

• M : MMC/SD/SDIO

• B : I2S/audio serial ports

• L : LCD

• P : PRU

• Y : ECAP

328 Chapter 8. Capes

https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm/bbb-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm/bbai-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm64/k3-j721e-beagleboneai64-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/usr-customizations

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.1: Overall
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C 5 6 D M C
5V OUT 7 8 5V OUT D C 7 8 D C
PWR BUT 9 10 RESET D C 9 10 D C
D U 11 12 D D P 11 12 D Q P
D U 13 14 D E D E 13 14 D
D 15 16 D E D P 15 16 D P
D I S 17 18 D I S D 17 18 D
D I C 19 20 D I C D E 19 20 D M P
D E S U 21 22 D E S U D M P 21 22 D M Q
D S 23 24 D I U C D M 23 24 D M
D P 25 26 D I U C D M 25 26 D
D P Q 27 28 D S P D L P 27 28 D L P U
D E S P 29 30 D S P D L P U 29 30 D L P
D E S P 31 32 ADC VDD

REF OUT
D L 31 32 D L

A 33 34 ADC GND D L Q 33 34 D E L
A 35 36 A D L Q 35 36 D E L
A 37 38 A D L U 37 38 D L U
A 39 40 A D L P 39 40 D L P
D P 41 42 D Q S U P D L P 41 42 D L P
GND 43 44 GND D L P 43 44 D L P
GND 45 46 GND D E L P 45 46 D E L P

8.1.2 Digital GPIO

The compatibility layer comes with simple reference nodes for attaching the Linuuux gpio-leds or gpio-keys to
any cape header GPIO pin. This provides simple userspace general purpose input or output with various trigger
modes.

The format followed for the gpio-leds nodes is bone_led_P8_## / bone_led_P9_##. The gpio-leds driver is
used by these reference nodes internally and allows users to easily create compatible led nodes in overlays for
Black, AI and AI-64.

8.1. BeagleBone cape interface spec 329

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 8.1: Example device tree overlay to enable LED driver on header
P8 pin 3

1 /dts-v1/;
2 /plugin/;
3

4 &bone_led_P8_03 {
5 status = ”okay”;
6 }

In Example device tree overlay to enable LED driver on header P8 pin 3, it is possible to redefine the default
label and other properties defined in the gpio-leds schema.

Table 8.2: GPIO pins
P9 P8
Functions odd even Functions Functions odd even Functions
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 8.3: Bone GPIO LEDs interface
LED SYSFS Header pin Black AI AI-64
/sys/class/leds/P8_03 P8_03 gpio1_6 gpio1_24 gpio0_20
/sys/class/leds/P8_04 P8_04 gpio1_7 gpio1_25 gpio0_48
/sys/class/leds/P8_05 P8_05 gpio1_2 gpio7_1 gpio0_33
/sys/class/leds/P8_06 P8_06 gpio1_3 gpio7_2 gpio0_34
/sys/class/leds/P8_07 P8_07 gpio2_2 gpio6_5 gpio0_15
/sys/class/leds/P8_08 P8_08 gpio2_3 gpio6_6 gpio0_14
/sys/class/leds/P8_09 P8_09 gpio2_5 gpio6_18 gpio0_17
/sys/class/leds/P8_10 P8_10 gpio2_4 gpio6_4 gpio0_16
/sys/class/leds/P8_11 P8_11 gpio1_13 gpio3_11 gpio0_60
/sys/class/leds/P8_12 P8_12 gpio1_12 gpio3_10 gpio0_59
/sys/class/leds/P8_13 P8_13 gpio0_23 gpio4_11 gpio0_89
/sys/class/leds/P8_14 P8_14 gpio0_26 gpio4_13 gpio0_75
/sys/class/leds/P8_15 P8_15 gpio1_15 gpio4_3 gpio0_61
/sys/class/leds/P8_16 P8_16 gpio1_14 gpio4_29 gpio0_62

continues on next page

330 Chapter 8. Capes

https://elixir.bootlin.com/linux/v5.10/source/Documentation/devicetree/bindings/leds/leds-gpio.yaml

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.3 – continued from previous page
LED SYSFS Header pin Black AI AI-64
/sys/class/leds/P8_17 P8_17 gpio0_27 gpio8_18 gpio0_3
/sys/class/leds/P8_18 P8_18 gpio2_1 gpio4_9 gpio0_4
/sys/class/leds/P8_19 P8_19 gpio0_22 gpio4_10 gpio0_88
/sys/class/leds/P8_20 P8_20 gpio1_31 gpio6_30 gpio0_76
/sys/class/leds/P8_21 P8_21 gpio1_30 gpio6_29 gpio0_30
/sys/class/leds/P8_22 P8_22 gpio1_5 gpio1_23 gpio0_5
/sys/class/leds/P8_23 P8_23 gpio1_4 gpio1_22 gpio0_31
/sys/class/leds/P8_24 P8_24 gpio1_1 gpio7_0 gpio0_6
/sys/class/leds/P8_25 P8_25 gpio1_0 gpio6_31 gpio0_35
/sys/class/leds/P8_26 P8_26 gpio1_29 gpio4_28 gpio0_51
/sys/class/leds/P8_27 P8_27 gpio2_22 gpio4_23 gpio0_71
/sys/class/leds/P8_28 P8_28 gpio2_24 gpio4_19 gpio0_72
/sys/class/leds/P8_29 P8_29 gpio2_23 gpio4_22 gpio0_73
/sys/class/leds/P8_30 P8_30 gpio2_25 gpio4_20 gpio0_74
/sys/class/leds/P8_31 P8_31 gpio0_10 gpio8_14 gpio0_32
/sys/class/leds/P8_32 P8_32 gpio0_11 gpio8_15 gpio0_26
/sys/class/leds/P8_33 P8_33 gpio0_9 gpio8_13 gpio0_25
/sys/class/leds/P8_34 P8_34 gpio2_17 gpio8_11 gpio0_7
/sys/class/leds/P8_35 P8_35 gpio0_8 gpio8_12 gpio0_24
/sys/class/leds/P8_36 P8_36 gpio2_16 gpio8_10 gpio0_8
/sys/class/leds/P8_37 P8_37 gpio2_14 gpio8_8 gpio0_106
/sys/class/leds/P8_38 P8_38 gpio2_15 gpio8_9 gpio0_105
/sys/class/leds/P8_39 P8_39 gpio2_12 gpio8_6 gpio0_69
/sys/class/leds/P8_40 P8_40 gpio2_13 gpio8_7 gpio0_70
/sys/class/leds/P8_41 P8_41 gpio2_10 gpio8_4 gpio0_67
/sys/class/leds/P8_42 P8_42 gpio2_11 gpio8_5 gpio0_68
/sys/class/leds/P8_43 P8_43 gpio2_8 gpio8_2 gpio0_65
/sys/class/leds/P8_44 P8_44 gpio2_9 gpio8_3 gpio0_66
/sys/class/leds/P8_45 P8_45 gpio2_6 gpio8_0 gpio0_79
/sys/class/leds/P8_46 P8_46 gpio2_7 gpio8_1 gpio0_80
/sys/class/leds/P9_11 P9_11 gpio0_30 gpio8_17 gpio0_1
/sys/class/leds/P9_12 P9_12 gpio1_28 gpio5_0 gpio0_45
/sys/class/leds/P9_13 P9_13 gpio0_31 gpio6_12 gpio0_2
/sys/class/leds/P9_14 P9_14 gpio1_18 gpio4_25 gpio0_93
/sys/class/leds/P9_15 P9_15 gpio1_16 gpio3_12 gpio0_47
/sys/class/leds/P9_16 P9_16 gpio1_19 gpio4_26 gpio0_94
/sys/class/leds/P9_17 P9_17 gpio0_5 gpio7_17 gpio0_28
/sys/class/leds/P9_18 P9_18 gpio0_4 gpio7_16 gpio0_40
/sys/class/leds/P9_19 P9_19 gpio0_13 gpio7_3 gpio0_78
/sys/class/leds/P9_20 P9_20 gpio0_12 gpio7_4 gpio0_77
/sys/class/leds/P9_21 P9_21 gpio0_3 gpio3_3 gpio0_39
/sys/class/leds/P9_22 P9_22 gpio0_2 gpio6_19 gpio0_38
/sys/class/leds/P9_23 P9_23 gpio1_17 gpio7_11 gpio0_10
/sys/class/leds/P9_24 P9_24 gpio0_15 gpio6_15 gpio0_13
/sys/class/leds/P9_25 P9_25 gpio3_21 gpio6_17 gpio0_127
/sys/class/leds/P9_26 P9_26 gpio0_14 gpio6_14 gpio0_12
/sys/class/leds/P9_27 P9_27 gpio3_19 gpio4_15 gpio0_46
/sys/class/leds/P9_28 P9_28 gpio3_17 gpio4_17 gpio1_11
/sys/class/leds/P9_29 P9_29 gpio3_15 gpio5_11 gpio0_53
/sys/class/leds/P9_30 P9_30 gpio3_16 gpio5_12 gpio0_44
/sys/class/leds/P9_31 P9_31 gpio3_14 gpio5_10 gpio0_52
/sys/class/leds/P9_33 P9_33 n/a n/a gpio0_50
/sys/class/leds/P9_35 P9_35 n/a n/a gpio0_55

continues on next page

8.1. BeagleBone cape interface spec 331

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.3 – continued from previous page
LED SYSFS Header pin Black AI AI-64
/sys/class/leds/P9_36 P9_36 n/a n/a gpio0_56
/sys/class/leds/P9_37 P9_37 n/a n/a gpio0_57
/sys/class/leds/P9_38 P9_38 n/a n/a gpio0_58
/sys/class/leds/P9_39 P9_39 n/a n/a gpio0_54
/sys/class/leds/P9_40 P9_40 n/a n/a gpio0_81
/sys/class/leds/P9_41 P9_41 gpio0_20 gpio6_20 gpio1_0
/sys/class/leds/P9_42 P9_42 gpio0_7 gpio4_18 gpio0_123
/sys/class/leds/A15 A15 gpio0_19 NA NA

8.1.3 I2C

Compatibility layer provides simple I2C bone bus nodes for creating compatible overlays for Black, AI and AI-64.
The format followed for these nodes is bone_i2c_#.

Table 8.4: I2C pins
P9
Functions odd even Functions
1 SCL 17 18 1 SDA
2 SCL 19 20 2 SDA
4 SCL45 21 22 4 SDA45

23 24 3 SCL3

25 26 3 SDA3

Table 8.5: I2C port mapping
SYSFS DT symbol Black AI AI-64 SCL SDA Overlay
/dev/bone/i2c/0 bone_i2c_0 I2C0 I2C1 TBD On-board
/dev/bone/i2c/1 bone_i2c_1 I2C1 I2C5 MAIN_I2C6 P9.17 P9.18 BONE-I2C1
/dev/bone/i2c/2 bone_i2c_2 I2C2 I2C4 MAIN_I2C3 P9.19 P9.20 BONE-I2C2
/dev/bone/i2c/3 bone_i2c_3 I2C1 I2C3 MAIN_I2C4 P9.24 P9.26 BONE-I2C3
/dev/bone/i2c/4 bone_i2c_4 I2C2 n/a MAIN_I2C3 P9.21 P9.22 BONE-I2C4

Important: In the case the same controller is used for 2 different bone bus nodes, usage of those nodes is
mutually-exclusive.

Note: The provided pre-compiled overlays enable the I2C bus driver only, not a specific device driver. Either
a custom overlay is required to load the device driver or usermode device driver loading can be performed,
depending on the driver. See Using I2C with Linux drivers for information on loading I2C drivers from userspace.

Listing 8.2: Example device tree overlay to enable I2C driver

1 /dts-v1/;
2 /plugin/;
3

4 &bone_i2c_1 {
5 status = ”okay”;
6 accel@1c {
7 compatible = ”fsl,mma8453”;
8 reg = <0x1c>;
9 };
10 }

4 Mutually exclusive with port 2 on Black
5 On Black and AI-64 only
3 Mutually exclusive with port 1 on Black

332 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

In Example device tree overlay to enable I2C driver, you can specify what driver you want to load and provide
any properties it might need.

• https://www.kernel.org/doc/html/v5.10/i2c/summary.html

• https://www.kernel.org/doc/html/v5.10/i2c/instantiating-devices.html#method-1-declare-the-i2c-devices-statically

• https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/

8.1.4 SPI

SPI bone bus nodes allow creating compatible overlays for Black, AI and AI-64.

Table 8.6: SPI pins
P9
Functions odd even Functions
0 CS0 17 18 0 SDO

19 20
0 SDI 21 22 0 CLK
0 CS1 23 24

25 26
27 28 1 CS0

1 SDI 29 30 1 SDO
1 CLK 31 32

33 34
35 36
37 38
39 40
41 42 1 CS12

Table 8.7: SPI port mapping
Bone bus DT symbol Black AI AI-64 SDO SDI CLK CS Overlay
/dev/bone/spi/0.0 bone_spi_0 SPI0 SPI2 MAIN_SPI6 P9.18 P9.21 P9.22 P9.17 (CS0) BONE-

SPI0_0
/dev/bone/spi/0.1 P9.23 (CS1)2 BONE-

SPI0_1
/dev/bone/spi/1.0 bone_spi_1 SPI1 SPI3 MAIN_SPI7 P9.30 P9.29 P9.31 P9.28 (CS0) BONE-

SPI1_0
/dev/bone/spi/1.1 P9.42 (CS1) BONE-

SPI1_1

Note: The provided pre-compiled overlays enable the “spidev” driver using the
“rohm,dh2228fv” compatible string. See https://stackoverflow.com/questions/53634892/
linux-spidev-why-it-shouldnt-be-directly-in-devicetree for more background. A custom overlay is required to
overload the compatible string to load a non-spidev driver.

Todo: figure out if BONE-SPI0_0 and BONE-SPI0_1 can be loaded at the same time

Listing 8.3: Example device tree overlay to enable SPI driver

1 /dts-v1/;
2 /plugin/;
3

4 &bone_spi_0 {
5 status = ”okay”;
6 pressure@0 {

(continues on next page)

2 Only available on AI and AI-64

8.1. BeagleBone cape interface spec 333

https://www.kernel.org/doc/html/v5.10/i2c/summary.html
https://www.kernel.org/doc/html/v5.10/i2c/instantiating-devices.html#method-1-declare-the-i2c-devices-statically
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/
https://stackoverflow.com/questions/53634892/linux-spidev-why-it-shouldnt-be-directly-in-devicetree
https://stackoverflow.com/questions/53634892/linux-spidev-why-it-shouldnt-be-directly-in-devicetree

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

7 compatible = ”bosch,bmp280”;
8 reg = <0>; /* CS0 */
9 spi-max-frequency = <5000000>;
10 };
11 }

In Example device tree overlay to enable SPI driver, you can specify what driver you want to load and provide
any properties it might need.

• https://www.kernel.org/doc/html/v5.10/spi/spi-summary.html

• https://www.kernel.org/doc/Documentation/devicetree/bindings/spi/

8.1.5 UART

UART bone bus nodes allow creating compatible overlays for Black, AI and AI-64.

Table 8.8: UART pins
P9 P8
Functions odd even Functions Functions odd even Functions
4 RX6 11 12 11 12
4
TX

Page 334, 6
13 14 13 14

15 16 15 16
17 18 17 18
19 20 19 20

2 TX 21 22 2 RX 21 22
23 24 1 TX 23 24
25 26 1 RX 25 26
27 28 27 28 6 RX
29 30 6 TX 29 30
31 32 31 32
33 34 33 34 7 TX
35 36 35 36
37 38 5 TX 37 38 5 RX
39 40 39 40
41 42 3 TX 41 42

Important: RTSn and CTSn mappings are not compatible across boards in the family and are therefore not
part of the cape specification.

Table 8.9: UART port mapping
Bone bus DT symbol Black AI AI-64 TX RX Overlay
/dev/bone/uart/0 bone_uart_0 UART0 UART1 MAIN_UART0 Console debug header pins
/dev/bone/uart/1 bone_uart_1 UART1 UART10 MAIN_UART2 P9.24 P9.26 BONE-UART1
/dev/bone/uart/2 bone_uart_2 UART2 UART3 n/a P9.21 P9.22 BONE-UART2
/dev/bone/uart/3 bone_uart_3 UART3 n/a n/a P9.42 n/a BONE-UART3
/dev/bone/uart/4 bone_uart_4 UART4 UART5 MAIN_UART06 P9.13 P9.11 BONE-UART4
/dev/bone/uart/5 bone_uart_5 UART5 UART8 MAIN_UART5 P8.37 P8.38 BONE-UART5
/dev/bone/uart/6 bone_uart_6 n/a n/a MAIN_UART8 P8.29 P8.28 BONE-UART6
/dev/bone/uart/7 bone_uart_7 n/a n/a MAIN_UART2 P8.34 P8.22 BONE-UART7

Important: In the case the same controller is used for 2 different bone bus nodes, usage of those nodes is
mutually-exclusive.

6 This port is shared with the console UART on AI-64

334 Chapter 8. Capes

https://www.kernel.org/doc/html/v5.10/spi/spi-summary.html
https://www.kernel.org/doc/Documentation/devicetree/bindings/spi/

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.6 CAN

CAN bone bus nodes allow creating compatible overlays for Black, AI and AI-64.

Table 8.10: CAN pins
P9 P8
Functions odd even Functions Functions odd even Functions

5 6 4 TX 5 6 4 RX
7 8 2 RX 7 8 2 TX
9 10 3 RX 9 10 3 TX
11 12 11 12
13 14 13 14
15 16 15 16
17 18 17 18

0 RX 19 20 0 TX 19 20
21 22 21 22
23 24 1 RX 23 24
25 26 1 TX 25 26

Table 8.11: CAN port mapping
Bone bus Black AI AI-64 TX RX Overlays
/dev/bone/can/0 CAN0 n/a MAIN_MCAN0 P9.20 P9.19 BONE-CAN0
/dev/bone/can/1 CAN1 CAN2 MAIN_MCAN4 P9.26 P9.24 BONE-CAN1
/dev/bone/can/2 n/a CAN11 MAIN_MCAN5 P8.08 P8.07 BONE-CAN2
/dev/bone/can/3 n/a n/a MAIN_MCAN6 P8.10 P8.09 BONE-CAN3
/dev/bone/can/4 n/a n/a MAIN_MCAN7 P8.05 P8.06 BONE-CAN4

8.1.7 ADC

Todo: We need a udev rule to make sure the ADC shows up at /dev/bone/adc! There’s nothing for sure that
IIO devices will show up in the same place.

Todo: I think we can also create symlinks for each channel based on which device is there, such that we can
do /dev/bone/adc/Px_y

Todo: I believe a multiplexing IIO driver is the future solution

1 BeagleBone AI rev A2 and later only

8.1. BeagleBone cape interface spec 335

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.12: ADC pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 8.13: Bone ADC
Index Header pin Black/AI-64 AI
0 P9_39 in_voltage0_raw in_voltage0_raw
1 P9_40 in_voltage1_raw in_voltage1_raw
2 P9_37 in_voltage2_raw in_voltage3_raw
3 P9_38 in_voltage3_raw in_voltage2_raw
4 P9_33 in_voltage4_raw in_voltage7_raw
5 P9_36 in_voltage5_raw in_voltage6_raw
6 P9_35 in_voltage6_raw in_voltage4_raw

Table 8.14: Bone ADC Overlay
Black AI AI-64 overlay
Internal External (STMPE811) TBD BONE-ADC.dts

8.1.8 PWM

Todo: remove deep references to git trees

PWM bone bus nodes allow creating compatible overlays for Black, AI and AI-64. For the definitions, you can
see bbai-bone-buses.dtsi#L415 & bbb-bone-buses.dtsi#L432

336 Chapter 8. Capes

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-ADC.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L415
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L432

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.15: PWM pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 8.16: Bone bus PWM
Bone bus Black AI AI-64 A B Overlay
/dev/bone/pwm/0 PWM0

•
PWM1 P9.22 P9.21 BONE-

PWM0.dts

/dev/bone/pwm/1 PWM1 PWM3 PWM2 P9.14 P9.16 BONE-
PWM1.dts

/dev/bone/pwm/2 PWM2 PWM2 PWM0 P8.19 P8.13 BONE-
PWM2.dts

8.1.9 TIMER PWM

TIMER PWM bone bus uses ti,omap-dmtimer-pwm driver, and timer nodes that allow creating compatible over-
lays for Black, AI and AI-64. For the timer node definitions, you can see bbai-bone-buses.dtsi#L449 & bbb-
bone-buses.dtsi#L466.

Table 8.17: Bone TIMER PWMs
Bone bus Header pin Black AI overlay
/sys/bus/platform/devices/bone_timer_pwm_0/P8.10 timer6 timer10 BONE-

TIMER_PWM_0.dts
/sys/bus/platform/devices/bone_timer_pwm_1/P8.07 timer4 timer11 BONE-

TIMER_PWM_1.dts
/sys/bus/platform/devices/bone_timer_pwm_2/P8.08 timer7 timer12 BONE-

TIMER_PWM_2.dts
/sys/bus/platform/devices/bone_timer_pwm_3/P9.21

•
timer13 BONE-

TIMER_PWM_3.dts

/sys/bus/platform/devices/bone_timer_pwm_4/P8.09 timer5 timer14 BONE-
TIMER_PWM_4.dts

/sys/bus/platform/devices/bone_timer_pwm_5/P9.22
•

timer15 BONE-
TIMER_PWM_5.dts

8.1. BeagleBone cape interface spec 337

https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L449
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L466
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L466
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.10 eQEP

Table 8.18: eQEP pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

On BeagleBone’s without an eQEP on specific pins, consider using the PRU to perform a software counter
function.

Table 8.19: Bone eQEP
Bone bus Black AI AI-64 A B strobe index overlay
/dev/bone/counter/0eQEP0 eQEP2 eQEP0 P9.42 P9.27

•
Black/AI-
64:
P9.25

• AI:
P8.06

•
Black/AI-
64:
P9.41

• AI:
P8.05

/dev/bone/counter/1eQEP1 eQEP0 eQEP1 P8.35 P8.33
•
Black/AI-
64:
P8.32

• AI:
P9.21

•
Black/AI-
64:
P8.31

• AI:
‒

/dev/bone/counter/2eQEP2 eQEP1 ‒ P8.12 P8.22
•
Black:
P8.15

• AI:
P8.18

•
Black:
P8.16

• AI:
P9.15

338 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.11 eCAP

Todo: This doesn’t include any abstraction yet.

Table 8.20: ECAP pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 8.21: Black eCAP PWMs
Bone bus Header pin peripheral overlay
/sys/bus/platform/drivers/ecap/48302100.ecap P9.42 eCAP0_in_PWM0_out BBB-ECAP0.dts
/sys/bus/platform/drivers/ecap/48304100.ecap P9.28 eCAP2_in_PWM2_out BBB-ECAP2.dts

Table 8.22: AI eCAP PWMs
Bone bus Header pin peripheral overlay
/sys/bus/platform/drivers/ecap/4843e100.ecap P8.15 eCAP1_in_PWM1_out BBAI-ECAP1.dts
/sys/bus/platform/drivers/ecap/48440100.ecap P8.14 eCAP2_in_PWM2_out BBAI-ECAP2.dts
/sys/bus/platform/drivers/ecap/48440100.ecap P8.20 eCAP2_in_PWM2_out BBAI-ECAP2A.dts
/sys/bus/platform/drivers/ecap/48442100.ecap P8.04 eCAP3_in_PWM3_out BBAI-ECAP3.dts
/sys/bus/platform/drivers/ecap/48442100.ecap P8.26 eCAP3_in_PWM3_out BBAI-ECAP3A.dts

8.1. BeagleBone cape interface spec 339

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP0.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP1.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2A.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3A.dts

BeagleBoard Docs, Release 1.0.20230711-wip

8.1.12 MMC/SDIO

Table 8.23: Bone eMMC
Header pin Description
P8.3 DAT6
P8.4 DAT7
P8.5 DAT2
P8.6 DAT3
P8.20 CMD
P8.21 CLK
P8.22 DAT5
P8.23 DAT4
P8.24 DAT1
P8.25 DAT0

Table 8.24: Bone eMMC Overlay
Black AI overlay
MMC2 MMC3 BONE-eMMC.dts

8.1.13 LCD

Table 8.25: 16bit LCD interface
Header pin Description
P8_45 lcd_data0
P8_46 lcd_data1
P8_43 lcd_data2
P8_44 lcd_data3
P8_41 lcd_data4
P8_42 lcd_data5
P8_39 lcd_data6
P8_40 lcd_data7
P8_37 lcd_data8
P8_38 lcd_data9
P8_36 lcd_data10
P8_34 lcd_data11
P8_35 lcd_data12
P8_33 lcd_data13
P8_31 lcd_data14
P8_32 lcd_data15
P8_27 lcd_vsync
P8_29 lcd_hsync
P8_28 lcd_pclk
P8_30 lcd_ac_bias_en

Table 8.26: 16bit LCD interface Overlay
Black AI overlay
lcdc dss

8.1.14 McASP

Table 8.27: Bone McASP0
Header pin Description
P9.12 aclkr
P9.25 ahclkx
P9.27 fsr
P9.28 Black: axr2 AI: axr9
P9.29 fsx
P9.30 Black: axr0 AI: axr10
P9.31 aclkx

340 Chapter 8. Capes

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-eMMC.dts

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.28: Bone McASP0 Overlay
Black AI overlay
McASP0 McASP1

8.1.15 PRU

The overlay situation for PRUs is a bit more complex than with other peripherals. The mechanism
for loading, starting and stopping the PRUs can go through either [https://www.kernel.org/doc/html/
latest/driver-api/uio-howto.html UIO] or [https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/
Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html RemoteProc].

• /dev/remoteproc/prussX-coreY (AM3358 X = “”, other x = “1|2”)

Table 8.29: Bone PRU eCAP
Header Pin Black AI
P8.15 pr1_ecap0 pr1_ecap0
P8.32

•
pr2_ecap0

P9.42 pr1_ecap0
•

Table 8.30: AI PRU UART
UART TX RX RTSn CTSn Overlays
PRU1 UART0 P8_31 P8_33 P8_34 P8_35
PRU2 UART0 P8_43 P8_44 P8_45 P8_46

Table 8.31: Bone PRU
Header Pin Black AI
P8.03

•
pr2_pru0 10

P8.04
•

pr2_pru0 11

P8.05
•

pr2_pru0 06

P8.06
•

pr2_pru0 07

P8.07
•

pr2_pru1 16

P8.08
•

pr2_pru0 20

P8.09
•

pr2_pru1 06

P8.10
•

pr2_pru1 15

P8.11 pr1_pru0 15 (Out) pr1_pru0 04
continues on next page

8.1. BeagleBone cape interface spec 341

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.31 – continued from previous page
Header Pin Black AI
P8.12 pr1_pru0 14 (Out) pr1_pru0 03
P8.13

•
pr1_pru1 07

P8.14
•

pr1_pru1 09

P8.15 pr1_pru0 15 (In) pr1_pru1 16
P8.16 pr1_pru0 14 (In) pr1_pru1 18
P8.17

•
pr2_pru0 15

P8.18
•

pr1_pru1 05

P8.19
•

pr1_pru1 06

P8.20
•

pr2_pru0 03

P8.21
•

pr2_pru0 02

P8.22
•

pr2_pru0 09

P8.23
•

pr2_pru0 08

P8.24
•

pr2_pru0 05

P8.25
•

pr2_pru0 04

P8.26
•

pr1_pru1 17

P8.27
•

pr2_pru1 17

P8.28
•

pr2_pru0 17

P8.29
•

pr2_pru0 18

P8.30
•

pr2_pru0 19

P8.31
•

pr2_pru0 11

continues on next page

342 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.31 – continued from previous page
Header Pin Black AI
P8.32

•
pr2_pru1 00

P8.33
•

pr2_pru0 10

P8.34
•

pr2_pru0 08

P8.35
•

pr2_pru0 09

P8.36
•

pr2_pru0 07

P8.37
•

pr2_pru0 05

P8.38
•

pr2_pru0 06

P8.39
•

pr2_pru0 03

P8.40
•

pr2_pru0 04

P8.41
•

pr2_pru0 01

P8.42
•

pr2_pru0 02

P8.43
•

pr2_pru1 20

P8.44
•

pr2_pru0 00

P8.45
•

pr2_pru1 18

P8.46
•

pr2_pru1 19

P9.11
•

pr2_pru0 14

P9.13
•

pr2_pru0 15

P9.14
•

pr1_pru1 14

continues on next page

8.1. BeagleBone cape interface spec 343

BeagleBoard Docs, Release 1.0.20230711-wip

Table 8.31 – continued from previous page
Header Pin Black AI
P9.15

•
pr1_pru0 5

P9.16
•

pr1_pru1 15

P9.17
•

pr2_pru1 09

P9.18
•

pr2_pru1 08

P9.19
•

pr1_pru1 02

P9.20
•

pr1_pru1 01

P9.24 pr1_pru0 16 (In)
•

P9.25 pr1_pru0 07 pr2_pru1 05
P9.26 pr1_pru1 16 (In) pr1_pru0 17
P9.27 pr1_pru0 05 pr1_pru1 11
P9.28 pr1_pru0 03 pr2_pru1 13
P9.29 pr1_pru0 01 pr2_pru1 11
P9.30 pr1_pru0 02 pr2_pru1 12
P9.31 pr1_pru0 00 pr2_pru1 10
P9.41 pr1_pru0 06 pr1_pru1 03
P9.42 pr1_pru0 04 pr1_pru1 10

8.1.16 GPIO

Todo: For each of the pins with a GPIO, there should be a symlink that comes from the names

8.1.17 Methodology

The methodology for applied in the kernel and software images to expose the software interfaces is to be
documented here. The most fundamental elements are the device tree entries, including overlays, and udev
rules.

Device Trees

Todo: Describe how the Device Trees expose symbols for reuse across boards

udev rules

10-of-symlink.rules

344 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

#From: https://github.com/mvduin/py-uio/blob/master/etc/udev/rules.d/10-of-
↪→symlink.rules
allow declaring a symlink for a device in DT
ATTR{device/of_node/symlink}!=””, \

ENV{OF_SYMLINK}=”%s{device/of_node/symlink}”

ENV{OF_SYMLINK}!=””, ENV{DEVNAME}!=””, \
SYMLINK+=”%E{OF_SYMLINK}”, \
TAG+=”systemd”, ENV{SYSTEMD_ALIAS}+=”/dev/%E{OF_SYMLINK}”

TBD

Also courtesy of mvduin
create symlinks for gpios exported to sysfs by DT
SUBSYSTEM==”gpio”, ACTION==”add”, TEST==”value”, ATTR{label}!=”sysfs”, \

RUN+=”/bin/mkdir -p /dev/bone/gpio”, \
RUN+=”/bin/ln -sT '/sys/class/gpio/%k' /dev/bone/gpio/%s

↪→{label}”

Verification

Todo: The steps used to verify all of these configurations is to be documented here. It will serve to document
what has been tested, how to reproduce the configurations, and how to verify each major triannual release.
All faults will be documented in the issue tracker.

8.1.18 References

• Device Tree: Supporting Similar Boards - The BeagleBone Example

• Google drive with summary of expansion signals on various BeagleBoard.org designs

• Beagleboard:Cape Expansion Headers

8.2 BeagleBoard.org BeagleBone Relay Cape

Relay Cape, as the name suggests, is a simple Cape with relays on it. It contains four relays, each of which can
be operated independently from the BeagleBone.

8.2. BeagleBoard.org BeagleBone Relay Cape 345

https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers

BeagleBoard Docs, Release 1.0.20230711-wip

• Order page

• Schematic

Note: The following describes how to use the device tree overlay under development. The description may
not be suitable for those using older firmware.

8.2.1 Installation

No special configuration is required. When you plug Cape into your BeagleBoard, it is automatically recognized
by the Cape Universal function.

You can check to see if the Relay Cape is recognized with the following command.

ls /proc/device-tree/chosen/overlay

A list of currently loaded device tree overlays is displayed here. If you see BBORG_RELAY-00A2.kernel in this
list, it has been loaded correctly.

If it is not loaded correctly, you can also load it directly by adding the following to the U-Boot options (which
can be reflected by changing /boot/uEnv.txt).

uboot_overlay_addr0=BBORG_RELAY-00A2.dtbo

8.2.2 Usage

ls /sys/class/leds

The directory “relay1”, for instance, exists in the following directory. The LEDs can be controlled by modifying
the files in its directory.

echo 1 > relay1/brightness

346 Chapter 8. Capes

https://beagleboard.org/capes#relay
https://git.beagleboard.org/beagleboard/capes/-/tree/master/beaglebone/Relay

BeagleBoard Docs, Release 1.0.20230711-wip

This allows you to adjust the brightness; entering 1 for brightness turns it ON, and entering 0 for OFF.

The four relays can be changed individually by changing the number after “relay” in /sys/class/leds/relay.

8.2.3 Code to Get Started

Currently, using sysfs in .c files, libgpiod-dev/gpiod in .c files, and python3 files with the Relay Cape work well!

• For instance, a kernel that I found to work is kernel: 5.10.140-ti-r52

• Another idea, an image I found that works is BeagleBoard.org Debian Bullseye Minimal Image 2022-11-01

There are newer images and kernels if you want to update and there are older ones in case you would like to
go back in time to use older kernels and images for the Relay Cape. Please remember that older firmware will
work differently on the BeagleBone Black or other related am335x SBC.

8.2.4 C Source with File Descriptors

You can name this file GPIO.c and use gcc to handle compiling the source into a binary like so:

gcc GPIO.c -o GPIO

/*

This is an example of programming GPIO from C using the sysfs interface on
a BeagleBone Black/BeagleBone Black Wireless or other am335x board with the␣
↪→Relay Cape.

Use the Relay Cape attached to the BeagleBone Black for a change in seconds␣
↪→and then exit with CTRL-C.

The original source can be found here by Mr. Tranter: https://github.com/
↪→tranter/blogs/blob/master/gpio/part5/demo1.c

Jeff Tranter <jtranter@ics.com>

and...Seth. I changed the source a bit to fit the BeagleBone Black and Relay␣
↪→Cape while using sysfs.

*/

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{

// Export the desired pin by writing to /sys/class/leds/relay1/brightness

int fd = open(”/sys/class/leds/relay1/brightness”, O_WRONLY);
if (fd == -1) {

perror(”Unable to open /sys/class/leds/relay1/brightness”);
exit(1);

}

fd = open(”/sys/class/leds/relay1/brightness”, O_WRONLY);
if (fd == -1) {

(continues on next page)

8.2. BeagleBoard.org BeagleBone Relay Cape 347

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

perror(”Unable to open /sys/class/leds/relay1/brightness”);
exit(1);

}

// Toggle LED 50 ms on, 50ms off, 100 times (10 seconds)

for (int i = 0; i < 100; i++) {
if (write(fd, ”1”, 1) != 1) {

perror(”Error writing to /sys/class/leds/relay1/brightness”);
exit(1);

}
usleep(50000);

if (write(fd, ”0”, 1) != 1) {
perror(”Error writing to /sys/class/leds/relay1/brightness”);
exit(1);

}
usleep(50000);

}

close(fd);

// And exit
return 0;

}

8.2.5 C Source with LibGPIOd-dev and File Descriptors

Also…if you are looking to dive into the new interface, libgpiod-dev/gpiod.h, here is another form of source that
can toggle the same GPIO listed from the file descriptor.

One thing to note: sudo apt install cmake

1. mkdir GPIOd && cd GPIOd

2. nano LibGPIO.c

3. add the below source into the file LibGPIO.c

/*
Simple gpiod example of toggling a LED connected to a gpio line from
the BeagleBone Black Wireless and Relay Cape.
Exits with or without CTRL-C.
*/

// This source can be found here: https://github.com/tranter/blogs/blob/
↪→master/gpio/part9/example.c
// It has been changed by me, Seth, to handle the RelayCape and BBBW Linux␣
↪→based SiP SBC.

// kernel: 5.10.140-ti-r52
// image : BeagleBoard.org Debian Bullseye Minimal Image 2022-11-01

// type gpioinfo and look for this line: line 20: ”P9_41B” ”relay1” output␣
↪→active-high [used]
// That line shows us the info. we need to make an educated decision on what␣
↪→fd we will use, i.e. relay1.
// We will also need to locate which chipname is being utilized. For␣
↪→instance: gpiochip0 - 32 lines:

// #include <linux/gpio.h>
(continues on next page)

348 Chapter 8. Capes

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

#include <gpiod.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)
{

const char *chipname = ”gpiochip0”;
struct gpiod_chip *chip;
struct gpiod_line *lineLED;

int i, ret;

// Open GPIO chip
chip = gpiod_chip_open_by_name(chipname);
if (!chip) {

perror(”Open chip failed\n”);
return 1;

}

// Open GPIO lines
lineLED = gpiod_chip_get_line(chip, 20);
if (!lineLED) {

perror(”Get line failed\n”);
return 1;

}

// Open LED lines for output
ret = gpiod_line_request_output(lineLED, ”relay1”, 0);
if (ret < 0) {

perror(”Request line as output failed\n”);
return 1;

}

// Blink a LED
i = 0;
while (true) {

ret = gpiod_line_set_value(lineLED, (i & 1) != 0);
if (ret < 0) {

perror(”Set line output failed\n”);
return 1;

}
usleep(1000000);
i++;

}

// Release lines and chip
gpiod_line_release(lineLED);
gpiod_chip_close(chip);
return 0;
}

4. mkdir build && touch CMakeLists.txt

5. In CMakeLists.txt, add these values and text

cmake_minimum_required(VERSION 3.22)

project(gpiod LANGUAGES C)

add_executable(LibGPIO LibGPIO.c)

target_link_libraries(LibGPIO gpiod)

8.2. BeagleBoard.org BeagleBone Relay Cape 349

BeagleBoard Docs, Release 1.0.20230711-wip

6. cd build && cmake ..

7. make

8. ./LibGPIO

These are a few examples on how to use the RelayCape and am335x supported BeagleBone Black Wire-
less/BeagleBone Black SBCs.

350 Chapter 8. Capes

Chapter 9

PocketBeagle

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

• Maintaining author: Jason Kridner

• Contributing Editor: Cathy Wicks

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

PocketBeagle is an ultra-tiny-yet-complete open-source USB-key-fob computer. PocketBeagle features an in-
credible low cost, slick design and simple usage, making PocketBeagle the ideal development board for begin-
ners and professionals alike.

351

http://creativecommons.org/licenses/by-sa/4.0/
mailto:jkridner@beagleboard.org
mailto:cathy@beagleboard.org

BeagleBoard Docs, Release 1.0.20230711-wip

9.1 Introduction

This document is the System Reference Manual for PocketBeagle and covers its use and design. PocketBea-
gle is an ultra-tiny-yet-complete Linux-enabled, community-supported, open-source USB-key-fob-computer.
PocketBeagle features an incredible low cost, slick design and simple usage, making it the ideal develop-
ment board for beginners and professionals alike. Simply develop directly in a web browser providing you with
a playground for programming and electronics. Exploring is made easy with several available libraries and
tutorials with many more coming.

PocketBeagle will boot directly from a microSD card. Load a Linux distribution onto your card, plug your board
into your computer and get started. PocketBeagle runs GNU.Linux, so you can leverage many different high-
level programming languages and a large body of drivers that prevent you from needing to write a lot of your
own software.

This design will keep improving as the product matures based on feedback and experience. Software updates
will be frequent and will be independent of the hardware revisions and as such not result in a change in the
revision number of the board. A great place to find out the latest news and projects for PocketBeagle is on the
home page beagleboard.org/pocket

Important: Make sure you check the BeagleBoard.org docs repository for the most up to date information.

9.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

352 Chapter 9. PocketBeagle

https://beagleboard.org/pocket
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.1: PocketBeagle Home Page

9.2.1 Document Change History

Table 9.1: Change History
Rev Changes Date By
A.x Production Document December 7, 2017 JK
0.0.5 Converted to .rst and gitlab hosting July 21, 2022 DK

9.2.2 Board Changes

Table 9.2: Board History
Rev Changes Date By
A1 Preliminary February 14, 2017 JK
A2 Production. Fixed mikroBUS Click reset pins (made GPIO). September 22, 2017 JK

PocketBone

Upon the creation of the first, 27mm-by-27mm, Octavo Systems OSD3358 SIP, Jason did a hack two-layer board
in EAGLE called “PocketBone” to drop the Beagle name as this was a totally unofficial effort not geared at being
a BeagleBoard.org Foundation project. The board never worked because the 32kHz and 24MHz crystals were
backwards and Michael Welling decided to pick it up and redo the design in KiCad as a four-layer board. Jason
paid for some prototypes and this resulted in the first successful “PocketBone”, a fully-open-source 1-GHz Linux
computer in a fitting into a mini-mint tin.

Rev A1

The Rev A1 of PocketBeagle was a prototype not released to production. A few lines were wrong to be able to
control mikroBUS Click add-on board reset lines and they were adjusted.

Rev A2

The Rev A2 of PocketBeagle was released to production and [https://www.prnewswire.com/news-releases/small-
in-size–cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-
300519950.htmllaunched at World MakerFaire 2017].

Known issues in rev A2:

Issue Link
GPIO44 is incorrectly labelled as GPIO48 github .com/beagleboard/pocketbeagle/is sues/4

9.2. Change History 353

https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://github.com/beagleboard/pocketbeagle/issues/4

BeagleBoard Docs, Release 1.0.20230711-wip

9.3 Connecting Up PocketBeagle

This section provides instructions on how to hook up your board. The most common scenario is tethering
PocketBeagle to your PC for local development.

9.3.1 What’s In the Package

In the package you will find two items as shown in figures below.

• PocketBeagle

• Getting Started instruction card with link to the support URL.

Fig. 9.2: PocketBeagle Package

9.3.2 Connecting the board

This section will describe how to connect to the board. Information can also be found on the Quick Start Guide
that came in the box. Detailed information is also available at beagleboard.org/getting-started

The board can be configured in several different ways, but we will discuss the most common scenario. Future
revisions of this document may include additional configurations.

9.3.3 Tethered to a PC using Debian Images

In this configuration, you will need the following additional items:

• microUSB to USB Type A Cable

• microSD card (>=4GB and <128GB)

354 Chapter 9. PocketBeagle

https://beagleboard.org/getting-started

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.3: PocketBeagle Package Insert front

9.3. Connecting Up PocketBeagle 355

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.4: PocketBeagle Package Insert back

356 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

The board is powered by the PC via the USB cable, no other cables are required. The board is accessed either
as a USB storage drive or via a web browser on the PC. You need to use either Firefox or Chrome on the PC, IE
will not work properly. Figure below shows this configuration.

In some instances, such as when additional add-on boards, or PocketCapes are connected, the PC may not be
able to supply sufficient power for the full system. In that case, review the power requirements for the add-on
board/cape; additional power may need to be supplied via the 5v input, but rarely is this the case.

Getting Started

The following steps will guide you to quickly download a PocketBeagle software image onto your microSD card
and get started writing code.

1. Navigate to the Getting Started Page beagleboard.org/getting-started Follow along with the instructions and
click on the link noted in Figure 5 below www.beagleboard.org/distros. You can also get to this page directly by
going to bbb.io/latest

1. Download the latest image onto your computer by following the link to the latest image and click on the
Debian image for Stretch IoT (non-GUI) for BeagleBone and PocketBeagle via microSD card. See Figure 6 below.
This will download a .img.xz file into the downloads folder of your computer.

1. Transfer the image to a microSD card.

Download and install an SD card programming utility if you do not already have one. We like https://etcher.io/
for new users and so we show that one in the steps below. Go to your downloads folder and doubleclick on the
.exe file and follow the on-screen prompts. See figure 7.

Insert a new microSD card into a card reader/writer and attach it via the USB connection to your computer.
Follow the instructions on the screen for selecting the .img file and burning the image from your computer to
the microSD card. Eject the SD card reader when prompted and remove the card. See Figures 8 and 9.

1. Insert the microSD card into the board - you’ll hear a satisfying click when it seats properly into the slot. It
is important that your microSD card is fully inserted prior to powering the system.

1. Connect the micro USB connector on your cable to the board as shown in Figure 11. The microUSB connector
is fairly robust, but we suggest that you not use the cable as a leash for your PocketBeagle. Take proper care
not to put too much stress on the connector or cable.

1. Connect the large connector of the USB cable to your Linux, Mac or Windows PC USB port as shown in Figure
12. The board will power on and the power LED will be on as shown in Figure 13 below.

1. As soon as you apply power, the board will begin the booting process and the userLEDs Figure 14 will
come on in sequence as shown below. It will take a few seconds for the status LEDs to come on, like teaching
PocketBeagle to ‘stay’. The LEDs will be flashing as it begins to boot the Linux kernel. While the four user LEDS
can be over written and used as desired, they do have specific meanings in the image that you’ve initially
placed on your microSD card once the Linux kernel has booted.

• USER0 is the heartbeat indicator from the Linux kernel.

• USER1 turns on when the microSD card is being accessed

• USER2 is an activity indicator. It turns on when the kernel is not in the idle loop.

• USER3 idle

Accessing the Board and Getting Started with Coding

The board will appear as a USB Storage drive on your PC after the kernel has booted, which will take approxi-
mately 10 seconds. The kernel on the board needs to boot before the port gets enumerated. Once the board
appears as a storage drive, do the following:

1. Open the USB Drive folder to view the files on your PocketBeagle.

2. Launch Interactive Quick Start Guide.

9.3. Connecting Up PocketBeagle 357

https://beagleboard.org/getting-started
https://www.beagleboard.org/distros
https://bbb.io/latest
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.5: Tethered Configuration

358 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.6: Getting Started Page

Fig. 9.7: Download Latest Software Image

Fig. 9.8: Download Etcher SD Card Utility

Fig. 9.9: Select the PocketBeagle Image

9.3. Connecting Up PocketBeagle 359

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.10: Burn the Image to the SD Card

Fig. 9.11: Insert the microSD Card into PocketBeagle

360 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.12: Insert the micro USB Connector into PocketBeagle

9.3. Connecting Up PocketBeagle 361

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.13: Insert the USB connector into PC

Fig. 9.14: Board Power LED

Fig. 9.15: User LEDs

362 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Right Click on the file named START.HTM and open it in Chrome or Firefox. This will use your browser to open
a file running on PocketBeagle via the microSD card. You will see file:///Volumes/BEAGLEBONE/START.htm in
the url bar of the browser. See Figure 15 below. This action displays an interactive Quick Start Guide from
PocketBeagle.

Fig. 9.16: Interactive Quick Start Guide Launch

1. Enable a Network Connection.

Click on ‘Step 2’ of the Interactive Quick Start Guide page to follow instructions to “Enable a Network Con-
nection” (pointing to the DHCP server that is running on PocketBeagle). Copy the appropriate IP Address from
the chart (according to your PC operating system type) and paste into your browser then add a :3000 to the
end of it. See example in Figure 16 below. This will launch from PocketBeagle one of it’s favorite Web Based
Development Environments, Cloud9 IDE, (Figure 17) so that you can teach your beagle new tricks!

Fig. 9.17: Enable a Network Connection

Fig. 9.18: Launch Cloud9 IDE

1. Get Started Coding with Cloud9 IDE - blinking USR3 LED in JavaScript using the BoneScript library example

1. Create a new text file

9.3. Connecting Up PocketBeagle 363

file:///Volumes/BEAGLEBONE/START.htm

BeagleBoard Docs, Release 1.0.20230711-wip

Copy and paste the below code into the editor

var b = require('bonescript');
var state = b.LOW;
b.pinMode(”USR3”, b.OUTPUT);
setInterval(toggle, 250); // toggle 4 times a second, every 250ms
function toggle() {

if(state == b.LOW) state = b.HIGH;
else state = b.LOW;
b.digitalWrite(”USR3”, state);

}

364 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Save the new text file as blinkusr3.js within the default directory

Execute .. code-block:

node blinkusr3.js

within the default (/var/lib/cloud9) directory

Type CTRL+C to stop the program running

Powering Down

1. Standard Power Down Press the power button momentarily with a tap. The system will power down
automatically. This will shut down your software with grace. Software routines will run to completion.
The Standard Power Down can also be invoked from the Linux command shell via “sudo shutdown -h now”.

9.3. Connecting Up PocketBeagle 365

BeagleBoard Docs, Release 1.0.20230711-wip

2. Hard Power Down Press the power button for 10 seconds. This will force an immediate shut down of the
software. For example you may lose any items you have written to the memory. Holding the button longer
than 10 seconds will perform a power reset and the system will power back on.

1. Remove the USB cable Remember to hold your board firmly at the USB connection while you remove the
cable to prevent damage to the USB connector.

4. Powering up again. If you’d like to power up again without removing the USB cable follow these instructions:

1. If you used Step 1 above to power down, to power back up, hold the power button for 10 seconds, release
then tap it once and the system will boot normally.

2. If you used Step 2 above to power down, to power back up, simply tap the power button and the system
will boot normally.

Fig. 9.19: Power Button

9.3.4 Other ways to Connect up to your PocketBeagle

The board can be configured in several different ways. Future revisions of this document may include additional
configurations.

As other examples become documented, we’ll update them on the Wiki for PocketBeagle PocketBeagle WiKi
See also the on-line discussion.

9.4 PocketBeagle Overview

PocketBeagle is built around Octavo Systems’ OSD335x-SM System-In-Package that integrates a high-
performance Texas Instruments AM3358 processor, 512MB of DDR3, power management, nonvolatile serial
memory and over 100 passive components into a single package. This integration saves board space by elimi-
nating several packages that would otherwise need to be placed on the board, but more notably simplifies our
board design so we can focus on the user experience.

The compact PocketBeagle design also offers access through the expansion headers to many of the interfaces
and allows for the use of add-on boards called PocketCapes and Click Boards from MikroElektronika, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

9.4.1 PocketBeagle Features and Specification

This section covers the specifications and features of the board in a chart and provides a high level description
of the major components and interfaces that make up the board.

366 Chapter 9. PocketBeagle

https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/home
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/beagleboard/JtOGZb-FH2A/9GVu7I6kAQAJ

BeagleBoard Docs, Release 1.0.20230711-wip

Table 9.3: PocketBeagle Features
Feature
System-In-Package Octavo Systems OSD335x-SM in 256 Ball BGA (21mm x 21mm)
SiP Incorporates
Processor Texas Instruments 1GHz Sitara™ AM3358 ARM® Cortex®-A8 with NEON floating-point accelerator
Graphics Engine Imagination Technologies PowerVR SGX530 Graphics Accelerator
Real-Time Units 2x programmable real-time unit (PRU) 32-bit 200MHz microcontrollers with single-cycle I/O latency
Coprocessor ARM® Cortex®-M3 for power management functions
SDRAM Memory 512MB DDR3 800MHz RAM
Non-Volatile Mem-
ory

4KB I2C EEPROM for board configuration information

Power Management TPS65217C PMIC along with TL5209 LDO to provide power to the system with integrated 1-cell LiPo battery
support

Connectivity
SD/MMC Bootable microSD card slot
USB High speed USB 2.0 OTG (host/client) micro-B connector
Debug Support JTAG test points and gdb/other monitor-mode debug possible
Power Source microUSB connector, also expansion header options (battery, VIN or USB-VIN)
User I/O Power Button with press detection interrupt via TPS65217C PMIC
Expansion Header
USB High speed USB 2.0 OTG (host/client) control signals
Analog Inputs 8 analog inputs with 6 @ 1.8V and 2 @ 3.3V along with 1.8V references
Digital I/O 44 digital GPIOs accessible with 18 enabled by default including 2 shared with the 3.3V analog input pins
UART 3 UARTs accessible with 2 enabled by default
I2C 2 I2C buses enabled by default
SPI 2 SPI buses with single chip selects enabled by default
PWM 4 Pulse Width Modulation outputs accessible with 2 enabled by default
QEP 2 Quadrature encoder inputs accessible
CAN 2 CAN bus controllers accessible

OSD3358-512M-BSM System in Package

The Octavo Systems OSD3358-512M-BSM System-In-Package (SiP) is part of a family of products that are
building blocks designed to allow easy and cost-effective implementation of systems based in Texas Instru-
ments powerful Sitara AM335x line of processors. The OSD335x-SM integrates the AM335x along with the TI
TPS65217C PMIC, the TI TL5209 LDO, up to 1 GB of DDR3 Memory, a 4 KB EEPROM for non-volatile configuration
storage and resistors, capacitors and inductors into a single 21mm x 21mm design-in-ready package.

With this level of integration, the OSD335x-SM family of SiPs allows designers to focus on the key aspects of
their system without spending time on the complicated high-speed design of the processor/DDR3 interface or
the PMIC power distribution. It reduces size and complexity of design.

Full Datasheet and more information is available at octavosystems.com/octavo_products/osd335x-sm/

9.4.2 Board Component Locations

This section describes the key components on the board, their location and function.

Figure below shows the locations of the devices, connectors, LEDs, and switches on the PCB layout of the board.

Fig. 9.20: Key Board Component Locations

9.4. PocketBeagle Overview 367

https://octavosystems.com/octavo_products/osd335x-sm/

BeagleBoard Docs, Release 1.0.20230711-wip

Key Components

• The Octavo Systems OSD3358-512M-BSM System-In-Package is the processor system for the
board

• P1 and P2 Headers come unpopulated so a user may choose their orientation

• User LEDs provides 4 programmable blue LEDs

• Power BUTTON can be used to power up or power down the board (see section 3.3.3 for details)

• USB 2.0 OTG is a microUSB connection to a PC that can also power the board

• Power LED provides communication regarding the power to the board

• microSD slot is where a microSD card can be installed.

9.5 PocketBeagle High Level Specification

This section provides the high level specification of PocketBeagle.

9.5.1 Block Diagram

Figure 22 below is the high level block diagram of PocketBeagle.

Fig. 9.21: PocketBeagle Key Components

9.5.2 System in Package (SiP)

The OSD335x-SM Block Diagram is detailed in Figure 23 below. More information, including design resources
are available on the ‘Octavo Systems Website’

Note: PocketBeagle utilizes the 512MB DDR3 memory size version of the OSD335x-SM A few of the features of
the OSD335x-SM SiP may not be available on PocketBeagle headers. Please check Section 7 for the P1 and P2
header pin tables.

9.5.3 Connectivity

Expansion Headers

PocketBeagle gives access to a large number of peripheral functions and GPIO via 2 dual rail expansion headers.
With 36 pins each, the headers have been left unpopulated to enable users to choose the header connector
orientation or add-on board / cape connector style. Pins are clearly marked on the bottom of the board with

368 Chapter 9. PocketBeagle

https://octavosystems.com/octavo_products/osd335x-sm

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.22: OSD335x SIP Block Diagram

9.5. PocketBeagle High Level Specification 369

BeagleBoard Docs, Release 1.0.20230711-wip

additional pin configurations available through software settings. Detailed information is available in Section
7.

Fig. 9.23: PocketBeagle Expansion Headers

microSD Connector

The board is equipped with a single microSD connector to act as the primary boot source for the board. Just
about any microSD card you have will work, we commonly find 4G to be suitable.

When plugging in the SD card, the writing on the card should be up. Align the card with the connector and
push to insert. Then release. There should be a click and the card will start to eject slightly, but it then should
latch into the connector. To eject the card, push the SD card in and then remove your finger. The SD card will
be ejected from the connector. Do not pull the SD card out or you could damage the connector.

Fig. 9.24: microSD Connector

USB 2.0 Connector

The board has a microUSB connector that is USB 2.0 HS compatible that connects the USB0 port to the SiP.
Generally this port is used as a client USB port connected to a power source, such as your PC, to power the
board. If you would like to use this port in host mode you will need to supply power for peripherals via Header
P1 pin 7 (USB1.VIN) or through a powered USB Hub. Additionally, in the USB host configuration, you will need
to power the board through Header P1 pin 1 (VIN) or Header P1 pin 7 (USB1.VIN) or Header P2 pin 14 (BAT.VIN)

Fig. 9.25: USB 2.0 Connector

Boot Modes

There are three boot modes:

• SD Boot: MicroSD connector acts as the primary boot source for the board. This is described in Section
3.

370 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

• USB Boot: This mode supports booting over the USB port. More information can be found in the project
called “BeagleBoot” This project ported the BeagleBone bootloader server BBBlfs(currently written in c)
to JavaScript(node.js) and make a cross platform GUI (using electron framework) flashing tool utilizing
the etcher.io project. This will allow a single code base for a cross platform tool. For more information on
BeagleBoot, see the BeagleBoot Project Page.

• Serial Boot: This mode will use the serial port to allow downloading of the software. A separate USB to
TTL level serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click
Boards to use this method. The UART pins on PocketBeagle’s expansion headers support the interface.
For more information regarding the pins on the expansion headers and various modes, see Section 7.

Table 9.4: UART Pins on Expansion Headers for Serial Boot
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.22 GND GND
P1.30 U0_TX E16 B12 uart0_txd
P1.32 U0_RX E15 A12 uart0_rxd

If the Serial Boot is not in use, the UART0 pins can be used for Serial Debug. See Section 5.6 for more informa-
tion.

Software to support USB and serial boot modes is not provided by beagleboard.org. Please contact TI for
support of this feature.

9.5.4 Power

The board can be powered from three different sources:

• A USB port on a PC.

• A power supply with a USB connector.

• Expansion Header pins.

Note: VIN-USB is directly shorted between the USB connector on PocketBeagle and USB1_VI on the expansion
headers. You should only source power to the board over one of these and may optionally use the other as a
power sink.

The tables below show the power related pins available on PocketBeagle’s Expansion Headers.

Table 9.5: Power Inputs Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.01 VIN P10, R10, T10 VIN
P1.07 USB1_VI P9, R9, T9 VIN-USB
P2.14 BAT_+ P8, R8, T8 VIN-BAT

Table 9.6: Power Outputs Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.14 +3.3V F6, F7, G6, G7 VOUT-3.3V
P1.24 VOUT K6, K7, L6, L7 VOUT-5V
P2.13 VOUT K6, K7, L6, L7 VOUT-5V
P2.23 +3.3V F6, F7, G6, G7 VOUT-3.3V

9.5. PocketBeagle High Level Specification 371

https://medium.com/@ravikp7/gsoc-2017-final-report-beagleboot-a20d28c8d632
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click
https://shop.mikroe.com/ftdi-click

BeagleBoard Docs, Release 1.0.20230711-wip

Table 9.7: Ground Pins Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.15 USB1_GND GND
P1.16 GND GND
P1.22 GND GND
P2.15 GND GND
P2.21 GND GND

Note: A comprehensive tutorial for Power Inputs and Outputs for the OSD335x System in Package is available
in the ‘Tutorial Series’ on the Octavo Systems website.

9.5.5 JTAG Pads

Pads for an optional connection to a JTAG emulator has been provided on the back of PocketBeagle. More
information about JTAG emulation can be found on the TI website - ‘Entry-level debug through full-capability
development’

Fig. 9.26: JTAG Pad Connections

9.5.6 Serial Debug Port

Serial debug is provided via UART0 on the processor. See Section 5.3.4 for the Header Pin table. Signals
supported are TX and RX. None of the handshake signals (CTS/RTS) are supported. A separate USB to TTL level
serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click Boards to use
this method.

If serial boot is not used, the UART0 can be used to view boot messages during startup and can provide access
to a console using a terminal access program like Putty. To view the boot messages or use the console the
UART should be set to a baud rate of 115200 and use 8 bits for data, no parity bit and 1 stop bit (8N1).

372 Chapter 9. PocketBeagle

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/power-input-output/
https://www.ti.com/tools-software/debug.html
https://www.ti.com/tools-software/debug.html
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click
http://www.putty.org/

BeagleBoard Docs, Release 1.0.20230711-wip

9.6 Detailed Hardware Design

The following sections contain schematic references for PocketBeagle. Full schematics in both PDF and Eagle
are available on the ‘PocketBeagle Wiki’

9.6.1 OSD3358-SM SiP Design

Schematics for the OSD3358-SM SiP are divided into several diagrams.

SiP A OSD3358 SiP System and Power Signals

Fig. 9.27: SiP A OSD3358 SiP System and Power Signals

9.6. Detailed Hardware Design 373

https://git.beagleboard.org/beagleboard/pocketbeagle

BeagleBoard Docs, Release 1.0.20230711-wip

SiP B OSD3358 SiP JTAG, USB & Analog Signals

Fig. 9.28: SiP B OSD3358 SiP JTAG, USB & Analog Signals

SiP C OSD3358 SiP Peripheral Signals

SiP D OSD3358 SiP System Boot Configuration

SiP E OSD3358 SiP Power Signals

SiP F OSD3358 SiP Power Signals

9.6.2 MicroSD Connection

The Micro Secure Digital (microSD) connector design is highlighted in Figure 35.

9.6.3 USB Connector

The USB connector design is highlighted in Figure 36.

Note that there is an ID pin for dual-role (host/client) functionality. The hardware fully supports it, but care
should be taken to ensure the kernel in use is either statically or dynamically configured to recognize and
utilize the proper mode.

9.6.4 Power Button Design

The power button design is highlighted in Figure 37.

374 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.29: SiP C OSD3358 SiP Peripheral Signals

9.6. Detailed Hardware Design 375

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.30: SiP D OSD3358 SiP System Boot Configuration

376 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.31: SiP E OSD3358 SiP Power Signals

9.6. Detailed Hardware Design 377

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.32: microSD Connections

378 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.33: USB Connection

Fig. 9.34: Power Button

9.6. Detailed Hardware Design 379

BeagleBoard Docs, Release 1.0.20230711-wip

9.6.5 User LEDs

There are four user programmable LEDs on PocketBeagle. The design is highlighted in Figure 38. Table 6
Provides the LED control signals and pins. A logic level of “1” will cause the LEDs to turn on.

Fig. 9.35: User LEDs

Table 9.8: User LED Control Signals/Pins
LED Signal Name Proc Ball SiP Ball
USR0 GPIO1_21 V15 P13
USR1 GPIO1_22 U15 T14
USR2 GPIO1_23 T15 R14
USR3 GPIO1_24 V16 P14

9.6.6 JTAG Pads

There are 7 pads on the bottom of PocketBeagle to connect JTAG for debugging. The design is highlighted in
Figure 39. More information regarding JTAG debugging can be found at ‘www.ti.com/jtag’

9.6.7 PRU-ICSS

The Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem (PRU-ICSS) module is
located inside the AM3358 processor, which is inside the Octavo Systems SiP. Commonly referred to as just
the “PRU”, this little subsystem will unleash a lot of performance for you to use in your application. Consisting
of dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs), data and instruction memories, internal
peripheral modules, and an interrupt controller (INTC). The programmable nature of the PRU-ICSS, along with
their access to pins, events and all SoC resources, provides flexibility in implementing fast real-time responses,
specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other
processor cores of the system-on-chip (SoC). Access to these pins is provided by PocketBeagle’s expansion

380 Chapter 9. PocketBeagle

https://www.ti.com/jtag

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.36: JTAG Pads Design

headers and is multiplexed with other functions on the board. Access is not provided to all of the available
pins.

Some getting started information can be found on https://beagleboard.org/pru.

Additional documentation is located on the Texas Instruments website at processors.wiki.ti.com/index.php/PRU-
ICSS and also located at http://github.com/beagleboard/am335x_pru_package.

Example projects using the PRU-ICSS can be found in PRU Cookbook.

PRU-ICSS Features

The features of the PRU-ICSS include:

Two independent programmable real-time (PRU) cores:

• 32-Bit Load/Store RISC architecture

• 8K Byte instruction RAM (2K instructions) per core

• 8K Bytes data RAM per core

• 12K Bytes shared RAM

• Operating frequency of 200 MHz

• PRU operation is little endian similar to ARM processor

• All memories within PRU-ICSS support parity

• Includes Interrupt Controller for system event handling

• Fast I/O interface

– 16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the PocketBeagle. Please
check the Pin Table below for PRU-ICSS features available through the P1 and P2 headers.)

9.6. Detailed Hardware Design 381

https://beagleboard.org/pru
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://github.com/beagleboard/am335x_pru_package

BeagleBoard Docs, Release 1.0.20230711-wip

PRU-ICSS Block Diagram

Figure below is a high level block diagram of the PRU-ICSS.

PRU-ICSS Pin Access

Both PRU 0 and PRU1 are accessible from the expansion headers. Listed below are the ports that can be
accessed on each PRU.

Table 6. below shows which PRU-ICSS signals can be accessed on PocketBeagle and on which connector and
pins on which they are accessible. Some signals are accessible on the same pins.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document,
you will need to print this chart separately.

382 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
9.
9:
PR
U0

an
d
PR
U1

Ac
ce
ss

He
ad
er
.P
in

Si
lks
cr
ee
n

Pr
oc
es
so
rB
all

Si
P
Ba
ll

M
od
e3

M
od
e4

M
od
e5

M
od
e6

No
te

P1
.0
2

A6
/8
7

R5
F2

pr
1_
pr
u1
_p
ru
_r
30
_9
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_9
(In
pu
t)

P1
.0
4

89
R6

E1
pr
1_
pr
u1
_p
ru
_r
30
_1
1
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
1
(In
pu
t)

P1
.0
6

SP
I0
_C
S

A1
6

A1
4

pr
1_
ua
rt
0_
tx
d
(O
ut
pu
t)

UA
RT
Tr
an
sm
it
D
at
a

P1
.0
8

SP
I0
_C
LK

A1
7

A1
3

pr
1_
ua
rt
0_
ct
s_
n
(In
pu
t)

UA
RT
Cl
ea
rt
o
Se
nd

P1
.1
0

SP
I0
_M
IS
O

B1
7

B1
3

pr
1_
ua
rt
0_
rt
s_
n
(O
ut
pu
t)

UA
RT
Re
qu
es
tt
o
Se
nd

P1
.1
2

SP
I0
_M
O
SI

B1
6

B1
4

pr
1_
ua
rt
0_
rx
d
(In
pu
t)

UA
RT
Re
ce
iv
e
D
at
a

P1
.2
0

20
D
14

B4
pr
1_
pr
u0
_p
ru
_r
31
_1
6
(In
pu
t)

P1
.2
6

I2
C2
_S
DA

D
18

B1
0

pr
1_
ua
rt
0_
ct
s_
n
(In
pu
t)

UA
RT
Cl
ea
rt
o
Se
nd

P1
.2
8

I2
C2
_S
CL

D
17

A1
0

pr
1_
ua
rt
0_
rt
s_
n
(O
ut
pu
t)

UA
RT
Re
qu
es
tt
o
Se
nd

P1
.2
9

PR
U0
_7

A1
4

C4
pr
1_
pr
u0
_p
ru
_r
30
_7
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_7
(In
pu
t)

P1
.3
0

U0
_T
X

E1
6

B1
2

pr
1_
pr
u1
_p
ru
_r
30
_1
5
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
5
(In
pu
t)

P1
.3
1

PR
U0
_4

B1
2

A3
pr
1_
pr
u0
_p
ru
_r
30
_4
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_4
(In
pu
t)

P1
.3
2

U0
_R
X

E1
5

A1
2

pr
1_
pr
u1
_p
ru
_r
30
_1
4
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
4
(In
pu
t)

P1
.3
3

PR
U0
_1

B1
3

A2
pr
1_
pr
u0
_p
ru
_r
30
_1
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_1
(In
pu
t)

P1
.3
5

P1
.1
0

V5
F1

pr
1_
pr
u1
_p
ru
_r
30
_1
0
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
0
(In
pu
t)

P1
.3
6

PW
M
0A

A1
3

A1
pr
1_
pr
u0
_p
ru
_r
30
_0
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_0
(In
pu
t)

P2
.0
9

I2
C1
_S
CL

D
15

B1
1

pr
1_
ua
rt
0_
tx
d
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_1
6
(In
pu
t)

UA
RT
Tr
an
sm
it
D
at
a

P2
.1
1

I2
C1
_S
DA

D
16

A1
1

pr
1_
ua
rt
0_
rx
d
(In
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
6
(In
pu
t)

UA
RT
Re
ce
iv
e
D
at
a

P2
.1
7

65
V1
2

T7
pr
1_
m
di
o_
m
dc
lk

M
D
IO
Cl
k

P2
.1
8

47
U1
3

P7
pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

pr
1_
pr
u0
_p
ru
_r
31
_1
5
(In
pu
t)

En
ha
nc
ed
ca
pt
ur
e
in
pu
to
rA
ux
ili
ar
y
PW
M
ou
t

P2
.2
0

64
T1
3

R7
pr
1_
m
di
o_
da
ta

M
D
IO
D
at
a

P2
.2
2

46
V1
3

T6
pr
1_
pr
u0
_p
ru
_r
31
_1
4
(In
pu
t)

P2
.2
4

48
T1
2

P6
pr
1_
pr
u0
_p
ru
_r
30
_1
4
(O
ut
pu
t)

P2
.2
8

PR
U0
_6

D
13

C3
pr
1_
pr
u0
_p
ru
_r
30
_6
O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_6
(In
pu
t)

P2
.2
9

SP
I1
_C
LK

C1
8

C5
pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

En
ha
nc
ed
ca
pt
ur
e
in
pu
to
rA
ux
ili
ar
y
PW
M
ou
t

P2
.3
0

PR
U0
_3

C1
2

B1
pr
1_
pr
u0
_p
ru
_r
30
_3
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_3
(In
pu
t)

P2
.3
1

SP
I1
_C
S

A1
5

A4
pr
1_
pr
u1
_p
ru
_r
31
_1
6
(In
pu
t)

P2
.3
2

PR
U0
_2

D
12

B2
pr
1_
pr
u0
_p
ru
_r
30
_2
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_2
(In
pu
t)

P2
.3
3

45
R1
2

R6
pr
1_
pr
u0
_p
ru
_r
30
_1
5
(O
ut
pu
t)

P2
.3
4

PR
U0
_5

C1
3

B3
pr
1_
pr
u0
_p
ru
_r
30
_5
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_5
(In
pu
t)

P2
.3
5

A5
/8
6

U5
F3

pr
1_
pr
u1
_p
ru
_r
30
_8
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_8
(In
pu
t)

9.6. Detailed Hardware Design 383

BeagleBoard Docs, Release 1.0.20230711-wip

9.7 Connectors

This section describes each of the connectors on the board.

9.7.1 Expansion Header Connectors

The expansion interface on the board is comprised of two 36 pin connectors. The two Expansion Header
Connectors on PocketBeagle are labeled P1 and P2. The connections are a standard 100 mil distance so that
they can be compatible with many standard expansion items. The silkscreen for the headers on the bottom of
the board provides the easiest way to identify them. See Figure 41.

Fig. 9.37: Expansion Headers for PocketBeagle

All signals on the expansion headers are 3.3V unless otherwise indicated.

Note:

• Do not connect 5V logic level signals to these pins or the board will be damaged.

• DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

• NO PINS ARE TO BE DRIVEN UNTIL AFTER THE NRESET LINE GOES HIGH.

Figure 42 shows a color coded chart with an overview of themost popular functions of PocketBeagle’s Expansion
Header pins. The Header Pin tables in Sections 7.1.1 and 7.1.2 show the full pin assignments for each header.

9.7.2 P1 Header

Figure 43 shows the schematic diagram for the P1 Header.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document
you will need to print this chart separately.

384 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.38: Expansion Header Popular Functions - Color Coded

9.7. Connectors 385

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
9.
10
:
P1
He
ad
er
Pi
no
ut

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P1
.0
1

VI
N

P1
.0
1
(V
IN
)

P1
0
&
R1
0
&

T1
0

VI
N

P1
.0
2

A6
/8
7

P1
.0
2

(A
IN
6/
G
PI
O
87
)

A8
C9

ai
n6

P1
.0
2

A6
/8
7

P1
.0
2

(A
IN
6/
G
PI
O
87
)

R5
F2

lc
d_
hs
yn
c

gp
m
c_
a9

gp
m
c_
a2

pr
1_
ed
io
_d
at
a_
in
3
pr
1_
ed
io
_d
at
a_
ou
t3p
r1
_p
ru
1_
pr
u_
r3
0_
9pr
1_
pr
u1
_p
ru
_r
31
_9g
pi
o2
_2
3

P1
.0
3

US
B1
_E
N

P1
.0
3
(U
SB
1-

D
RV
VB
US
)

F1
5

M
14

US
B1
_D
RV
VB
US

•
•

•
•

•
•

gp
io
3_
13

P1
.0
4

89
P1
.0
4

(P
RU
1.
11
)

R6
E1

lc
d_
ac
_b
ia
s_
en

gp
m
c_
a1
1

pr
1_
m
ii1
_c
rs

pr
1_
ed
io
_d
at
a_
in
5
pr
1_
ed
io
_d
at
a_
ou
t5p
r1
_p
ru
1_
pr
u_
r3
0_
11pr
1_
pr
u1
_p
ru
_r
31
_1
1gp
io
2_
25

P1
.0
5

US
B1
_V
B

P1
.0
5
(U
SB
1-

VB
US
)

T1
8

M
15

US
B1
_V
BU
S

•
•

•
•

•
•

•

P1
.0
6

SP
I0
_C
S

P1
.0
6

(S
PI
0-

CS
)

A1
6

A1
4

sp
i0
_c
s0

m
m
c2
_s
dw
p

I2
C1
_S
CL

eh
rp
w
m
0_
sy
nc
i

pr
1_
ua
rt
0_
tx
d

pr
1_
ed
io
_d
at
a_
in
1
pr
1_
ed
io
_d
at
a_
ou
t1g
pi
o0
_5

P1
.0
7

US
B1
_V
I

P1
.0
7

(V
IN
-

US
B)

P9
&
R9
&
T9

VI
N-
US
B

P1
.0
8

SP
I0
_C
LK

P1
.0
8

(S
PI
0-

CL
K)

A1
7

A1
3

sp
i0
_s
cl
k

ua
rt
2_
rx
d

I2
C2
_S
DA

eh
rp
w
m
0A

pr
1_
ua
rt
0_
ct
s_
n

pr
1_
ed
io
_s
of

EM
U2

gp
io
0_
02

P1
.0
9

US
B1
-

P1
.0
9
(U
SB
1-

D
N)

R1
8

L1
6

US
B1
_D
M

•
•

•
•

•
•

•

P1
.1
0

SP
I0
_M
IS
O

P1
.1
0

(S
PI
0-

M
IS
O
)

B1
7

B1
3

sp
i0
_d
0

ua
rt
2_
tx
d

I2
C2
_S
CL

eh
rp
w
m
0B

pr
1_
ua
rt
0_
rt
s_
n

pr
1_
ed
io
_l
at
ch
_i
n
EM
U3

gp
io
0_
3

P1
.1
1

US
B1
+

P1
.1
1
(U
SB
1-

D
P)

R1
7

L1
5

US
B1
_D
P

•
•

•
•

•
•

•

P1
.1
2

SP
I0
_M
O
SI

P1
.1
2

(S
PI
0-

M
O
SI
)

B1
6

B1
4

sp
i0
_d
1

m
m
c1
_s
dw
p

I2
C1
_S
DA

eh
rp
w
m
0_
tr
ip
zo
ne
_i
np
ut

pr
1_
ua
rt
0_
rx
d

pr
1_
ed
io
_d
at
a_
in
0
pr
1_
ed
io
_d
at
a_
ou
t0g
pi
o0
_0
4

P1
.1
3

US
B1
_I
D

P1
.1
3
(U
SB
1-

ID
)

P1
7

L1
4

US
B1
_I
D

•
•

•
•

•
•

•

P1
.1
4

+
3.
3V

P1
.1
4
(V
O
UT
-

3.
3V
)

F6
&
F7
&
G
6

&
G
7

VO
UT
-3
.3
V

P1
.1
5

US
B1
_G
ND

P1
.1
5
(G
ND
)

G
ND

P1
.1
6

G
ND

P1
.1
6
(G
ND
)

G
ND

P1
.1
7

AI
N(
1.
8V
)-

P1
.1
7
(V
RE
FN
)

A9
B9

VR
EF
N

P1
.1
8

AI
N(
1.
8V
)A
+

P1
.1
8
(V
RE
FP
)

B9
B7

VR
EF
P

P1
.1
9

AI
N(
1.
8V
)0

P1
.1
9

(A
IN
0-

1.
8V
)

B6
A8

ai
n0

P1
.2
0

20
P1
.2
0

(P
RU
0.
16
)

D
14

B4
xd
m
a_
ev
en
t_
in
tr
1

•
tc
lk
in

cl
ko
ut
2

tim
er
7

pr
1_
pr
u0
_p
ru
_r
31
_1
6EM
U3

gp
io
0_
20

P1
.2
1

AI
N(
1.
8V
)1

P1
.2
1

(A
IN
1-

1.
8V
)

C7
B8

ai
n1

P1
.2
2

G
ND

P1
.2
2
(G
ND
)

G
ND

P1
.2
3

AI
N(
1.
8V
)2

P1
.2
3

(A
IN
2-

1.
8V
)

B7
B6

ai
n2

co
nt
inu
es
on
ne
xt
pa
ge

386 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

9.
10
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P1
.2
4

VO
UT

P1
.2
4
(V
O
UT
-

5V
)

K6
&
K7

&
L6

&
L7

VO
UT
-5
V

P1
.2
5

AI
N(
1.
8V
)3

P1
.2
5

(A
IN
3-

1.
8V
)

A7
C6

ai
n3

P1
.2
6

I2
C2
_S
DA

P1
.2
6

(I2
C2
-

SD
A)

D
18

B1
0

ua
rt
1_
ct
sn

tim
er
6

dc
an
0_
tx

I2
C2
_S
DA

sp
i1
_c
s0

pr
1_
ua
rt
0_
ct
s_
n

pr
1_
ed
c_
la
tc
h0
_i
n
gp
io
0_
12

P1
.2
7

AI
N(
1.
8V
)4

P1
.2
7

(A
IN
4-

1.
8V
)

C8
C7

ai
n4

P1
.2
8

I2
C2
_S
CL

P1
.2
8

(I2
C2
-

SC
L)

D
17

A1
0

ua
rt
1_
rt
sn

tim
er
5

dc
an
0_
rx

I2
C2
_S
CL

sp
i1
_c
s1

pr
1_
ua
rt
0_
rt
s_
n

pr
1_
ed
c_
la
tc
h1
_i
n
gp
io
0_
13

P1
.2
9

PR
U0
_7

P1
.2
9

(P
RU
0.
7)

A1
4

C4
m
ca
sp
0_
ah
cl
kx

eQ
EP
0_
st
ro
be

m
ca
sp
0_
ax
r3

m
ca
sp
1_
ax
r1

EM
U4

pr
1_
pr
u0
_p
ru
_r
30
_7p
r1
_p
ru
0_
pr
u_
r3
1_
7gp
io
3_
21

P1
.3
0

U0
_T
X

P1
.3
0
(U
AR
T0
-

TX
)

E1
6

B1
2

ua
rt
0_
tx
d

sp
i1
_c
s1

dc
an
0_
rx

I2
C2
_S
CL

eC
AP
1_
in
_P
W
M
1_
ou
tpr
1_
pr
u1
_p
ru
_r
30
_1
5pr
1_
pr
u1
_p
ru
_r
31
_1
5gp
io
1_
11

P1
.3
1

PR
U0
_4

P1
.3
1

(P
RU
0.
4)

B1
2

A3
m
ca
sp
0_
ac
lk
r

eQ
EP
0A
_i
n

m
ca
sp
0_
ax
r2

m
ca
sp
1_
ac
lk
x

m
m
c0
_s
dw
p

pr
1_
pr
u0
_p
ru
_r
30
_4p
r1
_p
ru
0_
pr
u_
r3
1_
4gp
io
3_
18

P1
.3
2

U0
_R
X

P1
.3
2
(U
AR
T0
-

RX
)

E1
5

A1
2

ua
rt
0_
rx
d

sp
i1
_c
s0

dc
an
0_
tx

I2
C2
_S
DA

eC
AP
2_
in
_P
W
M
2_
ou
tpr
1_
pr
u1
_p
ru
_r
30
_1
4pr
1_
pr
u1
_p
ru
_r
31
_1
4gp
io
1_
10

P1
.3
3

PR
U0
_1

P1
.3
3

(P
RU
0.
1)

B1
3

A2
m
ca
sp
0_
fs
x

eh
rp
w
m
0B

•
sp
i1
_d
0

m
m
c1
_s
dc
d

pr
1_
pr
u0
_p
ru
_r
30
_1p
r1
_p
ru
0_
pr
u_
r3
1_
1gp
io
3_
15

P1
.3
4

26
P1
.3
4

(G
PI
O
0.
26
)

T1
1

R5
gp
m
c_
ad
10

lc
d_
da
ta
21

m
m
c1
_d
at
2

m
m
c2
_d
at
6

eh
rp
w
m
2_
tr
ip
zo
ne
_i
np
ut

pr
1_
m
ii0
_t
xe
n

•
gp
io
0_
26

P1
.3
5

P1
.1
0

P1
.3
5

(P
RU
1.
10
)

V5
F1

lc
d_
pc
lk

gp
m
c_
a1
0

pr
u_
m
ii0
_c
rs

pr
1_
ed
io
_d
at
a_
in
4
pr
1_
ed
io
_d
at
a_
ou
t4p
r1
_p
ru
1_
pr
u_
r3
0_
10pr
1_
pr
u1
_p
ru
_r
31
_1
0gp
io
2_
24

P1
.3
6

PW
M
0A

P1
.3
6

(P
W
M
0A
)

A1
3

A1
m
ca
sp
0_
ac
lk
x

eh
rp
w
m
0A

•
sp
i1
_s
cl
k

m
m
c0
_s
dc
d

pr
1_
pr
u0
_p
ru
_r
30
_0p
r1
_p
ru
0_
pr
u_
r3
1_
0gp
io
3_
14

9.7. Connectors 387

BeagleBoard Docs, Release 1.0.20230711-wip

9.7.3 P2 Header

Figure 44 shows the schematic diagram for the P2 Header.

Fig. 9.39: P2 Header

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document
you will need to print this chart separately.

388 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
9.
11
:
P2
He
ad
er
Pi
no
ut

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P2
.0
1

PW
M
1A

P2
.0
1

(P
W
M
1A
)

U1
4

P1
2

gp
m
c_
a2

gm
ii2
_t
xd
3

rg
m
ii2
_t
d3

m
m
c2
_d
at
1

gp
m
c_
a1
8

pr
1_
m
ii1
_t
xd
2

eh
rp
w
m
1A

gp
io
1_
18

P2
.0
2

59
P2
.0
2

(G
PI
O
1.
27
)

V1
7

T1
6

gp
m
c_
a1
1

gm
ii2
_r
xd
0

rg
m
ii2
_r
d0

rm
ii2
_r
xd
0

gp
m
c_
a2
7

pr
1_
m
ii1
_r
xe
r

m
ca
sp
0_
ax
r1

gp
io
1_
27

P2
.0
3

23
P2
.0
3

(G
PI
O
0.
23
)

T1
0

P5
gp
m
c_
d9

lc
d_
da
ta
22

m
m
c1
_d
at
1

m
m
c2
_d
at
5

eh
rp
w
m
2B

pr
1_
m
ii0
_c
ol

•
gp
io
0_
23

P2
.0
4

58
P2
.0
4

(G
PI
O
1.
26
)

T1
6

R1
5

gp
m
c_
a1
0

gm
ii2
_r
xd
1

rg
m
ii2
_r
d1

rm
ii2
_r
xd
1

gp
m
c_
a2
6

pr
1_
m
ii1
_r
xd
v

m
ca
sp
0_
ax
r0

gp
io
1_
26

P2
.0
5

U1
_R
X

P2
.0
5
(U
AR
T4
-

RX
)

T1
7

P1
5

gp
m
c_
w
ai
t0

gm
ii2
_c
rs

gp
m
c_
cs
n4

rm
ii2
_c
rs
_d
v

m
m
c1
_s
dc
d

pr
1_
m
ii1
_c
ol

ua
rt
4_
rx
d

gp
io
0_
30

P2
.0
6

57
P2
.0
6

(G
PI
O
1.
25
)

U1
6

T1
5

gp
m
c_
a9

gm
ii2
_r
xd
2

rg
m
ii2
_r
d2

m
m
c2
_d
at
7
/

rm
ii2
_c
rs
_d
v

gp
m
c_
a2
5

pr
1_
m
ii_
m
r1
_c
lk

m
ca
sp
0_
fs
x

gp
io
1_
25

P2
.0
7

U1
_T
X

P2
.0
7
(U
AR
T4
-

TX
)

U1
7

R1
6

gp
m
c_
w
p

gm
ii2
_r
xe
rr

gp
m
c_
cs
n5

rm
ii2
_r
xe
rr

m
m
c2
_s
dc
d

pr
1_
m
ii1
_t
xe
n

ua
rt
4_
tx
d

gp
io
0_
31

P2
.0
8

60
P2
.0
8

(G
PI
O
1.
28
)

U1
8

N1
4

gp
m
c_
be
1n

gm
ii2
_c
ol

gp
m
c_
cs
n6

m
m
c2
_d
at
3

gp
m
c_
di
r

pr
1_
m
ii1
_r
xl
in
k

m
ca
sp
0_
ac
lk
r

gp
io
1_
28

P2
.0
9

I2
C1
_S
CL

P2
.0
9

(I2
C1
-

SC
L)

D
15

B1
1

ua
rt
1_
tx
d

m
m
c2
_s
dw
p

dc
an
1_
rx

I2
C1
_S
CL

•
pr
1_
ua
rt
0_
tx
d

pr
1_
pr
u0
_p
ru
_r
31
_1
6gp
io
0_
15

P2
.1
0

52
P2
.1
0

(G
PI
O
1.
20
)

R1
4

R1
3

gp
m
c_
a4

gm
ii2
_t
xd
1

rg
m
ii2
_t
d1

rm
ii2
_t
xd
1

gp
m
c_
a2
0

pr
1_
m
ii1
_t
xd
0

eQ
EP
1A
_i
n

gp
io
1_
20

P2
.1
1

I2
C1
_S
DA

P2
.1
1

(I2
C1
-

SD
A)

D
16

A1
1

ua
rt
1_
rx
d

m
m
c1
_s
dw
p

dc
an
1_
tx

I2
C1
_S
DA

•
pr
1_
ua
rt
0_
rx
d

pr
1_
pr
u1
_p
ru
_r
31
_1
6gp
io
0_
14

P2
.1
2

PB
P2
.1
2

(P
O
W
ER
_B
TN
)

T1
1

PO
W
ER

P2
.1
3

VO
UT

P2
.1
3
(V
O
UT
-

5V
)

K6
,K
7,
L6
,L
7

VO
UT
-5
V

P2
.1
4

BA
T
+

P2
.1
4

(V
IN
-

BA
T)

P8
,R
8,
T8

VI
N-
BA
T

P2
.1
5

G
ND

P2
.1
5
(G
ND
)

G
ND

P2
.1
6

BA
T
-

P2
.1
6

(B
AT
-

TE
M
P)

N6
BA
T-
TE
M
P

P2
.1
7

65
P2
.1
7

(G
PI
O
2.
1)

V1
2

T7
gp
m
c_
cl
k

lc
d_
m
em
or
y_
cl
k

gp
m
c_
w
ai
t1

m
m
c2
_c
lk

pr
1_
m
ii1
_c
rs

pr
1_
m
di
o_
m
dc
lk

m
ca
sp
0_
fs
r

gp
io
2_
01

P2
.1
8

47
P2
.1
8

(P
RU
0.
15
i)

U1
3

P7
gp
m
c_
ad
15

lc
d_
da
ta
16

m
m
c1
_d
at
7

m
m
c2
_d
at
3

eQ
EP
2_
st
ro
be

pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

pr
1_
pr
u0
_p
ru
_r
31
_1
5gp
io
1_
15
P

P2
.1
9

27
P2
.1
9

(G
PI
O
0.
27
)

U1
2

T5
gp
m
c_
ad
11

lc
d_
da
ta
20

m
m
c1
_d
at
3

m
m
c2
_d
at
7

eh
rp
w
m
0_
sy
nc
o

pr
1_
m
ii0
_t
xd
3

•
gp
io
0_
27

P2
.2
0

64
P2
.2
0

(G
PI
O
2.
0)

T1
3

R7
gp
m
c_
cs
n3

gp
m
c_
a3

rm
ii2
_c
rs
_d
v

m
m
c2
_c
m
d

pr
1_
m
ii0
_c
rs

pr
1_
m
di
o_
da
ta

EM
U4

gp
io
2_
00

P2
.2
1

G
ND

P2
.2
1
(G
ND
)

G
ND

P2
.2
2

46
P2
.2
2

(G
PI
O
1.
14
)

V1
3

T6
gp
m
c_
ad
14

lc
d_
da
ta
17

m
m
c1
_d
at
6

m
m
c2
_d
at
2

eQ
EP
2_
in
de
x

pr
1_
m
ii0
_t
xd
0

pr
1_
pr
u0
_p
ru
_r
31
_1
4gp
io
1_
14

P2
.2
3

+
3.
3V

P2
.2
3
(V
O
UT
-

3.
3V
)

F6
&
F7
&
G
6

&
G
7

VO
UT
-3
.3
V

P2
.2
4

48
P2
.2
4

(G
PI
O
1.
12
)

T1
2

P6
gp
m
c_
ad
12

lc
d_
da
ta
19

m
m
c1
_d
at
4

m
m
c2
_d
at
0

eQ
EP
2A
_i
n

pr
1_
m
ii0
_t
xd
2

pr
1_
pr
u0
_p
ru
_r
30
_1
4gp
io
1_
12

co
nt
inu
es
on
ne
xt
pa
ge

9.7. Connectors 389

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

9.
11
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P2
.2
5

SP
I1
_M
O
SI

P2
.2
5

(S
PI
1-

M
O
SI
)

E1
7

C1
3

ua
rt
0_
rt
sn

ua
rt
4_
tx
d

dc
an
1_
rx

I2
C1
_S
CL

sp
i1
_d
1

sp
i1
_c
s0

pr
1_
ed
c_
sy
nc
1_
ou
tg
pi
o1
_0
9

P2
.2
6

RS
T

P2
.2
6

(N
RE
-

SE
T)

A1
0

R1
1

nR
E-

SE
TI
N_
O
UT

•
•

•
•

•
•

•

P2
.2
7

SP
I1
_M
IS
O

P2
.2
7

(S
PI
1-

M
IS
O
)

E1
8

C1
2

ua
rt
0_
ct
sn

ua
rt
4_
rx
d

dc
an
1_
tx

I2
C1
_S
DA

sp
i1
_d
0

tim
er
7

pr
1_
ed
c_
sy
nc
0_
ou
tg
pi
o1
_0
8

P2
.2
8

PR
U0
_6

P2
.2
8

(P
RU
0.
6)

D
13

C3
m
ca
sp
0_
ax
r1

eQ
EP
0_
in
de
x

•
m
ca
sp
1_
ax
r0

EM
U3

pr
1_
pr
u0
_p
ru
_r
30
_6p
r1
_p
ru
0_
pr
u_
r3
1_
6gp
io
3_
20

P2
.2
9

SP
I1
_C
LK

P2
.2
9

(S
PI
1-

CL
K)

C1
8

C5
eC
AP
0_
in
_P
W
M
0_
ou
tua
rt
3_
tx
d

sp
i1
_c
s1

pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

sp
i1
_s
cl
k

m
m
c0
_s
dw
p

xd
m
a_
ev
en
t_
in
tr
2
gp
io
0_
7

P2
.3
0

PR
U0
_3

P2
.3
0

(P
RU
0.
3)

C1
2

B1
m
ca
sp
0_
ah
cl
kr

eh
rp
w
m
0_
sy
nc
i

m
ca
sp
0_
ax
r2

sp
i1
_c
s0

eC
AP
2_
in
_P
W
M
2_
ou
tpr
1_
pr
u0
_p
ru
_r
30
_3p
r1
_p
ru
0_
pr
u_
r3
1_
3gp
io
3_
17

P2
.3
1

SP
I1
_C
S

P2
.3
1

(S
PI
1-

CS
1)

A1
5

A4
xd
m
a_
ev
en
t_
in
tr
0

•
tim
er
4

cl
ko
ut
1

sp
i1
_c
s1

pr
1_
pr
u1
_p
ru
_r
31
_1
6EM
U2

gp
io
0_
19

P2
.3
2

PR
U0
_2

P2
.3
2

(P
RU
0.
2)

D
12

B2
m
ca
sp
0_
ax
r0

eh
rp
w
m
0_
tr
ip
zo
ne
_i
np
ut
•

sp
i1
_d
1

m
m
c2
_s
dc
d

pr
1_
pr
u0
_p
ru
_r
30
_2p
r1
_p
ru
0_
pr
u_
r3
1_
2gp
io
3_
16

P2
.3
3

45
P2
.3
3

(G
PI
O
1.
13
)

R1
2

R6
gp
m
c_
ad
13

lc
d_
da
ta
18

m
m
c1
_d
at
5

m
m
c2
_d
at
1

eQ
EP
2B
_i
n

pr
1_
m
ii0
_t
xd
1

pr
1_
pr
u0
_p
ru
_r
30
_1
5gp
io
1_
13

P2
.3
4

PR
U0
_5

P2
.3
4

(P
RU
0.
5)

C1
3

B3
m
ca
sp
0_
fs
r

eQ
EP
0B
_i
n

m
ca
sp
0_
ax
r3

m
ca
sp
1_
fs
x

EM
U2

pr
1_
pr
u0
_p
ru
_r
30
_5p
r1
_p
ru
0_
pr
u_
r3
1_
5gp
io
3_
19

P2
.3
5

A5
/8
6

P2
.3
5

(A
IN
5/
G
PI
O
86
)

B8
C8

ai
n5

P2
.3
5

A5
/8
6

P2
.3
5

(A
IN
5/
G
PI
O
86
)

U5
F3

lc
d_
vs
yn
c

gp
m
c_
a8

gp
m
c_
a1

pr
1_
ed
io
_d
at
a_
in
2
pr
1_
ed
io
_d
at
a_
ou
t2p
r1
_p
ru
1_
pr
u_
r3
0_
8pr
1_
pr
u1
_p
ru
_r
31
_8g
pi
o2
_2
2

P2
.3
6

A7
(1
.8
)

P2
.3
6
(A
IN
7)

N1
3

ai
n7

390 Chapter 9. PocketBeagle

BeagleBoard Docs, Release 1.0.20230711-wip

9.7.4 mikroBUS socket connections

mikroBUS and, by extension “mikroBUS Click boards”, are trademarks of MikroElektronika. We do not make
any claims of compatibility nor adherence to their specification. We’ve just seen that many of the Click boards
“just work”.

The Expansion Headers on PocketBeagle have been designed to accept up to two Click Boards added to the
header pins at the same time. This provides an exciting opportunity to add functionality easily to PocketBeagle
from ‘hundreds of existing add-on Click Boards’.

The mikroBUS standard comprises a pair of 1×8 female headers with a standardized pin configuration. The
pinout (always laid out in the same order) consists of three groups of communications pins (SPI, UART and I2C),
six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (+3.3V and
5V).

Fig. 9.40: mikroBUS

The Expansion Header pin alignment enables 2 Click Boards on the top side of PocketBeagle using the inside
rails of the headers. This leaves the outside rails open to be accessed from either the top or the bottom of
PocketBeagle. Place each Click Board into the position shown in Figure 46, with one Click Board facing each
direction. When choosing Click boards, make sure you are checking that they meet the 3.3V requirements
for PocketBeagle. A growing number of community members are trying out various Click Boards and posting
results on the ‘PocketBeagle Wiki mikroBus Click Boards page’.

Fig. 9.41: PocketBeagle Both Headers

9.7.5 Setting up an additional USB Connection

You can add an additional USB connection to PocketBeagle easily by connecting a microUSB breakout. By
default in the current software, the system should be configured to use this port as a host. Keep up to date on
this project on the ‘PocketBeagle Wiki FAQ’.

9.7. Connectors 391

https://shop.mikroe.com/click
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/mikroBus%E2%84%A2-Click-Boards
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/FAQ

BeagleBoard Docs, Release 1.0.20230711-wip

9.8 PocketBeagle Cape Support

This is a placeholder for recommendations for those building their own PocketBeagle Cape designs. If you’d
like to join the conversation ‘check out the discussion on the forum for PocketBeagle’

See also PocketBeagle under ‘BeagleBoard Capes’

9.9 PocketBeagle Mechanical

9.9.1 9.1 Dimensions and Weight

Size: 2.21” x 1.38” (56mm x 35mm)

Max height: .197” (5mm)

PCB size: 55mm x 35mm

PCB Layers: 4

PCB thickness: 1.6mm

RoHS Compliant: Yes

Weight: 10g

Rough model can be found at PocketBeagle models

9.10 Additional Pictures

9.11 Support Information

All support for this design is through the BeagleBoard.org community at:

• beagleboard@googlegroups.com or

• beagleboard.org/discuss.

392 Chapter 9. PocketBeagle

https://forum.beagleboard.org/t/pocketbeagle-headers/26861
https://git.beagleboard.org/beagleboard/capes
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/models
https://beagleboard.org/chat
https://beagleboard.org/discuss

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 9.42: PocketBeagle Front BW

Fig. 9.43: PocketBeagle Back BW

9.11. Support Information 393

BeagleBoard Docs, Release 1.0.20230711-wip

9.11.1 Hardware Design

Design documentation can be found on the wiki. https://git.beagleboard.org/beagleboard/pocketbeagle/ In-
cluding:

• Schematic in PDF https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_
sch.pdf

• Schematic and layout in EAGLE https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/
EAGLE

• Schematic and layout in KiCAD https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/
KiCAD

• Bill of Materials https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_
BOM.csv

• PocketBeagle docs.

9.11.2 Software Updates

It is a good idea to always use the latest software. Instructions for how to update your software to the latest
version can be found at:

Download the latest software files from www.beagleboard.org/distros

9.11.3 Export Information

• ECCN: EAR99

• CCATS: G173833

• Documentation: PocketBeagle_Export_Classification.pdf

9.11.4 RMA Support

If you feel your board is defective or has issues and before returning merchandise, please seek approval from
the manufacturer using beagleboard.org/support/rma. You will need the manufacturer, model, revision and
serial number of the board.

9.11.5 Getting Help

If you need some up to date troubleshooting techniques, the Wiki is a great place to start PocketBeagle wiki.

If you need professional support, check out beagleboard.org/resources.

394 Chapter 9. PocketBeagle

https://git.beagleboard.org/beagleboard/pocketbeagle/
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_sch.pdf
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_sch.pdf
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/EAGLE
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/EAGLE
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/KiCAD
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/KiCAD
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_BOM.csv
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_BOM.csv
https://www.beagleboard.org/distros
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/regulatory/PocketBeagle_Export_Classification.pdf
https://www.beagleboard.org/rma
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/home
https://beagleboard.org/resources

Chapter 10

BeagleConnect Freedom

BeagleConnect™ Freedom is an open-hardware wireless hardware platform developed by BeagleBoard.org and
built around the TI CC1352P7 microcontroller, which supports both 2.4-GHz and long-range, low-power Sub-1
GHz wireless protocols. Rapidly prototyping of IoT applications is accelerated by hardware compatibility with
over 1,000mikroBUS add-on sensors, acutators, indicators and additional connectivity and storage options, and
backed with software support utilizing the Zephyr scalable and modular real-time operating system, allowing
developers to tailor the solution to their specific needs. BeagleConnect Freedom further includes MSP430F5503
for USB-to-UART functionality, temperature and humidity sensor, light sensor, SPI flash, battery charger, buzzer,
LEDs, and JTAG connections to make it a comprehensive solution for IoT development and prototyping.

The TI CC1352P7 microcontroller (MCU) includes a 48-MHz Arm Cortex-M4F processor, 704KB Flash memory,
256KB ROM, 8KB Cache SRAM, 144KB of ultra-low leakage SRAM, and over-the-air upgrades (OTA) capability.
This MCU provides flexible support for many different protocols and bands making it suitable for many different
communication requirements.

Important: This is a work in progress, for latest documentation please visit https://docs.beagleboard.org/
latest/

395

https://docs.beagleboard.org/latest/
https://docs.beagleboard.org/latest/

BeagleBoard Docs, Release 1.0.20230711-wip

10.1 Introduction

10.1.1 What is BeagleConnect™ Freedom?

BeagleConnect™ Freedom is based on a TI Arm Cortex-M4 wireless-enabled microcontroller and is the first
available BeagleConnect™ solution. It features:

• BeagleConnect™ node device for Bluetooth Low-Energy (BLE) and Sub-GHz 802.15.4 long range wireless,

• Works with BeaglePlay® gateway,

• USB-based serial console and firmware updates,

• 2x mikroBUS sockets,

• On-board light and humidity/temperature sensors,

• Battery-charger circuit, and

• Buzzer, LEDs and buttons for user programming.

10.1.2 What makes BeagleConnect™ new and different?

396 Chapter 10. BeagleConnect Freedom

https://www.ti.com/product/CC1352P7
https://www.mikroe.com/mikrobus

BeagleBoard Docs, Release 1.0.20230711-wip

Plug & Play approach

BeagleConnect™ uses the collaboratively developed Linux kernel to contain the intelligence required to speak
to these devices (sensors, actuators, and indicators), rather than relying on writing code on a microcontroller
specific to these devices. Some existing solutions rely on large libraries of microcontroller code, but the in-
tegration of communications, maintenance of the library with a limited set of developer resources and other
constraints to be explained later make those other solutions less suitable for rapid prototyping than Beagle-
Connect™.

Linux presents these devices abstractly in ways that are self-descriptive. Add an accelerometer to the system
and you are automatically fed a stream of force values in standard units. Add a temperature sensor and you
get it back in standard units again. Same for sensing magnetism, proximity, color, light, frequency, orientation,
or multitudes of other inputs. Indicators, such as LEDs and displays, are similarly abstracted with a few other
kernel subsystems and more advanced actuators with and without feedback control are in the process of being
developed and standardized. In places where proper Linux kernel drivers exist, no new specialized code needs
to be created for the devices.

Important: BeagleConnect™ solves IoT in a different and better way than any previous solution. For hundreds
of devices, users won’t have to write a single line of code to add them their systems. The automation code
they do write can be extremely simple, done with graphical tools or in any language they want. Maintenance of
the code is centralized in a small reusable set of microcontroller firmware and the Linux kernel, which is highly
peer reviewed under a highly-regarded governance model.

Reliable software update mechanism

Because there isn’t code specific to any given network-of-devices configuration , we can all leverage the same
software code base. This means that when someone fixes an issue in either BeagleConnect™ firmware or the
Linux kernel, you benefit from the fixes. The source for BeagleConnect™ firmware is also submitted to the
Zephyr Project upstream, further increasing the user base. Additionally, we will maintain stable branches of
the software and provide mechanisms for updating firmware on BeagleConnect™ hardware. With a single, rela-
tively small firmware load, the potential for bugs is kept low. With large user base, the potential for discovering
and resolving bugs is high.

Rapid prototyping without wiring

BeagleConnect™ utilizes themikroBUS standard. ThemikroBUS standard interface is flexible enough for almost
any typical sensor or indicator with hundreds of devices available.

Note: Currently, we have support in the Linux kernel for a bit over 100 Click mikroBUS add-on boards from
Mikroelektronika and are working with Mikroelektronika on a updated version of the specification for these
boards to self-identify. Further, eventually the vast majority of over 800 currently available Click mikroBUS
add-on boards will be supported as well as the hundreds of compliant boards developed every year.

Long-range, low-power wireless

BeagleConnect™ Freedom wireless hardware is built around a TI CC1352P7 multiprotocol and multi-band Sub-1
GHz and 2.4-GHz wireless microcontroller (MCU). CC1352P7 includes a 48-MHz Arm® Cortex®-M4F processor,
704KB Flash, 256KB ROM, 8KB Cache SRAM, 144KB of ultra-low leakage SRAM, and Over-the-Air upgrades
(OTA).

Fully customizable design

BeagleConnect™ utilizes open source hardware and open source software, making it possible to optimize
hardware and software implementations and sourcing to meet end-product requirements. BeagleConnect™

10.1. Introduction 397

https://wiki.p2pfoundation.net/Linux_-_Governance
https://www.zephyrproject.org/
https://elinux.org/Mikrobus
http://www.ti.com/product/CC1352P7
https://en.wikipedia.org/wiki/Over-the-air_programming
https://www.oshwa.org/definition/
https://en.wikipedia.org/wiki/Open-source_software

BeagleBoard Docs, Release 1.0.20230711-wip

is meant to enable rapid-prototyping and not to necessarily satisfy any particular end-product’s requirements,
but with full considerations for go-to-market needs.

Each BeagleBoard.org BeagleConnect™ solution will be:

• Readily available for over 10 years,

• Built with fully open source software with submissions to mainline Linux and Zephyr repositories to aide
in support and porting,

• Built with fully open source and non-restrictive hardware design including schematic, bill-of-materials,
layout, and manufacturing files (with only the BeagleBoard.org logo removed due to licensing restrictions
of our brand),

• Built with parts where at least a compatible part is available from worldwide distributors in any quantity,

• Built with design and manufacturing partners able to help scale derivative designs,

• Based on a security model using public/private keypairs that can be replaced to secure your own network,
and

• Fully FCC/CE certified.

10.2 Quick Start Guide

10.2.1 What’s included in the box?

1. BeagleConnect Freedom board in enclosure

2. Antenna

3. USB cable

4. Quick-start card

Todo: Image with what’s inside the box and a better description.

398 Chapter 10. BeagleConnect Freedom

https://www.youtube.com/watch?v=bJYZ6PTiV9g

BeagleBoard Docs, Release 1.0.20230711-wip

10.2.2 Attaching antenna

To connect the SubGHz antenna with SMA connector to the BeagleConnect Freedom you just have to align,
place and rotate the antenna clockwise as shown in the image below. To detach the antenna just twist it
anti-clockwise.

Fig. 10.1: Aattaching antenna to BeagleConnect Freedom

10.2.3 Tethering to PC

Todo: Describe how to get a serial connection.

10.2.4 Wireless Connection

Todo: Describe how to get an IEEE802.15.4g connection from BeaglePlay.

10.2.5 Access Micropython

Boards come pre-flashed with Micropython. Read Using Micropython for more details.

Todo: Describe how to get to a local console and websockets console.

10.2.6 Demos and Tutorials

• Using BeagleConnect Greybus

• Using Micropython

10.2. Quick Start Guide 399

BeagleBoard Docs, Release 1.0.20230711-wip

• Using Zephyr

10.3 Design

10.3.1 Detailed overview

10.3.2 Detailed hardware design

LEDs

Fig. 10.2: BeagleConnect LEDs

Buttons & Buzzer

Fig. 10.3: User Input Output (Buttons & Buzzer)

400 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 10.4: On-board sesnsors

Sensors

mikroBUS

USB-C port

Buck converter

LiPo battery charger

Battery input protection

MSP430F5503

CC1352P7

Digital subsection

Analog subsection

Power subsection

RF subsection

SPI Flash

Debug interface

10.3. Design 401

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 10.5: mikroBUS ports

Fig. 10.6: USB-C for power & programming

Fig. 10.7: BuckConverter (3.3V output)

402 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 10.8: 4.2V LiPo battery charger

Fig. 10.9: LiPo battery input protection

Fig. 10.10: MSP430F5503 (USB to UART & mikroBUS)

10.3. Design 403

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 10.11: CC1352P7 Digital subsection

Fig. 10.12: CC1352P7 Analog subsection

Fig. 10.13: CC1352P7 Power subsection

404 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 10.14: CC1352P7 RF subsection

Fig. 10.15: SPIFlash

Fig. 10.16: CC1352P7 & MSP430F5503 TagConnect

10.3. Design 405

BeagleBoard Docs, Release 1.0.20230711-wip

10.3.3 Mechanical

10.4 Connectors

10.5 Demos & tutorials

10.5.1 Using Micropython

Important: Currently under development

Micropython is a great way to get started developing with BeagleConnect Freedom quickly.

Flashed firmware

BeagleConnect Freedom initial production firmware is release 0.0.3 of our own fork of Micropython.

https://git.beagleboard.org/beagleconnect/zephyr/micropython/-/releases/0.0.3

You can verify this version by using mcumgr over a UDP connection or mcuboot over the serial console shell.

Latest releases are part of our Zephyr SDK releases.

https://git.beagleboard.org/beagleconnect/zephyr/zephyr/-/releases

Examples

0.0.3 The first boards were flashed with this firmware.

debian@BeaglePlay:~$ sudo systemd-resolve --set-mdns=yes --interface=lowpan0
debian@BeaglePlay:~$ avahi-browse -r -t _zephyr._tcp
+ lowpan0 IPv6 zephyr _zephyr._tcp ␣
↪→ local
= lowpan0 IPv6 zephyr _zephyr._tcp ␣
↪→ local

hostname = [zephyr.local]
address = [fe80::3265:842a:4b:1200]
port = [12345]
txt = []

debian@BeaglePlay:~$ avahi-resolve -6 -n zephyr.local
zephyr.local fe80::ec0f:7a22:4b:1200
debian@BeaglePlay:~$ mcumgr conn add bcf0 type=”udp” connstring=
↪→”[fe80::3265:842a:4b:1200%lowpan0]:1337”
Connection profile bcf0 successfully added
debian@BeaglePlay:~$ mcumgr -c bcf0 image list
Images:
image=0 slot=0

version: hu.hu.hu
bootable: true
flags: active confirmed
hash: 3697bcef05a6becda7dc14150d46c05dbed5fa78633657b20cf34e1418affee9

Split status: N/A (0)
debian@BeaglePlay:~$ mcumgr -c bcf0 shell exec ”device list”
status=0

devices:
- GPIO_0 (READY)
- random@40028000 (READY)

(continues on next page)

406 Chapter 10. BeagleConnect Freedom

https://git.beagleboard.org/beagleconnect/zephyr/micropython/-/releases/0.0.3
https://git.beagleboard.org/beagleconnect/zephyr/zephyr/-/releases

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

- UART_1 (READY)
- UART_0 (READY)
- i2c@40002000 (READY)
- I2C_0S (READY)
requires: GPIO_0
requires: i2c@40002000

- flash-controller@40030000 (READY)
- spi@40000000 (READY)
requires: GPIO_0

- ieee802154g (READY)
- gd25q16c@0 (READY)
requires: spi@40000000

- leds (READY)
- HDC2010-HUMIDITY (READY)
requires: I2C_0S

-
debian@BeaglePlay:~$ mcumgr -c bcf0 shell exec ”net iface”
status=0

Hostname: zephyr

Interface 0x20002de4 (IEEE 802.15.4) [1]
==
Link addr : 30:65:84:2A:00:4B:12:00
MTU : 125
Flags : AUTO_START,IPv6
IPv6 unicast addresses (max 3):

fe80::3265:842a:4b:1200 autoconf preferred infinite
2001:db8::1 manual preferred infinite

IPv6 multicast addresses (max 4):
ff02::1
ff02::1:ff4b:1200
ff02::1:ff00:1

debian@BeaglePlay:~$ tio /dev/ttyACM0
[tio 07:32:17] tio v1.32
[tio 07:32:17] Press ctrl-t q to quit
[tio 07:32:17] Connected
gd25q16c@0: SFDP v 1.0 AP ff with 2 PH
I: PH0: ff00 rev 1.0: 9 DW @ 30
I: gd25q16c@0: 2 MiBy flash
I: PH1: ffc8 rev 1.0: 3 DW @ 60
*** Booting Zephyr OS build zephyr-v3.2.0-3470-g14e193081b1f ***
I: Starting bootloader
I: Primary image: magic=unset, swap_type=0x1, copy_done=0x3, image_ok=0x3
I: Scratch: magic=unset, swap_type=0x1, copy_done=0x3, image_ok=0x3
I: Boot source: primary slot
I: Swap type: test
I: Bootloader chainload address offset: 0x20000
I: Jumping to the first image slot

[00:00:00.001,647] <inf> spi_nor: gd25q16c@0: SFDP v 1.0 AP ff with 2 PH
[00:00:00.001,647] <inf> spi_nor: PH0: ff00 rev 1.0: 9 DW @ 30
[00:00:00.001,983] <in
>>>

Press reset

I: gd25q16c@0: SFDP v 1.0 AP ff with 2 PH
I: PH0: ff00 rev 1.0: 9 DW @ 30

(continues on next page)

10.5. Demos & tutorials 407

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

I: gd25q16c@0: 2 MiBy flash
I: PH1: ffc8 rev 1.0: 3 DW @ 60
*** Booting Zephyr OS build zephyr-v3.2.0-3470-g14e193081b1f ***
I: Starting bootloader
I: Primary image: magic=unset, swap_type=0x1, copy_done=0x3, image_ok=0x3
I: Scratch: magic=unset, swap_type=0x1, copy_done=0x3, image_ok=0x3
I: Boot source: primary slot
I: Swap type: test
I: Bootloader chainload address offset: 0x20000
I: Jumping to the first image slot

[00:00:00.001,495] <inf> spi_nor: gd25q16c@0: SFDP v 1.0 AP ff with 2 PH
[00:00:00.001,525] <inf> spi_nor: PH0: ff00 rev 1.0: 9 DW @ 30
[00:00:00.001,800] <inf> spi_nor: gd25q16c@0: 2 MiBy flash
[00:00:00.001,831] <inf> spi_nor: PH1: ffc8 rev 1.0: 3 DW @ 60
uart:~$ build time: Feb 22 2023 07:13:09MicroPython v1.19.1 on 2023-02-22;␣
↪→zephyr-beagleconnect_freedom with unknown-cpu
Type ”help()” for more information.
>>> help()
Welcome to MicroPython!

Control commands:
CTRL-A -- on a blank line, enter raw REPL mode
CTRL-B -- on a blank line, enter normal REPL mode
CTRL-C -- interrupt a running program
CTRL-D -- on a blank line, do a soft reset of the board
CTRL-E -- on a blank line, enter paste mode

For further help on a specific object, type help(obj)

See https://beagleconnect.org/micropython for examples.
>>> import zsensor
>>> light=zsensor.Sensor(”OPT3001-LIGHT”)
>>> humidity=zsensor.Sensor(”HDC2010-HUMIDITY”)
>>> light.measure()
>>> light.get_float(zsensor.LIGHT)
35.94
>>> humidity.measure()
>>> humidity.get_float(zsensor.HUMIDITY)
24.32861
>>> humidity.get_float(zsensor.AMBIENT_TEMP)
22.37704
>>> dir(zsensor)
['__name__', 'ACCEL_X', 'ACCEL_Y', 'ACCEL_Z', 'ALTITUDE', 'AMBIENT_TEMP',
↪→'BLUE', 'CO2', 'DIE_TEMP', 'DISTANCE', 'GAS_RES', 'GREEN', 'GYRO_X', 'GYRO_
↪→Y', 'GYRO_Z', 'HUMIDITY', 'IR', 'LIGHT', 'MAGN_X', 'MAGN_Y', 'MAGN_Z', 'PM_
↪→10', 'PM_1_0', 'PM_2_5', 'PRESS', 'PROX', 'RED', 'Sensor', 'VOC', 'VOLTAGE
↪→']
>>> import os
>>> with open('/flash/test.txt', 'w') as f:
... f.write(”My test.txt\n”)
... ^H
12
>>> print(open('/flash/test.txt').read())
My test.txt

>>> import socket
>>> sock = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
>>> sock.bind(('ff02::1', 9999))
>>> for i in range(3):

(continues on next page)

408 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

... data, sender = sock.recvfrom(1024)

... print(str(sender) + ' ' + repr(data))

... ^H
('fe80::ec0f:7a22:4b:1200', <>, 0, 7) b'4h:32.71;4t:17.29;'
('fe80::ec0f:7a22:4b:1200', <>, 0, 7) b'2l:0.35;'
('fe80::ec0f:7a22:4b:1200', <>, 0, 7) b'4h:32.71;4t:17.29;'
>>> import machine
>>> AN=machine.Pin((”GPIO_0”, 23), machine.Pin.OUT)
>>> AN.init(machine.Pin.OUT, machine.Pin.PULL_UP, value=1)
>>> LNK_LED=machine.Pin((”GPIO_0”, 18), machine.Pin.OUT)
>>> LNK_LED.init(machine.Pin.OUT, machine.Pin.PULL_UP, value=1)
>>> LNK_LED.off()
>>> LNK_LED.on()
>>>
^Tq
[tio 07:40:16] Disconnected
debian@BeaglePlay:~$

0.2.2
Todo: Need to describe functionality of 0.2.2

Updating

Look for the latest firmware release on https://www.beagleboard.org/distros or on https://beagleconnect.org.

Download, unzip and flash the micropython-w-boot image.

wget https://files.beagle.cc/file/beagleboard-public-2021/images/zephyr-
↪→beagle-cc1352-0.2.2.zip
unzip zephyr-beagle-cc1352-0.2.2.zip
./build/freedom/cc2538-bsl.py build/freedom/micropython-w-boot

Contributing

Repository: https://git.beagleboard.org/beagleconnect/zephyr/micropython

10.5.2 Using Zephyr

Developing directly in Zephyr will not be ultimately required for end-users who won’t touch the firmware running
on BeagleConnect™ Freedom and will instead use the BeagleConnect™ Greybus functionality, but is important
for early adopters as well as people looking to extend the functionality of the open source design. If you are
one of those people, this is a good place to get started.

Equipment to begin development

There are many options, but using BeaglePlay gives a reasonable common environment. Please adjust as you
see fit.

Required

• BeaglePlay with provided antennas

• BeagleConnect Freedom with provided USB cable

10.5. Demos & tutorials 409

https://www.beagleboard.org/distros
https://beagleconnect.org
https://git.beagleboard.org/beagleconnect/zephyr/micropython

BeagleBoard Docs, Release 1.0.20230711-wip

• 2x 5V/3A USB power adapters

• USB Type-C cable for use with BeaglePlay

Recommended

• Ethernet cable and Internet connection

Install the SDK on BeaglePlay

See Setup Zephyr development on BeaglePlay.

Important: TODO: note the tested version of software for BeaglePlay

Important: TODO: describe how to know it is working

Change default board The instructions linked above setup the environment for targeting BeaglePlay’s on
CC1352. We need to change it to target BeagleConnec Freedom.

echo ”export BOARD=beagleconnect_freedom” >> $HOME/zephyr-beagle-
↪→cc1352-sdk/zephyr-beagle-cc1352-env/bin/activate
source $HOME/zephyr-beagle-cc1352-sdk/zephyr-beagle-cc1352-env/bin/
↪→activate

Try demo applications

Now you can build various Zephyr applications

Build and flash Blinky Make sure your BeagleConnect Freedom is connected to your BeaglePlay via the USB
cable provided.

cd $ZEPHYR_BASE
west build zephyr/samples/basic/blinky
west flash

Debug applications over the serial terminal
Note: #TODO#

10.5.3 Using BeagleConnect Greybus

Note: This is still in development.

410 Chapter 10. BeagleConnect Freedom

BeagleBoard Docs, Release 1.0.20230711-wip

BeagleConnect wireless user experience

Enable a Linux host with BeagleConnect

Log into a host system running Linux that is BeagleConnect™ enabled. Enable a Linux host with Beagle-
Connect™ by plugging a BeagleConnect™ gateway device into its USB port. You’ll also want to have a
BeagleConnect™ node device with a sensor, actuator or indicator device connected.

Note: BeagleConnect™ Freedom can act as either a BeagleConnect™ gateway device or a BeagleConnect™
node device.

Important: The Linux host will need to run the BeagleConnect™ management software, most of which is
incorporated into the Linux kernel. Support will be provided for BeagleBoard and BeagleBone boards, x86
hosts, and Raspberry Pi.

#TODO#: Clean up images

10.5. Demos & tutorials 411

BeagleBoard Docs, Release 1.0.20230711-wip

Connect host and device

Initiate a connection between the host and devices by pressing the discovery button(s).

Device data shows up as files

New streams of self-describing data show up on the host system using native device drivers.

High-level applications, like Node-RED, can directly read/write these high-level data streams (including data-
type information) to Internet-based MQTT brokers, live dashboards, or other logical operations without requiring

412 Chapter 10. BeagleConnect Freedom

https://mqtt.org/

BeagleBoard Docs, Release 1.0.20230711-wip

any sensor-specific coding. Business logic can be applied using simple if-this-then-that style operations or be
made as complex as desired using virtually any programming language or environment.

Components

BeagleConnect™ enabled host Linux computer, possibly single-board computer (SBC), with BeagleConnect™
management software and BeagleConnect™ gateway function. BeagleConnect™ gateway function can be
provided by a BeagleConnect™ compatible interface or by connecting a BeagleConnect™ gateway device
over USB.

Note: If the Linux host has BLE, the BeagleConnect™ gateway is optional for short distances

BeagleConnect™ Freedom Board, case, and wireless MCU with Zephyr based firmware for acting as either a
BeagleConnect™ gateway device or BeagleConnect™ node device.

• In BeagleConnect™ gateway device mode: Provides long-range, low-power wireless communications,
Connects with the host via USB and an associated Linux kernel driver, and is powered by the USB con-
nector.

• In BeagleConnect™ node device mode: Powered by a battery or USB connector Provides 2 mikroBUS
connectors for connecting any of hundreds of Click Board mikroBUS add-on devices Provides new Linux
host controllers for SPI, I2C, UART, PWM, ADC, and GPIO with interrupts via Greybus

BeagleConnect gateway device Provides a BeagleConnect™ compatible interface to a host. This could be
a built-in interface device or one connected over USB. BeagleConnect™ Freedom can provide this function.

BeagleConnect node device Utilizes a BeagleConnect™ compatible interface and TODO

BeagleConnect compatible interface Immediate plans are to support Bluetooth Low Energy (BLE), 2.4GHz
IEEE 802.15.4, and Sub-GHz IEEE 802.15.4 wireless interfaces. A built-in BLE interface is suitable for this at
short range, whereas IEEE 802.15.4 is typically significantly better at long ranges. Other wired interfaces, such
as CAN and RS-485, are being considered for future BeagleConnect™ gateway device and BeagleConnect™
node device designs.

Greybus TODO

#TODO: Find a place for the following notes:

• The device interfaces get exposed to the host via Greybus BRIDGED_PHY protocol

• The I2C bus is probed for a an identifier EEPROM and appropriate device drivers are loaded on the host

• Unsupported Click Boards connected are exposed via userspace drivers on the host for development

What’s different?

So, in summary, what is so different with this approach?

• No microcontroller code development is required by users

• Userspace drivers make rapid prototyping really easy

• Kernel drivers makes the support code collaborative parts of the Linux kernel, rather than cut-and-paste

10.5. Demos & tutorials 413

https://bbb.io/click

BeagleBoard Docs, Release 1.0.20230711-wip

10.6 Support

10.6.1 Certifications and export control

Export designations

• HS: 8471504090

• US HS: 8473301180

• EU HS: 8471707000

Size and weight

• Bare product dimensions (without antenna): 63 x 56 x 16.6 mm

• Bare product weight (with antenna): 53.2 g

• Full package dimensions: 188 x 85 x 35 mm

• Full package weight: 95.2 g

10.6.2 Additional documentation

Hardware docs

For any hardware document like schematic diagram PDF, EDA files, issue tracker, and more you can checkout
the BeagleConnect Freedom repository.

Software docs

For BeagleConnect Freedom specific software projects you can checkout all the BeagleConnect project reposi-
tories group.

Support forum

For any additional support you can submit your queries on our forum, https://forum.beagleboard.org/tag/bcf

Pictures

10.6.3 Change History

Note: This section describes the change history of this document and board. Document changes are not
always a result of a board change. A board change will always result in a document change.

10.6.4 Document Changes

For all changes, see https://git.beagleboard.org/docs/docs.beagleboard.io. Frozen releases tested against spe-
cific hardware and software revisions are noted below.

Rev Changes Date By

414 Chapter 10. BeagleConnect Freedom

https://git.beagleboard.org/beagleconnect/freedom
https://git.beagleboard.org/beagleconnect
https://git.beagleboard.org/beagleconnect
https://forum.beagleboard.org/tag/bcf
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230711-wip

Board Changes

For all changes, see https://git.beagleboard.org/beagleconnect/freedom. Versions released into production are
noted below.

Table 10.1: BeagleConnect Freedom board change history
Rev Changes Date By
C7 Initial production version 2023-03-08 JK

10.6. Support 415

https://git.beagleboard.org/beagleconnect/freedom

BeagleBoard Docs, Release 1.0.20230711-wip

416 Chapter 10. BeagleConnect Freedom

Chapter 11

BeagleBoard (all)

BeagleBoard boards are low-cost, ARM-based development boards suitable for rapid prototyping and open-
hardware to enable professionals to develop production systems.

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

The latest PDF-formatted System Reference Manual for each BeagleBoard board is linked below.

• BeagleBoard

• BeagleBoard-xM

• BeagleBoard-X15

417

https://git.beagleboard.org/beagleboard/beagleboard/-/blob/master/BeagleBoard_revC5_SRM.pdf
https://git.beagleboard.org/beagleboard/beagleboard-xm/-/blob/master/BeagleBoard-xM_SRM.pdf
https://git.beagleboard.org/beagleboard/beagleboard-x15/-/blob/master/BeagleBoard-X15_SRM.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

418 Chapter 11. BeagleBoard (all)

Chapter 12

Projects

This is a collection of reasonably well-supported projects useful to Beagle developers.

12.1 simpPRU

12.1.1 simpPRU Basics

The PRU is a dual core micro-controller system present on the AM335x SoC which powers the BeagleBone. It is
meant to be used for high speed jitter free IO control. Being independent from the linux scheduler and having
direct access to the IO pins of the BeagleBone Black, the PRU is ideal for offloading IO intensive tasks.

Programming the PRU is a uphill task for a beginner, since it involves several steps, writing the firmware for
the PRU, writing a loader program. This can be a easy task for a experienced developer, but it keeps many
creative developers away. So, I propose to implement a easy to understand language for the PRU, hiding away
all the low level stuff and providing a clean interface to program PRU.

This can be achieved by implementing a language on top of PRU C. It will directly compile down to PRU C. This
could also be solved by implementing a bytecode engine on the PRU, but this will result in waste of already
limited resources on PRU. With this approach, both PRU cores can be run independent of each other.

What is simpPRU

• simpPRU is a procedural programming language.

• It is a statically typed language. Variables and functions must be assigned data types during compilation.

• It is type-safe, and data types of variables are decided during compilation.

• simpPRU codes have a .sim extension.

419

BeagleBoard Docs, Release 1.0.20230711-wip

• simpPRU provides a console app to use Remoteproc functionality.

12.1.2 Build from source

Dependencies

• flex

• bison

• gcc

• gcc-pru

• gnuprumcu

• cmake

Build

git clone https://github.com/VedantParanjape/simpPRU.git
cd simpPRU
mkdir build
cd build
cmake ..
make

Install

sudo make install

Generate debian package

sudo make package

12.1.3 Install

Dependencies

• gcc-pru

• gnuprumcu

• config-pin utility (for autoconfig)

Installation

For Instructions head over to Installation

420 Chapter 12. Projects

https://simppru.readthedocs.io/en/latest/install/install/

BeagleBoard Docs, Release 1.0.20230711-wip

Requirements

Currently this only supports am335x systems: PocketBeagle, BeagleBone Black and BeagleBone BlackWireless:

• gcc-pru

• gnuprumcu

• beaglebone image with official support for remoteproc: ti-4.19+ kernel

• config-pin utility

Build from source

For Instructions head over to Building from source

simppru-console

For detailed usage head to Detailed Usage

amd64

wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/
↪→simppru-1.4-amd64.deb

sudo dpkg -i simppru-1.4-amd64.deb

armhf

wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/
↪→simppru-1.4-armhf.deb

sudo dpkg -i simppru-1.4-armhf.deb

Issues

• For full source code of simPRU visit

• To report a bug or start a issue visit

12.1.4 Language Syntax

• simpPRU is a procedural programming language.

• It is a statically typed language. Variables and functions must be assigned data types during compilation.

• It is type-safe, and data types of variables are decided during compilation.

• simPRU codes have a .sim extension.

Datatypes

• int - Integer datatype

• bool - Boolean datatype

• char / uint8 - Character / Unsigned 8 bit integer datatype

• void - Void datatype, can only be used a return type for functions

12.1. simpPRU 421

https://simppru.readthedocs.io/en/latest/install/build/
https://simppru.readthedocs.io/en/latest/usage/usage-simppru-console
https://github.com/VedantParanjape/simppru
https://github.com/VedantParanjape/simppru/issues

BeagleBoard Docs, Release 1.0.20230711-wip

Constants

• <any_integer> - Integer constant. Integers can be decimal, hexadecimal (start with 0x or 0X) or
octal (start with 0)

• '<any character>' - Character constant. These can be assigned to both int and char/uint8 vari-
ables

• true - Boolean constant (True)

• false - Boolean constant (False)

• Px_yz - Pin mapping constants are Integer constant, where x is 1,2 or 8,9 and yz are the header pin
numbers.

Operators

• {,} - Braces

• (,) - Parenthesis

• /,*,+,-,% - Arithmetic operators

• >,<,==,!=,>=,<= - Comparison operators

• ~,&,|,<<,>> - Bitwise operators: not, and, or and bitshifts

• not,and,or - Logical operators: not, and, or

• := - Assignment operator

• Result of Arithmetic and Bitwise operators is Integer constant.

• Result of Comparison and Logical operators is Boolean constant.

• Characters are treated as integers when used in Arithmetic expressions.

• Only Integer constants can be used with Arithmetic and Bitwise operators.

• Only Integer constants can be used with Comparison operators.

• Only Boolean constants can be used with Logical operators.

• Operators are evaluated following these precedence rules.

Correct: bool out := 5 > 6;
Wrong: int yy := 5 > 6;

Variable declaration

• Datatype of variable needs to be specified during compile time.

• Variables can be assigned values after declarations.

• If variable is not assigned a value after declaration, it is set to 0 for integer and char/uint8 and
to false for boolean by default.

• Variables can be assigned other variables of same datatype. ints and chars can be assigned to each
other.

• Variables can be assigned expressions whose output is of same datatype.

Declaration

int var;
char char_var;
bool test_var;

422 Chapter 12. Projects

https://en.cppreference.com/w/c/language/operator_precedence

BeagleBoard Docs, Release 1.0.20230711-wip

Assignment during Declaration

int var := 99;
char char_var := 'a';
uint8 short_var := 255;
bool test_var := false;

Assignment

var := 45;
short_var := var;
test_var := true;

• Variables to be assigned must be declared earlier.

• Datatype of the variables cannot change. Only appropriate expressions/constants of their respective
datatypes can be assigned to the variables.

• Integer and Character variable can be assigned only Integer expression/Integer constant/Character con-
stant.

• Boolean variable can be assigned only Boolean expression/constant.

Arrays

• Arrays are static - their size has to be known at compile time and this size cannot be changed later.

• Arrays can be used with bool, int and char.

• Arrays do not support any arithmetic / logical / comparison / bitwise operators, however these operators
work fine on their elements.

Declaration and Assignment

• The data type has to be specified as data_type[size].

• Array of char can be initialized from a double quoted string, where the length of the array would be at
least the length of the string plus 1.

int[16] a; /* array of 16 integers */
char[20] string1 := ”I love BeagleBoards”;

Indexing:

• Arrays are zero-indexed.

• The index can be either a char or an int or an expression involving chars and ints.

• Accessing elements of an array:

int a := arr[4]; /* Copy the 5th element of arr to a */

• Changing elements of an array:

arr[4] := 5; /* The 5th element of arr is now 5 */

int i := 4;
arr[i] := 6; /* The 5th element of arr is now 6 */

char j := 4;
arr[j] := 7; /* The 5th element of arr is now 7 */

(continues on next page)

12.1. simpPRU 423

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

arr[i+j] := 1; /* The 9th element of arr is now 1 */

/* Declaring and initializing an array with all zeros */
int[16] arr;
for: i in 0:16 {

arr[i] := 0;
}

Comments

• simpPRU supports C style multiline comments.

/* This is a comment */

/* Comments can span
multiple lines */

Keyword and Identifiers

Table 12.1: Reserved keywords
“true“ “read_counter“ “stop_counter“
“false“ “start_counter“ “pwm“
“int“ “delay“ “digital_write“
“bool“ “digital_read“ “def“
“void“ “return“ “or“
“if“ “and“ “not“
“elif“ “continue“ “break“
“else“ “while“ “in“
“for“ “init_message_channel“ “send_message“
“receive_message“ “print“ “println“

Valid identifier naming

• An identifier/variable name must be start with an alphabet or underscore (_) only, no other special char-
acters, digits are allowed as first character of the identifier/variable name.

product_name, age, _gender

• Any space cannot be used between two words of an identifier/variable; you can use underscore (_) instead
of space.

product_name, my_age, gross_salary

• An identifier/variable may contain only characters, digits and underscores only. No other special char-
acters are allowed, and we cannot use digit as first character of an identifier/variable name (as written
in the first point).

length1, length2, _City_1

Detailed info: https://www.includehelp.com/c/identifier-variable-naming-conventions.aspx

Expressions

Arithmetic expressions

=> (9 + 8) * 2 + -1;
33
=> 11 % 3;
2

(continues on next page)

424 Chapter 12. Projects

https://www.includehelp.com/c/identifier-variable-naming-conventions.aspx

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

=> 2 * 6 << 2 + 1;
96
=> ~0xFFFFFFFF;
0

Boolean expressions

=> 9 > 2 or 8 != 2 and not(2 >= 5 or 9 <= 5) or 9 != 7;
true
=> 0xFFFFFFFF != 0XFFFFFFFF;
false
=> 'a' < 'b';
true

• Note : Expressions are evaluated following the operator precedence <#operators>

If-else statement

Statements in the if-block are executed only if the if-expression evaluates to true. If the value of expression
is true, statement1 and any other statements in the block are executed and the else-block, if present, is
skipped. If the value of expression is false, then the if-block is skipped and the else-block, if present, is
executed. If elif-block are present, they are evaluated, if they become true, the statement is executed,
otherwise, it goes on to eval next set of statements

Syntax

if : boolean_expression {
statement 1
...
...

}
elif : boolean_expression {

statement 2
...
...
...

}
else {

statement 3
...
...

}

Examples

int a := 3;

if : a != 4 {
a := 4;

}
elif : a > 4 {

a := 10;
}
else {

a := 0;
}

• This will evaluate as follows, since a = 3, if-block (3!=4) will evaluate to true, and value of a will be
set to 4, and program execution will stop.

12.1. simpPRU 425

BeagleBoard Docs, Release 1.0.20230711-wip

For-loop statement

For loop is a range based for loop. Range variable is a local variable with scope only inside the for loop.

Syntax

for : var in start:stop {
statement 1
....
....

}

• Here, for loop is a range based loop, value of integer variable var will vary from start to stop -
1. Value of var does not equal stop. Here, increment is assumed to be 1, so start will have to
less than stop.

• Optionally, start can be skipped, and it will automatically start from 0, like this:

for : var in :stop {
statement 1
....
....

}

• Optionally, increment can also be specified like this. Here, stop can be less than start if in-
crement is negative.

for : var in start:stop:increment {
statement 1
....
....

}

• Note : var is a integer, and start, stop, increment can be arithmetic expression, integer or
character variable, or integer or character constant.

Examples

int sum := 0;

for : i in 1:4 {
sum = sum + i;

}

int mx := 32;
int nt;

for : j in 2:mx-10 {
nt := nt + j;

}

int sum := 0;

for : i in in 10:1:-2 { /*10, 8, 6, 4, 2*/
sum = sum + i;

}

While-loop statement

While loop statement repeatedly executes a target statement as long as a given condition is true.

426 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Syntax

while : boolean_expression {
statement 1
...
...

}

Examples

• Infinite loop

while true {
do_something..
...

}

• Normal loop, will repeat 30 times, before exiting

int tag := 0;

while : tag < 30 {
tag := tag + 1;

}

Control statements

• Note : break and continue can only be used inside looping statements

break break is used to break execution in a loop statement, either for loop or while loop. It exits
the loop upon calling.

Syntax break;

Examples

for : i in 0:9 {
if : i == 3 {

break;
}

}

continue continue is used to continue execution in a loop statement, either for loop or while
loop.

Syntax continue;

Examples

for : j in 9:19 {
if : i == 12 {

continue;
}
else {

break;
(continues on next page)

12.1. simpPRU 427

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

}
}

Functions

Function definition A function is a group of statements that together perform a task. You can divide up
your code into separate functions. How you divide up your code among different functions is up to you, but
logically the division usually is such that each function performs a specific task. A function declaration tells the
compiler about a function’s name, return type, and parameters. A function definition provides the actual body
of the function.

• Warning : Function must be defined before calling it.

Syntax

def <function_name> : <data_type> : <data_type> <param_name>, <data_type>
↪→<param_name>, ... {

statement 1;
...
...

return <data_type>;
}

Note: If return data type is void, then return statement is not needed, and if still it is added, it must be return
nothing, i.e., something like this return ;

Warning: return can only be present in the body of the function only once, that too at the end of the
function, not inside any compound statements.

Danger: return inside a compound statement, this syntax is not allowed.

def test : int : int a {
if : a < 4 {
return a;
}
}

• Correct : return is not inside compound statements, It should be placed only at the end of function
definition

def test : int : int a {
int gf := 8;
if : a < 4
{
gf := 4;
}
return gf;
}

Examples Examples according to return types

• Integer

428 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

def test_func : int : int a, int b
{

int aa := a + 5;
if : aa < 3 {

aa : = 0;
}

return aa + b;
}

• Character

def next_char : char : char ch, int inc {
char chinc := ch + inc;
return chinc;

}

• Boolean

def compare : bool : int val {
bool ret :=false;

if : val < 0 {
ret := true;

}
return ret;

}

• Void

def example_func_v : void : {
int temp := 90;

return;
}

Function call Functions can be called only if, they have been defined earlier. They return data types accord-
ing to their definition. Parameters are passed by value. Only pass by value is supported as of now.

Syntax

function_name(var1, var2, ..);

Examples

• Integer int a := 55; int ret_val := test_func(4, a);

• Character char a := 'a'; char b := next_char(a, 1);

• Boolean bool val := compare(22); compare(-2);

• Void example_func(false); example_func_v();

Testing or Debugging For testing or debugging code, use the –test or -t flag to enable print, println and
stub functions. Use –preprocess to stop after generating the C code only. Then run the generated C code (at
/tmp/temp.c) using gcc.

12.1. simpPRU 429

BeagleBoard Docs, Release 1.0.20230711-wip

Print functions print can take either a string (double quoted) or any int / char / bool identifier.

println is similar to print but also prints a newline (\n).

Examples

print(”Hello World!”);
int a := 2;
print(a);
a := a + 2;
print(a);
println(””);

Stub functions PRU specific functions will be replaced by stub functions which print function_name called
with arguments arg_name when called.

12.1.5 IO Functions

• All Header pins are constant integer variable by default, with its value equal to respective
R30/R31 register bit

– Example: P1_20 is an constant integer variable with value 16, similarly P1_02 is an constant
integer variable with value 9

Digital Write

digital_write is a function which enables PRU to write given logic level at specified output pin. It is a
function with void return type and it’s parameters are integer and boolean, first parameter is the pin
number to write to or PRU R30 register bit and second parameter is boolean value to be written. true for
HIGH and false for LOW.

Syntax digital_write(pin_number, value);

Parameters

• pin_number is an integer. It must be a header pin name which supports output, or PRU R30 Register
bit.

• value is a boolean. It is used to set logic level of the output pin, true for HIGH and false for LOW.

Return Type

• void - returns nothing.

Example

int a := 32;

if : a < 32 {
digital_write(P1_29, true);

}
else {

digital_write(P1_29, false);
}

If the value of a < 32, then pin P1_29 is set to HIGH or else it is set to LOW.

430 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Digital Read

digital_read is a function which enables PRU to read logic level at specified input pin. It is a function
with return type boolean and it’s parameter is a integer whose value must be the pin number to be read
or PRU R31 register bit.

Syntax digital_read(pin_number);

Parameters

• pin_number is an integer. It must be a header pin name which supports input, or PRU R31 Register
bit.

Return Type

• boolean - returns the logic level of the pin number passed to it. It returns true for HIGH and false
for LOW.

Example

if digital_read(P1_20) {
digital_write(P1_29, false);

}
else {

digital_write(P1_29, true);
}

Logic level of pin P1_20 is read. If it is HIGH, then pin P1_29 is set to LOW, or else it is set to HIGH.

Delay

delay is a function which makes PRU wait for specified milliseconds. When this is called PRU does absolutely
nothing, it just sits there waiting.

Syntax delay(time_in_ms);

Parameters

• time_in_ms is an integer. It is the amount of time PRU should wait in milliseconds. (1000milliseconds
= 1 second).

Return Type

• void - returns nothing.

Example

digital_write(P1_29, true);
delay(2000);
digital_write(P1_29, false);

Logic level of pin P1_29 is set to HIGH, PRU waits for 2000 ms = 2 seconds, and then sets the logic level of
pin P1_29 to LOW.

12.1. simpPRU 431

BeagleBoard Docs, Release 1.0.20230711-wip

Start counter

start_counter is a function which starts PRU’s internal counter. It counts number of CPU cycles. So it
can be used to count time elapsed, as it is known that each cycle takes 5 nanoseconds.

Syntax start_counter()

Parameters

• n/a

Return Type

• void - returns nothing.

Example

start_counter();

Stop counter

stop_counter is a function which stops PRU’s internal counter.

Syntax stop_counter()

Parameters

• n/a

Return Type

• void - returns nothing.

Example

stop_counter();

Read counter

read_counter is a function which reads PRU’s internal counter and returns the value. It counts number of
CPU cycles. So it can be used to count time elapsed, as it is known that each cycle takes 5 nanoseconds.

Syntax read_counter()

Parameters

• n/a

Return Type

• integer - returns the number of cycles elapsed since calling start_counter.

432 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Example

start_counter();

while : read_counter < 200000000 {
digital_write(P1_29, true);

}

digital_write(P1_29, false);
stop_counter();

while the value of hardware counter is less than 200000000, it will set logic level of pin P1_29 to HIGH, after
that it will set it to LOW. Here, 200000000 cpu cycles means 1 second of time, as CPU clock is 200 MHz. So,
LED will turn on for 1 second, and turn off after.

Init message channel

init_message_channel is a function which is used to initialise communication channel between PRU
and the ARM core. It is sets up necessary structures to use RPMSG to communicate, it expects a init message
from the ARM core to initialise. It is a necessary to call this function before using any of the message functions.

Syntax init_message_channel()

Parameters

• n/a

Return Type

• void - returns nothing

Example

init_message_channel();

Receive message

receive_message is a function which is used to receive messages from ARM to the PRU, messages
can only be integers, as only they are supported as of now. It uses RPMSG channel setup by
init_message_channel to receive messages from ARM core.

Syntax receive_message()

Parameters

• n/a

Return Type

• integer - returns integer data received from PRU

Example

12.1. simpPRU 433

BeagleBoard Docs, Release 1.0.20230711-wip

init_message_channel();

int temp := receive_message();

if : temp >= 0 {
digital_write(P1_29, true);

}
else {

digital_write(P1_29, false);
}

Send message

There are six functions which are used to send messages to ARM core from PRU, messages can be integers,
characters, bools, integer arrays, character arrays, and boolean arrays. It uses
RPMSG channel setup by init_message_channel to send messages from PRU to the ARM core.

For sending arrays, arrays are automatically converted to a string, for example, [1, 2, 3, 4] would become “1
2 3 4”.

Syntax

• send_int(expression)

• send_char(expression)

• send_bool(expression)

• send_ints(identifier)

• send_chars(identifier)

• send_bools(identifier)

• send_message is an alias for send_int to preserve backwards compatibility.

Parameters

• For send_int and send_char, expression would be an arithmetic expression.

• For send_bool, expression would be a boolean expression

• For send_ints, identifier should be an identifier for an integer array.

• For send_chars, identifier should be an identifier for a character array.

• For send_bools, identifier should be an identifier for a boolean array.

Example

init_message_channel();

if : digital_read(P1_29) {
send_bool(true);

}
else {

send_int(0);
}

434 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

12.1.6 Usage(simppru)

simppru [OPTION...] FILE

--device=<device_name> Select for which BeagleBoard to compile
(pocketbeagle, bbb, bbbwireless, bbai)

--load Load generated firmware to /lib/firmware/
-o, --output=<file> Place the output into <file>
-p, --pru=<pru_id> Select which pru id (0/1) for which program is␣

↪→to
be compiled

--verbose Enable verbose mode (dump symbol table and ast
graph)

--preprocess Stop after generating the intermediate C
file (located at /tmp/temp.c)

-t --test Use stub functions for PRU specific functions␣
↪→and

enable the print functions, useful for testing␣
↪→and debugging
-?, --help Give this help list

--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or␣
↪→optional
for any corresponding short options.

simppru autodetects BeagleBoard model and automatically configures pin mux using config-pin. This function-
ality doesn’t work on BeagleBone Blue and AI.

Say we have to compile a example file called test.sim, command will be as follows:

simppru test.sim --load

If we only want to generate binary for pru0

simppru test.sim -o test_firmware -p 0

this will generate a file named test_firmware.pru0

12.1.7 Usage(simppru-console)

simppru-console is a console app, it can be used to send/receive message to the PRU using RPMSG, and also
start/stop the PRU. It is built to facilitate easier way to use rpmsg and remoteproc API’s to control and commu-
nicate with the PRU

• Warning : Make sure to stop PRU before exiting. Press ctrl+c to exit

12.1. simpPRU 435

BeagleBoard Docs, Release 1.0.20230711-wip

Features

Use arrow keys to navigate around the textbox and buttons.

Start/stop buttons Use these button to start/stop the selected PRU. If PRU is already running, on starting
simppru-console, it is automatically stopped.

436 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Send message to PRU Use this text box to send data to the PRU, only Integers are supported. On pressing
enter, the typed message is sent.

PRU0 is running echo program, whatever is sent is echoed back.

12.1. simpPRU 437

BeagleBoard Docs, Release 1.0.20230711-wip

Receive message from PRU The large box in the screen shows data received from the PRU, It runs using a
for loop, which checks if new message is arrived every 10 ms.

• PRU is running echo program, whatever is sent is echoed back.

• PRU is running countup program, it sends a increasing count every 1 second, which starts from 0

438 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Change PRU ID Using the radio box in the upper right corner, one can change the PRU id, i.e. if one wants
to use the features for PRU0 or PRU1

12.1.8 simpPRU Examples

These are the examples which have been tested on simpPRU.These examples will serve as a guide for the
users to implement.

12.1. simpPRU 439

BeagleBoard Docs, Release 1.0.20230711-wip

Delay example

Code

digital_write(P1_31, true);
delay(2000);
digital_write(P1_31, false);
delay(5000);
digital_write(P1_31, true);

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code snippet writes HIGH to header pin P1_31, then waits for 2000ms using the delay
call, after that it writes LOW to header pin P1_31, then again waits for 5000ms using the delay call, and
finally writes HIGH to header pin P1_31.

440 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

Digital read example

Code

while : true {
if : digital_read(P1_29) {

digital_write(P1_31, false);
}
else {

digital_write(P1_31, true);
}

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, since it is while : true. Inside while it checks if
header pin P1_29 is HIGH or LOW. If header pin P1_29 is HIGH, header pin P1_31 is set to LOW, and if header
pin P1_29 is LOW, header pin P1_31 is set to HIGH.

12.1. simpPRU 441

BeagleBoard Docs, Release 1.0.20230711-wip

Digital write example

Code

while : true {
digital_write(P1_31, true);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, since it is while : true. Inside while it sets header
pin P1_31 to HIGH.

442 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

HCSR04 Distance Sensor example (sending distance data to ARM using RPMSG)

Code

def measure : int : {
bool timeout := false;
int echo := -1;

start_counter();

while : read_counter() <= 2000 {
digital_write(5, true);

}
digital_write(5, false);
stop_counter();

start_counter();
while : not (digital_read(6)) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

}
}
stop_counter();

if : not(timeout) and true {
start_counter();
while : digital_read(6) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

}
echo := read_counter();

}
(continues on next page)

12.1. simpPRU 443

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

stop_counter();
}

if : timeout and true {
echo := 0;

}

return echo;
}

init_message_channel();

while : true {
int ping:= measure();

send_message(ping);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation

Ultrasonic range sensor example

Code

def measure : int : {
bool timeout := false;
int echo := 0;

(continues on next page)

444 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

start_counter();

while : read_counter() <= 2000 {
digital_write(7, true);

}
digital_write(7, false);
stop_counter();

start_counter();
while : not (digital_read(1)) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

}
}
stop_counter();

if : not(timeout) and true {
start_counter();
while : digital_read(1) and true {

if : read_counter() > 200000000 {
timeout := true;
break;

}
echo := read_counter();

}
stop_counter();

}

if : timeout and true {
echo := 0;

}

return echo;
}

while : true {
int ping:= measure()*1000;

if : ping > 292200 {
digital_write(4, false);

}
else
{

digital_write(4, true);
}
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation

12.1. simpPRU 445

BeagleBoard Docs, Release 1.0.20230711-wip

Sending state of button using RPMSG

Code

init_message_channel();

while : true {
if : digital_read(P1_29) {

send_message(1);
}
else {

send_message(0);
}
delay(100);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation init_message_channel is needed to setup communication channel between ARM<-
>PRU. It only needs to be called once, before using RPMSG functions.

while : true loop runs endlessly, inside this, we check for value of header pin P1_29, if it reads HIGH, 1 is
sent to the ARM core using send_message and if it is LOW, 0 is sent to ARM core using send_message.
Then PRU waits for 100ms, and repeats the steps again and again.

446 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink on button press example

Code

while : true {
if : digital_read(P1_29) {

digital_write(P1_31, false);
}
else {

digital_write(P1_31, true);
}

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, since it is while : true. Inside while if header pin
P1_29 is HIGH, then header pin P1_31 is set to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW,
then again it waits for 1000ms. This loop runs endlessly as long as header pin P1_29 is HIGH, so we get a
Blinking output if one connects a LED to output pin.

12.1. simpPRU 447

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink using for loop example

Code

for : l in 0:10 {
digital_write(P1_31, true);
delay(1000);
digital_write(P1_31, false);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs for loop with 10 iterations, Inside for it sets header pin P1_31 to HIGH, waits
for 1000ms, then sets header pin P1_31 to LOW, then again it waits for 1000ms. This loop runs endlessly, so
we get a Blinking output if one connects a LED. So LED will blink 10 times with this code.

448 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink using while loop example

Code

while : true {
digital_write(P1_31, true);
delay(1000);
digital_write(P1_31, false);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending while loop, since it is while : true. Inside while it
sets header pin P1_31 to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW, then again it waits for
1000ms. This loop runs endlessly, so we get a Blinking output if one connects a LED

12.1. simpPRU 449

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink example

Code

while : 1 == 1 {
digital_write(P1_31, true);
delay(1000);
digital_write(P1_31, false);
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending loop, since it is while : true. Inside while it sets header
pin P1_31 to HIGH, waits for 1000ms, then sets header pin P1_31 to LOW, then again it waits for 1000ms. This
loop runs endlessly, so we get a Blinking output if one connects a LED

450 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

LED blink using hardware counter

Code

while : true {
start_counter();
while : read_counter() < 200000000 {

digital_write(P1_31, true);
}
stop_counter();

start_counter();
while : read_counter() < 200000000 {

digital_write(P1_31, false);
}
stop_counter();

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation This code runs a never ending while loop, since it is while : true. Inside while it starts
the counter, then in a nested while loop, which runs as long as read_counter returns values less than
200000000, so for 200000000 cycles, HIGH is written to header pin P1_31, and after the while loop ends, the
counter is stopped.

Similarly counter is started again, which runs as long as read_counter returns a value less than
200000000, so for 200000000 cycles, LOW is written to header pin P1_31, and after the while loop ends,
the counter is stopped.

This process goes on endlessly as it is inside a never ending while loop. Here, we check if read_counter
is less than 200000000, as counter takes exactly 1 second to count this much cycles, so basically the LED
is turned on for 1 second, and then turned off for 1 second. Thus if a LED is connected to the pin, we get a
endlessly blinking LED.

12.1. simpPRU 451

BeagleBoard Docs, Release 1.0.20230711-wip

Read hardware counter example

Code

start_counter();
while : read_counter() < 200000000 {

digital_write(4, true);
}
stop_counter();

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation Since, PRU’s hardware counter works at 200 MHz, it counts up to 2 x 108 cycles in 1 second.
So, this can be reliably used to count time without using delay, as we can find exactly how much time 1 cycle
takes.

2 x 108 cycles/second.
1 Cycles = 0.5 x 10-8 seconds.

So, it can be used to count how many cycles have passed since, say we received a high input on pin 3.
start_counter starts the counter, and read_counter reads the current state of the counter, and
stop_counter stops the counter.

Using RPMSG to communicate with ARM core

Code

init_message_channel();

int count := receive_message();

while : true {
send_message(count);
count := count + 1;
delay(1000);

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation PRU has a functionality to communicate with the ARM core, it is called RPMSG. This examples
show how to use RPMSG functionality to communicate with ARM core using RPMSG.

init_message_channel is needed to setup communication channel between ARM<->PRU. It only needs
to be called once, before using RPMSG functions.

int count := receive_message(); waits for a message from ARM Core, we need to send some
integer to PRU with which to start the counting. So, say we send 3, then int variable count will be equal to 3.

After this, there is while : true block which runs endlessly. Inside the block there is a send_message
call, this sends message back to the ARM Core.

So, inside the for loop we are sending value of count variable, after this we increase value of count by 1. Then
we wait for 1000ms, and repeat the above steps again and again.

Using RPMSG to implement a simple calculator on PRU

Code

452 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

init_message_channel();

while : true {
int option := receive_message();
int a := receive_message();
int b := receive_message();

if : option == 1 {
send_message(a+b);

}
elif : option == 2 {

send_message(a-b);
}
elif : option == 3 {

send_message(a*b);
}
elif : option == 4 {

if : b != 0 {
send_message(a/b);

}
else {

send_message(a);
}

}
else
{

send_message(a+b);
}

}

• Following code works on PocketBeagle, to use on other boards, please change the pins accordingly.

Explanation init_message_channel(); starts the message channel for communication with ARM
<-> PRU cores. Then while : true loops runs endlessly.

int option := receive_message(); receives which operator to be executed and stores it in
option variable. 1 for addition, 2 for subtractions, 3 for multiplication and 4 for division. int a :=
receive_message(); receives the value of first operand, and int b := receive_message();
receives the value of second operand.

if-elseif ladder checks if value of option is 1, 2, 3 or 4 and accordingly sends the value of operation back to ARM
core using send_message. While division, it makes sure that divisor is not 0. If value of option is anything
other than 1, 2, 3, 4, then it defaults to else condition, that is a+b.

This runs endlessly since it is inside a while : true loop.

12.2 BB-Config

12.2.1 BB-Config Detail

Configure your beagle devices easily.

Github

12.2. BB-Config 453

https://git.beagleboard.org/gsoc/bb-config

BeagleBoard Docs, Release 1.0.20230711-wip

What is BB-Config

BB-Config is software that makes the most common low-level configuration changes of beagle devices easily
and provides a terminal UI.

BB-Config is using FTXUI (C++ Functional Terminal User Interface) which provides a simple and elegant looking
UI.

454 Chapter 12. Projects

https://github.com/ArthurSonzogni/FTXUI

BeagleBoard Docs, Release 1.0.20230711-wip

12.2.2 Build from Source

Dependencies

• g++

• cmake

• glib-2.0

• libnm

Build

git clone https://git.beagleboard.org/gsoc/bb-config
cd bb-config
mkdir build
cd build
cmake ..
make -j$(nproc)

Install

sudo make install

12.2.3 Features

BB-Config v1.x

PRU Enable/Disable

• Enable/Disable PRU

12.2. BB-Config 455

BeagleBoard Docs, Release 1.0.20230711-wip

GPIO

• Turn On/Off gpio

GPIOMenu

456 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

GPIO Setting

EMMC and MicroSD Stats

• Storage stats & grow partition

LEDs

• Config board build in LEDs

12.2. BB-Config 457

BeagleBoard Docs, Release 1.0.20230711-wip

Password

• Change users password

SSH

• Enable/Disable SSH

458 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

WiFi

• Connect to Wi-Fi

12.2. BB-Config 459

BeagleBoard Docs, Release 1.0.20230711-wip

Internet Sharing and Client Config

• Note: You’ll have to configure your host Following is an example script:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables --table nat --append POSTROUTING --out-interface wlp4s0 -j␣
↪→MASQUERADE
iptables --append FORWARD --in-interface wlp4s0 -j ACCEPT

About

BB-Config v2.x

ADC (Graph)

• Plot graph for Analogue pin

460 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

DAC (PWM)

• Generate PWM waveform

12.2. BB-Config 461

BeagleBoard Docs, Release 1.0.20230711-wip

uEnv

• Enable/Disable boot configuration

services

• Enable/Disable services startup at boot

462 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

PINMUX

• Display PIN I/O detail

• Config PINMUX

Hardware Display

12.2. BB-Config 463

BeagleBoard Docs, Release 1.0.20230711-wip

Pin Table References

Pin Config

Overlay (dts)

• Enable/Disable Device Tree Overlay in Boot option

• Select dtbo file and automate update in uEnv.txt

464 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

WiFi (D-Bus)

• Connect to WiFi with wpa_supplicant

• Support for Debian 11

12.2.4 Version

GSOC@21 BB-Config v1.x

• Name: Shreyas Atre

• Mentors: Arthur Sonzogni, Abhishek Kumar, Deepak Khatri.

• Organization: BeagleBoard.org

• Code: https://github.com/SAtacker/beagle-config

• Project Page: https://summerofcode.withgoogle.com/projects/#6718016412188672

12.2. BB-Config 465

https://github.com/SAtacker/beagle-config
https://summerofcode.withgoogle.com/projects/#6718016412188672

BeagleBoard Docs, Release 1.0.20230711-wip

• Progress Log: https://satacker.github.io/gsoc-log/

• Kanban: https://github.com/SAtacker/beagle-config/projects/1

• Initial Video: https://youtu.be/vFUWCzqE6xI

GSOC@22 BB-Config v2.x

• Name: Seak Jian De

• Mentors: Shreyas Atre, Vedant Paranjape, Vaishnav Achath.

• Organization: BeagleBoard.org

• Code: https://git.beagleboard.org/gsoc/bb-config

• Project Page: https://summerofcode.withgoogle.com/programs/2022/projects/2DbiYPlY

• Progress Log: https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/
32357/2

• Initial Video: https://youtu.be/V_Euk5uWY1o

12.3 BeagleConnect

Important: Currently under development

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

BeagleConnect™ is a revolutionary technology virtually eliminating low-level software development for IoT
and IIoT applications, such as building automation, factory automation, home automation, and scientific data
acquisition. While numerous IoT and IIoT solutions available today provide massive software libraries for micro-
controllers supporting a limited body of sensors, actuators and indicators as well as libraries for communicating
over various networks, BeagleConnect simply eliminates the need for these libraries by shifting the burden into
the most massive and collaborative software project of all time, the Linux kernel.

These are the tools used to automate things in scientific data collection, data science, mechatronics, and IoT.

BeagleConnect™ technology solves:

• The need to write software to add a large set of diverse devices to your system,

• The need to maintain the software with security updates,

• The need to rapidly prototype using off-the-shelf software and hardware without wiring,

• The need to connect to devices using long-range, low-power wireless, and

• The need to produce high-volume custom hardware cost-optimized for your requirements.

466 Chapter 12. Projects

https://satacker.github.io/gsoc-log/
https://github.com/SAtacker/beagle-config/projects/1
https://youtu.be/vFUWCzqE6xI
https://git.beagleboard.org/gsoc/bb-config
https://summerofcode.withgoogle.com/programs/2022/projects/2DbiYPlY
https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/32357/2
https://forum.beagleboard.org/t/weekly-progress-report-bb-config-improvements-gpio-benchmark/32357/2
https://youtu.be/V_Euk5uWY1o
http://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Industrial_internet_of_things
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Indicator_(distance_amplifying_instrument)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Data_collection_system
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Mechatronics
https://en.wikipedia.org/wiki/Internet_of_things

BeagleBoard Docs, Release 1.0.20230711-wip

12.3.1 BeagleConnect Technology

This is the deep-dive introduction to BeagleConnect™ technology and software architecture.

Note: This documentation and the associated software are each a work-in-progress.

BeagleConnect™ is built using Greybus code in the Linux kernel originally designed for mobile phones. To
understand a bit more about how the BeagleConnect™ Greybus stack is being built, this section helps describe
the development currently in progress and the principles of operation.

12.3. BeagleConnect 467

https://kernel-recipes.org/en/2015/talks/an-introduction-to-greybus/

BeagleBoard Docs, Release 1.0.20230711-wip

Background

BeagleConnect™ uses Greybus and updated Click Boards with identifiers to eliminate the need to add and
manually configure devices added onto the Linux system.

High-level

• For Linux nerds: Think of BeagleConnect™ as 6LoWPAN over 802.15.4-based Greybus (instead of Unipro
as used by Project Ara), where every BeagleConnect™ board shows up as new SPI, I2C, UART, PWM, ADC,
and GPIO controllers that can now be probed to load drivers for the sensors or whatever is connected to
them. (Proof of concept of Greybus over TCP/IP: https://www.youtube.com/watch?v=7H50pv-4YXw)

• For MCU folks: Think of BeagleConnect™ as a Firmata-style firmware load that exposes the interfaces for
remote access over a secured wireless network. However, instead of using host software that knows how
to speak the Firmata protocol, the Linux kernel speaks the slightly similar Greybus protocol to the MCU
and exposes the device generically to users using a Linux kernel driver. Further, the Greybus protocol is
spoken over 6LoWPAN on 802.15.4.

468 Chapter 12. Projects

https://www.youtube.com/watch?v=7H50pv-4YXw

BeagleBoard Docs, Release 1.0.20230711-wip

Software architecture

TODO items

• Linux kernel driver (wpanusb and bcfserial still need to be upstreamed)

• Provisioning

• Firmware for host CC13x

• Firmware for device CC13x

• Unify firmware for host/device CC13x

• Click Board drivers and device tree formatted metadata for 100 or so Click Boards

• Click Board plug-ins for node-red for the same 100 or so Click Boards

• BeagleConnect™ Freedom System Reference Manual and FAQs

Associated pre-work

• Click Board support for Node-RED can be executed with native connections on PocketBeagle+TechLab
and BeagleBone Black with mikroBUS Cape

• Device tree fragments and driver updates can be provided via https://bbb.io/click

• The Kconfig style provisioning can be implemented for those solutions, which will require a reboot. We
need to centralize edits to /boot/uEnv.txt to be programmatic. As I think through this, I don’t think
BeagleConnect is impacted, because the Greybus-style discovery along with Click EEPROMSwill eliminate
any need to edit /boot/uEnv.txt.

12.3. BeagleConnect 469

https://bbb.io/click

BeagleBoard Docs, Release 1.0.20230711-wip

User experience concerns

• Make sure no reboots are required

• Plugging BeagleConnect into host should trigger host configuration

• Click EEPROMs should trigger loading whatever drivers are needed and provisioning should load any new
drivers

• Userspace (spidev, etc.) drivers should unload cleanly when 2nd phase provisioning is completed

12.3.2 BeagleConnect™ Greybus demo using BeagleConnect™ Freedom

BeagleConnect™ Freedom runs a subGHz IEEE 802.15.4 network. This BeagleConnect™ Greybus demo shows
how to interact with GPIO, I2C and mikroBUS add-on boards remotely connected over a BeagleConnect™ Free-
dom.

This section starts with the steps required to use Linux embedded computer (BeagleBone Green Gateway) and
the Greybus protocol, over an IEEE 802.15.4 wireless link, to blink an LED on a Zephyr device.

Introduction

Why??

Good question. Blinking an LED is kind of the Hello, World of the hardware community. In this case, we’re less
interested in the mechanics of switching a GPIO to drive some current through an LED and more interested in
how that happens with the Internet of Things (IoT).

There are several existing network and application layers that are driven by corporate heavyweights and in-
dustry consortiums, but relatively few that are community driven and, more specifically, even fewer that have
the ability to integrate so tightly with the Linux kernel.

The goal here is to provide a community-maintained, developer-friendly, and open-source protocol for the
Internet of Things using the Greybus Protocol, and blinking an LED using Greybus is the simplest proof-of-
concept for that. All that is required is a reliable transport.

1. Power a BeagleConnect Freedom that has not yet been programmed via a USB power source, not the
BeagleBone Green Gateway. You’ll hear a click every 1-2 seconds along with seeing 4 of the LEDs turn
off and on.

2. In an isolated terminal window, sudo beagleconnect-start-gateway

3. sensortest-rx.py

Every 1-2 minutes, you should see something like:

('fe80::3111:7a22:4b:1200%lowpan0', 52213, 0, 13) '2l:7.79;'
('fe80::3111:7a22:4b:1200%lowpan0', 52213, 0, 13) '4h:43.75;4t:23.11;'

The value after “2l:” is the amount of light in lux. The value after “4h:” is the relative humidity and after “4t:”
is the temperature in Celsius.

Flash BeagleConnect™ Freedom node device with Greybus firmware

#TODO: How can we add a step in here to show the network is connected without needing gbridge to be fully
functional?

Do this from the BeagleBone®Green Gateway board that was previously used to program the BeagleConnect™
Freedom gateway device:

1. Disconnect the BeagleConnect™ Freedom gateway device

2. Connect a new BeagleConnect™ Freedom board via USB

470 Chapter 12. Projects

https://en.wikipedia.org/wiki/Linux
https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://lwn.net/Articles/715955/
https://zephyrproject.org/
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/Internet_of_things

BeagleBoard Docs, Release 1.0.20230711-wip

3. sudo systemctl stop lowpan.service

4. cc2538-bsl.py /usr/share/beagleconnect/cc1352/
greybus_mikrobus_beagleconnect.bin /dev/ttyACM0

5. After it finishes programming successfully, disconnect the BeagleConnect Freedom node device

6. Power the newly programmed BeagleConnect Freedom node device from an alternate USB power source

7. Reconnect the BeagleConnect Freedom gateway device to the BeagleBone Green Gateway

8. sudo systemctl start lowpan.service

9. sudo beagleconnect-start-gateway

debian@beaglebone:~$ sudo beagleconnect-start-gateway
[sudo] password for debian:
setting up wpanusb gateway for IEEE 802154 CHANNEL 1(906 Mhz)
ping6: Warning: source address might be selected on device other than␣
↪→lowpan0.
PING 2001:db8::1(2001:db8::1) from ::1 lowpan0: 56 data bytes
64 bytes from 2001:db8::1: icmp_seq=2 ttl=64 time=185 ms
64 bytes from 2001:db8::1: icmp_seq=3 ttl=64 time=40.9 ms
64 bytes from 2001:db8::1: icmp_seq=4 ttl=64 time=40.9 ms
64 bytes from 2001:db8::1: icmp_seq=5 ttl=64 time=40.6 ms

--- 2001:db8::1 ping statistics ---
5 packets transmitted, 4 received, 20% packet loss, time 36ms
rtt min/avg/max/mdev = 40.593/76.796/184.799/62.356 ms
debian@beaglebone:~$ iio_info
Library version: 0.19 (git tag: v0.19)
Compiled with backends: local xml ip usb serial
IIO context created with local backend.
Backend version: 0.19 (git tag: v0.19)
Backend description string: Linux beaglebone 5.14.18-bone20 #1buster PREEMPT␣
↪→Tue Nov 16 20:47:19 UTC 2021 armv7l
IIO context has 1 attributes:

local,kernel: 5.14.18-bone20
IIO context has 3 devices:

iio:device0: TI-am335x-adc.0.auto (buffer capable)
8 channels found:

voltage0: (input, index: 0, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 1412
voltage1: (input, index: 1, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 2318
voltage2: (input, index: 2, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 2631
voltage3: (input, index: 3, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 817
voltage4: (input, index: 4, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 881
voltage5: (input, index: 5, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 0
voltage6: (input, index: 6, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 0
voltage7: (input, index: 7, format: le:u12/16>>0)
1 channel-specific attributes found:

attr 0: raw value: 1180
(continues on next page)

12.3. BeagleConnect 471

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

2 buffer-specific attributes found:
attr 0: data_available value: 0
attr 1: watermark value: 1

iio:device1: hdc2010
3 channels found:

humidityrelative: (input)
3 channel-specific attributes found:

attr 0: peak_raw value: 52224
attr 1: raw value: 52234
attr 2: scale value: 1.525878906

current: (output)
2 channel-specific attributes found:

attr 0: heater_raw value: 0
attr 1: heater_raw_available value: 0 1

temp: (input)
4 channel-specific attributes found:

attr 0: offset value: -15887.515151
attr 1: peak_raw value: 25600
attr 2: raw value: 25628
attr 3: scale value: 2.517700195

iio:device2: opt3001
1 channels found:

illuminance: (input)
2 channel-specific attributes found:

attr 0: input value: 79.040000
attr 1: integration_time value: 0.800000

2 device-specific attributes found:
attr 0: current_timestamp_clock value: realtime

attr 1: integration_time_available value: 0.1 0.8
debian@beaglebone:~$ dmesg | grep -e mikrobus -e greybus
[100.491253] greybus 1-2.2: Interface added (greybus)
[100.491294] greybus 1-2.2: GMP VID=0x00000126, PID=0x00000126
[100.491306] greybus 1-2.2: DDBL1 Manufacturer=0x00000126,␣
↪→Product=0x00000126
[100.737637] greybus 1-2.2: excess descriptors in interface manifest
[102.475168] mikrobus:mikrobus_port_gb_register: mikrobus gb_probe , num␣
↪→cports= 2, manifest_size 192
[102.475206] mikrobus:mikrobus_port_gb_register: protocol added 3
[102.475214] mikrobus:mikrobus_port_gb_register: protocol added 2
[102.475239] mikrobus:mikrobus_port_register: registering port mikrobus-1
[102.475400] mikrobus_manifest:mikrobus_state_get: mikrobus descriptor not␣
↪→found
[102.475417] mikrobus_manifest:mikrobus_manifest_attach_device: parsed␣
↪→device 1, driver=opt3001, protocol=3, reg=44
[102.494516] mikrobus_manifest:mikrobus_manifest_attach_device: parsed␣
↪→device 2, driver=hdc2010, protocol=3, reg=41
[102.494567] mikrobus_manifest:mikrobus_manifest_parse: (null) manifest␣
↪→parsed with 2 devices
[102.494592] mikrobus mikrobus-1: registering device : opt3001
[102.495096] mikrobus mikrobus-1: registering device : hdc2010
debian@beaglebone:~$

#TODO: update the below for the built-in sensors

#TODO: can we also handle the case where these sensors are included and recommend them? Same firmware?

#TODO: the current demo is for the built-in sensors, not the Click boards mentioned below

Currently only a limited number of add-on boards have been tested to work over Greybus, simple add-on
boards without interrupt requirement are the ones that work currently. The example is for Air Quality 2 Click
and Weather Click attached to the mikroBUS ports on the device side.

472 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

/var/log/gbridge will have the gbridge log, and if the mikroBUS port has been instantiated successfully the
kernel log will show the devices probe messages:

#TODO: this log needs to be updated

greybus 1-2.2: GMP VID=0x00000126, PID=0x00000126
greybus 1-2.2: DDBL1 Manufacturer=0x00000126, Product=0x00000126
greybus 1-2.2: excess descriptors in interface manifest
mikrobus:mikrobus_port_gb_register: mikrobus gb_probe , num cports= 3,␣
↪→manifest_size 252
mikrobus:mikrobus_port_gb_register: protocol added 11
mikrobus:mikrobus_port_gb_register: protocol added 3
mikrobus:mikrobus_port_gb_register: protocol added 2
mikrobus:mikrobus_port_register: registering port mikrobus-0
mikrobus_manifest:mikrobus_manifest_attach_device: parsed device 1,␣
↪→driver=bme280, protocol=3, reg=76
mikrobus_manifest:mikrobus_manifest_attach_device: parsed device 2,␣
↪→driver=ams-iaq-core, protocol=3, reg=5a
mikrobus_manifest:mikrobus_manifest_parse: Greybus Service Sample␣
↪→Application manifest parsed with 2 devices
mikrobus mikrobus-0: registering device : bme280
mikrobus mikrobus-0: registering device : ams-iaq-core

#TODO: bring in the GPIO toggle and I2C explorations for greater understanding

Flashing via a Linux Host

If flashing the Freedom board via the BeagleBone fails here’s a trick you can try to flash from a Linux host.

Use sshfs to mount the Bone’s files on the Linux host. This assumes the Bone is plugged in the USB and
appears at 192.168.7.2:

host$ cd
host$ sshfs 192.168.7.2:/ bone
host$ cd bone; ls
bin dev home lib media opt root sbin sys usr
boot etc ID.txt lost+found mnt proc run srv tmp var
host$ ls /dev/ttyACM*
/dev/ttyACM1

The Bone’s files now appear as local files. Notice there is already a /dev/ACM* appearing. Now plug the
Connect into the Linux host’s USB port and run the command again.

host$ ls /dev/ttyACM*
/dev/ttyACM0 /dev/ttyACM1

The /dev/ttyACM that just appeared is the one associated with the Connect. In my case it’s /dev/
ttyACM0. That’s what I’ll use in this example.

Now change directories to where the binaries are and load:

host$ cd ~/bone/usr/share/beagleconnect/cc1352;ls
greybus_mikrobus_beagleconnect.bin sensortest_beagleconnect.dts
greybus_mikrobus_beagleconnect.config wpanusb_beagleconnect.bin
greybus_mikrobus_beagleconnect.dts wpanusb_beagleconnect.config
sensortest_beagleconnect.bin wpanusb_beagleconnect.dts
sensortest_beagleconnect.config

host$ ~/bone/usr/bin/cc2538-bsl.py sensortest_beagleconnect.bin /dev/ttyACM0
8-bsl.py sensortest_beagleconnect.bin /dev/ttyACM0
Opening port /dev/ttyACM0, baud 50000
Reading data from sensortest_beagleconnect.bin

(continues on next page)

12.3. BeagleConnect 473

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Cannot auto-detect firmware filetype: Assuming .bin
Connecting to target...
CC1350 PG2.0 (7x7mm): 352KB Flash, 20KB SRAM, CCFG.BL_CONFIG at 0x00057FD8
Primary IEEE Address: 00:12:4B:00:22:7A:10:46

Performing mass erase
Erasing all main bank flash sectors

Erase done
Writing 360448 bytes starting at address 0x00000000
Write 104 bytes at 0x00057F988

Write done
Verifying by comparing CRC32 calculations.

Verified (match: 0x0f6bdf0f)

Now you are ready to continue the instructions above after the cc2528 command.

Trying for different add-on boards See mikroBUS over Greybus for trying out the same example for dif-
ferent mikroBUS add-on boards/ on-board devices.

Observe the node device

Connect BeagleConnect Freedom node device to an Ubuntu laptop to observe the Zephyr console.

Console (tio)

In order to see diagnostic messages or to run certain commands on the Zephyr device we will require a terminal
open to the device console. In this case, we use tio due how its usage simplifies the instructions.

1. Install tio sudo apt install -y tio

2. Run tio tio /dev/ttyACM0

To exit tio (later), enter ctrl+t, q.

The Zephyr Shell

After flashing, you should observe the something matching the following output in tio.

uart:~$ *** Booting Zephyr OS build 9c858c863223 ***
[00:00:00.009,735] <inf> greybus_transport_tcpip: CPort 0 mapped to TCP/IP␣
↪→port 4242
[00:00:00.010,131] <inf> greybus_transport_tcpip: CPort 1 mapped to TCP/IP␣
↪→port 4243
[00:00:00.010,528] <inf> greybus_transport_tcpip: CPort 2 mapped to TCP/IP␣
↪→port 4244
[00:00:00.010,742] <inf> greybus_transport_tcpip: Greybus TCP/IP Transport␣
↪→initialized
[00:00:00.010,864] <inf> greybus_manifest: Registering CONTROL greybus␣
↪→driver.
[00:00:00.011,230] <inf> greybus_manifest: Registering GPIO greybus driver.
[00:00:00.011,596] <inf> greybus_manifest: Registering I2C greybus driver.
[00:00:00.011,871] <inf> greybus_service: Greybus is active
[00:00:00.026,092] <inf> net_config: Initializing network
[00:00:00.134,063] <inf> net_config: IPv6 address: 2001:db8::1

The line beginning with *** is the Zephyr boot banner.

Lines beginning with a timestamp of the form [H:m:s.us] are Zephyr kernel messages.

Lines beginning with uart:~$ indicates that the Zephyr shell is prompting you to enter a command.

474 Chapter 12. Projects

https://github.com/vaishnav98/greybus-for-zephyr/tree/mikrobus#trying-out-different-add-on-boardsdevices-over-mikrobus
https://tio.github.io/

BeagleBoard Docs, Release 1.0.20230711-wip

From the informational messages shown, we observe the following.

• Zephyr is configured with the following link-local IPv6 address fe80::3177:a11c:4b:1200

• It is listening for (both) TCP and UDP traffic on port 4242

However, what the log messages do not show (which will come into play later), are 2 critical pieces of informa-
tion:

1. The RF Channel: As you may have guessed, IEEE 802.15.4 devices are only able to communicate with
each other if they are using the same frequency to transmit and receive data. This information is part of
the Physical Layer.

2. The PAN identifier: IEEE 802.15.4 devices are only be able to communicate with one another if they use
the same PAN ID. This permits multiple networks (PANs) on the same frequency. This information is part
of the Data Link Layer.

If we type help in the shell and hit Enter, we’re prompted with the following:

Please press the <Tab> button to see all available commands.
You can also use the <Tab> button to prompt or auto-complete all commands or␣
↪→its subcommands.
You can try to call commands with <-h> or <--help> parameter for more␣
↪→information.
Shell supports following meta-keys:

Ctrl+a, Ctrl+b, Ctrl+c, Ctrl+d, Ctrl+e, Ctrl+f, Ctrl+k, Ctrl+l, Ctrl+n,␣
↪→Ctrl+p, Ctrl+u, Ctrl+w
Alt+b, Alt+f.
Please refer to shell documentation for more details.

So after hitting Tab, we see that there are several interesting commands we can use for additional information.

uart:~$
clear help history ieee802154 log net
resize sample shell

Zephyr Shell: IEEE 802.15.4 commands Entering ieee802154 help, we see

uart:~$ ieee802154 help
ieee802154 - IEEE 802.15.4 commands
Subcommands:
ack :<set/1 | unset/0> Set auto-ack flag
associate :<pan_id> <PAN coordinator short or long address (EUI-64)>
disassociate :Disassociate from network
get_chan :Get currently used channel
get_ext_addr :Get currently used extended address
get_pan_id :Get currently used PAN id
get_short_addr :Get currently used short address
get_tx_power :Get currently used TX power
scan :<passive|active> <channels set n[:m:...]:x|all> <per-channel

duration in ms>
set_chan :<channel> Set used channel
set_ext_addr :<long/extended address (EUI-64)> Set extended address
set_pan_id :<pan_id> Set used PAN id
set_short_addr :<short address> Set short address
set_tx_power :<-18/-7/-4/-2/0/1/2/3/5> Set TX power

We get the missing Channel number (frequency) with the command ieee802154 get_chan.

uart:~$ ieee802154 get_chan
Channel 26

We get the missing PAN ID with the command ieee802154 get_pan_id.

12.3. BeagleConnect 475

https://en.wikipedia.org/wiki/Link-local_address#IPv6
https://www.silabs.com/community/wireless/proprietary/knowledge-base.entry.html/2019/10/04/connect_tutorial6-ieee802154addressing-rapc

BeagleBoard Docs, Release 1.0.20230711-wip

uart:~$ ieee802154 get_pan_id
PAN ID 43981 (0xabcd)

Zephyr Shell: Network Commands Additionally, we may query the IPv6 information of the Zephyr device.

uart:~$ net iface

Interface 0x20002b20 (IEEE 802.15.4) [1]
==
Link addr : CD:99:A1:1C:00:4B:12:00
MTU : 125
IPv6 unicast addresses (max 3):

fe80::cf99:a11c:4b:1200 autoconf preferred infinite
2001:db8::1 manual preferred infinite

IPv6 multicast addresses (max 4):
ff02::1
ff02::1:ff4b:1200
ff02::1:ff00:1

IPv6 prefixes (max 2):
<none>

IPv6 hop limit : 64
IPv6 base reachable time : 30000
IPv6 reachable time : 16929
IPv6 retransmit timer : 0

And we see that the static IPv6 address (2001:db8::1) from samples/net/sockets/
echo_server/prj.conf is present and configured. While the statically configured IPv6 address is use-
ful, it isn’t 100% necessary.

Rebuilding from source

#TODO: revisit everything below here

Prerequisites

• Zephyr environment is set up according to the Getting Started Guide

– Please use the Zephyr SDK when installing a toolchain above

• Zephyr SDK is installed at ~/zephyr-sdk-0.11.2 (any later version should be fine as well)

• Zephyr board is connected via USB

Cloning the repository This repository utilizes git submodules to keep track of all of the projects required
to reproduce the ongoing work. The instructions here only cover checking out the demo branch which should
stay in a tested state. ongoing development will be on the master branch.

Note: The parent directory ~ is simply used as a placeholder for testing. Please use whatever parent directory
you see fit.

Clone specific tag

cd ~
git clone --recurse-submodules --branch demo https://github.com/jadonk/
↪→beagleconnect

476 Chapter 12. Projects

https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html#install-a-toolchain
https://git-scm.com/book/en/v2/Git-Tools-Submodules

BeagleBoard Docs, Release 1.0.20230711-wip

Zephyr

Add the Fork For the time being, Greybus must remain outside of the main Zephyr repository. Currently, it
is just in a Zephyr fork, but it should be converted to a proper Module (External Project). This is for a number
of reasons, but mainly there must be:

• specifications for authentication and encryption

• specifications for joining and rejoining wireless networks

• specifications for discovery

Therefore, in order to reproduce this example, please run the following.

cd ~/beagleconnect/sw/zephyrproject/zephyr
west update

Build and Flash Zephyr Here, we will build and flash the Zephyr greybus_net sample to our device.

1. Edit the file ~/.zephyrrc and place the following text inside of it

export ZEPHYR_TOOLCHAIN_VARIANT=zephyr
export ZEPHYR_SDK_INSTALL_DIR=~/zephyr-sdk-0.11.2

1. Set up the required Zephyr environment variables via

source zephyr-env.sh

1. Build the project

BOARD=cc1352r1_launchxl west build samples/subsys/greybus/net --pristine \
--build-dir build/greybus_launchpad -- -DCONF_FILE=”prj.conf overlay-802154.
↪→conf”

1. Ensure that the last part of the build process looks somewhat like this:

...
[221/226] Linking C executable zephyr/zephyr_prebuilt.elf
Memory region Used Size Region Size %age Used

FLASH: 155760 B 360360 B 43.22%
FLASH_CCFG: 88 B 88 B 100.00%

SRAM: 58496 B 80 KB 71.41%
IDT_LIST: 184 B 2 KB 8.98%

[226/226] Linking C executable zephyr/zephyr.elf

1. Flash the firmware to your device using

BOARD=cc1352r1_launchxl west flash --build-dir build/greybus_launchpad

Linux

Warning: If you aren’t comfortable building and installing a Linux kernel on your computer, you should probably
just stop here. I’ll assume you know the basics of building and installing a Linux kernel from here on out.

Clone, patch, and build the kernel For this demo, I used the 5.8.4 stable kernel. Also, I’ve applied the
mikrobus kernel driver, though it isn’t strictly required for greybus.

Note: The parent directory ~ is simply used as a placeholder for testing. Please use whatever parent directory
you see fit.

TODO: The patches for gb-netlink will eventually be applied here until pushed into mainline.

12.3. BeagleConnect 477

https://docs.zephyrproject.org/latest/guides/modules.html
https://github.com/cfriedt/zephyr/tree/greybus-sockets/samples/subsys/greybus/net

BeagleBoard Docs, Release 1.0.20230711-wip

cd ~
git clone --branch v5.8.4 --single-branch git://git.kernel.org/pub/scm/linux/
↪→kernel/git/stable/linux.git
cd linux
git checkout -b v5.8.4-greybus
git am ~/beagleconnect/sw/linux/v2-0001-RFC-mikroBUS-driver-for-add-on-
↪→boards.patch
git am ~/beagleconnect/sw/linux/0001-mikroBUS-build-fixes.patch
cp /boot/config-`uname -r` .config
yes ”” | make oldconfig
./scripts/kconfig/merge_config.sh .config ~/beagleconnect/sw/linux/mikrobus.
↪→config
./scripts/kconfig/merge_config.sh .config ~/beagleconnect/sw/linux/atusb.
↪→config
make -j`nproc --all`
sudo make modules_install
sudo make install

Reboot and select your new kernel.

Probe the IEEE 802.15.4 Device Driver On the Linuxmachine, make sure theatusb driver is loaded. This
should happen automatically when the adapter is inserted or when the machine is booted while the adapter is
installed.

$ dmesg | grep -i ATUSB
[6.512154] usb 1-1: ATUSB: AT86RF231 version 2
[6.512492] usb 1-1: Firmware: major: 0, minor: 3, hardware type: ATUSB␣
↪→(2)
[6.525357] usbcore: registered new interface driver atusb
...

We should now be able to see the IEEE 802.15.4 network device by entering ip a show wpan0.

$ ip a show wpan0
36: wpan0: <BROADCAST,NOARP,UP,LOWER_UP> mtu 123 qdisc fq_codel state␣
↪→UNKNOWN group default qlen 300

link/ieee802.15.4 3e:7d:90:4d:8f:00:76:a2 brd ff:ff:ff:ff:ff:ff:ff:ff

But wait, that is not an IP address! It’s the hardware address of the 802.15.4 device. So, in order to associate
it with an IP address, we need to run a couple of other commands (thanks to wpan.cakelab.org).

Set the 802.15.4 Physical and Link-Layer Parameters

1. First, get the phy number for the wpan0 device

$ iwpan list
wpan_phy phy0
supported channels:

page 0: 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26
current_page: 0
current_channel: 26, 2480 MHz
cca_mode: (1) Energy above threshold
cca_ed_level: -77
tx_power: 3
capabilities:

iftypes: node,monitor
channels:

page 0:
[11] 2405 MHz, [12] 2410 MHz, [13] 2415 MHz,
[14] 2420 MHz, [15] 2425 MHz, [16] 2430 MHz,

(continues on next page)

478 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

[17] 2435 MHz, [18] 2440 MHz, [19] 2445 MHz,
[20] 2450 MHz, [21] 2455 MHz, [22] 2460 MHz,
[23] 2465 MHz, [24] 2470 MHz, [25] 2475 MHz,
[26] 2480 MHz

tx_powers:
3 dBm, 2.8 dBm, 2.3 dBm, 1.8 dBm, 1.3 dBm, 0.7 dBm,
0 dBm, -1 dBm, -2 dBm, -3 dBm, -4 dBm, -5 dBm,
-7 dBm, -9 dBm, -12 dBm, -17 dBm,

cca_ed_levels:
-91 dBm, -89 dBm, -87 dBm, -85 dBm, -83 dBm, -81 dBm,
-79 dBm, -77 dBm, -75 dBm, -73 dBm, -71 dBm, -69 dBm,
-67 dBm, -65 dBm, -63 dBm, -61 dBm,

cca_modes:
(1) Energy above threshold
(2) Carrier sense only
(3, cca_opt: 0) Carrier sense with energy above threshold␣

↪→(logical operator is 'and')
(3, cca_opt: 1) Carrier sense with energy above threshold␣

↪→(logical operator is 'or')
min_be: 0,1,2,3,4,5,6,7,8
max_be: 3,4,5,6,7,8
csma_backoffs: 0,1,2,3,4,5
frame_retries: 3
lbt: false

1. Next, set the Channel for the 802.15.4 device on the Linux machine

sudo iwpan phy phy0 set channel 0 26

1. Then, set the PAN identifier for the 802.15.4 device on the Linux machine sudo iwpan dev wpan0
set pan_id 0xabcd

2. Associate the wpan0 device to a new, 6lowpan network interface

sudo ip link add link wpan0 name lowpan0 type lowpan

1. Finally, set the links up for both wpan0 and lowpan0

sudo ip link set wpan0 up
sudo ip link set lowpan0 up

We should observe something like the following when we run ip a show lowpan0.

ip a show lowpan0
37: lowpan0@wpan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 qdisc noqueue␣
↪→state UNKNOWN group default qlen 1000

link/6lowpan 9e:0b:a4:e8:00:d3:45:53 brd ff:ff:ff:ff:ff:ff:ff:ff
inet6 fe80::9c0b:a4e8:d3:4553/64 scope link
valid_lft forever preferred_lft forever

Ping Pong

Broadcast Ping Now, perform a broadcast ping to see what else is listening on lowpan0.

$ ping6 -I lowpan0 ff02::1
PING ff02::1(ff02::1) from fe80::9c0b:a4e8:d3:4553%lowpan0 lowpan0: 56 data␣
↪→bytes
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=1 ttl=64 time=0.099␣
↪→ms
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=2 ttl=64 time=0.125␣

(continues on next page)

12.3. BeagleConnect 479

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=2 ttl=64 time=17.3␣
↪→ms (DUP!)
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=3 ttl=64 time=0.126␣
↪→ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=3 ttl=64 time=9.60␣
↪→ms (DUP!)
64 bytes from fe80::9c0b:a4e8:d3:4553%lowpan0: icmp_seq=4 ttl=64 time=0.131␣
↪→ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=4 ttl=64 time=14.9␣
↪→ms (DUP!)

Yay! We have pinged (pung?) the Zephyr device over IEEE 802.15.4 using 6LowPAN!

Ping Zephyr We can ping the Zephyr device directly without a broadcast ping too, of course.

$ ping6 -I lowpan0 fe80::cf99:a11c:4b:1200
PING fe80::cf99:a11c:4b:1200(fe80::cf99:a11c:4b:1200) from␣
↪→fe80::9c0b:a4e8:d3:4553%lowpan0 lowpan0: 56 data bytes
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=1 ttl=64 time=16.0 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=2 ttl=64 time=13.8 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=3 ttl=64 time=9.77 ms
64 bytes from fe80::cf99:a11c:4b:1200%lowpan0: icmp_seq=5 ttl=64 time=11.5 ms

Ping Linux Similarly, we can ping the Linux host from the Zephyr shell.

uart:~$ net ping --help
ping - Ping a network host.
Subcommands:
--help :'net ping [-c count] [-i interval ms] <host>' Send ICMPv4 or ICMPv6

Echo-Request to a network host.
$ net ping -c 5 fe80::9c0b:a4e8:d3:4553
PING fe80::9c0b:a4e8:d3:4553
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=0␣
↪→ttl=64 rssi=110 time=11 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=1␣
↪→ttl=64 rssi=126 time=9 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=2␣
↪→ttl=64 rssi=128 time=13 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=3␣
↪→ttl=64 rssi=126 time=10 ms
8 bytes from fe80::9c0b:a4e8:d3:4553 to fe80::cf99:a11c:4b:1200: icmp_seq=4␣
↪→ttl=64 rssi=126 time=7 ms

Assign a Static Address So far, we have been using IPv6 Link-Local addressing. However, the Zephyr
application is configured to use a statically configured IPv6 address as well which is, namely 2001:db8::1.

If we add a similar static IPv6 address to our Linux IEEE 802.15.4 network interface, lowpan0, then we should
expect to be able to reach that as well.

In Linux, run the following

sudo ip -6 addr add 2001:db8::2/64 dev lowpan0

We can verify that the address has been set by examining the lowpan0 network interface again.

$ ip a show lowpan0
37: lowpan0@wpan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 qdisc noqueue␣

(continues on next page)

480 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→state UNKNOWN group default qlen 1000
link/6lowpan 9e:0b:a4:e8:00:d3:45:53 brd ff:ff:ff:ff:ff:ff:ff:ff
inet6 2001:db8::2/64 scope global
valid_lft forever preferred_lft forever
inet6 fe80::9c0b:a4e8:d3:4553/64 scope link
valid_lft forever preferred_lft forever

Lastly, ping the statically configured IPv6 address of the Zephyr device.

$ ping6 2001:db8::1
PING 2001:db8::1(2001:db8::1) 56 data bytes
64 bytes from 2001:db8::1: icmp_seq=2 ttl=64 time=53.7 ms
64 bytes from 2001:db8::1: icmp_seq=3 ttl=64 time=13.1 ms
64 bytes from 2001:db8::1: icmp_seq=4 ttl=64 time=22.0 ms
64 bytes from 2001:db8::1: icmp_seq=5 ttl=64 time=22.7 ms
64 bytes from 2001:db8::1: icmp_seq=6 ttl=64 time=18.4 ms

Now that we have set up a reliable transport, let’s move on to the application layer.

Greybus

Hopefully the videos listed earlier provide a sufficient foundation to understand what will happen shortly. How-
ever, there is still a bit more preparation required.

Build and probe Greybus Kernel Modules Greybus was originally intended to work exclusively on the
UniPro physical layer. However, we’re using RF as our physical layer and TCP/IP as our transport. As such,
there was need to be able to communicate with the Linux Greybus facilities through userspace, and out of
that need arose gb-netlink. The Netlink Greybus module actually does not care about the physical layer, but
is happy to usher Greybus messages back and forth between the kernel and userspace.

Build and probe the gb-netlink modules (as well as the other Greybus modules) with the following:

cd ${WORKSPACE}/sw/greybus
make -j`nproc --all`
sudo make install
../load_gb_modules.sh

Build and Run Gbridge The gbridge utility was created as a proof of concept to abstract the Greybus Netlink
datapath among several reliable transports. For the purposes of this tutorial, we’ll be using it as a TCP/IP bridge.

To run gbridge, perform the following:

sudo apt install -y libnl-3-dev libnl-genl-3-dev libbluetooth-dev libavahi-
↪→client-dev
cd gbridge
autoreconf -vfi
GBNETLINKDIR=${PWD}/../greybus \
./configure --enable-uart --enable-tcpip --disable-gbsim --enable-netlink --
↪→disable-bluetooth
make -j`nproc --all`
sudo make install
gbridge

Blinky!

Now that we have set up a reliable TCP transport, and set up the Greybus modules in the Linux kernel, and
used Gbridge to connect a Greybus node to the Linux kernel via TCP/IP, we can now get to the heart of the

12.3. BeagleConnect 481

BeagleBoard Docs, Release 1.0.20230711-wip

demonstration!

First, save the following script as blinky.sh.

#!/bin/bash

Blinky Demo for CC1352R SensorTag

/dev/gpiochipN that Greybus created
CHIP=”$(gpiodetect | grep greybus_gpio | head -n 1 | awk '{print $1}')”

red, green, blue LED pins
RED=6
GREEN=7
BLUE=21

Bash array for pins and values
PINS=($RED $GREEN $BLUE)
NPINS=${#PINS[@]}

for ((;;)); do
for i in ${!PINS[@]}; do

turn off previous pin
if [$i -eq 0]; then

PREV=2
else

PREV=$((i-1))
fi
gpioset $CHIP ${PINS[$PREV]}=0

turn on current pin
gpioset $CHIP ${PINS[$i]}=1

wait a sec
sleep 1

done
done

Second, run the script with root privileges: sudo bash blinky.sh

The output of your minicom session should resemble the following.

$ *** Booting Zephyr OS build zephyr-v2.3.0-1435-g40c0ed940d71 ***
[00:00:00.011,932] <inf> net_config: Initializing network
[00:00:00.111,938] <inf> net_config: IPv6 address: fe80::6c42:bc1c:4b:1200
[00:00:00.112,121] <dbg> greybus_service.greybus_service_init: Greybus␣
↪→initializing..
[00:00:00.112,426] <dbg> greybus_transport_tcpip.gb_transport_backend_init:␣
↪→Greybus TCP/IP Transport initializing..
[00:00:00.112,579] <dbg> greybus_transport_tcpip.netsetup: created server␣
↪→socket 0 for cport 0
[00:00:00.112,579] <dbg> greybus_transport_tcpip.netsetup: setting socket␣
↪→options for socket 0
[00:00:00.112,609] <dbg> greybus_transport_tcpip.netsetup: binding socket 0␣
↪→(cport 0) to port 4242
[00:00:00.112,640] <dbg> greybus_transport_tcpip.netsetup: listening on␣
↪→socket 0 (cport 0)
[00:00:00.112,823] <dbg> greybus_transport_tcpip.netsetup: created server␣
↪→socket 1 for cport 1
[00:00:00.112,823] <dbg> greybus_transport_tcpip.netsetup: setting socket␣
↪→options for socket 1
[00:00:00.112,854] <dbg> greybus_transport_tcpip.netsetup: binding socket 1␣
↪→(cport 1) to port 4243
[00:00:00.112,854] <dbg> greybus_transport_tcpip.netsetup: listening on␣

(continues on next page)

482 Chapter 12. Projects

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→socket 1 (cport 1)
[00:00:00.113,037] <inf> net_config: IPv6 address: fe80::6c42:bc1c:4b:1200
[00:00:00.113,250] <dbg> greybus_transport_tcpip.netsetup: created server␣
↪→socket 2 for cport 2
[00:00:00.113,250] <dbg> greybus_transport_tcpip.netsetup: setting socket␣
↪→options for socket 2
[00:00:00.113,281] <dbg> greybus_transport_tcpip.netsetup: binding socket 2␣
↪→(cport 2) to port 4244
[00:00:00.113,311] <dbg> greybus_transport_tcpip.netsetup: listening on␣
↪→socket 2 (cport 2)
[00:00:00.113,494] <dbg> greybus_transport_tcpip.netsetup: created server␣
↪→socket 3 for cport 3
[00:00:00.113,494] <dbg> greybus_transport_tcpip.netsetup: setting socket␣
↪→options for socket 3
[00:00:00.113,525] <dbg> greybus_transport_tcpip.netsetup: binding socket 3␣
↪→(cport 3) to port 4245
[00:00:00.113,555] <dbg> greybus_transport_tcpip.netsetup: listening on␣
↪→socket 3 (cport 3)
[00:00:00.113,861] <inf> greybus_transport_tcpip: Greybus TCP/IP Transport␣
↪→initialized
[00:00:00.116,149] <inf> greybus_service: Greybus is active
[00:00:00.116,546] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.397,399] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1
[00:45:08.397,399] <dbg> greybus_transport_tcpip.accept_loop: socket 0␣
↪→(cport 0) has traffic
[00:45:08.397,491] <dbg> greybus_transport_tcpip.accept_loop: accepted␣
↪→connection from [2001:db8::2]:39638 as fd 4
[00:45:08.397,491] <dbg> greybus_transport_tcpip.accept_loop: spawning␣
↪→client thread..
[00:45:08.397,735] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.491,363] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1
[00:45:08.491,363] <dbg> greybus_transport_tcpip.accept_loop: socket 3␣
↪→(cport 3) has traffic
[00:45:08.491,455] <dbg> greybus_transport_tcpip.accept_loop: accepted␣
↪→connection from [2001:db8::2]:39890 as fd 5
[00:45:08.491,455] <dbg> greybus_transport_tcpip.accept_loop: spawning␣
↪→client thread..
[00:45:08.491,699] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.620,056] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1
[00:45:08.620,086] <dbg> greybus_transport_tcpip.accept_loop: socket 2␣
↪→(cport 2) has traffic
[00:45:08.620,147] <dbg> greybus_transport_tcpip.accept_loop: accepted␣
↪→connection from [2001:db8::2]:42422 as fd 6
[00:45:08.620,147] <dbg> greybus_transport_tcpip.accept_loop: spawning␣
↪→client thread..
[00:45:08.620,422] <dbg> greybus_transport_tcpip.accept_loop: calling poll
[00:45:08.679,504] <dbg> greybus_transport_tcpip.accept_loop: poll returned 1
[00:45:08.679,534] <dbg> greybus_transport_tcpip.accept_loop: socket 1␣
↪→(cport 1) has traffic
[00:45:08.679,595] <dbg> greybus_transport_tcpip.accept_loop: accepted␣
↪→connection from [2001:db8::2]:48286 as fd 7
[00:45:08.679,595] <dbg> greybus_transport_tcpip.accept_loop: spawning␣
↪→client thread..
[00:45:08.679,870] <dbg> greybus_transport_tcpip.accept_loop: calling poll
...

Read I2C Registers The SensorTag comes with an opt3001 ambient light sensor as well as an hdc2080
temperature & humidity sensor.

First, find which i2c device corresponds to the SensorTag:

12.3. BeagleConnect 483

BeagleBoard Docs, Release 1.0.20230711-wip

ls -la /sys/bus/i2c/devices/* | grep ”greybus”
lrwxrwxrwx 1 root root 0 Aug 15 11:24 /sys/bus/i2c/devices/i2c-8 -> ../../../
↪→devices/virtual/gb_nl/gn_nl/greybus1/1-2/1-2.2/1-2.2.2/gbphy2/i2c-8

On my machine, the i2c device node that Greybus creates is /dev/i2c-8.

Read the ID registers (at the i2c register address 0x7e) of the opt3001 sensor (at i2c bus address 0x44) as
shown below:

i2cget -y 8 0x44 0x7e w
0x4954

Read the ID registers (at the i2c register address 0xfc) of the hdc2080 sensor (at i2c bus address 0x41) as
shown below:

i2cget -y 8 0x41 0xfc w
0x5449

Conclusion

The blinking LED can and poking i2c registers can be a somewhat anticlimactic, but hopefully it illustrates the
potential for Greybus as an IoT application layer protocol.

What is nice about this demo, is that we’re using Device Tree to describe our Greybus Peripheral declaratively,
they Greybus Manifest is automatically generated, and the Greybus Service is automatically started in Zephyr.

In other words, all that is required to replicate this for other IoT devices is simply an appropriate Device Tree
overlay file.

The proof-of-concept involving Linux, Zephyr, and IEEE 802.15.4 was actually fairly straight forward and was
accomplished with mostly already-upstream source.

For Greybus in Zephyr, there is still a considerable amount of integration work to be done, including * converting
the fork to a proper Zephyr module * adding security and authentication * automatic detection, joining, and
rejoining of devices.

Thanks for reading, and we hope you’ve enjoyed this tutorial.

12.3.3 BeagleConnect™ Story

There are many stories behind BeagleConnect™, mine is just one of them. It begins with my mom teaching
me about computers. She told me I could anything I wanted with ours, as long as I didn’t open the case. This
was the late-70s/early-80s, so all she needed to do was put her floppy disk away and there wasn’t risk of me
damaging the family photo album or her ability to do her work the next day. I listened and learned from her
the basics of programming, but it wasn’t long before I wanted to take the computer apart.

Initially exploring Getting Started in Electronics satisfied my itch for quite a while. Eventually, I got a Com-
modore 64 and began connecting voice synthesizer ICs to it. My interest in computers and electronics flour-
ished into an electrical engineering degree and a long career in the semiconductor industry.

Over this time, I’ve become more and more alarmed with the progress of technology. Now, to be clear, I love
technology. I love innovation and invention. It is just that some things have evolved in a sort of tunnel-vision,
without bringing everyone along.

But, what about keyboard users? As graphical user interfaces and mice took over computers, they rapidly
became almost unusable by my mom. She typed well, but the dexterity to move a mouse aluded her. To
satisfy the need to interact with locations on the screen, she adopted using a joystick and her productivity
came to a crawl. How is it that such assumptions could be made impacting all computer users without any
thoughtful provisions for what already worked?

484 Chapter 12. Projects

https://en.wikipedia.org/wiki/Floppy_disk
http://www.forrestmims.org/

BeagleBoard Docs, Release 1.0.20230711-wip

12.3.4 BeagleConnect Experience

BeagleConnect™ provides a scalable experience for interacting with the physical world.

Note: The term BeagleConnect™ refers to a technology comprising of a family of boards, a collection of Linux
kernel drivers, microcontroller firmware, a communication protocol, and system-level integration to automation
software tools. More specific terms will be applied in the architecture details. The term is also used here to
represent the experience introduced to users through the initial BeagleConnect™ Freedom product consisting
of a board and case which ships programmed and ready to be used.

For scientists, we are integrating Jupyter Notebook with the data streams from any of hundreds of sensor
options, including vibration, gas detection, biometrics and more. These data streams can be stored in simple
data files <https://en.wikipedia.org/wiki/Comma-separated_values> or processed and visualized.

Todo: provide images demonstrating Jupyter Notebook visualization

For embedded systems developers, data is easily extracted using the standard IIO interface provided by the
Linux kernel running on the gateway using any of hundreds of programming languages and environments,
without writing a line of microcontroller firmware. The Linux environment provides opportunities for high-level
remote management using tools like Balena with applications deployed in Docker containers.

#TODO: provide image illustrating remote management

The hardware and software are fully open source, providing for scalability and a lack of vendor lock-in.

For DevOps…

For home automaters, integration into WebThings…

Todo: think a bit more about this section with some feedback from Cathy.

12.3. BeagleConnect 485

https://jupyter.org/
https://www.mikroe.com/click/sensors/force
https://www.mikroe.com/click/sensors/gas
https://www.mikroe.com/click/sensors/biometrics
https://www.mikroe.com/click/sensors

BeagleBoard Docs, Release 1.0.20230711-wip

12.3.5 BeagleConnect boards

• BeagleConnect Freedom

486 Chapter 12. Projects

Chapter 13

Books

This is a collection of open-source books written to help Beagle developers.

BeagleBone Cookbook is a great introduction to programming a BeagleBone using Linux from userspace, mostly
using Python or JavaScript.

PRU Cookbook provides numerous examples on using the incredible ultra-low-latency microcontrollers inside
the processors used on BeagleBone boards that are a big part of what has made BeagleBone such a popular
platform.

Links to additional books available for purchase can be found on the Beagle books page.

13.1 BeagleBone Cookbook

Contributors

• Author: Mark A. Yoder

• Book revision: v2.1 beta

A cookbook for programming Beagles

13.1.1 Basics

When you buy BeagleBone Black, pretty much everything you need to get going comes with it. You can just
plug it into the USB of a host computer, and it works. The goal of this chapter is to show what you can do with
your Bone, right out of the box. It has enough information to carry through the next three chapters on sensors
(Sensors), displays (Displays and Other Outputs), and motors (Motors).

Picking Your Beagle

Problem There are many different BeagleBoards. How do you pick which one to use?

Solution Current list of boards: https://git.beagleboard.org/explore/projects/topics/boards

Discussion

487

https://beagleboard.org/books
mailto:Mark.A.Yoder@Rose-Hulman.edu
https://git.beagleboard.org/explore/projects/topics/boards

BeagleBoard Docs, Release 1.0.20230711-wip

Getting Started, Out of the Box

Problem You just got your Bone, and you want to know what to do with it.

Solution Fortunately, you have all you need to get running: your Bone and a USB cable. Plug the USB cable
into your host computer (Mac, Windows, or Linux) and plug the mini-USB connector side into the USB connector
near the Ethernet connector on the Bone, as shown in Plugging BeagleBone Black into a USB port.

Fig. 13.1: Plugging BeagleBone Black into a USB port

The four blue USER LEDs will begin to blink, and in 10 or 15 seconds, you’ll see a new USB drive appear on
your host computer. The Bone appears as a USB drive shows how it will appear on a Windows host, and Linux
and Mac hosts will look similar. The Bone acting like a USB drive and the files you see are located on the Bone.

Browse to http://192.168.7.2:3000 from your host computer (Visual Studio Code). If the page is not found, run
the following:

bone$ sudo systemctl start bb-code-server.service

Wait a minute and try the URL again.

Here, you’ll find Visual Studio Code, a web-based integrated development environment (IDE) that lets you edit
and run code on your Bone! See :ref: basics_vsc for more details.

Warning:

Make sure you turn off your Bone properly. It’s best to run the halt command:

488 Chapter 13. Books

http://192.168.7.2:3000

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.2: The Bone appears as a USB drive

13.1. BeagleBone Cookbook 489

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.3: Visual Studio Code

490 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ sudo halt

The system is going down for system halt NOW! (pts/0)

This will ensure that the Bone shuts down correctly. If you just pull the power, it is possible that open files
would not close properly and might become corrupt.

Discussion The rest of this book goes into the details behind this quick out-of-the-box demo. Explore your
Bone and then start exploring the book.

Verifying You Have the Latest Version of the OS on Your Bone

Problem You just got BeagleBone Black, and you want to know which version of the operating system it’s
running.

Solution This book uses Debian, the Linux distribution that currently ships on the Bone. However this book
is based on a newer version (BeagleBoard.org Debian Bullseye IoT Image 2023-06-03) than what is shipping at
the time of this writing. You can see which version your Bone is running by following the instructions in Getting
Started, Out of the Box to log into the Bone. Then run:

bone$ cat /etc/dogtag
BeagleBoard.org Debian Bullseye IoT Image 2023-06-03

I’m running the 2023-06-03 version.

Running the Python and JavaScript Examples

Problem You’d like to learn Python or JavaScript interact with the Bone to perform physical computing tasks
without first learning Linux.

Solution Plug your board into the USB of your host computer and browse to http://192.168.7.2:3000 using
Google Chrome or Firefox (as shown in Getting Started, Out of the Box). In the left column, click on examples,
then BeagleBone and then Black. Several sample scripts will appear. Go and explore them.

Tip: Explore the various demonstrations of Python and JavaScript. These are what come with the Bone. In
Cloning the Cookbook Repository you see how to load the examples for the Cookbook.

Cloning the Cookbook Repository

Problem You want to run the Cookbook examples.

Solution Connect your Bone to the Internet and log into it. From the command line run:

bone$ git clone https://git.beagleboard.org/beagleboard/beaglebone-cookbook-
↪→code
bone$ cd beaglebone-cookbook-code
bone$ ls

You can look around from the command line, or explore from Visual Sudio Code. If you are using VSC, go to the
File menu and select Open Folder … and select beaglebone-cookbook-code. Then explore.

13.1. BeagleBone Cookbook 491

https://www.debian.org
http://192.168.7.2:3000

BeagleBoard Docs, Release 1.0.20230711-wip

Wiring a Breadboard

Problem You would like to use a breadboard to wire things to the Bone.

Solution Many of the projects in this book involve interfacing things to the Bone. Some plug in directly, like
the USB port. Others need to be wired. If it’s simple, you might be able to plug the wires directly into the P8
or P9 headers. Nevertheless, many require a breadboard for the fastest and simplest wiring.

To make this recipe, you will need:

• Breadboard and jumper wires

The Breadboard wired to BeagleBone Black shows a breadboard wired to the Bone. All the diagrams in this
book assume that the ground pin (P9_1 on the Bone) is wired to the negative rail and 3.3 V (P9_3) is wired to
the positive rail.

Fig. 13.4: Breadboard wired to BeagleBone Black

Breadboard wired to BeagleBone Black

Editing Code Using Visual Studio Code

Problem You want to edit and debug files on the Bone.

Solution Plug your Bone into a host computer via the USB cable. Open a browser (either Google Chrome
or FireFox will work) on your host computer (as shown in Getting Started, Out of the Box). After the Bone has
booted up, browse to http://192.168.7.2:3000 on your host. You will see something like Visual Studio Code.

Click the examples folder on the left and then click BeagleBoard and then Black, finally double-clickseqLEDs.
py. You can now edit the file.

492 Chapter 13. Books

http://192.168.7.2:3000

BeagleBoard Docs, Release 1.0.20230711-wip

Note: If you edit lines 33 and 37 of the seqLEDs.py file (time.sleep(0.25)), changing 0.25 to 0.1, the LEDs
next to the Ethernet port on your Bone will flash roughly twice as fast.

Running Python and JavaScript Applications from Visual Studio Code

Problem You have a file edited in VS Code, and you want to run it.

Solution VS Code has a bash command window built in at the bottom of the window. If it’s not there, hit
Ctrl-Shift-P and then type terminal create new then hit Enter. The terminal will appear at the bottom of the
screen. You can run your code from this window. To do so, add #!/usr/bin/env python at the top of
the file that you want to run and save.

Tip: If you are running JavaScript, replace the word python in the line with node.

At the bottom of the VS Code window are a series of tabs (Visual Studio Code showing bash terminal). Click
the TERMINAL tab. Here, you have a command prompt.

Fig. 13.5: Visual Studio Code showing bash terminal

Change to the directory that contains your file, make it executable, and then run it:

bone$ cd ~/examples/BeagleBone/Black/
bone$./seqLEDs.py

13.1. BeagleBone Cookbook 493

BeagleBoard Docs, Release 1.0.20230711-wip

The cd is the change directory command. After you cd, you are in a new directory. Finally, ./seqLEDs.py instructs
the python script to run. You will need to press ^C (Ctrl-C) to stop your program.

Finding the Latest Version of the OS for Your Bone

Problem You want to find out the latest version of Debian that is available for your Bone.

Solution On your host computer, open a browser and go to https://forum.beagleboard.org/tag/latest-images
This shows you a list of dates of the most recent Debian images (Latest Debian images).

Fig. 13.6: Latest Debian images

At the time of writing, we are using the Bullseye image. Click on its link. Scrolling up you’ll find Latest Debian
images. There are three types of snapshots, Minimal, IoT and Xfce Desktop. IoT is the one we are running.

These are the images you want to use if you are flashing a Rev C BeagleBone Black onboard flash, or flashing
a 4 GB or bigger miscroSD card. The image beginning with am335x-debian-11.3-iot- is used for the non-AI
boards. The one beginning with am57xx-debian- is for programming the Beagle AI’s.

Note: The onboard flash is often called the eMMC memory. We just call it onboard flash, but you’ll often see
eMMC appearing in filenames of images used to update the onboard flash.

Click the image you want to use and it will download. The images are some 500M, so it might take a while.

494 Chapter 13. Books

https://forum.beagleboard.org/tag/latest-images

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.7: Latest Debian images

Running the Latest Version of the OS on Your Bone

Problem You want to run the latest version of the operating system on your Bone without changing the
onboard flash.

Solution This solution is to flash an external microSD card and run the Bone from it. If you boot the Bone
with a microSD card inserted with a valid boot image, it will boot from the microSD card. If you boot without
the microSD card installed, it will boot from the onboard flash.

Tip: If you want to reflash the onboard flash memory, see Updating the Onboard Flash.

Note: I instruct my students to use the microSD for booting. I suggest they keep an extra microSD flashed
with the current OS. If they mess up the one on the Bone, it takes only a moment to swap in the extra microSD,
boot up, and continue running. If they are running off the onboard flash, it will take much longer to reflash and
boot from it.

Download the image you found in Finding the Latest Version of the OS for Your Bone. It’s more than 500 MB,
so be sure to have a fast Internet connection. Then go to http://beagleboard.org/getting-started#update and
follow the instructions there to install the image you downloaded.

Updating the OS on Your Bone

Problem You’ve installed the latest version of Debian on your Bone (Running the Latest Version of the OS on
Your Bone), and you want to be sure it’s up-to-date.

13.1. BeagleBone Cookbook 495

http://beagleboard.org/getting-started#update

BeagleBoard Docs, Release 1.0.20230711-wip

Solution Ensure that your Bone is on the network and then run the following command on the Bone:

bone$ sudo apt update
bone$ sudo apt upgrade

If there are any new updates, they will be installed.

Note: If you get the error The following signatures were invalid: KEYEXPIRED 1418840246, see eLinux support
page for advice on how to fix it.

Discussion After you have a current image running on the Bone, it’s not at all difficult to keep it upgraded.

Backing Up the Onboard Flash

Problem You’ve modified the state of your Bone in a way that you’d like to preserve or share.

Solution The eLinux wiki page on BeagleBone Black Extracting eMMC contents provides some simple steps
for copying the contents of the onboard flash to a file on a microSD card:

• Get a 4 GB or larger microSD card that is FAT formatted.

• If you create a FAT-formatted microSD card, you must edit the partition and ensure that it is a bootable
partition.

• Download beagleboneblack-save-emmc.zip and uncompress and copy the contents onto your microSD
card.

• Eject the microSD card from your computer, insert it into the powered-off BeagleBone Black, and apply
power to your board.

• You’ll notice USER0 (the LED closest to the S1 button in the corner) will (after about 20 seconds) begin
to blink steadily, rather than the double-pulse “heartbeat” pattern that is typical when your BeagleBone
Black is running the standard Linux kernel configuration.

• It will run for a bit under 10 minutes and then USER0 will stay on steady. That’s your cue to remove
power, remove the microSD card, and put it back into your computer.

• You will see a file called BeagleBoneBlack-eMMC-image-XXXXX.img, where XXXXX is a set of random
numbers. Save this file to use for restoring your image later.

Note: Because the date won’t be set on your board, you might want to adjust the date on the file to remember
when you made it. For storage on your computer, these images will typically compress very well, so use your
favorite compression tool.

Tip: The eLinux wiki is the definitive place for the BeagleBoard.org community to share information about the
Beagles. Spend some time looking around for other helpful information.

Updating the Onboard Flash

Problem You want to copy the microSD card to the onboard flash.

496 Chapter 13. Books

http://bit.ly/1EXocb6
http://bit.ly/1EXocb6
Thehttp://elinux.org/Beagleboard
http://bit.ly/1C57I0a
http://bit.ly/1wtXwNP
Thehttp://elinux.org/Beagleboard

BeagleBoard Docs, Release 1.0.20230711-wip

Solution If you want to update the onboard flash with the contents of the microSD card,

• Repeat the steps in Running the Latest Version of the OS on Your Bone to update the OS.

• Attach to an external 5 V source. you must be powered from an external 5 V source. The flashing process
requires more current than what typically can be pulled from USB.

• Boot from the microSD card.

• Log on to the bone and edit /boot/uEnv.txt.

• Uncomment out the last line cmdline=init=/usr/sbin/init-beagle-flasher.

• Save the file and reboot.

• The USR LEDs will flash back and forth for a few minutes.

• When they stop flashing, remove the SD card and reboot.

• You are now running from the newly flashed onboard flash.

Warning: If you write the onboard flash, be sure to power the Bone from an external 5 V source.
The USB might not supply enough current.

When you boot from the microSD card, it will copy the image to the onboard flash. When all four USER LEDs
turn off (in some versions, they all turn on), you can power down the Bone and remove the microSD card. The
next time you power up, the Bone will boot from the onboard flash.

13.1.2 Sensors

In this chapter, you will learn how to sense the physical world with BeagleBone Black. Various types of elec-
tronic sensors, such as cameras and microphones, can be connected to the Bone using one or more interfaces
provided by the standard USB 2.0 host port, as shown in The USB 2.0 host port.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

The two 46-pin cape headers (called P8 and P9) along the long edges of the board (Cape Headers P8 and P9)
provide connections for cape add-on boards, digital and analog sensors, and more.

The simplest kind of sensor provides a single digital status, such as off or on, and can be handled by an
input mode of one of the Bone’s 65 general-purpose input/output (GPIO) pins. More complex sensors can be
connected by using one of the Bone’s seven analog-to-digital converter (ADC) inputs or several I2C buses.

Displays and Other Outputs discusses some of the output mode usages of the GPIO pins.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and run
it, either within the Visual Studio Code (VSC) integrated development environment (IDE) or from the command
line (Getting to the Command Shell via SSH).

Choosing a Method to Connect Your Sensor

Problem You want to acquire and attach a sensor and need to understand your basic options.

Solution Some of the many sensor connection options on the Bone shows many of the possibilities for con-
necting a sensor.

Choosing the simplest solution available enables you to move on quickly to addressing other system aspects.
By exploring each connection type, you can make more informed decisions as you seek to optimize and trou-
bleshoot your design.

13.1. BeagleBone Cookbook 497

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.8: The USB 2.0 host port

Fig. 13.9: Cape Headers P8 and P9

498 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.10: Some of the many sensor connection options on the Bone

Input and Run a Python or JavaScript Application for Talking to Sensors

Problem You have your sensors all wired up and your Bone booted up, and you need to know how to enter
and run your code.

Solution You are just a few simple steps from running any of the recipes in this book.

• Plug your Bone into a host computer via the USB cable (Getting Started, Out of the Box).

• Start Visual Studio Code (Editing Code Using Visual Studio Code).

• In the bash tab (as shown in Entering commands in the VSC bash tab), run the following commands:

bone$ cd
bone$ cd beaglebone-cookbook-code/02sensors

Here, we issued the change directory (cd) command without specifying a target directory. By default, it takes
you to your home directory. Notice that the prompt has changed to reflect the change.

Note: If you log in as debian, your home is /home/debian. If you were to create a new user called newuser,
that user’s home would be /home/newuser. By default, all non-root (non-superuser) users have their home
directories in /home.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

• Double-click the pushbutton.py file to open it.

• Press ^S (Ctrl-S) to save the file. (You can also go to the File menu in VSC and select Save to save the
file, but Ctrl-S is easier.) Even easier, VSC can be configured to autosave every so many seconds.

• In the bash tab, enter the following commands:

13.1. BeagleBone Cookbook 499

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.11: Entering commands in the VSC bash tab

500 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

debian@beaglebone:beaglebone-cookbook/code/02sensors$./pushbutton.py
data= 0
data= 0
data= 1
data= 1
^C

This process will work for any script in this book.

Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor)

Problem You want to read a pushbutton, a magnetic switch, or other sensor that is electrically open or closed.

Solution Connect the switch to a GPIO pin and read from the proper place in /sys/class/gpio.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Pushbutton switch.

• Magnetic reed switch. (optional)

You can wire up either a pushbutton, a magnetic reed switch, or both on the Bone, as shown in Diagram for
wiring a pushbutton and magnetic reed switch input.

Fig. 13.12: Diagram for wiring a pushbutton and magnetic reed switch input

The code in Monitoring a pushbutton (pushbutton.py) reads GPIO port P9_42, which is attached to the push-
button.

Python

c

13.1. BeagleBone Cookbook 501

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.1: Monitoring a pushbutton (pushbutton.py)

1 #!/usr/bin/env python
2 # //
3 # // pushbutton.py
4 # // Reads P9_42 and prints its value.
5 # // Wiring: Connect a switch between P9_42 and 3.3V
6 # // Setup:
7 # // See:
8 # //
9 import time
10 import gpiod
11 import os
12

13 ms = 100 # Read time in ms
14 CHIP = 'gpiochip0'
15 LINE_OFFSET = [7] # P9_42 is gpio 7
16 chip = gpiod.Chip(CHIP)
17 lines = chip.get_lines(LINE_OFFSET)
18 lines.request(consumer='pushbutton.py', type=gpiod.LINE_REQ_DIR_IN)
19

20 while True:
21 data = lines.get_values()
22 print('data = ' + str(data[0]))
23 time.sleep(ms/1000)

pushbutton.py

Listing 13.2: Monitoring a pushbutton (pushbutton.c)

1 //
2 // pushbutton.c
3 // Reads P9_42 and prints its value.
4 // Wiring: Connect a switch between P9_42 and 3.3V
5 // Setup:
6 // See:
7 //
8 #include <gpiod.h>
9 #include <stdio.h>
10 #include <unistd.h>
11

12 #define CONSUMER ”pushbutton.c”
13

14 int main(int argc, char **argv)
15 {
16 int chipnumber = 0;
17 unsigned int line_num = 7;
18 struct gpiod_line *line;
19 struct gpiod_chip *chip;
20 int i, ret;
21

22 chip = gpiod_chip_open_by_number(chipnumber);
23 line = gpiod_chip_get_line(chip, line_num);
24 ret = gpiod_line_request_input(line, CONSUMER);
25

26 /* Get */
27 while(1) {
28 printf(”%d\r”, gpiod_line_get_value(line));
29 usleep(100);
30 }
31 }

502 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

pushbutton.c

Put this code in a file called pushbutton.py following the steps in Input and Run a Python or JavaScript Application
for Talking to Sensors. In the VSC bash tab, run it by using the following commands:

bone$./pushbutton.py
data = 0
data = 0
data = 1
data = 1
^C

The command runs it. Try pushing the button. The code reads the pin and prints its current value.

You will have to press ^C (Ctrl-C) to stop the code.

If you want to run the C version do:

bone$ gcc -o pushbutton pushbutton.c -lgpiod
bone$./pushbutton
data = 0
data = 0
data = 1
data = 1
^C

If you want to use the magnetic reed switch wired as shown in Diagram for wiring a pushbutton and magnetic
reed switch input, change P9_42 to P9_26 which is gpio 14.

Mapping Header Numbers to gpio Numbers

Problem You have a sensor attached to the P8 or P9 header and need to know which gpio pin it’s using.

Solution The gpioinfo command displays information about all the P8 and P9 header pins. To see the info for
just one pin, use grep.

bone$ gpioinfo | grep -e chip -e P9.42
gpiochip0 - 32 lines:

line 7: ”P8_42A [ecappwm0]” ”P9_42” input active-high [used]
gpiochip1 - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

This shows P9_42 is on chip 0 and pin 7. To find the gpio number multiply the chip number by 32 and add it to
the pin number. This gives 0*32+7=7.

For P9_26 you get:

bone$ gpioinfo | grep -e chip -e P9.26
gpiochip0 - 32 lines:

line 14: ”P9_26 [uart1_rxd]” ”P9_26” input active-high [used]
gpiochip1 - 32 lines:
gpiochip2 - 32 lines:
gpiochip3 - 32 lines:

0*32+14=14, so the P9_26 pin is gpio 14.

Reading a Position, Light, or Force Sensor (Variable Resistance Sensor)

Problem You have a variable resistor, force-sensitive resistor, flex sensor, or any of a number of other sensors
that output their value as a variable resistance, and you want to read their value with the Bone.

13.1. BeagleBone Cookbook 503

BeagleBoard Docs, Release 1.0.20230711-wip

Solution Use the Bone’s analog-to-digital converters (ADCs) and a resistor divider circuit to detect the resis-
tance in the sensor.

The Bone has seven built-in analog inputs that can easily read a resistive value. Seven analog inputs on P9
header shows them on the lower part of the P9 header.

Fig. 13.13: Seven analog inputs on P9 header

To make this recipe, you will need:

• Breadboard and jumper wires.

• 10k trimpot or

• Flex resistor (optional)

• 22 kΩ resistor

A variable resistor with three terminals Wiring a 10 kΩ variable resistor (trimpot) to an ADC port shows
a simple variable resistor (trimpot) wired to the Bone. One end terminal is wired to the ADC 1.8 V power supply
on pin P9_32, and the other end terminal is attached to the ADC ground (P9_34). The middle terminal is wired
to one of the seven analog-in ports (P9_36).

Reading an analog voltage (analogIn.py) shows the code used to read the variable resistor. Add the code to a
file called analogIn.py and run it; then change the resistor and run it again. The voltage read will change.

Python

JavaScript

Listing 13.3: Reading an analog voltage (analogIn.py)

1 #!/usr/bin/env python3
2 #//////////////////////////////////////
3 # analogin.py
4 # Reads the analog value of the light sensor.
5 #//////////////////////////////////////

(continues on next page)

504 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.14: Wiring a 10 kΩ variable resistor (trimpot) to an ADC port

(continued from previous page)

6 import time
7 import os
8

9 pin = ”2” # light sensor, A2, P9_37
10

11 IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw'
12

13 print('Hit ^C to stop')
14

15 f = open(IIOPATH, ”r”)
16

17 while True:
18 f.seek(0)
19 x = float(f.read())/4096
20 print('{}: {:.1f}%, {:.3f} V'.format(pin, 100*x, 1.8*x), end = '\r')
21 time.sleep(0.1)
22

23 # // Bone | Pocket | AIN
24 # // ----- | ------ | ---
25 # // P9_39 | P1_19 | 0
26 # // P9_40 | P1_21 | 1
27 # // P9_37 | P1_23 | 2
28 # // P9_38 | P1_25 | 3
29 # // P9_33 | P1_27 | 4
30 # // P9_36 | P2_35 | 5
31 # // P9_35 | P1_02 | 6

analogIn.py

Listing 13.4: Reading an analog voltage (analogIn.js)

1 #!/usr/bin/env node
2 //////////////////////////////////////

(continues on next page)

13.1. BeagleBone Cookbook 505

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

3 // analogin.js
4 // Reads the analog value of the light sensor.
5 //////////////////////////////////////
6 const fs = require(”fs”);
7 const ms = 500; // Time in milliseconds
8

9 const pin = ”2”; // light sensor, A2, P9_37
10

11 const IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw';
12

13 console.log('Hit ^C to stop');
14

15 // Read every 500ms
16 setInterval(readPin, ms);
17

18 function readPin() {
19 var data = fs.readFileSync(IIOPATH).slice(0, -1);
20 console.log('data = ' + data);
21 }
22 // Bone | Pocket | AIN
23 // ----- | ------ | ---
24 // P9_39 | P1_19 | 0
25 // P9_40 | P1_21 | 1
26 // P9_37 | P1_23 | 2
27 // P9_38 | P1_25 | 3
28 // P9_33 | P1_27 | 4
29 // P9_36 | P2_35 | 5
30 // P9_35 | P1_02 | 6

analogIn.js

Note: The code in Reading an analog voltage (analogIn.js) outputs a value between 0 and 4096.

A variable resistor with two terminals Some resistive sensors have only two terminals, such as the flex
sensor in Reading a two-terminal flex resistor The resistance between its two terminals changes when it is
flexed. In this case, we need to add a fixed resistor in series with the flex sensor. Reading a two-terminal flex
resistor shows how to wire in a 22 kΩ resistor to give a voltage to measure across the flex sensor.

Fig. 13.15: Reading a two-terminal flex resistor

The code in Reading an analog voltage (analogIn.py) and Reading an analog voltage (analogIn.js) also works
for this setup.

506 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Reading a Distance Sensor (Analog or Variable Voltage Sensor)

Problem You want to measure distance with a LV-MaxSonar-EZ1 Sonar Range Finder, which outputs a voltage
in proportion to the distance.

Solution To make this recipe, you will need:

• Breadboard and jumper wires.

• LV-MaxSonar-EZ1 Sonar Range Finder

All you have to do is wire the EZ1 to one of the Bone’s analog-in pins, as shown inWiring the LV-MaxSonar-EZ1
Sonar Range Finder to the P9_33 analog-in port. The device outputs ~6.4 mV/in when powered from 3.3 V.

Warning: Make sure not to apply more than 1.8 V to the Bone’s analog-in pins, or you will likely damage
them. In practice, this circuit should follow that rule.

Fig. 13.16: Wiring the LV-MaxSonar-EZ1 Sonar Range Finder to the P9_33 analog-in port

Reading an analog voltage (ultrasonicRange.py) shows the code that reads the sensor at a fixed interval.

Python

JavaScript

Listing 13.5: Reading an analog voltage (ultrasonicRange.py)

1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # // ultrasonicRange.js
4 # // Reads the analog value of the sensor.
5 # //////////////////////////////////////
6 import time
7 ms = 250; # Time in milliseconds
8

(continues on next page)

13.1. BeagleBone Cookbook 507

https://www.sparkfun.com/products/11309

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

9 pin = ”0” # sensor, A0, P9_39
10

11 IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw'
12

13 print('Hit ^C to stop');
14

15 f = open(IIOPATH, ”r”)
16 while True:
17 f.seek(0)
18 data = f.read()[:-1]
19 print('data= ' + data)
20 time.sleep(ms/1000)
21

22 # // Bone | Pocket | AIN
23 # // ----- | ------ | ---
24 # // P9_39 | P1_19 | 0
25 # // P9_40 | P1_21 | 1
26 # // P9_37 | P1_23 | 2
27 # // P9_38 | P1_25 | 3
28 # // P9_33 | P1_27 | 4
29 # // P9_36 | P2_35 | 5
30 # // P9_35 | P1_02 | 6

ultrasonicRange.py

Listing 13.6: Reading an analog voltage (ultrasonicRange.js)

1 #!/usr/bin/env node
2 //////////////////////////////////////
3 // ultrasonicRange.js
4 // Reads the analog value of the sensor.
5 //////////////////////////////////////
6 const fs = require(”fs”);
7 const ms = 250; // Time in milliseconds
8

9 const pin = ”0”; // sensor, A0, P9_39
10

11 const IIOPATH='/sys/bus/iio/devices/iio:device0/in_voltage'+pin+'_raw';
12

13 console.log('Hit ^C to stop');
14

15 // Read every ms
16 setInterval(readPin, ms);
17

18 function readPin() {
19 var data = fs.readFileSync(IIOPATH);
20 console.log('data= ' + data);
21 }
22 // Bone | Pocket | AIN
23 // ----- | ------ | ---
24 // P9_39 | P1_19 | 0
25 // P9_40 | P1_21 | 1
26 // P9_37 | P1_23 | 2
27 // P9_38 | P1_25 | 3
28 // P9_33 | P1_27 | 4
29 // P9_36 | P2_35 | 5
30 // P9_35 | P1_02 | 6

ultrasonicRange.js

508 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Reading a Distance Sensor (Variable Pulse Width Sensor)

Problem You want to use a HC-SR04 Ultrasonic Range Sensor with BeagleBone Black.

Solution The HC-SR04 Ultrasonic Range Sensor (shown in HC-SR04 Ultrasonic range sensor) works by send-
ing a trigger pulse to the Trigger input and then measuring the pulse width on the Echo output. The width of
the pulse tells you the distance.

Fig. 13.17: HC-SR04 Ultrasonic range sensor

To make this recipe, you will need:

• Breadboard and jumper wires.

• 10 kΩ and 20 kΩ resistors

• HC-SR04 Ultrsonic Range Sensor.

Wire the sensor as shown in Wiring an HC-SR04 Ultrasonic Sensor. Note that the HC-SR04 is a 5 V device,
so the banded wire (running from P9_7 on the Bone to VCC on the range finder) attaches the HC-SR04 to the
Bone’s 5 V power supply.

Driving a HC-SR04 ultrasound sensor (hc-sr04-ultraSonic.js) shows BoneScript code used to drive the HC-SR04.

Listing 13.7: Driving a HC-SR04 ultrasound sensor (hc-sr04-
ultraSonic.js)

1 #!/usr/bin/env node
2

3 // This is an example of reading HC-SR04 Ultrasonic Range Finder
4 // This version measures from the fall of the Trigger pulse
5 // to the end of the Echo pulse
6

7 var b = require('bonescript');
8

9 var trigger = 'P9_16', // Pin to trigger the ultrasonic pulse
10 echo = 'P9_41', // Pin to measure to pulse width related to the␣

(continues on next page)

13.1. BeagleBone Cookbook 509

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.18: Wiring an HC-SR04 Ultrasonic Sensor

(continued from previous page)

↪→distance
11 ms = 250; // Trigger period in ms
12

13 var startTime, pulseTime;
14

15 b.pinMode(echo, b.INPUT, 7, 'pulldown', 'fast', doAttach);
16 function doAttach(x) {
17 if(x.err) {
18 console.log('x.err = ' + x.err);
19 return;
20 }
21 // Call pingEnd when the pulse ends
22 b.attachInterrupt(echo, true, b.FALLING, pingEnd);
23 }
24

25 b.pinMode(trigger, b.OUTPUT);
26

27 b.digitalWrite(trigger, 1); // Unit triggers on a falling edge.
28 // Set trigger to high so we call pull it␣

↪→low later
29

30 // Pull the trigger low at a regular interval.
31 setInterval(ping, ms);
32

33 // Pull trigger low and start timing.
34 function ping() {
35 // console.log('ping');
36 b.digitalWrite(trigger, 0);
37 startTime = process.hrtime();
38 }
39

40 // Compute the total time and get ready to trigger again.
41 function pingEnd(x) {

(continues on next page)

510 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

42 if(x.attached) {
43 console.log(”Interrupt handler attached”);
44 return;
45 }
46 if(startTime) {
47 pulseTime = process.hrtime(startTime);
48 b.digitalWrite(trigger, 1);
49 console.log('pulseTime = ' + (pulseTime[1]/1000000-0.8).toFixed(3));
50 }
51 }

hc-sr04-ultraSonic.js

This code is more complex than others in this chapter, because we have to tell the device when to start
measuring and time the return pulse.

Accurately Reading the Position of a Motor or Dial

Problem You have a motor or dial and want to detect rotation using a rotary encoder.

Solution Use a rotary encoder (also called a quadrature encoder) connected to one of the Bone’s eQEP ports,
as shown in Wiring a rotary encoder using eQEP2.

Fig. 13.19: Wiring a rotary encoder using eQEP2

Table 13.1: On the BeagleBone and PocketBeage the three encoders
are:

eQEP0 P9.27 and P9.42 OR P1_33 and P2_34
eQEP P9.33 and P9.35
eQEP2 P8.11 and P8.12 OR P2_24 and P2_33

13.1. BeagleBone Cookbook 511

BeagleBoard Docs, Release 1.0.20230711-wip

Table 13.2: On the AI it’s:
eQEP1 P8.33 and P8.35
eQEP2 P8.11 and P8.12 or P9.19 and P9.41
eQEP3 P8.24 and P8.25 or P9.27 and P9.42

To make this recipe, you will need:

• Breadboard and jumper wires.

• Rotary encoder.

We are using a quadrature rotary encoder, which has two switches inside that open and close in such a manner
that you can tell which way the shaft is turning. In this particular encoder, the two switches have a common
lead, which is wired to ground. It also has a pushbutton switch wired to the other side of the device, which we
aren’t using.

Wire the encoder to P8_11 and P8_12, as shown in Wiring a rotary encoder using eQEP2.

BeagleBone Black has built-in hardware for reading up to three encoders. Here, we’ll use the eQEP2 encoder
via the Linux count subsystem.

Then run the following commands:

bone$ config-pin P8_11 qep
bone$ config-pin P8_12 qep
bone$ show-pins | grep qep
P8.12 12 fast rx up 4 qep 2 in A ocp/P8_12_pinmux (pinmux_P8_12_
↪→qep_pin)
P8.11 13 fast rx up 4 qep 2 in B ocp/P8_11_pinmux (pinmux_P8_11_
↪→qep_pin)

This will enable eQEP2 on pins P8_11 and P8_12. The 2 after the qep returned by show-pins shows it’s eQEP2.

Finally, add the code in Reading a rotary encoder (rotaryEncoder.py) to a file named rotaryEncoder.py and run
it.

Python

JavaScript

Listing 13.8: Reading a rotary encoder (rotaryEncoder.py)

1 #!/usr/bin/env python
2 # // This uses the eQEP hardware to read a rotary encoder
3 # // bone$ config-pin P8_11 eqep
4 # // bone$ config-pin P8_12 eqep
5 import time
6

7 eQEP = '2'
8 COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
9

10 ms = 100 # Time between samples in ms
11 maxCount = '1000000'
12

13 # Set the eEQP maximum count
14 f = open(COUNTERPATH+'/ceiling', 'w')
15 f.write(maxCount)
16 f.close()
17

18 # Enable
19 f = open(COUNTERPATH+'/enable', 'w')
20 f.write('1')
21 f.close()
22

(continues on next page)

512 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

23 f = open(COUNTERPATH+'/count', 'r')
24

25 olddata = -1
26 while True:
27 f.seek(0)
28 data = f.read()[:-1]
29 # Print only if data changes
30 if data != olddata:
31 olddata = data
32 print(”data = ” + data)
33 time.sleep(ms/1000)
34

35 # Black OR Pocket
36 # eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
37 # eQEP1: P9.33 and P9.35
38 # eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
39

40 # AI
41 # eQEP1: P8.33 and P8.35
42 # eQEP2: P8.11 and P8.12 or P9.19 and P9.41
43 # eQEP3: P8.24 and P8.25 or P9.27 and P9.42

rotaryEncoder.py

Listing 13.9: Reading a rotary encoder (rotaryEncoder.js)

1 #!/usr/bin/env node
2 // This uses the eQEP hardware to read a rotary encoder
3 // bone$ config-pin P8_11 eqep
4 // bone$ config-pin P8_12 eqep
5 const fs = require(”fs”);
6

7 const eQEP = ”2”;
8 const COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0';
9

10 const ms = 100; // Time between samples in ms
11 const maxCount = '1000000';
12

13 // Set the eEQP maximum count
14 fs.writeFileSync(COUNTERPATH+'/ceiling', maxCount);
15

16 // Enable
17 fs.writeFileSync(COUNTERPATH+'/enable', '1');
18

19 setInterval(readEncoder, ms); // Check state every ms
20

21 var olddata = -1;
22 function readEncoder() {
23 var data = parseInt(fs.readFileSync(COUNTERPATH+'/count'));
24 if(data != olddata) {
25 // Print only if data changes
26 console.log('data = ' + data);
27 olddata = data;
28 }
29 }
30

31 // Black OR Pocket
32 // eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
33 // eQEP1: P9.33 and P9.35
34 // eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
35

(continues on next page)

13.1. BeagleBone Cookbook 513

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

36 // AI
37 // eQEP1: P8.33 and P8.35
38 // eQEP2: P8.11 and P8.12 or P9.19 and P9.41
39 // eQEP3: P8.24 and P8.25 or P9.27 and P9.42

rotaryEncoder.js

Try rotating the encoder clockwise and counter-clockwise. You’ll see an output like this:

data = 32
data = 40
data = 44
data = 48
data = 39
data = 22
data = 0
data = 999989
data = 999973
data = 999972
^C

The values you get for data will depend on which way you are turning the device and how quickly. You will need
to press ^C (Ctrl-C) to end.

See Also You can also measure rotation by using a variable resistor (see Wiring a 10 kΩ variable resistor
(trimpot) to an ADC port).

Acquiring Data by Using a Smart Sensor over a Serial Connection

Problem You want to connect a smart sensor that uses a built-in microcontroller to stream data, such as a
global positioning system (GPS), to the Bone and read the data from it.

Solution The Bone has several serial ports (UARTs) that you can use to read data from an external microcon-
troller included in smart sensors, such as a GPS. Just wire one up, and you’ll soon be gathering useful data,
such as your own location.

Here’s what you’ll need:

• Breadboard and jumper wires.

• GPS receiver

Wire your GPS, as shown in Wiring a GPS to UART 4.

The GPS will produce raw National Marine Electronics Association (NMEA) data that’s easy for a computer to
read, but not for a human. There are many utilities to help convert such sensor data into a human-readable
form. For this GPS, run the following command to load a NMEA parser:

bone$ npm install -g nmea

Running the code in Talking to a GPS with UART 4 (GPS.js) will print the current location every time the GPS
outputs it.

Listing 13.10: Talking to a GPS with UART 4 (GPS.js)

1 #!/usr/bin/env node
2 // Install with: npm install nmea
3

4 // Need to add exports.serialParsers = m.module.parsers;
5 // to the end of /usr/local/lib/node_modules/bonescript/serial.js

(continues on next page)

514 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.20: Wiring a GPS to UART 4

(continued from previous page)

6

7 var b = require('bonescript');
8 var nmea = require('nmea');
9

10 var port = '/dev/ttyO4';
11 var options = {
12 baudrate: 9600,
13 parser: b.serialParsers.readline(”\n”)
14 };
15

16 b.serialOpen(port, options, onSerial);
17

18 function onSerial(x) {
19 if (x.err) {
20 console.log('***ERROR*** ' + JSON.stringify(x));
21 }
22 if (x.event == 'open') {
23 console.log('***OPENED***');
24 }
25 if (x.event == 'data') {
26 console.log(String(x.data));
27 console.log(nmea.parse(x.data));
28 }
29 }

GPS.js

If you don’t need the NMEA formatting, you can skip the npm part and remove the lines in the code that refer
to it.

Note: If you get an error like this TypeError: Cannot call method ‘readline’ of undefined

add this line to the end of file /usr/local/lib/node_modules/bonescript/

13.1. BeagleBone Cookbook 515

BeagleBoard Docs, Release 1.0.20230711-wip

serial.js:

exports.serialParsers = m.module.parsers;

Fig. 13.21: Table of UART outputs

Measuring a Temperature

Problem You want to measure a temperature using a digital temperature sensor.

Solution The TMP101 sensor is a common digital temperature sensor that uses a standard I2C-based serial
protocol.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Two 4.7 kΩ resistors.

• TMP101 temperature sensor.

Wire the TMP101, as shown in Wiring an I2C TMP101 temperature sensor.

There are two I2C buses brought out to the headers. Table of I2C outputs shows that you have wired your
device to I2C bus 2.

Once the I2C device is wired up, you can use a couple handy I2C tools to test the device. Because these are
Linux command-line tools, you have to use 2 as the bus number. i2cdetect, shown in I2C tools, shows which
I2C devices are on the bus. The -r flag indicates which bus to use. Our TMP101 is appearing at address 0x49.
You can use the i2cget command to read the value. It returns the temperature in hexadecimal and degrees C.
In this example, 0x18 = 24{deg}C, which is 75.2{deg}F. (Hmmm, the office is a bit warm today.) Try warming
up the TMP101 with your finger and running i2cget again.

516 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.22: Wiring an I2C TMP101 temperature sensor

Fig. 13.23: Table of I2C outputs

13.1. BeagleBone Cookbook 517

BeagleBoard Docs, Release 1.0.20230711-wip

I2C tools

bone$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

bone$ i2cget -y 2 0x49
0x18

Reading the temperature via the kernel driver

The cleanest way to read the temperature from at TMP101 sensor is to use the kernel drive.

Assuming the TMP101 is on bus 2 (the last digit is the bus number)

I2C TMP101 via Kernel

bone$ cd /sys/class/i2c-adapter/
bone$ ls
i2c-0 i2c-1 i2c-2 # Three i2c buses (bus 0 is internal)
bone$ cd i2c-2 # Pick bus 2
bone$ ls -ls
0 --w--w---- 1 root gpio 4096 Jul 1 09:24 delete_device
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 device -> ../../4819c000.i2c
0 drwxrwxr-x 3 root gpio 0 Dec 31 1999 i2c-dev
0 -r--r--r-- 1 root gpio 4096 Dec 31 1999 name
0 --w--w---- 1 root gpio 4096 Jul 1 09:24 new_device
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 of_node -> ../../../../../../../..
↪→/firmware/devicetree/base/ocp/interconnect@48000000/segment@100000/target-
↪→module@9c000/i2c@0
0 drwxrwxr-x 2 root gpio 0 Dec 31 1999 power
0 lrwxrwxrwx 1 root gpio 0 Jun 30 16:25 subsystem -> ../../../../../../../
↪→../bus/i2c
0 -rw-rw-r-- 1 root gpio 4096 Dec 31 1999 uevent

Assuming the TMP101 is at address 0x49

bone$ echo tmp101 0x49 > new_device

This tells the kernel you have a TMP101 sensor at address 0x49. Check the log to be sure.

bone$ dmesg -H | tail -3
[+13.571823] i2c i2c-2: new_device: Instantiated device tmp101 at 0x49
[+0.043362] lm75 2-0049: supply vs not found, using dummy regulator
[+0.009976] lm75 2-0049: hwmon0: sensor 'tmp101'

Yes, it’s there, now see what happened.

bone$ ls
2-0049 delete_device device i2c-dev name new_device of_node power ␣
↪→subsystem uevent

Notice a new directory has appeared. It’s for i2c bus 2, address 0x49. Look into it.

518 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ cd 2-0049/hwmon/hwmon0
bone$ ls -F
device@ name power/ subsystem@ temp1_input temp1_max temp1_max_hyst ␣
↪→uevent update_interval
bone$ cat temp1_input
24250

There is the temperature in milli-degrees C.

Other i2c devices are supported by the kernel. You can try the Linux Kernel Driver Database, https://cateee.
net/lkddb/ to see them.

Once the driver is in place, you can read it via code. Reading an I2C device (i2cTemp.py) shows how to read
the TMP101.

Python

JavaScript

Listing 13.11: Reading an I2C device (i2cTemp.py)

1 #!/usr/bin/env python
2 # //
3 # // i2cTemp.py
4 # // Read a TMP101 sensor on i2c bus 2, address 0x49
5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/

↪→new_device
7 # // See:
8 # //
9 import time
10

11 ms = 1000 # Read time in ms
12 bus = '2'
13 addr = '49'
14 I2CPATH='/sys/class/i2c-adapter/i2c-'+bus+'/'+bus+'-00'+addr+'/hwmon/hwmon0';
15

16 f = open(I2CPATH+”/temp1_input”, ”r”)
17

18 while True:
19 f.seek(0)
20 data = f.read()[:-1] # returns mili-degrees C
21 print(”data (C) = ” + str(int(data)/1000))
22 time.sleep(ms/1000)

i2cTemp.py

Listing 13.12: Reading an I2C device (i2cTemp.js)

1 #!/usr/bin/env node
2 //
3 // i2cTemp.js
4 // Read at TMP101 sensor on i2c bus 2, address 0x49
5 // Wiring: Attach to i2c as shown in text.
6 // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/new_

↪→device
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const ms = 1000; // Read time in ms
12 const bus = '2';
13 const addr = '49';

(continues on next page)

13.1. BeagleBone Cookbook 519

https://cateee.net/lkddb/
https://cateee.net/lkddb/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

14 I2CPATH='/sys/class/i2c-adapter/i2c-'+bus+'/'+bus+'-00'+addr+'/hwmon/hwmon0';
15

16 // Read every ms
17 setInterval(readTMP, ms);
18

19 function readTMP() {
20 var data = fs.readFileSync(I2CPATH+”/temp1_input”).slice(0, -1);
21 console.log('data (C) = ' + data/1000);
22 }

i2cTemp.js

Run the code by using the following command:

bone$./i2cTemp.js
data (C) = 25.625
data (C) = 27.312
data (C) = 28.187
data (C) = 28.375
^C

Notice using the kernel interface gets you more digits of accuracy.

Reading i2c device directly

The TMP102 sensor can be read directly with i2c commands rather than using the kernel driver. First you need
to install the i2c module.

bone$ pip install smbus

Listing 13.13: Reading an I2C device (i2cTemp.py)

1 #!/usr/bin/env python
2 # //
3 # // i2ctmp101.py
4 # // Read at TMP101 sensor on i2c bus 2, address 0x49
5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: pip install smbus
7 # // See:
8 # //
9 import smbus
10 import time
11

12 ms = 1000 # Read time in ms
13 bus = smbus.SMBus(2) # Using i2c bus 2
14 addr = 0x49 # TMP101 is at address 0x49
15

16 while True:
17 data = bus.read_byte_data(addr, 0)
18 print(”temp (C) = ” + str(data))
19 time.sleep(ms/1000)

i2ctmp101.py

This gets only 8 bits for the temperature. See the TMP101 datasheet (https://www.ti.com/product/TMP101) for
details on how to get up to 12 bits.

Reading Temperature via a Dallas 1-Wire Device

Problem You want to measure a temperature using a Dallas Semiconductor DS18B20 temperature sensor.

520 Chapter 13. Books

https://www.ti.com/product/TMP101

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The DS18B20 is an interesting temperature sensor that uses Dallas Semiconductor’s 1-wire inter-
face. The data communication requires only one wire! (However, you still need wires from ground and 3.3 V.)
You can wire it to any GPIO port.

To make this recipe, you will need:

• Breadboard and jumper wires.

• 4.7 kΩ resistor

• DS18B20 1-wire temperature sensor.

Wire up as shown in Wiring a Dallas 1-Wire temperature sensor.

Fig. 13.24: Wiring a Dallas 1-Wire temperature sensor

Edit the file /boot/uEnt.txt. Go to about line 19 and edit as shown:

17 ###
18 ###Additional custom capes
19 uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
20 #uboot_overlay_addr5=<file5>.dtbo

Be sure to remove the # at the beginning of the line.

Reboot the bone:

bone$ reboot

Now run the following command to discover the serial number on your device:

bone$ ls /sys/bus/w1/devices/
28-00000114ef1b 28-00000128197d w1_bus_master1

I have two devices wired in parallel on the same P9_12 input. This shows the serial numbers for all the devices.

Finally, add the code in Reading a temperature with a DS18B20 (w1.py) in to a file named w1.py, edit the path
assigned to w1 so that the path points to your device, and then run it.

Python

13.1. BeagleBone Cookbook 521

BeagleBoard Docs, Release 1.0.20230711-wip

JavaScript

Listing 13.14: Reading a temperature with a DS18B20 (w1.py)

1 #!/usr/bin/env python
2 # //
3 # // w1.js
4 # // Read a Dallas 1-wire device on P9_12
5 # // Wiring: Attach gnd and 3.3V and data to P9_12
6 # // Setup: Edit /boot/uEnv.txt to include:
7 # // uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
8 # // See:
9 # //
10 import time
11

12 ms = 500 # Read time in ms
13 # Do ls /sys/bus/w1/devices and find the address of your device
14 addr = '28-00000d459c2c' # Must be changed for your device.
15 W1PATH ='/sys/bus/w1/devices/' + addr
16

17 f = open(W1PATH+'/temperature')
18

19 while True:
20 f.seek(0)
21 data = f.read()[:-1]
22 print(”temp (C) = ” + str(int(data)/1000))
23 time.sleep(ms/1000)

w1.py

Listing 13.15: Reading a temperature with a DS18B20 (w1.js)

1 #!/usr/bin/env node
2 //
3 // w1.js
4 // Read a Dallas 1-wire device on P9_12
5 // Wiring: Attach gnd and 3.3V and data to P9_12
6 // Setup: Edit /boot/uEnv.txt to include:
7 // uboot_overlay_addr4=BB-W1-P9.12-00A0.dtbo
8 // See:
9 //
10 const fs = require(”fs”);
11

12 const ms = 500 // Read time in ms
13 // Do ls /sys/bus/w1/devices and find the address of your device
14 const addr = '28-00000d459c2c'; // Must be changed for your device.
15 const W1PATH ='/sys/bus/w1/devices/' + addr;
16

17 // Read every ms
18 setInterval(readW1, ms);
19

20 function readW1() {
21 var data = fs.readFileSync(W1PATH+'/temperature').slice(0, -1);
22 console.log('temp (C) = ' + data/1000);
23 }

w1.js

bone$./w1.js
temp (C) = 28.625
temp (C) = 29.625
temp (C) = 30.5
temp (C) = 31.0

(continues on next page)

522 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

^C

Each temperature sensor has a unique serial number, so you can have several all sharing the same data line.

Playing and Recording Audio

Problem BeagleBone doesn’t have audio built in, but you want to play and record files.

Solution One approach is to buy an audio cape, but another, possibly cheaper approach is to buy a USB
audio adapter, such as the one shown in A USB audio dongle.

Fig. 13.25: A USB audio dongle

Drivers for the Advanced Linux Sound Architecture (ALSA) are already installed on the Bone. You can list the
recording and playing devices on your Bone by using aplay and arecord, as shown in Listing the ALSA audio
output and input devices on the Bone. BeagleBone Black has audio-out on the HDMI interface. It’s listed as
card 0 in Listing the ALSA audio output and input devices on the Bone. card 1 is my USB audio adapter’s audio
out.

Listing the ALSA audio output and input devices on the Bone

bone$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Black [TI BeagleBone Black], device 0: HDMI nxp-hdmi-hifi-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0

(continues on next page)

13.1. BeagleBone Cookbook 523

http://bit.ly/1MrAJUR

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

bone$ arecord -l
**** List of CAPTURE Hardware Devices ****
card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

In the aplay output shown in Listing the ALSA audio output and input devices on the Bone, you can see the
USB adapter’s audio out. By default, the Bone will send audio to the HDMI. You can change that default by
creating a file in your home directory called ~/.asoundrc and adding the code in Change the default audio out
by putting this in ~/.asoundrc (audio.asoundrc) to it.

Listing 13.16: Change the default audio out by putting this in
~/.asoundrc (audio.asoundrc)

1 pcm.!default {
2 type plug
3 slave {
4 pcm ”hw:1,0”
5 }
6 }
7 ctl.!default {
8 type hw
9 card 1
10 }

audio.asoundrc

You can easily play .wav files with aplay:

bone$ aplay test.wav

You can play other files in other formats by installing mplayer:

bone$ sudo apt update
bone$ sudo apt install mplayer
bone$ mplayer test.mp3

Discussion Adding the simple USB audio adapter opens up a world of audio I/O on the Bone.

13.1.3 Displays and Other Outputs

In this chapter, you will learn how to control physical hardware via BeagleBone Black’s general-purpose in-
put/output (GPIO) pins. The Bone has 65 GPIO pins that are brought out on two 46-pin headers, called P8 and
P9, as shown in The P8 and P9 GPIO headers.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

The purpose of this chapter is to give simple examples that show how to use various methods of output. Most
solutions require a breadboard and some jumper wires.

All these examples assume that you know how to edit a file (Editing Code Using Visual Studio Code) and run it,
either within Visual Studio Code (VSC) integrated development environment (IDE) or from the command line
(Getting to the Command Shell via SSH).

524 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.26: The P8 and P9 GPIO headers

Toggling an Onboard LED

Problem You want to know how to flash the four LEDs that are next to the Ethernet port on the Bone.

Solution Locate the four onboard LEDs shown in The four USER LEDs. They are labeled USR0 through USR3,
but we’ll refer to them as the USER LEDs.

Place the code shown in Using an internal LED (internLED.py) in a file called internLED.py. You can do
this using VSC to edit files (as shown in Editing Code Using Visual Studio Code) or with a more traditional editor
(as shown in Editing a Text File from the GNU/Linux Command Shell).

Python

C

Listing 13.17: Using an internal LED (internLED.py)

1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # internLED.py
4 # Blinks A USR LED.
5 # Wiring:
6 # Setup:
7 # See:
8 # //////////////////////////////////////
9 import gpiod
10 import time
11

12 LED_CHIP = 'gpiochip1'
13 LED_LINE_OFFSET = [21] # USR0 run: gpioinfo | grep -i -e chip -e usr
14

15 chip = gpiod.Chip(LED_CHIP)
16

17 lines = chip.get_lines(LED_LINE_OFFSET)
(continues on next page)

13.1. BeagleBone Cookbook 525

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.27: The four USER LEDs

(continued from previous page)

18 lines.request(consumer='internLED.py', type=gpiod.LINE_REQ_DIR_OUT)
19

20 state = 0 # Start with LED off
21 while True:
22 lines.set_values([state])
23 state = ~state # Toggle the state
24 time.sleep(0.25)

internLED.py

Listing 13.18: Using an internal LED (internLED.c)

1 // // //////////////////////////////////////
2 // # internLED.c
3 // # Blinks A USR LED.
4 // # Wiring:
5 // # Setup:
6 // # See:
7 // // //////////////////////////////////////
8 #include <gpiod.h>
9 #include <stdio.h>
10 #include <unistd.h>
11

12 #define CONSUMER ”internLED.c”
13

14 int main(int argc, char **argv)
15 {
16 int chipnumber = 1;
17 unsigned int line_num = 21; // usr0 LED, run: gpioinfo | grep -

↪→i -e chip -e usr
18 unsigned int val;
19 struct gpiod_chip *chip;
20 struct gpiod_line *line;
21 int i, ret;
22

23 chip = gpiod_chip_open_by_number(chipnumber);
24 line = gpiod_chip_get_line(chip, line_num);
25 ret = gpiod_line_request_output(line, CONSUMER, 0);

(continues on next page)

526 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

26

27 /* Blink */
28 val = 0;
29 while(1) {
30 ret = gpiod_line_set_value(line, val);
31 // printf(”Output %u on line #%u\n”, val, line_num);
32 usleep(100000); // Number of microseconds to␣

↪→sleep
33 val = !val;
34 }
35 }

internLED.c

In the bash command window, enter the following commands:

bone$ cd ~/beaglebone-cookbook-code/03displays
bone$./internLED.py

The USER0 LED should now be flashing.

Toggling an External LED

Problem You want to connect your own external LED to the Bone.

Solution Connect an LED to one of the GPIO pins using a series resistor to limit the current. To make this
recipe, you will need:

• Breadboard and jumper wires.

• 220 Ω to 470 Ω resistor.

• LED

Warning: The value of the current limiting resistor depends on the LED you are using. The Bone can drive
only 4 to 6 mA, so you might need a larger resistor to keep from pulling too much current. A 330 Ω or 470
Ω resistor might be better.

Diagram for using an external LED shows how you can wire the LED to pin 14 of the P9 header (P9_14). Every
circuit in this book (Wiring a Breadboard) assumes you have already wired the rightmost bus to ground (P9_1)
and the next bus to the left to the 3.3 V (P9_3) pins on the header. Be sure to get the polarity right on the LED.
The _short_ lead always goes to ground.

After you’ve wired it, start VSC (see Editing Code Using Visual Studio Code) and find the code shown in Code
for using an external LED (externLED.py). Notice that it looks very similar to the internLED code, in fact it only
differs in the line number (18 instead of 21). The built-in LEDs use the same GPIO interface as the GPIO pins.

Python

C

Listing 13.19: Code for using an external LED (externLED.py)

1 #!/usr/bin/env python
2 # //////////////////////////////////////
3 # externLED.py
4 # Blinks an external LED wired to P9_14.
5 # Wiring: P9_14 connects to the plus lead of an LED. The negative␣

↪→lead of the
(continues on next page)

13.1. BeagleBone Cookbook 527

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.28: Diagram for using an external LED

(continued from previous page)

6 # LED goes to a 220 Ohm resistor. The other lead of the␣
↪→resistor goes

7 # to ground
8 # Setup:
9 # See:
10 # //////////////////////////////////////
11 import gpiod
12 import time
13

14 LED_CHIP = 'gpiochip1'
15 LED_LINE_OFFSET = [18] # P9_14 run: gpioinfo | grep -i -e chip -e P9_14
16

17 chip = gpiod.Chip(LED_CHIP)
18

19 lines = chip.get_lines(LED_LINE_OFFSET)
20 lines.request(consumer='internLED.py', type=gpiod.LINE_REQ_DIR_OUT)
21

22 state = 0 # Start with LED off
23 while True:
24 lines.set_values([state])
25 state = ~state # Toggle the state
26 time.sleep(0.25)

externLED.py

Listing 13.20: Code for using an external LED (externLED.c)

1 // // //////////////////////////////////////
2 // # externLED.c
3 // Blinks an external LED wired to P9_14.
4 // Wiring: P9_14 connects to the plus lead of an LED. The negative lead of␣

↪→the
5 // LED goes to a 220 Ohm resistor. The other lead of the␣

(continues on next page)

528 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→resistor goes
6 // to ground
7 // Setup:
8 // See:
9 // // //////////////////////////////////////
10 #include <gpiod.h>
11 #include <stdio.h>
12 #include <unistd.h>
13

14 #define CONSUMER ”internLED.c”
15

16 int main(int argc, char **argv)
17 {
18 int chipnumber = 1;
19 unsigned int line_num = 18; // P9_14, run: gpioinfo | grep -i -

↪→e chip -e P9_14
20 unsigned int val;
21 struct gpiod_chip *chip;
22 struct gpiod_line *line;
23 int i, ret;
24

25 chip = gpiod_chip_open_by_number(chipnumber);
26 line = gpiod_chip_get_line(chip, line_num);
27 ret = gpiod_line_request_output(line, CONSUMER, 0);
28

29 /* Blink */
30 val = 0;
31 while(1) {
32 ret = gpiod_line_set_value(line, val);
33 // printf(”Output %u on line #%u\n”, val, line_num);
34 usleep(100000); // Number of microseconds to␣

↪→sleep
35 val = !val;
36 }
37 }

externLED.c

Save your file and run the code as before (Toggling an Onboard LED).

Toggling a High-Voltage External Device

Problem You want to control a device that runs at 120 V.

Solution Working with 120 V can be tricky –even dangerous– if you aren’t careful. Here’s a safe way to do it.

To make this recipe, you will need:

• PowerSwitch Tail II

Diagram for wiring PowerSwitch Tail II shows how you can wire the PowerSwitch Tail II to pin P9_14.

After you’ve wired it, because this uses the same output pin as Toggling an External LED, you can run the same
code (Code for using an external LED (externLED.py)).

Fading an External LED

Problem You want to change the brightness of an LED from the Bone.

13.1. BeagleBone Cookbook 529

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.29: Diagram for wiring PowerSwitch Tail II

Solution Use the Bone’s pulse width modulation (PWM) hardware to fade an LED. We’ll use the same circuit
as before (Diagram for using an external LED). Find the code in Code for using an external LED (fadeLED.py)
Next configure the pins. We are using P9_14 so run:

bone$ config-pin P9_14 pwm

Then run it as before.

Python

JavaScript

Listing 13.21: Code for using an external LED (fadeLED.py)

1 #!/usr/bin/env python
2 # //
3 # // fadeLED.py
4 # // Blinks the P9_14 pin
5 # // Wiring:
6 # // Setup: config-pin P9_14 pwm
7 # // See:
8 # //
9 import time
10 ms = 20; # Fade time in ms
11

12 pwmPeriod = 1000000 # Period in ns
13 pwm = '1' # pwm to use
14 channel = 'a' # channel to use
15 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
16 step = 0.02 # Step size
17 min = 0.02 # dimmest value
18 max = 1 # brightest value
19 brightness = min # Current brightness
20

21 f = open(PWMPATH+'/period', 'w')
22 f.write(str(pwmPeriod))
23 f.close()
24

(continues on next page)

530 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

25 f = open(PWMPATH+'/enable', 'w')
26 f.write('1')
27 f.close()
28

29 f = open(PWMPATH+'/duty_cycle', 'w')
30 while True:
31 f.seek(0)
32 f.write(str(round(pwmPeriod*brightness)))
33 brightness += step
34 if(brightness >= max or brightness <= min):
35 step = -1 * step
36 time.sleep(ms/1000)
37

38 # | Pin | pwm | channel
39 # | P9_31 | 0 | a
40 # | P9_29 | 0 | b
41 # | P9_14 | 1 | a
42 # | P9_16 | 1 | b
43 # | P8_19 | 2 | a
44 # | P8_13 | 2 | b

fadeLED.py

Listing 13.22: Code for using an external LED (fadeLED.js)

1 #!/usr/bin/env node
2 //
3 // fadeLED.js
4 // Blinks the P9_14 pin
5 // Wiring:
6 // Setup: config-pin P9_14 pwm
7 // See:
8 //
9 const fs = require(”fs”);
10 const ms = '20'; // Fade time in ms
11

12 const pwmPeriod = '1000000'; // Period in ns
13 const pwm = '1'; // pwm to use
14 const channel = 'a'; // channel to use
15 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
16 var step = 0.02; // Step size
17 const min = 0.02, // dimmest value
18 max = 1; // brightest value
19 var brightness = min; // Current brightness;
20

21

22 // Set the period in ns
23 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
24 fs.writeFileSync(PWMPATH+'/duty_cycle', pwmPeriod/2);
25 fs.writeFileSync(PWMPATH+'/enable', '1');
26

27 setInterval(fade, ms); // Step every ms
28

29 function fade() {
30 fs.writeFileSync(PWMPATH+'/duty_cycle',
31 parseInt(pwmPeriod*brightness));
32 brightness += step;
33 if(brightness >= max || brightness <= min) {
34 step = -1 * step;
35 }
36 }

(continues on next page)

13.1. BeagleBone Cookbook 531

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

37

38 // | Pin | pwm | channel
39 // | P9_31 | 0 | a
40 // | P9_29 | 0 | b
41 // | P9_14 | 1 | a
42 // | P9_16 | 1 | b
43 // | P8_19 | 2 | a
44 // | P8_13 | 2 | b

fadeLED.js

The Bone has several outputs that can be use as pwm’s as shown in Table of PWM outputs. There are three
EHRPWM’s which each has a pair of pwm channels. Each pair must have the same period.

Fig. 13.30: Table of PWM outputs

The pwm’s are accessed through /dev/bone/pwm

bone$ cd /dev/bone/pwm
bone$ ls
0 1 2

Here we see three pwmchips that can be used, each has two channels. Explore one.

bone$ cd 1
bone$ ls
a b
bone$ cd a
bone$ ls
capture duty_cycle enable period polarity power uevent

Here is where you can set the period and duty_cycle (in ns) and enable the pwm. Attach in LED to P9_14 and
if you set the period long enough you can see the LED flash.

532 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ echo 1000000000 > period
bone$ echo 500000000 > duty_cycle
bone$ echo 1 > enable

Your LED should now be flashing.

Headers to pwm channel mapping are the mapping I’ve figured out so far. I don’t know how to get to the timers.

Table 13.3: Headers to pwm channel mapping
Pin pwm channel
P9_31 0 a
P9_29 0 b
P9_14 1 a
P9_16 1 b
P8_19 2 a
P8_13 2 b

Writing to an LED Matrix

Problem You have an I2C-based LED matrix to interface.

Solution There are a number of nice LED matrices that allow you to control several LEDs via one interface.
This solution uses an Adafruit Bicolor 8x8 LED Square Pixel Matrix w/|I2C| Backpack.

To make this recipe, you will need:

• Breadboard and jumper wires

• Two 4.7 kΩ resistors.

• I2C LED matrix

The LED matrix is a 5 V device, but you can drive it from 3.3 V. Wire, as shown in Wiring an I2C LED matrix.

Fig. 13.31: Wiring an I2C LED matrix

13.1. BeagleBone Cookbook 533

http://www.adafruit.com/products/902

BeagleBoard Docs, Release 1.0.20230711-wip

Measuring a Temperature shows how to use i2cdetect to discover the address of an I2C device.

Run the i2cdetect -y -r 2 command to discover the address of the display on I2C bus 2, as shown in Using I2C
command-line tools to discover the address of the display.

Using I2C command-line tools to discover the address of the display

bone$ i2cdetect -y -r 2
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: 70 -- -- -- -- -- -- --

Here, you can see a device at 0x49 and 0x70. I know I have a temperature sensor at 0x49, so the LED matrix
must be at 0x70.

Find the code in LED matrix display (matrixLEDi2c.py) and run it by using the following command:

bone$ pip install smbus # (Do this only once.)
bone$./matrixLEDi2c.py

LED matrix display (matrixLEDi2c.py)

Listing 13.23: LED matrix display (matrixLEDi2c.py)

1 #!/usr/bin/env python
2 # //
3 # // i2cTemp.py
4 # // Write an 8x8 Red/Green LED matrix.
5 # // Wiring: Attach to i2c as shown in text.
6 # // Setup: echo tmp101 0x49 > /sys/class/i2c-adapter/i2c-2/

↪→new_device
7 # // See: https://www.adafruit.com/product/902
8 # //
9 import smbus
10 import time
11

12 bus = smbus.SMBus(2) # Use i2c bus 2 �
13 matrix = 0x70 # Use address 0x70 �
14 ms = 1; # Delay between images in ms
15

16 # The first byte is GREEN, the second is RED. �
17 smile = [0x00, 0x3c, 0x00, 0x42, 0x28, 0x89, 0x04, 0x85,
18 0x04, 0x85, 0x28, 0x89, 0x00, 0x42, 0x00, 0x3c
19]
20 frown = [0x3c, 0x00, 0x42, 0x00, 0x85, 0x20, 0x89, 0x00,
21 0x89, 0x00, 0x85, 0x20, 0x42, 0x00, 0x3c, 0x00
22]
23 neutral = [0x3c, 0x3c, 0x42, 0x42, 0xa9, 0xa9, 0x89, 0x89,
24 0x89, 0x89, 0xa9, 0xa9, 0x42, 0x42, 0x3c, 0x3c
25]
26

27 bus.write_byte_data(matrix, 0x21, 0) # Start oscillator (p10) �
28 bus.write_byte_data(matrix, 0x81, 0) # Disp on, blink off (p11)
29 bus.write_byte_data(matrix, 0xe7, 0) # Full brightness (page 15)

(continues on next page)

534 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

30

31 bus.write_i2c_block_data(matrix, 0, frown) # �
32 for fade in range(0xef, 0xe0, -1): # �
33 bus.write_byte_data(matrix, fade, 0)
34 time.sleep(ms/10)
35

36 bus.write_i2c_block_data(matrix, 0, neutral)
37 for fade in range(0xe0, 0xef, 1):
38 bus.write_byte_data(matrix, fade, 0)
39 time.sleep(ms/10)
40

41 bus.write_i2c_block_data(matrix, 0, smile)

matrixLEDi2c.py

① This line states which bus to use. The last digit gives the I2C bus number.

② This specifies the address of the LED matrix, 0x70 in our case.

③ This indicates which LEDs to turn on. The first byte is for the first column of green LEDs. In this
case, all are turned off. The next byte is for the first column of red LEDs. The hex 0x3c number is
0b00111100 in binary. This means the first two red LEDs are off, the next four are on, and the last
two are off. The next byte (0x00) says the second column of green LEDs are all off, the fourth byte
(0x42 = 0b01000010) says just two red LEDs are on, and so on. Declarations define four different
patterns to display on the LED matrix, the last being all turned off.

④ Send three commands to the matrix to get it ready to display.

⑤ Now, we are ready to display the various patterns. After each pattern is displayed, we sleep a
certain amount of time so that the pattern can be seen.

⑥ Finally, send commands to the LED matrix to set the brightness. This makes the display fade
out and back in again.

Driving a 5 V Device

Problem You have a 5 V device to drive, and the Bone has 3.3 V outputs.

Solution If you are lucky, you might be able to drive a 5 V device from the Bone’s 3.3 V output. Try it and
see if it works. If not, you need a level translator.

What you will need for this recipe:

• A PCA9306 level translator

• A 5 V power supply (if the Bone’s 5 V power supply isn’t enough)

The PCA9306 translates signals at 3.3 V to 5 V in both directions. It’s meant to work with I2C devices that have
a pull-up resistor, but it can work with anything needing translation.

Wiring a PCA9306 level translator to an LED matrix shows how to wire a PCA9306 to an LED matrix. The left is
the 3.3 V side and the right is the 5 V side. Notice that we are using the Bone’s built-in 5 V power supply.

Note: If your device needs more current than the Bone’s 5 V power supply provides, you can wire in an
external power supply.

Writing to a NeoPixel LED String Using the PRUs

Problem You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and want to light it up.

13.1. BeagleBone Cookbook 535

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.32: Wiring a PCA9306 level translator to an LED matrix

Solution The PRU Cookbook has a nice discussion (WS2812 (NeoPixel) driver) on driving NeoPixels.

Writing to a NeoPixel LED String Using LEDscape

Making Your Bone Speak

Problem Your Bone wants to talk.

Solution Just install the flite text-to-speech program:

bone$ sudo apt install flite

Then add the code from A program that talks (speak.js) in a file called speak.js and run.

Listing 13.24: A program that talks (speak.js)

1 #!/usr/bin/env node
2

3 var exec = require('child_process').exec;
4

5 function speakForSelf(phrase) {
6 {
7 exec('flite -t ”' + phrase + '”', function (error, stdout, stderr) {
8 console.log(stdout);
9 if(error) {
10 console.log('error: ' + error);
11 }
12 if(stderr) {
13 console.log('stderr: ' + stderr);
14 }
15 });
16 }

(continues on next page)

536 Chapter 13. Books

https://markayoder.github.io/PRUCookbook/05blocks/blocks.html#blocks_ws2812

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.33: Wiring an Adafruit NeoPixel LED matrix to P9_29

(continued from previous page)

17

18 speakForSelf(”Hello, My name is Borris. ” +
19 ”I am a BeagleBone Black, ” +
20 ”a true open hardware, ” +
21 ”community-supported embedded computer for developers and hobbyists. ” +
22 ”I am powered by a 1 Giga Hertz Sitara™ ARM® Cortex-A8 processor. ” +
23 ”I boot Linux in under 10 seconds. ” +
24 ”You can get started on development in ” +
25 ”less than 5 minutes with just a single USB cable.” +
26 ”Bark, bark!”
27);

speak.js

See Playing and Recording Audio to see how to use a USB audio dongle and set your default audio out.

13.1.4 Motors

One of the many fun things about embedded computers is that you can move physical things with motors. But
there are so many different kinds of motors (servo, stepper, DC), so how do you select the right one?

The type of motor you use depends on the type of motion you want:

• R/C or hobby servo motor
Can be quickly positioned at various absolute angles, but some don’t spin. In fact, many can turn
only about 180{deg}.

• Stepper motor
Spins and can also rotate in precise relative angles, such as turning 45°. Stepper motors come in
two types: bipolar (which has four wires) and unipolar (which has five or six wires).

• DC motor
Spins either clockwise or counter-clockwise and can have the greatest speed of the three. But a DC

13.1. BeagleBone Cookbook 537

BeagleBoard Docs, Release 1.0.20230711-wip

motor can’t easily be made to turn to a given angle.

When you know which type of motor to use, interfacing is easy. This chapter shows how to interface with each
of these motors.

Note: Motors come in many sizes and types. This chapter presents some of the more popular types and
shows how they can interface easily to the Bone. If you need to turn on and off a 120 V motor, consider using
something like the PowerSwitch presented in Toggling a High-Voltage External Device.

Note: The Bone has built-in 3.3 V and 5 V supplies, which can supply enough current to drive some small
motors. Many motors, however, draw enough current that an external power supply is needed. Therefore, an
external 5 V power supply is listed as optional in many of the recipes.

Note: All the examples in the book assume you have cloned the Cookbook repository on git.beagleboard.org.
Go here Cloning the Cookbook Repository for instructions.

Controlling a Servo Motor

Problem You want to use BeagleBone to control the absolute position of a servo motor.

Solution We’ll use the pulse width modulation (PWM) hardware of the Bone to control a servo motor.

To make the recipe, you will need:

• Servo motor.

• Breadboard and jumper wires.

• 1 kΩ resistor (optional)

• 5 V power supply (optional)

The 1 kΩ resistor isn’t required, but it provides some protection to the general-purpose input/output (GPIO) pin
in case the servo fails and draws a large current.

Wire up your servo, as shown in Driving a servo motor with the 3.3 V power supply.

Note: There is no standard for how servo motor wires are colored. One of my servos is wired like Driving a
servo motor with the 3.3 V power supply red is 3.3 V, black is ground, and yellow is the control line. I have
another servo that has red as 3.3 V and ground is brown, with the control line being orange. Generally, though,
the 3.3 V is in the middle. Check the datasheet for your servo before wiring.

The code for controlling the servo motor is in servoMotor.py, shown in Code for driving a servo motor
(servoMotor.py). You need to configure the pin for PWM.

bone$ cd ~/beaglebone-cookbook-code/04motors
bone$ config-pin P9_16 pwm
bone$./servoMotor.py

Python

JavaScript

538 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.34: Driving a servo motor with the 3.3 V power supply

Listing 13.25: Code for driving a servo motor (servoMotor.py)

1 #!/usr/bin/env python
2 # //
3 # // servoMotor.py
4 # // Drive a simple servo motor back and forth on P9_16 pin
5 # // Wiring:
6 # // Setup: config-pin P9_16 pwm
7 # // See:
8 # //
9 import time
10 import signal
11 import sys
12

13 pwmPeriod = '20000000' # Period in ns, (20 ms)
14 pwm = '1' # pwm to use
15 channel = 'b' # channel to use
16 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
17 low = 0.8 # Smallest angle (in ms)
18 hi = 2.4 # Largest angle (in ms)
19 ms = 250 # How often to change position, in ms
20 pos = 1.5 # Current position, about middle ms)
21 step = 0.1 # Step size to next position
22

23 def signal_handler(sig, frame):
24 print('Got SIGINT, turning motor off')
25 f = open(PWMPATH+'/enable', 'w')
26 f.write('0')
27 f.close()
28 sys.exit(0)
29 signal.signal(signal.SIGINT, signal_handler)
30 print('Hit ^C to stop')
31

(continues on next page)

13.1. BeagleBone Cookbook 539

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

32 f = open(PWMPATH+'/period', 'w')
33 f.write(pwmPeriod)
34 f.close()
35 f = open(PWMPATH+'/enable', 'w')
36 f.write('1')
37 f.close()
38

39 f = open(PWMPATH+'/duty_cycle', 'w')
40 while True:
41 pos += step # Take a step
42 if(pos > hi or pos < low):
43 step *= -1
44 duty_cycle = str(round(pos*1000000)) # Convert ms to ns
45 # print('pos = ' + str(pos) + ' duty_cycle = ' + duty_cycle)
46 f.seek(0)
47 f.write(duty_cycle)
48 time.sleep(ms/1000)
49

50 # | Pin | pwm | channel
51 # | P9_31 | 0 | a
52 # | P9_29 | 0 | b
53 # | P9_14 | 1 | a
54 # | P9_16 | 1 | b
55 # | P8_19 | 2 | a
56 # | P8_13 | 2 | b

servoMotor.py

Listing 13.26: Code for driving a servo motor (servoMotor.js)

1 #!/usr/bin/env node
2 //
3 // servoMotor.js
4 // Drive a simple servo motor back and forth on P9_16 pin
5 // Wiring:
6 // Setup: config-pin P9_16 pwm
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const pwmPeriod = '20000000'; // Period in ns, (20 ms)
12 const pwm = '1'; // pwm to use
13 const channel = 'b'; // channel to use
14 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
15 const low = 0.8, // Smallest angle (in ms)
16 hi = 2.4, // Largest angle (in ms)
17 ms = 250; // How often to change position, in ms
18 var pos = 1.5, // Current position, about middle ms)
19 step = 0.1; // Step size to next position
20

21 console.log('Hit ^C to stop');
22 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
23 fs.writeFileSync(PWMPATH+'/enable', '1');
24

25 var timer = setInterval(sweep, ms);
26

27 // Sweep from low to hi position and back again
28 function sweep() {
29 pos += step; // Take a step
30 if(pos > hi || pos < low) {
31 step *= -1;

(continues on next page)

540 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

32 }
33 var dutyCycle = parseInt(pos*1000000); // Convert ms to ns
34 // console.log('pos = ' + pos + ' duty cycle = ' + dutyCycle);
35 fs.writeFileSync(PWMPATH+'/duty_cycle', dutyCycle);
36 }
37

38 process.on('SIGINT', function() {
39 console.log('Got SIGINT, turning motor off');
40 clearInterval(timer); // Stop the timer
41 fs.writeFileSync(PWMPATH+'/enable', '0');
42 });
43

44 // | Pin | pwm | channel
45 // | P9_31 | 0 | a
46 // | P9_29 | 0 | b
47 // | P9_14 | 1 | a
48 // | P9_16 | 1 | b
49 // | P8_19 | 2 | a
50 // | P8_13 | 2 | b

servoMotor.js

Running the code causes the motor to move back and forth, progressing to successive positions between the
two extremes. You will need to press ^C (Ctrl-C) to stop the script.

Controlling a Servo with an Rotary Encoder

Problem You have a rotary encoder from Reading a rotary encoder (rotaryEncoder.js) that you want to control
a servo motor.

Solution Combine the code from Reading a rotary encoder (rotaryEncoder.js) and Controlling a Servo Motor.

bone$ config-pin P9_16 pwm
bone$ config-pin P8_11 eqep
bone$ config-pin P8_12 eqep
bone$./servoEncoder.py

Listing 13.27: Code for driving a servo motor with a rotary en-
corder(servoEncoder.py)

1 #!/usr/bin/env python
2 # //
3 # // servoEncoder.py
4 # // Drive a simple servo motor using rotary encoder viq eQEP
5 # // Wiring: Servo on P9_16, rotary encoder on P8_11 and P8_12
6 # // Setup: config-pin P9_16 pwm
7 # // config-pin P8_11 eqep
8 # // config-pin P8_12 eqep
9 # // See:
10 # //
11 import time
12 import signal
13 import sys
14

15 # Set up encoder
16 eQEP = '2'
17 COUNTERPATH = '/dev/bone/counter/counter'+eQEP+'/count0'
18 maxCount = '180'
19

(continues on next page)

13.1. BeagleBone Cookbook 541

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

20 ms = 100 # Time between samples in ms
21

22 # Set the eEQP maximum count
23 fQEP = open(COUNTERPATH+'/ceiling', 'w')
24 fQEP.write(maxCount)
25 fQEP.close()
26

27 # Enable
28 fQEP = open(COUNTERPATH+'/enable', 'w')
29 fQEP.write('1')
30 fQEP.close()
31

32 fQEP = open(COUNTERPATH+'/count', 'r')
33

34 # Set up servo
35 pwmPeriod = '20000000' # Period in ns, (20 ms)
36 pwm = '1' # pwm to use
37 channel = 'b' # channel to use
38 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
39 low = 0.6 # Smallest angle (in ms)
40 hi = 2.5 # Largest angle (in ms)
41 ms = 250 # How often to change position, in ms
42 pos = 1.5 # Current position, about middle ms)
43 step = 0.1 # Step size to next position
44

45 def signal_handler(sig, frame):
46 print('Got SIGINT, turning motor off')
47 f = open(PWMPATH+'/enable', 'w')
48 f.write('0')
49 f.close()
50 sys.exit(0)
51 signal.signal(signal.SIGINT, signal_handler)
52

53 f = open(PWMPATH+'/period', 'w')
54 f.write(pwmPeriod)
55 f.close()
56 f = open(PWMPATH+'/duty_cycle', 'w')
57 f.write(str(round(int(pwmPeriod)/2)))
58 f.close()
59 f = open(PWMPATH+'/enable', 'w')
60 f.write('1')
61 f.close()
62

63 print('Hit ^C to stop')
64

65 olddata = -1
66 while True:
67 fQEP.seek(0)
68 data = fQEP.read()[:-1]
69 # Print only if data changes
70 if data != olddata:
71 olddata = data
72 # print(”data = ” + data)
73 # # map 0-180 to low-hi
74 duty_cycle = -1*int(data)*(hi-low)/180.0 + hi
75 duty_cycle = str(int(duty_cycle*1000000)) # Convert␣

↪→from ms to ns
76 # print('duty_cycle = ' + duty_cycle)
77 f = open(PWMPATH+'/duty_cycle', 'w')
78 f.write(duty_cycle)
79 f.close()

(continues on next page)

542 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

80 time.sleep(ms/1000)
81

82 # Black OR Pocket
83 # eQEP0: P9.27 and P9.42 OR P1_33 and P2_34
84 # eQEP1: P9.33 and P9.35
85 # eQEP2: P8.11 and P8.12 OR P2_24 and P2_33
86

87 # AI
88 # eQEP1: P8.33 and P8.35
89 # eQEP2: P8.11 and P8.12 or P9.19 and P9.41
90 # eQEP3: P8.24 and P8.25 or P9.27 and P9.42
91

92 # | Pin | pwm | channel
93 # | P9_31 | 0 | a
94 # | P9_29 | 0 | b
95 # | P9_14 | 1 | a
96 # | P9_16 | 1 | b
97 # | P8_19 | 2 | a
98 # | P8_13 | 2 | b

servoEncoder.py

Controlling the Speed of a DC Motor

Problem You have a DCmotor (or a solenoid) and want a simple way to control its speed, but not the direction.

Solution It would be nice if you could just wire the DC motor to BeagleBone Black and have it work, but it
won’t. Most motors require more current than the GPIO ports on the Bone can supply. Our solution is to use a
transistor to control the current to the bone.

Here we configure the encoder to returns value between 0 and 180 inclusive. This value is then mapped to a
value between min (0.6 ms) and max (2.5 ms). This number is converted from milliseconds and nanoseconds
(time 1000000) and sent to the servo motor via the pwm.

Here’s what you will need:

• 3 V to 5 V DC motor

• Breadboard and jumper wires.

• 1 kΩ resistor.

• Transistor 2N3904.

• Diode 1N4001.

• Power supply for the motor (optional)

If you are using a larger motor (more current), you will need to use a larger transistor.

Wire your breadboard as shown in Wiring a DC motor to spin one direction.

Use the code in Driving a DC motor in one direction (dcMotor.py) to run the motor.

Python

JavaScript

Listing 13.28: Driving a DC motor in one direction (dcMotor.py)

1 #!/usr/bin/env python
2 # //
3 # // dcMotor.js
4 # // This is an example of driving a DC motor

(continues on next page)

13.1. BeagleBone Cookbook 543

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.35: Wiring a DC motor to spin one direction

(continued from previous page)

5 # // Wiring:
6 # // Setup: config-pin P9_16 pwm
7 # // See:
8 # //
9 import time
10 import signal
11 import sys
12

13 def signal_handler(sig, frame):
14 print('Got SIGINT, turning motor off')
15 f = open(PWMPATH+'/enable', 'w')
16 f.write('0')
17 f.close()
18 sys.exit(0)
19 signal.signal(signal.SIGINT, signal_handler)
20

21 pwmPeriod = '1000000' # Period in ns
22 pwm = '1' # pwm to use
23 channel = 'b' # channel to use
24 PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel
25

26 low = 0.05 # Slowest speed (duty cycle)
27 hi = 1 # Fastest (always on)
28 ms = 100 # How often to change speed, in ms
29 speed = 0.5 # Current speed
30 step = 0.05 # Change in speed
31

32 f = open(PWMPATH+'/duty_cycle', 'w')
33 f.write('0')
34 f.close()
35 f = open(PWMPATH+'/period', 'w')
36 f.write(pwmPeriod)
37 f.close()

(continues on next page)

544 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

38 f = open(PWMPATH+'/enable', 'w')
39 f.write('1')
40 f.close()
41

42 f = open(PWMPATH+'/duty_cycle', 'w')
43 while True:
44 speed += step
45 if(speed > hi or speed < low):
46 step *= -1
47 duty_cycle = str(round(speed*1000000)) # Convert ms to ns
48 f.seek(0)
49 f.write(duty_cycle)
50 time.sleep(ms/1000)

dcMotor.py

Listing 13.29: Driving a DC motor in one direction (dcMotor.js)

1 #!/usr/bin/env node
2 //
3 // dcMotor.js
4 // This is an example of driving a DC motor
5 // Wiring:
6 // Setup: config-pin P9_16 pwm
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const pwmPeriod = '1000000'; // Period in ns
12 const pwm = '1'; // pwm to use
13 const channel = 'b'; // channel to use
14 const PWMPATH='/dev/bone/pwm/'+pwm+'/'+channel;
15

16 const low = 0.05, // Slowest speed (duty cycle)
17 hi = 1, // Fastest (always on)
18 ms = 100; // How often to change speed, in ms
19 var speed = 0.5, // Current speed;
20 step = 0.05; // Change in speed
21

22 // fs.writeFileSync(PWMPATH+'/export', pwm); // Export the pwm channel
23 // Set the period in ns, first 0 duty_cycle,
24 fs.writeFileSync(PWMPATH+'/duty_cycle', '0');
25 fs.writeFileSync(PWMPATH+'/period', pwmPeriod);
26 fs.writeFileSync(PWMPATH+'/duty_cycle', pwmPeriod/2);
27 fs.writeFileSync(PWMPATH+'/enable', '1');
28

29 timer = setInterval(sweep, ms);
30

31 function sweep() {
32 speed += step;
33 if(speed > hi || speed < low) {
34 step *= -1;
35 }
36 fs.writeFileSync(PWMPATH+'/duty_cycle', parseInt(pwmPeriod*speed));
37 // console.log('speed = ' + speed);
38 }
39

40 process.on('SIGINT', function() {
41 console.log('Got SIGINT, turning motor off');
42 clearInterval(timer); // Stop the timer
43 fs.writeFileSync(PWMPATH+'/enable', '0');
44 });

13.1. BeagleBone Cookbook 545

BeagleBoard Docs, Release 1.0.20230711-wip

dcMotor.js

See Also

How do you change the direction of the motor? See Controlling the Speed and Direction of a DC Motor.

Controlling the Speed and Direction of a DC Motor

Problem You would like your DC motor to go forward and backward.

Solution Use an H-bridge to switch the terminals on the motor so that it will run both backward and forward.
We’ll use the L293D a common, single-chip H-bridge.

Here’s what you will need:

• 3 V to 5 V motor.

• Breadboard and jumper wires.

• L293D H-Bridge IC.

• Power supply for the motor (optional)

Lay out your breadboard as shown in Driving a DC motor with an H-bridge. Ensure that the L293D is positioned
correctly. There is a notch on one end that should be pointed up.

Fig. 13.36: Driving a DC motor with an H-bridge

The code in Code for driving a DC motor with an H-bridge (h-bridgeMotor.js) (h-bridgeMotor.js) looks
much like the code for driving the DC motor with a transistor (Driving a DC motor in one direction (dcMotor.js)).
The additional code specifies which direction to spin the motor.

546 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.30: Code for driving a DC motor with an H-bridge (h-
bridgeMotor.js)

1 #!/usr/bin/env node
2

3 // This example uses an H-bridge to drive a DC motor in two directions
4

5 var b = require('bonescript');
6

7 var enable = 'P9_21'; // Pin to use for PWM speed control
8 in1 = 'P9_15',
9 in2 = 'P9_16',
10 step = 0.05, // Change in speed
11 min = 0.05, // Min duty cycle
12 max = 1.0, // Max duty cycle
13 ms = 100, // Update time, in ms
14 speed = min; // Current speed;
15

16 b.pinMode(enable, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);
17 b.pinMode(in1, b.OUTPUT);
18 b.pinMode(in2, b.OUTPUT);
19

20 function doInterval(x) {
21 if(x.err) {
22 console.log('x.err = ' + x.err);
23 return;
24 }
25 timer = setInterval(sweep, ms);
26 }
27

28 clockwise(); // Start by going clockwise
29

30 function sweep() {
31 speed += step;
32 if(speed > max || speed < min) {
33 step *= -1;
34 step>0 ? clockwise() : counterClockwise();
35 }
36 b.analogWrite(enable, speed);
37 console.log('speed = ' + speed);
38 }
39

40 function clockwise() {
41 b.digitalWrite(in1, b.HIGH);
42 b.digitalWrite(in2, b.LOW);
43 }
44

45 function counterClockwise() {
46 b.digitalWrite(in1, b.LOW);
47 b.digitalWrite(in2, b.HIGH);
48 }
49

50 process.on('SIGINT', function() {
51 console.log('Got SIGINT, turning motor off');
52 clearInterval(timer); // Stop the timer
53 b.analogWrite(enable, 0); // Turn motor off
54 });

h-bridgeMotor.js

13.1. BeagleBone Cookbook 547

BeagleBoard Docs, Release 1.0.20230711-wip

Driving a Bipolar Stepper Motor

Problem You want to drive a stepper motor that has four wires.

Solution Use an L293D H-bridge. The bipolar stepper motor requires us to reverse the coils, so we need to
use an H-bridge.

Here’s what you will need:

• Breadboard and jumper wires.

• 3 V to 5 V bipolar stepper motor.

• L293D H-Bridge IC.

Wire as shown in Bipolar stepper motor wiring.

Fig. 13.37: Bipolar stepper motor wiring

Use the code in Driving a bipolar stepper motor (bipolarStepperMotor.py) to drive the motor.

Listing 13.31: Driving a bipolar stepper motor (bipolarStepperMo-
tor.py)

1 #!/usr/bin/env python
2 import time
3 import os
4 import signal
5 import sys
6

7 # Motor is attached here
8 # controller = [”P9_11”, ”P9_13”, ”P9_15”, ”P9_17”];
9 # controller = [”30”, ”31”, ”48”, ”5”]
10 # controller = [”P9_14”, ”P9_16”, ”P9_18”, ”P9_22”];
11 controller = [”50”, ”51”, ”4”, ”2”]
12 states = [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]]
13 statesHiTorque = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]]
14 statesHalfStep = [[1,0,0,0], [1,1,0,0], [0,1,0,0], [0,1,1,0],
15 [0,0,1,0], [0,0,1,1], [0,0,0,1], [1,0,0,1]]
16

17 curState = 0 # Current state
(continues on next page)

548 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

18 ms = 100 # Time between steps, in ms
19 maxStep = 22 # Number of steps to turn before turning around
20 minStep = 0 # minimum step to turn back around on
21

22 CW = 1 # Clockwise
23 CCW = -1
24 pos = 0 # current position and direction
25 direction = CW
26 GPIOPATH=”/sys/class/gpio”
27

28 def signal_handler(sig, frame):
29 print('Got SIGINT, turning motor off')
30 for i in range(len(controller)) :
31 f = open(GPIOPATH+”/gpio”+controller[i]+”/value”, ”w”)
32 f.write('0')
33 f.close()
34 sys.exit(0)
35 signal.signal(signal.SIGINT, signal_handler)
36 print('Hit ^C to stop')
37

38 def move():
39 global pos
40 global direction
41 global minStep
42 global maxStep
43 pos += direction
44 print(”pos: ” + str(pos))
45 # Switch directions if at end.
46 if (pos >= maxStep or pos <= minStep) :
47 direction *= -1
48 rotate(direction)
49

50 # This is the general rotate
51 def rotate(direction) :
52 global curState
53 global states
54 # print(”rotate(%d)”, direction);
55 # Rotate the state according to the direction of rotation
56 curState += direction
57 if(curState >= len(states)) :
58 curState = 0;
59 elif(curState<0) :
60 curState = len(states)-1
61 updateState(states[curState])
62

63 # Write the current input state to the controller
64 def updateState(state) :
65 global controller
66 print(state)
67 for i in range(len(controller)) :
68 f = open(GPIOPATH+”/gpio”+controller[i]+”/value”, ”w”)
69 f.write(str(state[i]))
70 f.close()
71

72 # Initialize motor control pins to be OUTPUTs
73 for i in range(len(controller)) :
74 # Make sure pin is exported
75 if (not os.path.exists(GPIOPATH+”/gpio”+controller[i])):
76 f = open(GPIOPATH+”/export”, ”w”)
77 f.write(pin)
78 f.close()

(continues on next page)

13.1. BeagleBone Cookbook 549

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

79 # Make it an output pin
80 f = open(GPIOPATH+”/gpio”+controller[i]+”/direction”, ”w”)
81 f.write(”out”)
82 f.close()
83

84 # Put the motor into a known state
85 updateState(states[0])
86 rotate(direction)
87

88 # Rotate
89 while True:
90 move()
91 time.sleep(ms/1000)

bipolarStepperMotor.py

When you run the code, the stepper motor will rotate back and forth.

Driving a Unipolar Stepper Motor

Problem You want to drive a stepper motor that has five or six wires.

Solution If your stepper motor has five or six wires, it’s a unipolar stepper and is wired differently than
the bipolar. Here, we’ll use a ULN2003 Darlington Transistor Array IC to drive the motor.

Here’s what you will need:

• Breadboard and jumper wires.

• 3 V to 5 V unipolar stepper motor.

• ULN2003 Darlington Transistor Array IC.

Wire, as shown in Unipolar stepper motor wiring.

Note: The IC in Unipolar stepper motor wiring is illustrated upside down from the way it is usually displayed.

That is, the notch for pin 1 is on the bottom. This made drawing the diagram much cleaner.

Also, notice the banded wire running the P9_7 (5 V) to the UL2003A. The stepper motor I’m using runs better
at 5 V, so I’m using the Bone’s 5 V power supply. The signal coming from the GPIO pins is 3.3 V, but the U2003A
will step them up to 5 V to drive the motor.

The code for driving the motor is in unipolarStepperMotor.js however, it is almost identical to the
bipolar stepper code (Driving a bipolar stepper motor (bipolarStepperMotor.py)), so Changes to bipolar code
to drive a unipolar stepper motor (unipolarStepperMotor.js.diff) shows only the lines that you need to change.

Listing 13.32: Changes to bipolar code to drive a unipolar stepper mo-
tor (unipolarStepperMotor.py.diff)

1 # controller = [”P9_11”, ”P9_13”, ”P9_15”, ”P9_17”]
2 controller = [”30”, ”31”, ”48”, ”5”]
3 states = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]]
4 curState = 0 // Current state
5 ms = 100 // Time between steps, in ms
6 max = 200 // Number of steps to turn before turning around

unipolarStepperMotor.py.diff

550 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.38: Unipolar stepper motor wiring

Listing 13.33: Changes to bipolar code to drive a unipolar stepper mo-
tor (unipolarStepperMotor.js.diff)

1 # var controller = [”P9_11”, ”P9_13”, ”P9_15”, ”P9_17”];
2 controller = [”30”, ”31”, ”48”, ”5”]
3 var states = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]];
4 var curState = 0; // Current state
5 var ms = 100, // Time between steps, in ms
6 max = 200, // Number of steps to turn before turning around

unipolarStepperMotor.js.diff

The code in this example makes the following changes:

• The states are different. Here, we have two pins high at a time.

• The time between steps (ms) is shorter, and the number of steps per direction (max) is bigger. The
unipolar stepper I’m using has many more steps per rotation, so I need more steps to make it go around.

13.1.5 Beyond the Basics

In Basics, you learned how to set up BeagleBone Black, and Sensors, Displays and Other Outputs, and Motors
showed how to interface to the physical world. The remainder of the book moves into some more exciting
advanced topics, and this chapter gets you ready for them.

The recipes in this chapter assume that you are running Linux on your host computer (Selecting an OS for
Your Development Host Computer) and are comfortable with using Linux. We continue to assume that you are
logged in as debian on your Bone.

Running Your Bone Standalone

Problem You want to use BeagleBone Black as a desktop computer with keyboard, mouse, and an HDMI
display.

13.1. BeagleBone Cookbook 551

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The Bone comes with USB and a microHDMI output. All you need to do is connect your keyboard,
mouse, and HDMI display to it.

To make this recipe, you will need:

• Standard HDMI cable and female HDMI-to-male microHDMI adapter, or

• MicroHDMI-to-HDMI adapter cable

• HDMI monitor

• USB keyboard and mouse

• Powered USB hub

Note: The microHDMI adapter is nice because it allows you to use a regular HDMI cable with the Bone.
However, it will block other ports and can damage the Bone if you aren’t careful. The microHDMI-to-HDMI
cable won’t have these problems.

Tip: You can also use an HDMI-to-DVI cable and use your Bone with a DVI-D display.

The adapter looks something like Female HDMI-to-male microHDMI adapter.

Fig. 13.39: Female HDMI-to-male microHDMI adapter

Plug the small end into the microHDMI input on the Bone and plug your HDMI cable into the other end of the
adapter and your monitor. If nothing displays on your Bone, reboot.

If nothing appears after the reboot, edit the /boot/uEnv.txt file. Search for the line containing dis-
able_uboot_overlay_video=1 and make sure it’s commented out:

552 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

###Disable auto loading of virtual capes (emmc/video/wireless/adc)
#disable_uboot_overlay_emmc=1
#disable_uboot_overlay_video=1

Then reboot.

The /boot/uEnv.txt file contains a number of configuration commands that are executed at boot time.
The # character is used to add comments; that is, everything to the right of a +# is ignored by the Bone and
is assumed to be for humans to read. In the previous example, ###Disable auto loading is a comment that
informs us the next line(s) are for disabling things. Two disable_uboot_overlay commands follow. Both should
be commented-out and won’t be executed by the Bone.

Why not just remove the line? Later, you might decide you need more general-purpose in-
put/output (GPIO) pins and don’t need the HDMI display. If so, just remove the # from the dis-
able_uboot_overlay_video=1 command. If you had completely removed the line earlier, you would
have to look up the details somewhere to re-create it.

When in doubt, comment-out don’t delete.

Note: If you want to re-enable the HDMI audio, just comment-out the line you added.

The Bone has only one USB port, so you will need to get either a keyboard with a USB hub or a USB hub. Plug
the USB hub into the Bone and then plug your keyboard and mouse in to the hub. You now have a Beagle
workstation no host computer is needed.

Tip: A powered hub is recommended because USB can supply only 500 mA, and you’ll want to plug many
things into the Bone.

This recipe disables the HDMI audio, which allows the Bone to try other resolutions. If this fails, see Beagle-
BoneBlack HDMI for how to force the Bone’s resolution to match your monitor.

Selecting an OS for Your Development Host Computer

Problem Your project needs a host computer, and you need to select an operating system (OS) for it.

Solution For projects that require a host computer, we assume that you are running Linux Ubuntu 22.04 LTS.
You can be running either a native installation, through Windows Subsystem for Linux, via a virtual machine
such as VirtualBox, or in the cloud (Microsoft Azure or Amazon Elastic Compute Cloud, EC2, for example).

Recently I’ve been preferring Windows Subsystem for Linux.

Getting to the Command Shell via SSH

Problem You want to connect to the command shell of a remote Bone from your host computer.

Solution Running Python and JavaScript Applications from Visual Studio Code shows how to run shell com-
mands in the Visual Studio Code bash tab. However, the Bone has Secure Shell (SSH) enabled right out of the
box, so you can easily connect by using the following command to log in as user debian, (note the $ at the end
of the prompt):

host$ ssh debian@192.168.7.2
Warning: Permanently added '192.168.7.2' (ED25519) to the list of known␣
↪→hosts.
Debian GNU/Linux 11

(continues on next page)

13.1. BeagleBone Cookbook 553

http://bit.ly/1GEPcOH
http://bit.ly/1GEPcOH
http://bit.ly/1wXOwkw
https://docs.microsoft.com/en-us/windows/wsl/
https://www.virtualbox.org/
https://portal.azure.com/
http://aws.amazon.com/ec2/
https://docs.microsoft.com/en-us/windows/wsl/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

BeagleBoard.org Debian Bullseye IoT Image 2023-06-03
Support: https://bbb.io/debian
default username:password is [debian:temppwd]

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Jun 8 14:02:40 2023 from 192.168.7.1
bone$

Default password debian has the default password temppwd. It’s best to change the password:

bone$ password
Changing password for debian.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
password: password updated successfully

Removing the Message of the Day

Problem Every time you login a long message is displayed that you don’t need to see.

Solution The contents of the files /etc/motd, /etc/issue and /etc/issue.net are displayed everytime you long
it. You can prevent them from being displayed by moving them elsewhere.

bone$ sudo mv /etc/motd /etc/motd.orig
bone$ sudo mv /etc/issue /etc/issue.orig
bone$ sudo mv /etc/issue.net /etc/issue.net.orig

Now, the next time you ssh in they won’t be displayed.

Getting to the Command Shell via the Virtual Serial Port

Problem You want to connect to the command shell of a remote Bone from your host computer without using
SSH.

Solution Sometimes, you can’t connect to the Bone via SSH, but you have a network working over USB to
the Bone. There is a way to access the command line to fix things without requiring extra hardware. (Viewing
and Debugging the Kernel and u-boot Messages at Boot Time shows a way that works even if you don’t have
a network working over USB, but it requires a special serial-to-USB cable.)

Note: This method doesn’t work with WSL.

First, check to ensure that the serial port is there. On the host computer, run the following command:

host$ ls -ls /dev/ttyACM0
0 crw-rw---- 1 root dialout 166, 0 Jun 19 11:47 /dev/ttyACM0

554 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

/dev/ttyACM0 is a serial port on your host computer that the Bone creates when it boots up. The letters crw-
rw—- show that you can’t access it as a normal user. However, you can access it if you are part of dialout
group. See if you are in the dialout group:

host$ groups
yoder adm tty uucp dialout cdrom sudo dip plugdev lpadmin sambashare

Looks like I’m already in the group, but if you aren’t, just add yourself to the group:

host$ sudo adduser $USER dialout

You have to run adduser only once. Your host computer will remember the next time you boot up. Now, install
and run the screen command:

host$ sudo apt install screen
host$ screen /dev/ttyACM0 115200
Debian GNU/Linux 7 beaglebone ttyGS0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

The /dev/ttyACM0 parameter specifies which serial port to connect to, and 115200 tells the speed of the
connection. In this case, it’s 115,200 bits per second.

Viewing and Debugging the Kernel and u-boot Messages at Boot Time

Problem You want to see the messages that are logged by BeagleBone Black as it comes to life.

Solution There is no network in place when the Bone first boots up, so Getting to the Command Shell via SSH
and Getting to the Command Shell via the Virtual Serial Port won’t work. This recipe uses some extra hardware
(FTDI cable) to attach to the Bone’s console serial port.

To make this recipe, you will need:

• 3.3 V FTDI cable

Warning: Be sure to get a 3.3 V FTDI cable (shown in FTDI cable), because the 5 V cables won’t work.

Tip: The Bone’s Serial Debug J1 connector has Pin 1 connected to ground, Pin 4 to receive, and Pin 5 to
transmit. The other pins are not attached.

Look for a small triangle at the end of the FTDI cable (FTDI connector). It’s often connected to the black wire.

Next, look for the FTDI pins of the Bone (labeled J1 on the Bone), shown in FTDI pins for the FTDI connector.
They are next to the P9 header and begin near pin 20. There is a white dot near P9_20.

Plug the FTDI connector into the FTDI pins, being sure to connect the triangle pin on the connector to the
white dot pin of the FTDI connector.

Now, run the following commands on your host computer:

host$ ls -ls /dev/ttyUSB0
0 crw-rw---- 1 root dialout 188, 0 Jun 19 12:43 /dev/ttyUSB0
host$ sudo adduser $USER dialout

(continues on next page)

13.1. BeagleBone Cookbook 555

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.40: FTDI cable

556 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.41: FTDI connector

Fig. 13.42: FTDI pins for the FTDI connector

13.1. BeagleBone Cookbook 557

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

host$ screen /dev/ttyUSB0 115200
Debian GNU/Linux 7 beaglebone ttyO0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

Note: Your screen might initially be blank. Press Enter a couple times to see the login prompt.

Verifying You Have the Latest Version of the OS on Your Bone from the Shell

Problem You are logged in to your Bone with a command prompt and want to know what version of the OS
you are running.

Solution Log in to your Bone and enter the following command:

bone$ cat /etc/dogtag
BeagleBoard.org Debian Bullseye IoT Image 2023-06-03

Verifying You Have the Latest Version of the OS on Your Bone shows how to open the /etc/dogtag file to
see the OS version. See Running the Latest Version of the OS on Your Bone if you need to update your OS.

Controlling the Bone Remotely with a VNC

Problem You want to access the BeagleBone’s graphical desktop from your host computer.

Solution Install and run a Virtual Network Computing (VNC) server:

bone$ sudo apt update
bone$ sudo apt install tightvncserver
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
...
update-alternatives: using /usr/bin/Xtightvnc to provide /usr/bin/Xvnc␣
↪→(Xvnc) in auto mode
update-alternatives: using /usr/bin/tightvncpasswd to provide /usr/bin/
↪→vncpasswd (vncpasswd) in auto mode
Processing triggers for libc-bin (2.31-13+deb11u6) ...

bone$ tightvncserver

You will require a password to access your desktops.

Password:
Verify:
Would you like to enter a view-only password (y/n)? n
xauth: (argv):1: bad display name ”beaglebone:1” in ”add” command

New 'X' desktop is beaglebone:1

(continues on next page)

558 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Creating default startup script /home/debian/.vnc/xstartup
Starting applications specified in /home/debian/.vnc/xstartup
Log file is /home/debian/.vnc/beagleboard:1.log

To connect to the Bone, you will need to run a VNC client. There are many to choose from. Remmina Remote
Desktop Client is already installed on Ubuntu. Start and select the new remote desktop file button (Creating a
new remote desktop file in Remmina Remote Desktop Client).

Fig. 13.43: Creating a new remote desktop file in Remmina Remote Desktop Client

Give your connection a name, being sure to select “Remmina VNC Plugin” Also, be sure to add :1 after the
server address, as shown in Configuring the Remmina Remote Desktop Client. This should match the :1 that
was displayed when you started vncserver.

Click Connect to start graphical access to your Bone, as shown in The Remmina Remote Desktop Client showing
the BeagleBone desktop.

Tip: You might need to resize the VNC screen on your host to see the bottom menu bar on your Bone.

Note: You need to have X Windows installed and running for the VNC to work. Here’s how to install it. This
needs some 250M of disk space and 19 minutes to install.

bone$ bone$ sudo apt install bbb.io-xfce4-desktop
bone$ sdo cp /etc/bbb.io/templates/fbdev.xorg.conf /etc/X11/xorg.conf
bone$ startxfce4
/usr/bin/startxfce4: Starting X server
/usr/bin/startxfce4: 122: exec: xinit: not found

13.1. BeagleBone Cookbook 559

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.44: Configuring the Remmina Remote Desktop Client

560 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.45: The Remmina Remote Desktop Client showing the BeagleBone desktop

13.1. BeagleBone Cookbook 561

BeagleBoard Docs, Release 1.0.20230711-wip

Learning Typical GNU/Linux Commands

Problem There are many powerful commands to use in Linux. How do you learn about them?

Solution Common Linux commands lists many common Linux commands.

Table 13.4: Common Linux commands
Command Action
pwd show current directory
cd change current directory
ls list directory contents
chmod change file permissions
chown change file ownership
cp copy files
mv move files
rm remove files
mkdir make directory
rmdir remove directory
cat dump file contents
less progressively dump file
vi edit file (complex)
nano edit file (simple)
head trim dump to top
tail trim dump to bottom
echo print/dump value
env dump environment variables
export set environment variable
history dump command history
grep search dump for strings
man get help on command
apropos show list of man pages
find search for files
tar create/extract file archives
gzip compress a file
gunzip decompress a file
du show disk usage
df show disk free space
mount mount disks
tee write dump to file in parallel
hexdump readable binary dumps
whereis locates binary and source files

Editing a Text File from the GNU/Linux Command Shell

Problem You want to run an editor to change a file.

Solution The Bone comes with a number of editors. The simplest to learn is nano. Just enter the following
command:

bone$ nano file

You are now in nano (Editing a file with nano). You can’t move around the screen using the mouse, so use the
arrow keys. The bottom two lines of the screen list some useful commands. Pressing ^G (Ctrl-G) will display
more useful commands. ^X (Ctrl-X) exits nano and gives you the option of saving the file.

562 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.46: Editing a file with nano

Tip: By default, the file you create will be saved in the directory from which you opened nano.

Many other text editors will run on the Bone. vi, vim, emacs, and even eclipse are all supported. See Installing
Additional Packages from the Debian Package Feed to learn if your favorite is one of them.

Establishing an Ethernet-Based Internet Connection

Problem You want to connect your Bone to the Internet using the wired network connection.

Solution Plug one end of an Ethernet patch cable into the RJ45 connector on the Bone (see The RJ45 port on
the Bone) and the other end into your home hub/router. The yellow and green link lights on both ends should
begin to flash.

If your router is already configured to run DHCP (Dynamical Host Configuration Protocol), it will automatically
assign an IP address to the Bone.

Warning: It might take a minute or two for your router to detect the Bone and assign the IP address.

To find the IP address, open a terminal window and run the ip command:

bone$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group␣
↪→default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

(continues on next page)

13.1. BeagleBone Cookbook 563

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.47: The RJ45 port on the Bone

(continued from previous page)

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group␣
↪→default qlen 1000

link/ether c8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
inet 10.0.5.144/24 brd 10.0.5.255 scope global dynamic eth0

valid_lft 80818sec preferred_lft 80818sec
inet6 fe80::caa0:30ff:fea6:26e8/64 scope link

valid_lft forever preferred_lft forever
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state␣
↪→UP group default qlen 1000

link/ether c2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0

valid_lft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link

valid_lft forever preferred_lft forever
4: usb1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state␣
↪→UP group default qlen 1000

link/ether 76:7e:49:46:1b:78 brd ff:ff:ff:ff:ff:ff
inet 192.168.6.2/24 brd 192.168.6.255 scope global usb1

valid_lft forever preferred_lft forever
inet6 fe80::747e:49ff:fe46:1b78/64 scope link

valid_lft forever preferred_lft forever
5: can0: <NOARP,ECHO> mtu 16 qdisc no-op state DOWN group default qlen 10

link/can
6: can1: <NOARP,ECHO> mtu 16 qdisc no-op state DOWN group default qlen 10

link/can

My Bone is connected to the Internet in two ways: via the RJ45 connection (eth0) and via the USB cable (usb0).
The inet field shows that my Internet address is 10.0.5.144 for the RJ45 connector.

On my university campus, you must register your MAC address before any device will work on the network.
The HWaddr field gives the MAC address. For eth0, it’s c8:a0:30:a6:26:e8.

The IP address of your Bone can change. If it’s been assigned by DHCP, it can change at any time. The MAC
address, however, never changes; it is assigned to your ethernet device when it’s manufactured.

564 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Warning: When a Bone is connected to some networks it becomes visible to the world. If you don’t
secure your Bone, the world will soon find it. See Default password and Setting Up a Firewall

On many home networks, you will be behind a firewall and won’t be as visible.

Establishing a WiFi-Based Internet Connection

Problem You want BeagleBone Black to talk to the Internet using a USB wireless adapter.

Solution
Tip: For the correct instructions for the image you are using, go to latest-images and click on the image you
are using.

I’m running Debian 11.x (Bullseye), the top one, on the BeagleBone Black.

Fig. 13.48: Latest Beagle Images

Scroll to the top of the page and you’ll see instructions on setting up Wifi. The instructions here are based on
using networkctl.

Several WiFi adapters work with the Bone. Check WiFi Adapters for the latest list.

To make this recipe, you will need:

13.1. BeagleBone Cookbook 565

http://forum.beagleboard.org/tag/latest-images
http://bit.ly/1EbEwUo

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.49: Instructions for setting up your network.

566 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

• USB Wifi adapter

• 5 V external power supply

Warning: Most adapters need at least 1 A of current to run, and USB supplies only 0.5 A, so be sure to
use an external power supply. Otherwise, you will experience erratic behavior and random crashes.

First, plug in the WiFi adapter and the 5 V external power supply and reboot.

Then run lsusb to ensure that your Bone found the adapter:

bone$ lsusb
Bus 001 Device 002: ID 0bda:8176 Realtek Semiconductor Corp. RTL8188CUS 802.
↪→11n
WLAN Adapter
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Note: There is a well-known bug in the Bone’s 3.8 kernel series that prevents USB devices from being discov-
ered when hot-plugged, which is why you should reboot. Newer kernels should address this issue.

Next, run networkctl to find your adapter’s name. Mine is called wlan0, but you might see other names, such
as ra0.

bone$ networkctl
IDX LINK TYPE OPERATIONAL SETUP
1 lo loopback carrier unmanaged
2 eth0 ether no-carrier configuring
3 usb0 gadget routable configured
4 usb1 gadget routable configured
5 can0 can off unmanaged
6 can1 can off unmanaged
7 wlan0 wlan routable configured
8 SoftAp0 wlan routable configured

8 links listed.

If no name appears, try ip a:

bone$ ip a
...
2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state␣
↪→DOWN group default qlen 1000

link/ether c8:a0:30:a6:26:e8 brd ff:ff:ff:ff:ff:ff
3: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state␣
↪→UP group default qlen 1000

link/ether c2:3f:44:bb:41:0f brd ff:ff:ff:ff:ff:ff
inet 192.168.7.2/24 brd 192.168.7.255 scope global usb0

valid_lft forever preferred_lft forever
inet6 fe80::c03f:44ff:febb:410f/64 scope link

valid_lft forever preferred_lft forever
...
7: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group␣
↪→default qlen 1000

link/ether 64:69:4e:7e:5c:e4 brd ff:ff:ff:ff:ff:ff
inet 10.0.7.21/24 brd 10.0.7.255 scope global dynamic wlan0

valid_lft 85166sec preferred_lft 85166sec
inet6 fe80::6669:4eff:fe7e:5ce4/64 scope link

valid_lft forever preferred_lft forever

(continues on next page)

13.1. BeagleBone Cookbook 567

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Next edit the configuration file */etc/wpa_supplicant/wpa_supplicant-wlan0.
↪→conf*.

bone$ sudo nano /etc/wpa_supplicant/wpa_supplicant-wlan0.conf

In the file you’ll see:

ctrl_interface=DIR=/run/wpa_supplicant GROUP=netdev
update_config=1
#country=US

network={
ssid=”Your SSID”
psk=”Your Password”

}

Change the ssid and psk entries for your network. Save your file, then run:

bone$ sudo systemctl restart systemd-networkd
bone$ ip a
bone$ ping -c2 google.com
PING google.com (142.250.191.206) 56(84) bytes of data.
64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206): icmp_seq=1␣
↪→ttl=115 time=19.5 ms
64 bytes from ord38s31-in-f14.1e100.net (142.250.191.206): icmp_seq=2␣
↪→ttl=115 time=19.4 ms

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 19.387/19.450/19.513/0.063 ms

wlan0 should now have an ip address and you should be on the network. If not, try rebooting.

Sharing the Host’s Internet Connection over USB

Problem Your host computer is connected to the Bone via the USB cable, and you want to run the network
between the two.

Solution Establishing an Ethernet-Based Internet Connection shows how to connect BeagleBone Black to the
Internet via the RJ45 Ethernet connector. This recipe shows a way to connect without using the RJ45 connector.

A network is automatically running between the Bone and the host computer at boot time using the USB. The
host’s IP address is 192.168.7.1 and the Bone’s is 192.168.7.2. Although your Bone is talking to your host, it
can’t reach the Internet in general, nor can the Internet reach it. On one hand, this is good, because those who
are up to no good can’t access your Bone. On the other hand, your Bone can’t reach the rest of the world.

Letting your bone see the world: setting up IP masquerading You need to set up IP masquerading on
your host and configure your Bone to use it. Here is a solution that works with a host computer running Linux.
Add the code in Code for IP Masquerading (ipMasquerade.sh) to a file called ipMasquerade.sh on your
host computer.

Listing 13.34: Code for IP Masquerading (ipMasquerade.sh)

1 #!/bin/bash
2 # These are the commands to run on the host to set up IP
3 # masquerading so the Bone can access the Internet through
4 # the USB connection.

(continues on next page)

568 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

5 # This configures the host, run ./setDNS.sh to configure the Bone.
6 # Inspired by http://thoughtshubham.blogspot.com/2010/03/
7 # internet-over-usb-otg-on-beagleboard.html
8

9 if [$# -eq 0] ; then
10 echo ”Usage: $0 interface (such as eth0 or wlan0)”
11 exit 1
12 fi
13

14 interface=$1
15 hostAddr=192.168.7.1
16 beagleAddr=192.168.7.2
17 ip_forward=/proc/sys/net/ipv4/ip_forward
18

19 if [`cat $ip_forward` == 0]
20 then
21 echo ”You need to set IP forwarding. Edit /etc/sysctl.conf using:”
22 echo ”$ sudo nano /etc/sysctl.conf”
23 echo ”and uncomment the line \”net.ipv4.ip_forward=1\””
24 echo ”to enable forwarding of packets. Then run the following:”
25 echo ”$ sudo sysctl -p”
26 exit 1
27 else
28 echo ”IP forwarding is set on host.”
29 fi
30 # Set up IP masquerading on the host so the bone can reach the outside world
31 sudo iptables -t nat -A POSTROUTING -s $beagleAddr -o $interface -j␣

↪→MASQUERADE

ipMasquerade.sh

Then, on your host, run the following commands:

host$ chmod +x ipMasquerade.sh
host$./ipMasquerade.sh eth0

This will direct your host to take requests from the Bone and send them to eth0. If your host is using a wireless
connection, change eth0 to wlan0.

Now let’s set up your host to instruct the Bone what to do. Add the code in Code for setting the DNS on the
Bone (setDNS.sh) to setDNS.sh on your host computer.

Listing 13.35: Code for setting the DNS on the Bone (setDNS.sh)

1 #!/bin/bash
2 # These are the commands to run on the host so the Bone
3 # can access the Internet through the USB connection.
4 # Run ./ipMasquerade.sh the first time. It will set up the host.
5 # Run this script if the host is already set up.
6 # Inspired by http://thoughtshubham.blogspot.com/2010/03/internet-over-usb-

↪→otg-on-beagleboard.html
7

8 hostAddr=192.168.7.1
9 beagleAddr=${1:-192.168.7.2}
10

11 # Save the /etc/resolv.conf on the Beagle in case we mess things up.
12 ssh root@$beagleAddr ”mv -n /etc/resolv.conf /etc/resolv.conf.orig”
13 # Create our own resolv.conf
14 cat - << EOF > /tmp/resolv.conf
15 # This is installed by ./setDNS.sh on the host
16

17 EOF
(continues on next page)

13.1. BeagleBone Cookbook 569

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

18

19 TMP=/tmp/nmcli
20 # Look up the nameserver of the host and add it to our resolv.conf
21 # From: http://askubuntu.com/questions/197036/how-to-know-what-dns-am-i-

↪→using-in-ubuntu-12-04
22 # Use nmcli dev list for older version nmcli
23 # Use nmcli dev show for newer version nmcli
24 nmcli dev show > $TMP
25 if [$? -ne 0]; then # $? is the return code, if not 0 something bad␣

↪→happened.
26 echo ”nmcli failed, trying older 'list' instead of 'show'”
27 nmcli dev list > $TMP
28 if [$? -ne 0]; then
29 echo ”nmcli failed again, giving up...”
30 exit 1
31 fi
32 fi
33

34 grep IP4.DNS $TMP | sed 's/IP4.DNS\[.\]:/nameserver/' >> /tmp/resolv.conf
35

36 scp /tmp/resolv.conf root@$beagleAddr:/etc
37

38 # Tell the beagle to use the host as the gateway.
39 ssh root@$beagleAddr ”/sbin/route add default gw $hostAddr” || true

setDNS.sh

Then, on your host, run the following commands:

host$ chmod +x setDNS.sh
host$./setDNS.sh
host$ ssh -X root@192.168.7.2
bone$ ping -c2 google.com
PING google.com (216.58.216.96) 56(84) bytes of data.
64 bytes from ord30s22....net (216.58.216.96): icmp_req=1 ttl=55 time=7.49 ms
64 bytes from ord30s22....net (216.58.216.96): icmp_req=2 ttl=55 time=7.62 ms

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 7.496/7.559/7.623/0.107 ms

This will look up what Domain Name System (DNS) servers your host is using and copy them to the right place
on the Bone. The ping command is a quick way to verify your connection.

Letting the world see your bone: setting up port forwarding

Now your Bone can access the world via the USB port and your host computer, but what if you have a web
server on your Bone that you want to access from the world? The solution is to use port forwarding from your
host. Web servers typically listen to port 80. First, look up the IP address of your host:

host$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group␣
↪→default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1280 qdisc mq state UP group␣
↪→default qlen 1000

link/ether 00:15:5d:7c:e8:dc brd ff:ff:ff:ff:ff:ff
inet 172.31.43.210/20 brd 172.31.47.255 scope global eth0

(continues on next page)

570 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

valid_lft forever preferred_lft forever
inet6 fe80::215:5dff:fe7c:e8dc/64 scope link

valid_lft forever preferred_lft forever

It’s the number following inet, which in my case is 172.31.43.210.

Tip: If you are on a wireless network, find the IP address associated with wlan0.

Then run the following, using your host’s IP address:

host$ sudo iptables -t nat -A PREROUTING -p tcp -s 0/0 \
-d 172.31.43.210 --dport 1080 -j DNAT --to 192.168.7.2:80

Now browse to your host computer at port 1080. That is, if your host’s IP address is 123.456.789.0, enter
123.456.789.0:1080. The :1080 specifies what port number to use. The request will be forwarded to the
server on your Bone listening to port 80. (I used 1080 here, in case your host is running a web server of its
own on port 80.)

Setting Up a Firewall

Problem You have put your Bone on the network and want to limit which IP addresses can access it.

Solution How-To Geek has a great posting on how do use ufw, the “uncomplicated firewall”. Check out How
to Secure Your Linux Server with a UFW Firewall. I’ll summarize the initial setup here.

First install and check the status:

bone$ sudo apt update
bone$ sudo apt install ufw
bone$ sudo ufw status
Status: inactive

Now turn off everything coming in and leave on all outgoing. Note, this won’t take effect until ufw is enabled.

bone$ sudo ufw default deny incoming
bone$ sudo ufw default allow outgoing

Don’t enable yet, make sure ssh still has access

bone$ sudo ufw allow 22

Just to be sure, you can install nmap on your host computer to see what ports are currently open.

host$ sudo apt update
host$ sudo apt install nmap
host$ nmap 192.168.7.2
Starting Nmap 7.80 (https://nmap.org) at 2022-07-09 13:37 EDT
Nmap scan report for bone (192.168.7.2)
Host is up (0.014s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
3000/tcp open ppp

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds

Currently there are three ports visible: 22, 80 and 3000 (visual studio code). Now turn on the firewall and see
what happens.

13.1. BeagleBone Cookbook 571

https://www.howtogeek.com/
https://www.howtogeek.com/devops/how-to-secure-your-linux-server-with-a-ufw-firewall/
https://www.howtogeek.com/devops/how-to-secure-your-linux-server-with-a-ufw-firewall/

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y
Firewall is active and enabled on system startup

host$ nmap 192.168.7.2
Starting Nmap 7.80 (https://nmap.org) at 2022-07-09 13:37 EDT
Nmap scan report for bone (192.168.7.2)
Host is up (0.014s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh

Nmap done: 1 IP address (1 host up) scanned in 0.19 seconds

Only port 22 (ssh) is accessible now.

The firewall will remain on, even after a reboot. Disable it now if you don’t want it on.

bone$ sudo ufw disable
Firewall stopped and disabled on system startup

See the How-To Geek article for more examples.

Installing Additional Packages from the Debian Package Feed

Problem You want to do more cool things with your BeagleBone by installing more programs.

Warning: Your Bone needs to be on the network for this to work. See Establishing an Ethernet-Based Inter-
net Connection, Establishing a WiFi-Based Internet Connection, or Sharing the Host’s Internet Connection
over USB.

Solution The easiest way to install more software is to use apt:

bone$ sudo apt update
bone$ sudo apt install ”name of software”

A sudo is necessary since you aren’t running as root. The first command downloads package lists from various
repositories and updates them to get information on the newest versions of packages and their dependencies.
(You need to run it only once a week or so.) The second command fetches the software and installs it and all
packages it depends on.

How do you find out what software you can install? Try running this:

bone$ apt-cache pkgnames | sort > /tmp/list
bone$ wc /tmp/list
67974 67974 1369852 /tmp/list

bone$ less /tmp/list

The first command lists all the packages that apt knows about and sorts them and stores them in/tmp/list.
The second command shows why you want to put the list in a file. The wc command counts the number of
lines, words, and characters in a file. In our case, there are over 67,000 packages from which we can choose!
The less command displays the sorted list, one page at a time. Press the space bar to go to the next page.
Press q to quit.

Suppose that you would like to install an online dictionary (dict). Just run the following command:

bone$ sudo apt install dict

572 Chapter 13. Books

https://www.howtogeek.com/devops/how-to-secure-your-linux-server-with-a-ufw-firewall/

BeagleBoard Docs, Release 1.0.20230711-wip

Now you can run dict.

Removing Packages Installed with apt

Problem You’ve been playing around and installing all sorts of things with apt and now you want to clean
things up a bit.

Solution apt has a remove option, so you can run the following command:

bone$ sudo apt remove dict
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer␣
↪→required:
libmaa3 librecode0 recode
Use 'apt autoremove' to remove them.
The following packages will be REMOVED:
dict
0 upgraded, 0 newly installed, 1 to remove and 27 not upgraded.
After this operation, 164 kB disk space will be freed.
Do you want to continue [Y/n]? y

Copying Files Between the Onboard Flash and the MicroSD Card

Problem You want to move files between the onboard flash and the microSD card.

Solution If you booted from the microSD card, run the following command:

bone$ df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 7.2G 2.0G 4.9G 29% /
udev 10M 0 10M 0% /dev
tmpfs 100M 1.9M 98M 2% /run
/dev/mmcblk0p2 7.2G 2.0G 4.9G 29% /
tmpfs 249M 0 249M 0% /dev/shm
tmpfs 249M 0 249M 0% /sys/fs/cgroup
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 100M 0 100M 0% /run/user
bone$ ls /dev/mmcblk*
/dev/mmcblk0 /dev/mmcblk0p2 /dev/mmcblk1boot0 /dev/mmcblk1p1
/dev/mmcblk0p1 /dev/mmcblk1 /dev/mmcblk1boot1

The df command shows what partitions are already mounted. The line /dev/mmcblk0p2 7.2G 2.0G
4.9G 29% / shows that mmcblk0 partition p2 is mounted as /, the root file system. The general rule is
that the media you’re booted from (either the onboard flash or the microSD card) will appear asmmcblk0. The
second partition (p2) is the root of the file system.

The ls command shows what devices are available to mount. Because mmcblk0 is already mounted,
/dev/mmcblk1p1 must be the other media that we need to mount. Run the following commands to mount
it:

bone$ cd /mnt
bone$ sudo mkdir onboard
bone$ ls onboard
bone$ sudo mount /dev/mmcblk1p1 onboard/
bone$ ls onboard
bin etc lib mnt proc sbin sys var

(continues on next page)

13.1. BeagleBone Cookbook 573

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

boot home lost+found nfs-uEnv.txt root selinux tmp
dev ID.txt media opt run srv usr

The cd command takes us to a place in the file systemwhere files are commonly mounted. Themkdir command
creates a new directory (onboard) to be amount point. The ls command shows there is nothing inonboard.
The mount command makes the contents of the onboard flash accessible. The next ls shows there now are
files in onboard. These are the contents of the onboard flash, which can be copied to and from like any other
file.

This same process should also work if you have booted from the onboard flash. When you are done with the
onboard flash, you can unmount it by using this command:

bone$ sudo umount /mnt/onboard

Freeing Space on the Onboard Flash or MicroSD Card

Problem You are starting to run out of room on your microSD card (or onboard flash) and have removed
several packages you had previously installed (Removing Packages Installed with apt), but you still need to
free up more space.

Solution To free up space, you can remove preinstalled packages or discover big files to remove.

Removing preinstalled packages You might not need a few things that come preinstalled in the Debian
image, including such things as OpenCV, the Chromium web browser, and some documentation.

Note: The Chromium web browser is the open source version of Google’s Chrome web browser. Unless you
are using the Bone as a desktop computer, you can probably remove it.

Here’s how you can remove these:

bone$ sudo apt remove bb-node-red-installer (171M)
bone$ sudo apt autoremove
bone$ sudo -rf /usr/share/doc (116M)
bone$ sudo -rf /usr/share/man (19M)

Discovering big files The du (disk usage) command offers a quick way to discover big files:

bone$ sudo du -shx /*
12M /bin
160M /boot
0 /dev
23M /etc
835M /home
4.0K /ID.txt
591M /lib
16K /lost+found
4.0K /media
8.0K /mnt
664M /opt
du: cannot access '/proc/1454/task/1454/fd/4': No such file or directory
du: cannot access '/proc/1454/task/1454/fdinfo/4': No such file or directory
du: cannot access '/proc/1454/fd/3': No such file or directory
du: cannot access '/proc/1454/fdinfo/3': No such file or directory
0 /proc
1.4M /root

(continues on next page)

574 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

1.4M /run
13M /sbin
4.0K /srv
0 /sys
48K /tmp
1.6G /usr
1.9G /var

If you booted from the microSD card, du lists the usage of the microSD. If you booted from the onboard flash,
it lists the onboard flash usage.

The -s option summarizes the results rather than displaying every file. -h prints it in _human_ form–that is,
using M and K postfixes rather than showing lots of digits. The /* specifies to run it on everything in the top-
level directory. It looks like a couple of things disappeared while the command was running and thus produced
some error messages.

Tip: For more help, try du –help.

The /var directory appears to be the biggest user of space at 1.9 GB. You can then run the following command
to see what’s taking up the space in /var:

bone$ sudo du -sh /var/*
4.0K /var/backups
76M /var/cache
93M /var/lib
4.0K /var/local
0 /var/lock
751M /var/log
4.0K /var/mail
4.0K /var/opt
0 /var/run
16K /var/spool
987M /var/swap
28K /var/tmp
16K /var/www

A more interactive way to explore your disk usage is by installing ncdu (ncurses disk usage):

bone$ sudo apt install ncdu
bone$ ncdu /

After a moment, you’ll see the following:

ncdu 1.15.1 ~ Use the arrow keys to navigate, press ? for help
--- / --
. 1.9 GiB [##########] /var

1.5 GiB [########] /usr
835.0 MiB [####] /home
663.5 MiB [###] /opt
590.9 MiB [###] /lib
159.0 MiB [] /boot

. 22.8 MiB [] /etc
12.5 MiB [] /sbin
11.1 MiB [] /bin

. 1.4 MiB [] /run

. 40.0 KiB [] /tmp
! 16.0 KiB [] /lost+found

8.0 KiB [] /mnt
e 4.0 KiB [] /srv
! 4.0 KiB [] /root

(continues on next page)

13.1. BeagleBone Cookbook 575

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

e 4.0 KiB [] /media
4.0 KiB [] ID.txt

. 0.0 B [] /sys

. 0.0 B [] /proc
0.0 B [] /dev

Total disk usage: 5.6 GiB Apparent size: 5.5 GiB Items: 206148

ncdu is a character-based graphics interface to du. You can now use your arrow keys to navigate the file
structure to discover where the big unused files are. Press ? for help.

Warning: Be careful not to press the d key, because it’s used to delete a file or directory.

Using C to Interact with the Physical World

Problem You want to use C on the Bone to talk to the world.

Solution The C solution isn’t as simple as the JavaScript or Python solution, but it does work and is much
faster. The approach is the same, write to the /sys/class/gpio files.

Listing 13.36: Use C to blink an LED (blinkLED.c)

1 //
2 // blinkLED.c
3 // Blinks the P9_14 pin
4 // Wiring:
5 // Setup:
6 // See:
7 //
8 #include <stdio.h>
9 #include <string.h>
10 #include <unistd.h>
11 #define MAXSTR 100
12 // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1, line 18␣

↪→maps to 50
13 int main() {
14 FILE *fp;
15 char pin[] = ”50”;
16 char GPIOPATH[] = ”/sys/class/gpio”;
17 char path[MAXSTR] = ””;
18

19 // Make sure pin is exported
20 snprintf(path, MAXSTR, ”%s%s%s”, GPIOPATH, ”/gpio”, pin);
21 if (!access(path, F_OK) == 0) {
22 snprintf(path, MAXSTR, ”%s%s”, GPIOPATH, ”/export”);
23 fp = fopen(path, ”w”);
24 fprintf(fp, ”%s”, pin);
25 fclose(fp);
26 }
27

28 // Make it an output pin
29 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, pin, ”/direction”);
30 fp = fopen(path, ”w”);
31 fprintf(fp, ”out”);
32 fclose(fp);
33

34 // Blink every .25 sec
(continues on next page)

576 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

35 int state = 0;
36 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, pin, ”/value”);
37 fp = fopen(path, ”w”);
38 while (1) {
39 fseek(fp, 0, SEEK_SET);
40 if (state) {
41 fprintf(fp, ”1”);
42 } else {
43 fprintf(fp, ”0”);
44 }
45 state = ~state;
46 usleep(250000); // sleep time in microseconds
47 }
48 }

blinkLED.c

Here, as with JavaScript and Python, the gpio pins are referred to by the Linux gpio number. Mapping from
header pin to internal GPIO number shows how the P8 and P9 Headers numbers map to the gpio number. For
this example P9_14 is used, which the table shows in gpio 50.

Fig. 13.50: Mapping from header pin to internal GPIO number

Compile and run the code:

bone$ gcc -o blinkLED blinkLED.c
bone$./blinkLED
^C

Hit ^C to stop the blinking.

13.1. BeagleBone Cookbook 577

BeagleBoard Docs, Release 1.0.20230711-wip

13.1.6 Internet of Things

You can easily connect BeagleBone Black to the Internet via a wire (Establishing an Ethernet-Based Internet
Connection), wirelessly (Establishing a WiFi-Based Internet Connection), or through the USB to a host and then
to the Internet (Sharing the Host’s Internet Connection over USB). Either way, it opens up a world of possibilities
for the “Internet of Things” (IoT).

Now that you’re online, this chapter offers various things to do with your connection.

Accessing Your Host Computer’s Files on the Bone

Problem You want to access a file on a Linux host computer that’s attached to the Bone.

Solution If you are running Linux on a host computer attached to BeagleBone Black, it’s not hard to mount
the Bone’s files on the host or the host’s files on the Bone by using sshfs. Suppose that you want to access
files on the host from the Bone. First, install sshfs:

bone$ sudo apt install sshfs

Now, mount the files to an empty directory (substitute your username on the host computer for username and
the IP address of the host for 192.168.7.1):

bone$ mkdir host
bone$ sshfs username@$192.168.7.1:. host
bone$ cd host
bone$ ls

The ls command will now list the files in your home directory on your host computer. You can edit them as if
they were local to the Bone. You can access all the files by substituting :/ for the :. following the IP address.

You can go the other way, too. Suppose that you are on your Linux host computer and want to access files on
your Bone. Install sshfs:

host$ sudo apt install sshfs

and then access:

host$ mkdir /mnt/bone
host$ sshfs debian@$192.168.7.2:/ /mnt/bone
host$ cd /mnt/bone
host$ ls

Here, we are accessing the files on the Bone as debian. We’ve mounted the entire file system, starting with /,
so you can access any file. Of course, with great power comes great responsibility, so be careful.

The sshfs command gives you easy access from one computer to another. When you are done, you can
unmount the files by using the following commands:

host$ umount /mnt/bone
bone$ umount home

Serving Web Pages from the Bone

Problem You want to use BeagleBone Black as a web server.

578 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Solution BeagleBone Black already has the nginx web server running.

When you point your browser to 192.168.7.2, you are using the nginx web server. The web pages are served
from /var/www/html/. Add the HTML in A sample web page (test.html) to a file called /var/www/html/test.html,
and then point your browser to 192.168.7.2:/test.html.

Listing 13.37: A sample web page (test.html)

1 <!DOCTYPE html>
2 <html>
3 <body>
4

5 <h1>My First Heading</h1>
6

7 <p>My first paragraph.</p>
8

9 </body>
10 </html>

test.html

You will see the web page shown in test.html as served by nginx.

Fig. 13.51: test.html as served by nginx

13.1. BeagleBone Cookbook 579

BeagleBoard Docs, Release 1.0.20230711-wip

Interacting with the Bone via a Web Browser

Problem BeagleBone Black is interacting with the physical world nicely and you want to display that infor-
mation on a web browser.

Solution Flask is a Python web framework built with a small core and easy-to-extend philosophy. Serving
Web Pages from the Bone shows how to use nginx, the web server that’s already running. This recipe shows
how easy it is to build your own server. This is an adaptation of Python WebServer With Flask and Raspberry
Pi.

First, install flask:

bone$ sudo apt update
bone$ sudo apt install python3-flask

All the code in is the Cookbook repo:

bone$ git clone https://git.beagleboard.org/beagleboard/beaglebone-cookbook-
↪→code
bone$ cd beaglebone-cookbook-code/06iot/flask

First Flask - hello, world

Our first example is helloWorld.py

Listing 13.38: Python code for flask hello world (helloWorld.py)

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3

4 from flask import Flask
5 app = Flask(__name__)
6 @app.route('/')
7 def index():
8 return 'hello, world'
9 if __name__ == '__main__':
10 app.run(debug=True, port=8080, host='0.0.0.0')

helloWorld.py

1. The first line loads the Flask module into your Python script.

2. The second line creates a Flask object called app.

3. The third line is where the action is, it says to run the index() function when someone accesses the root
URL (‘/’) of the server. In this case, send the text “hello, world” to the client’s web browser via return.

4. The last line says to “listen” on port 8080, reporting any errors.

Now on your host computer, browse to 192.168.7.2:8080 flask an you should see.

Adding a template

Let’s improve our “hello, world” application, by using an HTML template and a CSS file for styling our page.
Note: these have been created for you in the “templates” sub-folder. So, we will create a file named in-
dex1.html, that has been saved in /templates.

Here’s what’s in templates/index1.html:

580 Chapter 13. Books

https://www.fullstackpython.com/flask.html
https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-398423cc6f5d
https://towardsdatascience.com/python-webserver-with-flask-and-raspberry-pi-398423cc6f5d

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.52: Test page served by our custom flask server

13.1. BeagleBone Cookbook 581

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.39: index1.html

1 <!DOCTYPE html>
2 <head>
3 <title>{{ title }}</title>
4 </head>
5 <body>
6 <h1>Hello, World!</h1>
7 <h2>The date and time on the server is: {{ time }}</h2>
8 </body>
9 </html>

index1.html

Note: a style sheet (style.css) is also included. This will be populated later.

Observe that anything in double curly braces within the HTML template is interpreted as a variable that would
be passed to it from the Python script via the render_template function. Now, let’s create a new Python script.
We will name it app1.py:

Listing 13.40: app1.py

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3

4 '''
5 Code created by Matt Richardson
6 for details, visit: http://mattrichardson.com/Raspberry-Pi-Flask/inde...
7 '''
8 from flask import Flask, render_template
9 import datetime
10 app = Flask(__name__)
11 @app.route(”/”)
12 def hello():
13 now = datetime.datetime.now()
14 timeString = now.strftime(”%Y-%m-%d %H:%M”)
15 templateData = {
16 'title' : 'HELLO!',
17 'time': timeString
18 }
19 return render_template('index1.html', **templateData)
20 if __name__ == ”__main__”:
21 app.run(host='0.0.0.0', port=8080, debug=True)
22

app1.py

Note that we create a formatted string (“timeString”) using the date and time from the “now” object, that has
the current time stored on it.

Next important thing on the above code, is that we created a dictionary of variables (a set of keys, such as the
title that is associated with values, such as HELLO!) to pass into the template. On “return”, we will return the
index1.html template to the web browser using the variables in the templateData dictionary.

Execute the Python script:

bone$.\app.py

Open any web browser and browse to 192.168.7.2:8080. You should see:

Note that the page’s content changes dynamically any time that you refresh it with the actual variable data
passed by Python script. In our case, “title” is a fixed value, but “time” changes every minute.

582 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.53: Test page served by app1.py

13.1. BeagleBone Cookbook 583

BeagleBoard Docs, Release 1.0.20230711-wip

Displaying GPIO Status in a Web Browser - reading a button

Problem You want a web page to display the status of a GPIO pin.

Solution This solution builds on the Flask-based web server solution in Interacting with the Bone via a Web
Browser.

To make this recipe, you will need:

• Breadboard and jumper wires.

• Pushbutton switch.

Wire your pushbutton as shown in Diagram for wiring a pushbutton and magnetic reed switch input. Wire a
button to P9_11 and have the web page display the value of the button.

Let’s use a new Python script named app2.py.

Listing 13.41: A simple Flask-based web server to read a GPIO
(app2.py)

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3 import os
4 from flask import Flask, render_template
5 app = Flask(__name__)
6

7 pin = '30' # P9_11 is gpio 30
8 GPIOPATH=”/sys/class/gpio”
9 buttonSts = 0
10

11 # Make sure pin is exported
12 if (not os.path.exists(GPIOPATH+”/gpio”+pin)):
13 f = open(GPIOPATH+”/export”, ”w”)
14 f.write(pin)
15 f.close()
16

17 # Make it an input pin
18 f = open(GPIOPATH+”/gpio”+pin+”/direction”, ”w”)
19 f.write(”in”)
20 f.close()
21

22 @app.route(”/”)
23 def index():
24 # Read Button Status
25 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”r”)
26 buttonSts = f.read()[:-1]
27 f.close()
28

29 # buttonSts = GPIO.input(button)
30 templateData = {
31 'title' : 'GPIO input Status!',
32 'button' : buttonSts,
33 }
34 return render_template('index2.html', **templateData)
35 if __name__ == ”__main__”:
36 app.run(host='0.0.0.0', port=8080, debug=True)

app2.py

What we are doing is defining the button on P9_11 as input, reading its value and storing it in buttonSts. Inside
the function index(), we will pass that value to our web page through “button” that is part of our variable
dictionary: templateData.

584 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Let’s also see the new index2.html to show the GPIO status:

Listing 13.42: A simple Flask-based web server to read a GPIO (in-
dex2.html)

1 <!DOCTYPE html>
2 <head>
3 <title>{{ title }}</title>
4 <link rel=”stylesheet” href='../static/style.css'/>
5 </head>
6 <body>
7 <h1>{{ title }}</h1>
8 <h2>Button pressed: {{ button }}</h1>
9 </body>
10 </html>

index2.html

Now, run the following command:

bone$./app2.py

Point your browser to http://192.168.7.2:8080, and the page will look like Status of a GPIO pin on a web page.

Fig. 13.54: Status of a GPIO pin on a web page

Currently, the 0 shows that the button isn’t pressed. Try refreshing the page while pushing the button, and you
will see 1 displayed.

13.1. BeagleBone Cookbook 585

BeagleBoard Docs, Release 1.0.20230711-wip

It’s not hard to assemble your own HTML with the GPIO data. It’s an easy extension to write a program to
display the status of all the GPIO pins.

Controlling GPIOs

Problem You want to control an LED attached to a GPIO pin.

Solution Now that we know how to “read” GPIO Status, let’s change them. What we will do will control the
LED via the web page. We have an LED connected to P9_14. Controlling remotely we will change its status
from LOW to HIGH and vice-versa.

Create a new Python script and name it app3.py.

Listing 13.43: A simple Flask-based web server to read a GPIO
(app3.py)

1 #!/usr/bin/env python
2 # From: https://towardsdatascience.com/python-webserver-with-flask-and-

↪→raspberry-pi-398423cc6f5d
3 # import Adafruit_BBIO.GPIO as GPIO
4 import os
5 from flask import Flask, render_template, request
6 app = Flask(__name__)
7 #define LED GPIO
8 ledRed = ”P9_14”
9 pin = '50' # P9_14 is gpio 50
10 GPIOPATH=”/sys/class/gpio”
11

12 #initialize GPIO status variable
13 ledRedSts = 0
14 # Make sure pin is exported
15 if (not os.path.exists(GPIOPATH+”/gpio”+pin)):
16 f = open(GPIOPATH+”/export”, ”w”)
17 f.write(pin)
18 f.close()
19 # Define led pin as output
20 f = open(GPIOPATH+”/gpio”+pin+”/direction”, ”w”)
21 f.write(”out”)
22 f.close()
23 # turn led OFF
24 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”w”)
25 f.write(”0”)
26 f.close()
27

28 @app.route(”/”)
29 def index():
30 # Read Sensors Status
31 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”r”)
32 ledRedSts = f.read()
33 f.close()
34 templateData = {
35 'title' : 'GPIO output Status!',
36 'ledRed' : ledRedSts,
37 }
38 return render_template('index3.html', **templateData)
39

40 @app.route(”/<deviceName>/<action>”)
41 def action(deviceName, action):
42 if deviceName == 'ledRed':
43 actuator = ledRed
44 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”w”)

(continues on next page)

586 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

45 if action == ”on”:
46 f.write(”1”)
47 if action == ”off”:
48 f.write(”0”)
49 f.close()
50

51 f = open(GPIOPATH+”/gpio”+pin+”/value”, ”r”)
52 ledRedSts = f.read()
53 f.close()
54

55 templateData = {
56 'ledRed' : ledRedSts,
57 }
58 return render_template('index3.html', **templateData)
59 if __name__ == ”__main__”:
60 app.run(host='0.0.0.0', port=8080, debug=True)

app3.py

What we have new on above code is the new “route”:

@app.route(“/<deviceName>/<action>”)

From the webpage, calls will be generated with the format:

http://192.168.7.2:8081/ledRed/on

or

http://192.168.7.2:8081/ledRed/off

For the above example, ledRed is the “deviceName” and on or off are examples of possible “action”. Those
routes will be identified and properly “worked”. The main steps are:

• Convert the string “ledRED”, for example, on its equivalent GPIO pin. The integer variable ledRed is
equivalent to P9_14. We store this value on variable “actuator”

• For each actuator, we will analyze the “action”, or “command” and act properly. If “action = on” for
example, we must use the command: f.write(”1”)

• Update the status of each actuator

• Return the data to index.html

Let’s now create an index.html to show the GPIO status of each actuator andmore importantly, create “buttons”
to send the commands:

Listing 13.44: A simple Flask-based web server to write a GPIO (in-
dex3.html)

1 <!DOCTYPE html>
2 <head>
3 <title>GPIO Control</title>
4 <link rel=”stylesheet” href='../static/style.css'/>
5 </head>
6 <body>
7 <h2>Actuators</h2>
8 <h3> Status </h3>
9 RED LED ==> {{ ledRed }}
10

11 <h3> Commands </h3>
12 RED LED Ctrl ==>
13 TURN ON
14 TURN OFF
15 </body>
16 </html>

13.1. BeagleBone Cookbook 587

http://192.168.7.2:8081/ledRed/on
http://192.168.7.2:8081/ledRed/off

BeagleBoard Docs, Release 1.0.20230711-wip

index3.html

bone$./app3.py

Point your browser as before and you will see:

Status of a GPIO pin on a web page

Try clicking the “TURN ON” and “TURN OFF” buttons and your LED will respond.

app4.py and app5.py combine the previous apps. Try them out.

app4.py app5.py

Plotting Data

Problem You have live, continuous, data coming into your Bone via one of the Analog Ins, and you want to
plot it.

Solution

Analog in - Continuous (This is based on information at: http://software-dl.ti.com/processor-sdk-linux/esd/
docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode)

Reading a continuous analog signal requires some set up. First go to the iio devices directory.

588 Chapter 13. Books

http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode
http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/Kernel/Kernel_Drivers/ADC.html#Continuous%20Mode

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ cd /sys/bus/iio/devices/iio:device0
bone$ ls -F
buffer/ in_voltage0_raw in_voltage2_raw in_voltage4_raw in_voltage6_raw ␣
↪→name power/ subsystem@
dev in_voltage1_raw in_voltage3_raw in_voltage5_raw in_voltage7_raw ␣
↪→of_node@ scan_elements/ uevent

Here you see the files used to read the one shot values. Look in scan_elements to see how to enable continuous
input.

bone$ ls scan_elements
in_voltage0_en in_voltage1_index in_voltage2_type in_voltage4_en ␣
↪→in_voltage5_index in_voltage6_type
in_voltage0_index in_voltage1_type in_voltage3_en in_voltage4_index ␣
↪→in_voltage5_type in_voltage7_en
in_voltage0_type in_voltage2_en in_voltage3_index in_voltage4_type ␣
↪→in_voltage6_en in_voltage7_index
in_voltage1_en in_voltage2_index in_voltage3_type in_voltage5_en ␣
↪→in_voltage6_index in_voltage7_type

Here you see three values for each analog input, _en (enable),
_index (index of this channel in the buffer’s chunks) and _type (how the ADC stores its data). (See the
link above for details.) Let’s use the input at P9.40 which is AIN1. To enable this input:

bone$ echo 1 > scan_elements/in_voltage1_en

Next set the buffer size.

bone$ ls buffer
data_available enable length watermark

Let’s use a 512 sample buffer. You might need to experiment with this.

bone$ echo 512 > buffer/length

Then start it running.

bone$ echo 1 > buffer/enable

Now, just read from */dev/iio:device0*.

An example Python program that does the above and reads and plots the buffer is analogInContinuous.py.

Listing 13.45: Code to read and plot a continuous analog in-
put(analogInContinuous.py)

1 #!/usr/bin/python
2 #//////////////////////////////////////
3 # analogInContinuous.py
4 # Read analog data via IIO continuous mode and plots it.
5 #//////////////////////////////////////
6 # From: https://stackoverflow.com/questions/20295646/python-ascii-plots-in-

↪→terminal
7 # https://github.com/dkogan/gnuplotlib
8 # https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org
9 # sudo apt install gnuplot (10 minute to install)
10 # sudo apt install libatlas-base-dev
11 # pip3 install gnuplotlib
12 # This uses X11, so when connecting to the bone from the host use: ssh -X␣

↪→bone
13

14 # See https://elinux.org/index.php?title=EBC_Exercise_10a_Analog_In#Analog_
(continues on next page)

13.1. BeagleBone Cookbook 589

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.55: 1KHz sine wave sampled at 8KHz

590 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→in_-_Continuous.2C_Change_the_sample_rate
15 # for instructions on changing the sampling rate. Can go up to 200KHz.
16

17 fd = open(IIODEV, ”r”)
18 import numpy as np
19 import gnuplotlib as gp
20 import time
21 # import struct
22

23 IIOPATH='/sys/bus/iio/devices/iio:device0'
24 IIODEV='/dev/iio:device0'
25 LEN = 100
26 SAMPLERATE=8000
27 AIN='2'
28

29 # Setup IIO for Continous reading
30 # Enable AIN
31 try:
32 file1 = open(IIOPATH+'/scan_elements/in_voltage'+AIN+'_en', 'w')
33 file1.write('1')
34 file1.close()
35 except: # carry on if it's already enabled
36 pass
37 # Set buffer length
38 file1 = open(IIOPATH+'/buffer/length', 'w')
39 file1.write(str(2*LEN)) # I think LEN is in 16-bit values, but here we␣

↪→pass bytes
40 file1.close()
41 # Enable continuous
42 file1 = open(IIOPATH+'/buffer/enable', 'w')
43 file1.write('1')
44 file1.close()
45

46 x = np.linspace(0, 1000*LEN/SAMPLERATE, LEN)
47 # Do a dummy plot to give time of the fonts to load.
48 gp.plot(x, x)
49 print(”Waiting for fonts to load”)
50 time.sleep(10)
51

52 print('Hit ^C to stop')
53

54 fd = open(IIODEV, ”r”)
55

56 try:
57 while True:
58 y = np.fromfile(fd, dtype='uint16', count=LEN)*1.8/4096
59 # print(y)
60 gp.plot(x, y,
61 xlabel = 't (ms)',
62 ylabel = 'volts',
63 _yrange = [0, 2],
64 title = 'analogInContinuous',
65 legend = np.array((”P9.39”,),),
66 # ascii=1,
67 # terminal=”xterm”,
68 # legend = np.array((”P9.40”, ”P9.38”),),
69 # _with = 'lines'
70)
71

72 except KeyboardInterrupt:
73 print(”Turning off input.”)

(continues on next page)

13.1. BeagleBone Cookbook 591

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

74 # Disable continuous
75 file1 = open(IIOPATH+'/buffer/enable', 'w')
76 file1.write('0')
77 file1.close()
78

79 file1 = open(IIOPATH+'/scan_elements/in_voltage'+AIN+'_en', 'w')
80 file1.write('0')
81 file1.close()
82

83 # // Bone | Pocket | AIN
84 # // ----- | ------ | ---
85 # // P9_39 | P1_19 | 0
86 # // P9_40 | P1_21 | 1
87 # // P9_37 | P1_23 | 2
88 # // P9_38 | P1_25 | 3
89 # // P9_33 | P1_27 | 4
90 # // P9_36 | P2_35 | 5
91 # // P9_35 | P1_02 | 6

analogInContinuous.py

Be sure to read the instillation instructions in the comments. Also note this uses X windows and you need to
ssh -X 192.168.7.2 for X to know where the display is.

Run it:

host$ ssh -X bone

bone$ cd beaglebone-cookbook-code/06iot
bone$./analogInContinuous.py
Hit ^C to stop

1KHz sine wave sampled at 8KHz is the output of a 1KHz sine wave.

It’s a good idea to disable the buffer when done.

bone$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable

Analog in - Continuous, Change the sample rate The built in ADCs sample at 8k samples/second by
default. They can run as fast as 200k samples/second by editing a device tree.

bone$ cd /opt/source/bb.org-overlays
bone$ make

This will take a while the first time as it compiles all the device trees.

bone$ vi src/arm/src/arm/BB-ADC-00A0.dts

Around line 57 you’ll see

Line Code
57 // For each step, number of adc clock cycles to wait between setting␣
↪→up muxes and sampling.
58 // range: 0 .. 262143
59 // optional, default is 152 (XXX but why?!)
60 ti,chan-step-opendelay = <152 152 152 152 152 152 152 152>;
61 //`
62 // XXX is there any purpose to set this nonzero other than to fine-
↪→tune the sample rate?
63
64

(continues on next page)

592 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

65 // For each step, how many times it should sample to average.
66 // range: 1 .. 16, must be power of two (i.e. 1, 2, 4, 8, or 16)
67 // optional, default is 16
68 ti,chan-step-avg = <16 16 16 16 16 16 16 16>;

The comments give lots of details on how to adjust the device tree to change the sample rate. Line 68 says
for every sample returned, average 16 values. This will give you a cleaner signal, but if you want to go fast,
change the 16’s to 1’s. Line 60 says to delay 152 cycles between each sample. Set this to 0 to got as fast a
possible.

ti,chan-step-avg = <1 1 1 1 1 1 1 1>;
ti,chan-step-opendelay = <0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00>;

Now compile it.

bone$ make
DTC src/arm/BB-ADC-00A0.dtbo

gcc -o config-pin ./tools/pmunts_muntsos/config-pin.c

It knows to only recompile the file you just edited. Now install and reboot.

bone$ sudo make install
...
'src/arm/AM335X-PRU-UIO-00A0.dtbo' -> '/lib/firmware/AM335X-PRU-UIO-00A0.dtbo
↪→'
'src/arm/BB-ADC-00A0.dtbo' -> '/lib/firmware/BB-ADC-00A0.dtbo'
'src/arm/BB-BBBMINI-00A0.dtbo' -> '/lib/firmware/BB-BBBMINI-00A0.dtbo'
...
bone$ reboot

A number of files get installed, including the ADC file. Now try rerunning.

bone$ cd beaglebone-cookbook-code/06iot
bone$./analogInContinuous.py
Hit ^C to stop

Here’s the output of a 10KHz triangle wave.

It’s still a good idea to disable the buffer when done.

bone$ echo 0 > /sys/bus/iio/devices/iio:device0/buffer/enable

Sending an Email

Problem You want to send an email via Gmail from the Bone.

Solution This example came from https://realpython.com/python-send-email/. First, you need to set up
a Gmail account, if you don’t already have one. Then add the code in Sending email using nodemailer
(emailtTest.py) to a file named emailTest.py. Substitute your own Gmail username. For the password:

• Go to: https://myaccount.google.com/security

• Go to 2-Step Verification and at the bottom, select App password.

• Generate your own 16 char password and copy it into emailTest.py.

• Be sure to delete password when done https://myaccount.google.com/apppasswords .

13.1. BeagleBone Cookbook 593

https://realpython.com/python-send-email/
https://mail.google.com
https://mail.google.com
https://myaccount.google.com/security
https://myaccount.google.com/apppasswords

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.56: 10KHz triangle wave sampled at 200KHz

594 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.46: Sending email using nodemailer (emailtTest.py)

1 #!/usr/bin/env python
2 # From: https://realpython.com/python-send-email/
3 import smtplib, ssl
4

5 port = 587 # For starttls
6 smtp_server = ”smtp.gmail.com”
7 sender_email = ”from_account@gmail.com”
8 receiver_email = ”to_account@gmail.com”
9 # Go to: https://myaccount.google.com/security
10 # Select App password
11 # Generate your own 16 char password, copy here
12 # Delete password when done
13 password = ”cftqhcejjdjfdwjh”
14 message = ”””\
15 Subject: Testing email
16

17 This message is sent from Python.
18

19 ”””
20 context = ssl.create_default_context()
21 with smtplib.SMTP(smtp_server, port) as server:
22 server.starttls(context=context)
23 server.login(sender_email, password)
24 server.sendmail(sender_email, receiver_email, message)

emailTest.py

Then run the script to send the email:

bone$ chmod *x emailTest.py
bone$.\emailTest.py

Warning: This solution requires your Gmail password to be in plain text in a file, which is a security
problem. Make sure you know who has access to your Bone. Also, if you remove the microSD card, make
sure you know who has access to it. Anyone with your microSD card can read your Gmail password.

Be careful about putting this into a loop. Gmail presently limits you to 500 emails per day and 10 MB per
message.

See https://realpython.com/python-send-email/ for an example that sends an attached file.

Sending an SMS Message

Problem You want to send a text message from BeagleBone Black.

Solution There are a number of SMS services out there. This recipe uses Twilio because you can use it for
free, but you will need to verify the number to which you are texting. First, go to Twilio’s home page and set
up an account. Note your account SID and authorization token. If you are using the free version, be sure to
verify your numbers.

Next, install Trilio by using the following command for python:

bone$ sudo apt install python-pip
bone$ sudo pip install twilio

or for Javascript:

13.1. BeagleBone Cookbook 595

http://group-mail.com/email-marketing/how-to-send-bulk-emails-using-gmail
http://group-mail.com/email-marketing/how-to-send-bulk-emails-using-gmail
https://realpython.com/python-send-email/
http://bit.ly/1MrHBBF
https://www.twilio.com/
http://bit.ly/19c7GZ7

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ npm install -g twilio

Finally, add the code in Sending SMS messages using Twilio (twilioTest.py) to a file named twilioTest.py
and run it. Your text will be sent.

Python

JavaScript

Listing 13.47: Sending SMS messages using Twilio (twilioTest.
py)

1 #!/usr/bin/env python
2 # Download the helper library from https://www.twilio.com/docs/python/install
3 import os
4 from twilio.rest import Client
5

6

7 # Find your Account SID and Auth Token at twilio.com/console
8 # and set the environment variables. See http://twil.io/secure
9 account_sid = os.environ['TWILIO_ACCOUNT_SID']
10 auth_token = os.environ['TWILIO_AUTH_TOKEN']
11 client = Client(account_sid, auth_token)
12

13 message = client.messages \
14 .create(
15 body=”Join Earth's mightiest heroes. Like Kevin Bacon.”,
16 from_='+18122333219',
17 to='+18122333219'
18)
19

20 print(message.sid)

twilioTest.py

Listing 13.48: Sending SMS messages using Twilio (twilio-test.
js)

1 #!/usr/bin/env node
2 // From: http://twilio.github.io/twilio-node/
3 // Twilio Credentials
4 var accountSid = '';
5 var authToken = '';
6

7 //require the Twilio module and create a REST client
8 var client = require('twilio')(accountSid, authToken);
9

10 client.messages.create({
11 to: ”812555121”,
12 from: ”+2605551212”,
13 body: ”This is a test”,
14 }, function(err, message) {
15 console.log(message.sid);
16 });
17

18 // https://github.com/twilio/twilio-node/blob/master/LICENSE

twilio-test.js

Twilio allows a small number of free text messages, enough to test your code and to play around some.

596 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Displaying the Current Weather Conditions

Problem You want to display the current weather conditions.

Solution Because your Bone is on the network, it’s not hard to access the current weather conditions from a
weather API.

• Go to https://openweathermap.org/ and create an account.

• Go to https://home.openweathermap.org/api_keys and get your API key.

• Store your key in the bash variable APPID.

bash$ export APPID=”Your key”

• Then add the code in Code for getting current weather conditions (weather.py) to a file named
weather.py.

• Run the python script.

Listing 13.49: Code for getting current weather conditions
(weather.py)

1 #!/usr/bin/env python3
2 # Displays current weather and forecast
3 import os
4 import sys
5 from datetime import datetime
6 import requests # For getting weather
7

8 # http://api.openweathermap.org/data/2.5/onecall
9 params = {
10 'appid': os.environ['APPID'],
11 # 'city': 'brazil,indiana',
12 'exclude': ”minutely,hourly”,
13 'lat': '39.52',
14 'lon': '-87.12',
15 'units': 'imperial'
16 }
17 urlWeather = ”http://api.openweathermap.org/data/2.5/onecall”
18

19 print(”Getting weather”)
20

21 try:
22 r = requests.get(urlWeather, params=params)
23 if(r.status_code==200):
24 # print(”headers: ”, r.headers)
25 # print(”text: ”, r.text)
26 # print(”json: ”, r.json())
27 weather = r.json()
28 print(”Temp: ”, weather['current']['temp']) # �
29 print(”Humid:”, weather['current']['humidity'])
30 print(”Low: ”, weather['daily'][1]['temp']['min'])
31 print(”High: ”, weather['daily'][0]['temp']['max'])
32 day = weather['daily'][0]['sunrise']-weather['timezone_offset']
33 print(”sunrise: ” + datetime.utcfromtimestamp(day).strftime('%Y-%m-

↪→%d %H:%M:%S'))
34 # print(”Day: ” + datetime.utcfromtimestamp(day).strftime('%a'))
35 # print(”weather: ”, weather['daily'][1]) # �
36 # print(”weather: ”, weather) # �
37 # print(”icon: ”, weather['current']['weather'][0]['icon'])
38 # print()
39

(continues on next page)

13.1. BeagleBone Cookbook 597

https://openweathermap.org/
https://home.openweathermap.org/api_keys

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

40 else:
41 print(”status_code: ”, r.status_code)
42 except IOError:
43 print(”File not found: ” + tmp101)
44 print(”Have you run setup.sh?”)
45 except:
46 print(”Unexpected error:”, sys.exc_info())

weather.py

1. Prints current conditions.

2. Prints the forecast for the next day.

3. Prints everything returned by the weather site.

Uncomment what you want to be displayed.

Run this by using the following commands:

bone$./weather.js
Getting weather
Temp: 73.72
Humid: 31
Low: 54.21
High: 75.47
sunrise: 2023-06-09 14:21:07

The weather API returns lots of information. Use Python to extract the information you want.

Sending and Receiving Tweets

Problem You want to send and receive tweets (Twitter posts) with your Bone.

Solution Twitter has a whole git repo of sample code for interacting with Twitter. Here I’ll show how to create
a tweet and then how to delete it.

Creating a Project and App

• Follow the directions here to create a project and app.

• Be sure to give your app Read and Write permission.

• Then go to the developer portal and select you app by clicking on the gear icon to the right of the app
name.

• Click on the Keys and tokens tab. Here you can get to all your keys and tokens.

Tip: Be sure to record them, you can’t get them later.

• Open the file twitterKeys.sh and record your keys in it.

export API_KEY='XXX'
export API_SECRET_KEY='XXX'
export BEARER_TOKEN='XXX'
export TOKEN='XXXX'
export TOKEN_SECRET='XXX'

• Next, source the file so the values will appear in your bash session.

598 Chapter 13. Books

https://twitter.com
https://github.com/twitterdev/Twitter-API-v2-sample-code
https://developer.twitter.com/en/docs/apps/overview
https://developer.twitter.com/en/portal/projects-and-apps

BeagleBoard Docs, Release 1.0.20230711-wip

bash$ source twitterKeys.sh

You’ll need to do this every time you open a new bash window.

Creating a tweet

Add the code in Create a Tweet (twitter_create_tweet.py) to a file called twitter_create_tweet_.py
and run it to see your timeline.

Listing 13.50: Create a Tweet (twitter_create_tweet.py)

1 #!/usr/bin/env python
2 # From: https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/

↪→Manage-Tweets/create_tweet.py
3 from requests_oauthlib import OAuth1Session
4 import os
5 import json
6

7 # In your terminal please set your environment variables by running the␣
↪→following lines of code.

8 # export 'API_KEY'='<your_consumer_key>'
9 # export 'API_SECRET_KEY'='<your_consumer_secret>'
10

11 consumer_key = os.environ.get(”API_KEY”)
12 consumer_secret = os.environ.get(”API_SECRET_KEY”)
13

14 # Be sure to add replace the text of the with the text you wish to Tweet.␣
↪→You can also add parameters to post polls, quote Tweets, Tweet with reply␣
↪→settings, and Tweet to Super Followers in addition to other features.

15 payload = {”text”: ”Hello world!”}
16

17 # Get request token
18 request_token_url = ”https://api.twitter.com/oauth/request_token?oauth_

↪→callback=oob&x_auth_access_type=write”
19 oauth = OAuth1Session(consumer_key, client_secret=consumer_secret)
20

21 try:
22 fetch_response = oauth.fetch_request_token(request_token_url)
23 except ValueError:
24 print(
25 ”There may have been an issue with the consumer_key or consumer_

↪→secret you entered.”
26)
27

28 resource_owner_key = fetch_response.get(”oauth_token”)
29 resource_owner_secret = fetch_response.get(”oauth_token_secret”)
30 print(”Got OAuth token: %s” % resource_owner_key)
31

32 # Get authorization
33 base_authorization_url = ”https://api.twitter.com/oauth/authorize”
34 authorization_url = oauth.authorization_url(base_authorization_url)
35 print(”Please go here and authorize: %s” % authorization_url)
36 verifier = input(”Paste the PIN here: ”)
37

38 # Get the access token
39 access_token_url = ”https://api.twitter.com/oauth/access_token”
40 oauth = OAuth1Session(
41 consumer_key,
42 client_secret=consumer_secret,
43 resource_owner_key=resource_owner_key,
44 resource_owner_secret=resource_owner_secret,

(continues on next page)

13.1. BeagleBone Cookbook 599

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

45 verifier=verifier,
46)
47 oauth_tokens = oauth.fetch_access_token(access_token_url)
48

49 access_token = oauth_tokens[”oauth_token”]
50 access_token_secret = oauth_tokens[”oauth_token_secret”]
51

52 # Make the request
53 oauth = OAuth1Session(
54 consumer_key,
55 client_secret=consumer_secret,
56 resource_owner_key=access_token,
57 resource_owner_secret=access_token_secret,
58)
59

60 # Making the request
61 response = oauth.post(
62 ”https://api.twitter.com/2/tweets”,
63 json=payload,
64)
65

66 if response.status_code != 201:
67 raise Exception(
68 ”Request returned an error: {} {}”.format(response.status_code,␣

↪→response.text)
69)
70

71 print(”Response code: {}”.format(response.status_code))
72

73 # Saving the response as JSON
74 json_response = response.json()
75 print(json.dumps(json_response, indent=4, sort_keys=True))

twitter_create_tweet.py

Run the code and you’ll have to authorize.

bash$./twitter_create_tweet.py
Got OAuth token: tWBldQAAAAAAWBJgAAABggJt7qg
Please go here and authorize: https://api.twitter.com/oauth/authorize?oauth_
↪→token=tWBldQAAAAAAWBJgAAABggJt7qg
Paste the PIN here: 4859044
Response code: 201
{

”data”: {
”id”: ”1547963178700533760”,
”text”: ”Hello world!”

}
}

Check your twitter account and you’ll see the new tweet. Record the id number and we’ll use it next to delete
the tweet.

Deleting a tweet

Use the code in Code to delete a tweet (twitter_delete_tweet.py) to delete a tweet. Around line 15 is the id
number. Paste in the value returned above.

600 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.51: Code to delete a tweet
(twitter_delete_tweet.py)

1 #!/usr/bin/env python
2 # From: https://github.com/twitterdev/Twitter-API-v2-sample-code/blob/main/

↪→Manage-Tweets/delete_tweet.py
3 from requests_oauthlib import OAuth1Session
4 import os
5 import json
6

7 # In your terminal please set your environment variables by running the␣
↪→following lines of code.

8 # export 'API_KEY'='<your_consumer_key>'
9 # export 'API_SECRET_KEY'='<your_consumer_secret>'
10

11 consumer_key = os.environ.get(”API_KEY”)
12 consumer_secret = os.environ.get(”API_SECRET_KEY”)
13

14 # Be sure to replace tweet-id-to-delete with the id of the Tweet you wish to␣
↪→delete. The authenticated user must own the list in order to delete

15 id = ”1547963178700533760”
16

17 # Get request token
18 request_token_url = ”https://api.twitter.com/oauth/request_token?oauth_

↪→callback=oob&x_auth_access_type=write”
19 oauth = OAuth1Session(consumer_key, client_secret=consumer_secret)
20

21 try:
22 fetch_response = oauth.fetch_request_token(request_token_url)
23 except ValueError:
24 print(
25 ”There may have been an issue with the consumer_key or consumer_

↪→secret you entered.”
26)
27

28 resource_owner_key = fetch_response.get(”oauth_token”)
29 resource_owner_secret = fetch_response.get(”oauth_token_secret”)
30 print(”Got OAuth token: %s” % resource_owner_key)
31

32 # Get authorization
33 base_authorization_url = ”https://api.twitter.com/oauth/authorize”
34 authorization_url = oauth.authorization_url(base_authorization_url)
35 print(”Please go here and authorize: %s” % authorization_url)
36 verifier = input(”Paste the PIN here: ”)
37

38 # Get the access token
39 access_token_url = ”https://api.twitter.com/oauth/access_token”
40 oauth = OAuth1Session(
41 consumer_key,
42 client_secret=consumer_secret,
43 resource_owner_key=resource_owner_key,
44 resource_owner_secret=resource_owner_secret,
45 verifier=verifier,
46)
47 oauth_tokens = oauth.fetch_access_token(access_token_url)
48

49 access_token = oauth_tokens[”oauth_token”]
50 access_token_secret = oauth_tokens[”oauth_token_secret”]
51

52 # Make the request
53 oauth = OAuth1Session(
54 consumer_key,

(continues on next page)

13.1. BeagleBone Cookbook 601

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

55 client_secret=consumer_secret,
56 resource_owner_key=access_token,
57 resource_owner_secret=access_token_secret,
58)
59

60 # Making the request
61 response = oauth.delete(”https://api.twitter.com/2/tweets/{}”.format(id))
62

63 if response.status_code != 200:
64 raise Exception(
65 ”Request returned an error: {} {}”.format(response.status_code,␣

↪→response.text)
66)
67

68 print(”Response code: {}”.format(response.status_code))
69

70 # Saving the response as JSON
71 json_response = response.json()
72 print(json_response)

twitter_delete_tweet.py

The code in Tweet when a button is pushed (twitterPushbutton.js) sends a tweet whenever a button is pushed.

Listing 13.52: Tweet when a button is pushed (twitterPushbutton.js)

1 #!/usr/bin/env node
2 // From: https://www.npmjs.org/package/node-twitter
3 // Tweets with attached image media (JPG, PNG or GIF) can be posted
4 // using the upload API endpoint.
5 var Twitter = require('node-twitter');
6 var b = require('bonescript');
7 var key = require('./twitterKeys');
8 var gpio = ”P9_42”;
9 var count = 0;
10

11 b.pinMode(gpio, b.INPUT);
12 b.attachInterrupt(gpio, sendTweet, b.FALLING);
13

14 var twitterRestClient = new Twitter.RestClient(
15 key.API_KEY, key.API_SECRET,
16 key.TOKEN, key.TOKEN_SECRET
17);
18

19 function sendTweet() {
20 console.log(”Sending...”);
21 count++;
22

23 twitterRestClient.statusesUpdate(
24 {'status': 'Posting tweet ' + count + ' via my BeagleBone Black', },
25 function(error, result) {
26 if (error) {
27 console.log('Error: ' +
28 (error.code ? error.code + ' ' + error.message : error.

↪→message));
29 }
30

31 if (result) {
32 console.log(result);
33 }
34 }
35);

(continues on next page)

602 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

36 }
37

38 // node-twitter is made available under terms of the BSD 3-Clause License.
39 // http://www.opensource.org/licenses/BSD-3-Clause

twitterPushbutton.js

To see many other examples, go to Twitter for Node.js on NPMJS.com.

This opens up many new possibilities. You can read a temperature sensor and tweet its value whenever it
changes, or you can turn on an LED whenever a certain hashtag is used. What are you going to tweet?

Wiring the IoT with Node-RED

Problem You want BeagleBone to interact with the Internet, but you want to program it graphically.

Solution Node-RED is a visual tool for wiring the IoT. It makes it easy to turn on a light when a certain hashtag
is tweeted, or spin a motor if the forecast is for hot weather.

Starting Node-RED

Node-RED is already installed, to run Node-RED, use the following command to start.

bone$ sudo systemctl start nodered

Or run the following to have Node-RED start everytime you reboot.

bone$ sudo systemctl enable --now nodered

Node-RED is listening on part 1880. Point your browser to http://192.168.7.2:1880, and you will see the screen
shown in The Node-RED web page.

Building a Node-RED Flow

The example in this recipe builds a Node-RED flow that will toggle an LED whenever a certain hashtag is
tweeted. But first, you need to set up the Node-RED flow with the twitter node:

• On the Node-RED web page, scroll down until you see the social nodes on the left side of the page.

• Drag the twitter node to the canvas, as shown in Node-RED twitter node.

Authorize Twitter by double-clicking the twitter node. You’ll see the screen shown in Node-RED Twitter autho-
rization, step 1.

Click the pencil button to bring up the dialog box shown in Node-RED twitter authorization, step 2.

• Click the “here” link, as shown in Node-RED twitter authorization, step 2, and you’ll be taken to Twitter
to authorize Node-RED.

• Log in to Twitter and click the “Authorize app” button (Node-RED Twitter site authorization).

• When you’re back to Node-RED, click the Add button, add your Twitter credentials, enter the hashtags to
respond to (Node-RED adding the #BeagleBone hashtag), and then click the Ok button.

• Go back to the left panel, scroll up to the top, and then drag the debug node to the canva- (debug is in
the output section.)

• Connect the two nodes by clicking and dragging (Node-RED Twitter adding debug node and connecting).

• In the right panel, in the upper-right corner, click the “debug” tab.

13.1. BeagleBone Cookbook 603

https://www.npmjs.com/package/twitter
http://nodered.org/
http://192.168.7.2:1880

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.57: The Node-RED web page

604 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.58: Node-RED twitter node

13.1. BeagleBone Cookbook 605

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.59: Node-RED Twitter authorization, step 1

606 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.60: Node-RED twitter authorization, step 2

13.1. BeagleBone Cookbook 607

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.61: Node-RED Twitter site authorization

608 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.62: Node-RED adding the #BeagleBone hashtag

13.1. BeagleBone Cookbook 609

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.63: Node-RED Twitter adding debug node and connecting

610 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

• Finally, click the Deploy button above the “debug” tab.

Your Node-RED flow is now running on the Bone. Test it by going to Twitter and tweeting something with the
hashtag #BeagleBone. Your Bone is now responding to events happening out in the world.

Adding an LED Toggle

Now, we’re ready to add the LED toggle:

• Wire up an LED as shown in Toggling an External LED. Mine is wired to P9_14.

• Scroll to the bottom of the left panel and drag the bbb-discrete-out node (second from the bottom of the
bbb nodes) to the canvas and wire it (Node-RED adding bbb-discrete-out node).

Fig. 13.64: Node-RED adding bbb-discrete-out node

Double-click the node, select your GPIO pin and “Toggle state,” and then set “Startup as” to 1 (Node-RED
adding bbb-discrete-out configuration).

Click Ok and then Deploy.

Test again. The LED will toggle every time the hashtag #BeagleBone is tweeted. With a little more exploring,
you should be able to have your Bone ringing a bell or spinning a motor in response to tweets.

Communicating over a Serial Connection to an Arduino or LaunchPad

Problem You would like your Bone to talk to an Arduino or LaunchPad.

13.1. BeagleBone Cookbook 611

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.65: Node-RED adding bbb-discrete-out configuration

612 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The common serial port (also known as a UART) is the simplest way to talk between the two. Wire
it up as shown in Wiring a LaunchPad to a Bone via the common serial port.

Warning: BeagleBone Black runs at 3.3 V. When wiring other devices to it, ensure that they are also 3.3 V.
The LaunchPad I’m using is 3.3 V, but many Arduinos are 5.0 V and thus won’t work. Or worse, they might
damage your Bone.

Fig. 13.66: Wiring a LaunchPad to a Bone via the common serial port

Add the code (or sketch, as it’s called in Arduino-speak) in LaunchPad code for communicating via the UART
(launchPad.ino) to a file called launchPad.ino and run it on your LaunchPad.

Listing 13.53: LaunchPad code for communicating via the UART
(launchPad.ino)

1 /*
2 Tests connection to a BeagleBone
3 Mark A. Yoder
4 Waits for input on Serial Port
5 g - Green toggle
6 r - Red toggle
7 */
8 char inChar = 0; // incoming serial byte
9 int red = 0;
10 int green = 0;
11

12 void setup()
13 {
14 // initialize the digital pin as an output.
15 pinMode(RED_LED, OUTPUT); // �
16 pinMode(GREEN_LED, OUTPUT);
17 // start serial port at 9600 bps:
18 Serial.begin(9600); // �
19 Serial.print(”Command (r, g): ”); // �

(continues on next page)

13.1. BeagleBone Cookbook 613

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

20

21 digitalWrite(GREEN_LED, green); // �
22 digitalWrite(RED_LED, red);
23 }
24

25 void loop()
26 {
27 if(Serial.available() > 0) { // �
28 inChar = Serial.read();
29 switch(inChar) { // �
30 case 'g':
31 green = ~green;
32 digitalWrite(GREEN_LED, green);
33 Serial.println(”Green”);
34 break;
35 case 'r':
36 red = ~red;
37 digitalWrite(RED_LED, red);
38 Serial.println(”Red”);
39 break;
40 }
41 Serial.print(”Command (r, g): ”);
42 }
43 }
44

launchPad.ino

① Set the mode for the built-in red and green LEDs.

② Start the serial port at 9600 baud.

③ Prompt the user, which in this case is the Bone.

④ Set the LEDs to the current values of the red and green variables.

⑤ Wait for characters to arrive on the serial port.

⑥ After the characters are received, read it and respond to it.

On the Bone, add the script in Code for communicating via the UART (launchPad.js) to a file called launchPad.js
and run it.

Listing 13.54: Code for communicating via the UART (launchPad.js)

1 #!/usr/bin/env node
2 // Need to add exports.serialParsers = m.module.parsers;
3 // to /usr/local/lib/node_modules/bonescript/serial.js
4 var b = require('bonescript');
5

6 var port = '/dev/ttyO1'; // �
7 var options = {
8 baudrate: 9600, // �
9 parser: b.serialParsers.readline(”\n”) // �
10 };
11

12 b.serialOpen(port, options, onSerial); // �
13

14 function onSerial(x) { // �
15 console.log(x.event);
16 if (x.err) {
17 console.log('***ERROR*** ' + JSON.stringify(x));
18 }
19 if (x.event == 'open') {

(continues on next page)

614 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

20 console.log('***OPENED***');
21 setInterval(sendCommand, 1000); // �
22 }
23 if (x.event == 'data') {
24 console.log(String(x.data));
25 }
26 }
27

28 var command = ['r', 'g']; // �
29 var commIdx = 1;
30

31 function sendCommand() {
32 // console.log('Command: ' + command[commIdx]);
33 b.serialWrite(port, command[commIdx++]); // �
34 if(commIdx >= command.length) { // �
35 commIdx = 0;
36 }
37 }

launchPad.js

① Select which serial port to use. Table of UART outputs sows what’s available. We’ve wired P9_24 and P9_26,
so we are using serial port /dev/ttyO1. (Note that’s the letter O and not the number zero.)

② Set the baudrate to 9600, which matches the setting on the LaunchPad.

③ Read one line at a time up to the newline character (n).

④ Open the serial port and call onSerial() whenever there is data available.

⑤ Determine what event has happened on the serial port and respond to it.

⑥ If the serial port has been opened, start calling sendCommand() every 1000 ms.

⑦ These are the two commands to send.

⑧ Write the character out to the serial port and to the LaunchPad.

⑨ Move to the next command.

Discussion When you run the script in Code for communicating via the UART (launchPad.js), the Bone opens
up the serial port and every second sends a new command, either r or g. The LaunchPad waits for the command,
when it arrives, responds by toggling the corresponding LED.

13.1.7 The Kernel

The kernel is the heart of the Linux operating system. It’s the software that takes the low-level requests, such
as reading or writing files, or reading and writing general-purpose input/output (GPIO) pins, and maps them to
the hardware. When you install a new version of the OS (Verifying You Have the Latest Version of the OS on
Your Bone), you get a certain version of the kernel.

You usually won’t need to mess with the kernel, but sometimes you might want to try something new that
requires a different kernel. This chapter shows how to switch kernels. The nice thing is you can have multiple
kernels on your system at the same time and select from among them which to boot up.

Updating the Kernel

Problem You have an out-of-date kernel and want to make it current.

13.1. BeagleBone Cookbook 615

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.67: Table of UART outputs

Solution Use the following command to determine which kernel you are running:

bone$ uname -a
Linux beaglebone 5.10.168-ti-r62 #1bullseye SMP PREEMPT Tue May 23 20:15:00␣
↪→UTC 2023 armv7l GNU/Linux
GNU/Linux

The 5.10.168-ti-r62 string is the kernel version.

To update to the current kernel, ensure that your Bone is on the Internet (Sharing the Host’s Internet Connection
over USB or Establishing an Ethernet-Based Internet Connection) and then run the following commands:

bone$ apt-cache pkgnames | grep linux-image | sort | less
...
linux-image-5.10.162-ti-r59
linux-image-5.10.162-ti-rt-r56
linux-image-5.10.162-ti-rt-r57
linux-image-5.10.162-ti-rt-r58
linux-image-5.10.162-ti-rt-r59
linux-image-5.10.168-armv7-lpae-x71
linux-image-5.10.168-armv7-rt-x71
linux-image-5.10.168-armv7-x71
linux-image-5.10.168-bone71
linux-image-5.10.168-bone-rt-r71
linux-image-5.10.168-ti-r60
linux-image-5.10.168-ti-r61
linux-image-5.10.168-ti-r62
linux-image-5.10.168-ti-rt-r60
linux-image-5.10.168-ti-rt-r61
linux-image-5.10.168-ti-rt-r62
...

bone$ sudo apt install linux-image-5.10.162-ti-rt-r59
(continues on next page)

616 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

bone$ sudo reboot

bone$ uname -a
Linux beaglebone 5.10.162-ti-rt-r59 #1 SMP PREEMPT Wed Nov 19 21:11:08 UTC␣
↪→2014 armv7l
GNU/Linux

The first command lists the versions of the kernel that are available. The second command installs one. After
you have rebooted, the new kernel will be running.

If the current kernel is doing its job adequately, you probably don’t need to update, but sometimes a new
software package requires a more up-to-date kernel. Fortunately, precompiled kernels are available and ready
to download.

Seeing which kernels are installed You can have multiple kernels install at the same time. T hey are saved
in /boot

bone$ cd /boot
bone$ ls
config-5.10.168-ti-r62 initrd.img-5.10.168-ti-r63 uboot ␣
↪→ vmlinuz-5.10.168-ti-r63
config-5.10.168-ti-r63 SOC.sh uEnv.txt
dtbs System.map-5.10.168-ti-r62 uEnv.txt.orig
initrd.img-5.10.168-ti-r62 System.map-5.10.168-ti-r63 vmlinuz-5.10.168-ti-
↪→r62

Here I have two kernel versions installed.

Bone

Play

On the Bone (Not the Play) the file uEnv.txt tells which kernel to use on the next reboot. Here are the first few
lines:

Line
1 #Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0
2
3 # uname_r=4.14.108-ti-r137
4 uname_r=4.19.94-ti-r50
5 # uname_r=5.4.52-ti-r17
6 #uuid=

Lines 3-5 list the various kernels, and the uncommented one on line 4 is the one that will be used next time.
You will have to add your own uname’s. Get the names from the files in /boot. Be careful, if you mistype the
name your Bone won’t boot.

On the Play you can see which version of the kernel will boot next by:

play$ cat /boot/firmware/kversion
5.10.168-ti-arm64-r106

If you want to change the version run:

bone$ sudo apt install linux-image-5.10.168-ti-arm64-r105 --reinstall

Building and Installing Kernel Modules

Problem You need to use a peripheral for which there currently is no driver, or you need to improve the
performance of an interface previously handled in user space.

13.1. BeagleBone Cookbook 617

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The solution is to run in kernel space by building a kernel module. There are entire books on writing
Linux Device Drivers. This recipe assumes that the driver has already been written and shows how to compile
and install it. After you’ve followed the steps for this simple module, you will be able to apply them to any
other module.

For our example module, add the code in Simple Kernel Module (hello.c) to a file called hello.c.

Listing 13.55: Simple Kernel Module (hello.c)

1 #include <linux/module.h> /* Needed by all modules */
2 #include <linux/kernel.h> /* Needed for KERN_INFO */
3 #include <linux/init.h> /* Needed for the macros */
4

5 static int __init hello_start(void)
6 {
7 printk(KERN_INFO ”Loading hello module...\n”);
8 printk(KERN_INFO ”Hello, World!\n”);
9 return 0;
10 }
11

12 static void __exit hello_end(void)
13 {
14 printk(KERN_INFO ”Goodbye Boris\n”);
15 }
16

17 module_init(hello_start);
18 module_exit(hello_end);
19

20 MODULE_AUTHOR(”Boris Houndleroy”);
21 MODULE_DESCRIPTION(”Hello World Example”);
22 MODULE_LICENSE(”GPL”);

hello.c

When compiling on the Bone, all you need to do is load the Kernel Headers for the version of the kernel you’re
running:

bone$ sudo apt install linux-headers-`uname -r`

Note: The quotes around uname -r are backtick characters. On a United States keyboard, the backtick
key is to the left of the 1 key.

This took a little more than three minutes on my Bone. The uname -r part of the command looks up what
version of the kernel you are running and loads the headers for it.

Next, add the code in Simple Kernel Module (Makefile) to a file called Makefile.

Listing 13.56: Simple Kernel Module (Makefile)

1 obj-m := hello.o
2 KDIR := /lib/modules/$(shell uname -r)/build
3

4 all:
5 <TAB>make -C $(KDIR) M=$$PWD
6

7 clean:
8 <TAB>rm hello.mod.c hello.o modules.order hello.mod.o Module.symvers

Makefile.display

Note: Replace the two instances of <TAB> with a tab character (the key left of the Q key on a United States

618 Chapter 13. Books

https://bootlin.com/doc/books/ldd3.pdf
https://bootlin.com/doc/books/ldd3.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

keyboard). The tab characters are very important to makefiles and must appear as shown.

Now, compile the kernel module by using the make command:

bone$ make
make -C /lib/modules/5.10.168-ti-r62/build M=$PWD
make[1]: Entering directory '/usr/src/linux-headers-5.10.168-ti-r62'
CC [M] /home/debian/docs.beagleboard.io/books/beaglebone-cookbook/code/
↪→07kernel/hello.o
MODPOST /home/debian/docs.beagleboard.io/books/beaglebone-cookbook/code/
↪→07kernel/Module.symvers
CC [M] /home/debian/docs.beagleboard.io/books/beaglebone-cookbook/code/
↪→07kernel/hello.mod.o
LD [M] /home/debian/host/BeagleBoard/docs.beagleboard.io/books/beaglebone-
↪→cookbook/code/07kernel/hello.ko
make[1]: Leaving directory '/usr/src/linux-headers-5.10.168-ti-r62'

bone$ ls
Makefile hello.c hello.mod.c hello.o
Module.symvers hello.ko hello.mod.o modules.order

Notice that several files have been created. hello.ko is the one you want. Try a couple of commands with
it:

bone$ modinfo hello.ko
filename: /home/debian/host/BeagleBoard/docs.beagleboard.io/books/
↪→beaglebone-cookbook/code/07kernel/hello.ko
license: GPL
description: Hello World Example
author: Boris Houndleroy
depends:
name: hello
vermagic: 5.10.168-ti-r62 SMP preempt mod_unload modversions ARMv7 p2v8

bone$ sudo insmod hello.ko
bone$ dmesg | tail -4
[377.944777] lm75 1-004a: hwmon1: sensor 'tmp101'
[377.944976] i2c i2c-1: new_device: Instantiated device tmp101 at 0x4a
[85819.772666] Loading hello module...
[85819.772687] Hello, World!

The first command displays information about the module. The insmod command inserts the module into the
running kernel. If all goes well, nothing is displayed, but the module does print something in the kernel log.
The dmesg command displays the messages in the log, and the tail -4 command shows the last four messages.
The last two messages are from the module. It worked!

Compiling the Kernel

Problem You need to download, patch, and compile the kernel from its source code.

Solution This is easier than it sounds, thanks to some very powerful scripts.

Warning: Be sure to run this recipe on your host computer. The Bone has enough computational power
to compile a module or two, but compiling the entire kernel takes lots of time and resources.

13.1. BeagleBone Cookbook 619

BeagleBoard Docs, Release 1.0.20230711-wip

Downloading and Compiling the Kernel

To download and compile the kernel, follow these steps:

host$ git clone https://git.beagleboard.org/RobertCNelson/ti-linux-kernel-
↪→dev # �
host$ cd ti-linux-kernel-dev
host$ git checkout ti-linux-5.10.y # �
host$./build_deb.sh # �

Note: If you are using a 64 bit Bone, git checkout ti-linux-arm64-5.10.y

① The first command clones a repository with the tools to build the kernel for the Bone.

② When you know which kernel to try, use git checkout to check it out. This command checks out branch
ti-linux-5.10.y.

③ build_deb.sh is the master builder. If needed, it will download the cross compilers needed to compile the
kernel (gcc is the current cross compiler). If there is a kernel at ~/linux-dev, it will use it; otherwise, it
will download a copy to ti-linux-kernel-dev/ignore/linux-src. It will then patch the kernel
so that it will run on the Bone.

Note: build_deb.sh may ask you to install additional files. Just run sudo apt install *files* to install them.

After the kernel is patched, you’ll see a screen similar to Kernel configuration menu, on which you can configure
the kernel.

You can use the arrow keys to navigate. No changes need to be made, so you can just press the right arrow
and Enter to start the kernel compiling. The entire process took about 25 minutes on my 8-core host.

The ti-linux-kernel-dev/KERNEL directory contains the source code for the kernel. The
ti-linux-kernel-dev/deploy directory contains the compiled kernel and the files needed to run
it.

Installing the Kernel on the Bone

The ./build_deb.sh script creates a single .deb file that contains all the files needed for the new kernel. You
find it here:

host$ cd ti-linux-kernel-dev/deploy
host$ ls -sh
total 40M
7.7M linux-headers-5.10.168-ti-r62_1xross_armhf.deb 8.0K linux-upstream_
↪→1xross_armhf.buildinfo
33M linux-image-5.10.168-ti-r62_1xross_armhf.deb 4.0K linux-upstream_
↪→1xross_armhf.changes
1.1M linux-libc-dev_1xross_armhf.deb

The linux-image- file is the one we want. It contains over 3000 files.

host$ dpkg -c linux-image-5.10.168-ti-r62_1xross_armhf.deb | wc
3251 19506 379250

The dpkg command lists all the files in the .deb file and the wc counts all the lines in the output. You can see
those files with:

host$ dpkg -c linux-image-5.10.168-ti-r62_1xross_armhf.deb | less
drwxr-xr-x root/root 0 2023-06-12 12:57 ./
drwxr-xr-x root/root 0 2023-06-12 12:57 ./boot/

(continues on next page)

620 Chapter 13. Books

https://gcc.gnu.org/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.68: Kernel configuration menu

13.1. BeagleBone Cookbook 621

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

-rw-r--r-- root/root 4763113 2023-06-12 12:57 ./boot/System.map-5.10.168-
↪→ti-r62
-rw-r--r-- root/root 191331 2023-06-12 12:57 ./boot/config-5.10.168-ti-r62
drwxr-xr-x root/root 0 2023-06-12 12:57 ./boot/dtbs/
drwxr-xr-x root/root 0 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
-rwxr-xr-x root/root 90644 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-baltos-ir2110.dtb
-rwxr-xr-x root/root 91362 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-baltos-ir3220.dtb
-rwxr-xr-x root/root 91633 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-baltos-ir5221.dtb
-rwxr-xr-x root/root 88684 2023-06-12 12:57 ./boot/dtbs/5.10.168-ti-r62/
↪→am335x-base0033.dtb

You can see it’s putting things in the /boot directory.

Note: You can also look into the other two .deb files and see what they install.

Move the linux-image- file to your Bone.

host$ scp linux-image-5.10.168-ti-r62_1xross_armhf.deb bone:.

You might have to use debian@192.168.7.2 for bone if you haven’t set everything up.

Now ssh to the bone.

host$ ssh bone
bone$ ls -sh
bin exercises linux-image-5.10.168-ti-r62_1xross_armhf.deb

Now install it.

bone$ sudo dpkg --install linux-image-5.10.168-ti-r62_1xross_armhf.deb

Wait a while. (Mine took almore 2 minutes.) Once done check /boot.

bone$ ls -sh /boot
total 40M
160K config-4.19.94-ti-r50 4.0K SOC.sh 4.0K uEnv.
↪→txt.orig
180K config-5.10.168-ti-r62 3.5M System.map-4.19.94-ti-r50 9.7M␣
↪→vmlinuz-4.19.94-ti-r50
4.0K dtbs 4.1M System.map-5.10.168-ti-r62 8.6M␣
↪→vmlinuz-5.10.168-ti-r62
6.4M initrd.img-4.19.94-ti-r50 4.0K uboot
6.8M initrd.img-5.10.168-ti-r62 4.0K uEnv.txt

You see the new kernel files along with the old files. Check uEnv.txt.

bone$ head /boot/uEnv.txt
#Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0
uname_r=4.19.94-ti-r50
uname_r=5.10.168-ti-r62

I added the commented out uname_r line to make it easy to switch between versions of the kernel.

Reboot and test out the new kernel.

bone$ sudo reboot

622 Chapter 13. Books

mailto:debian@192.168.7.2

BeagleBoard Docs, Release 1.0.20230711-wip

Installin a Cross Compiler

Problem You want to compile on your host computer and run on the Beagle.

Solution Run the following:

32-bit

64-bit

host$ sudo apt install gcc-arm-linux-gnueabihf

host$ sudo apt install gcc-aarch64-linux-gnu

Note: From now on use arm if you are using a 32-bit machine and aarch64 if you are using a 64-bit machine.

This installs a cross compiler, but you need to set up a couple of things so that it can be found. At the command
prompt, enter arm-<TAB><TAB> to see what was installed.

host$ arm-<TAB><TAB>
arm-linux-gnueabihf-addr2line arm-linux-gnueabihf-gcc-nm arm-
↪→linux-gnueabihf-ld.bfd
arm-linux-gnueabihf-ar arm-linux-gnueabihf-gcc-nm-11 arm-
↪→linux-gnueabihf-ld.gold
arm-linux-gnueabihf-as arm-linux-gnueabihf-gcc-ranlib arm-
↪→linux-gnueabihf-lto-dump-11
arm-linux-gnueabihf-c++filt arm-linux-gnueabihf-gcc-ranlib-11 arm-
↪→linux-gnueabihf-nm
arm-linux-gnueabihf-cpp arm-linux-gnueabihf-gcov arm-
↪→linux-gnueabihf-objcopy
arm-linux-gnueabihf-cpp-11 arm-linux-gnueabihf-gcov-11 arm-
↪→linux-gnueabihf-objdump
arm-linux-gnueabihf-dwp arm-linux-gnueabihf-gcov-dump arm-
↪→linux-gnueabihf-ranlib
arm-linux-gnueabihf-elfedit arm-linux-gnueabihf-gcov-dump-11 arm-
↪→linux-gnueabihf-readelf
arm-linux-gnueabihf-gcc arm-linux-gnueabihf-gcov-tool arm-
↪→linux-gnueabihf-size
arm-linux-gnueabihf-gcc-11 arm-linux-gnueabihf-gcov-tool-11 arm-
↪→linux-gnueabihf-strings
arm-linux-gnueabihf-gcc-ar arm-linux-gnueabihf-gprof arm-
↪→linux-gnueabihf-strip
arm-linux-gnueabihf-gcc-ar-11 arm-linux-gnueabihf-ld

What you see are all the cross-development tools.

Setting Up Variables

Now, set up a couple of variables to know which compiler you are using:

host$ export ARCH=arm
host$ export CROSS_COMPILE=arm-linux-gnueabihf-

These lines set up the standard environmental variables so that you can determine which cross-development
tools to use. Test the cross compiler by adding Simple helloWorld.c to test cross compiling (helloWorld.c) to a
file named _helloWorld.c_.

13.1. BeagleBone Cookbook 623

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.57: Simple helloWorld.c to test cross compiling (hel-
loWorld.c)

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4 printf(”Hello, World! \n”);
5 }

helloWorld.c

You can then cross-compile by using the following commands:

host$ ${CROSS_COMPILE}gcc helloWorld.c
host$ file a.out
a.out: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.31,
BuildID[sha1]=0x10182364352b9f3cb15d1aa61395aeede11a52ad, not stripped

The file command shows that a.out was compiled for an ARM processor.

Applying Patches

Problem You have a patch file that you need to apply to the kernel.

Solution Simple kernel patch file (hello.patch) shows a patch file that you can use on the kernel.

Listing 13.58: Simple kernel patch file (hello.patch)

1 From eaf4f7ea7d540bc8bb57283a8f68321ddb4401f4 Mon Sep 17 00:00:00 2001
2 From: Jason Kridner <jdk@ti.com>
3 Date: Tue, 12 Feb 2013 02:18:03 +0000
4 Subject: [PATCH] hello: example kernel modules
5

6 ---
7 hello/Makefile | 7 +++++++
8 hello/hello.c | 18 ++++++++++++++++++
9 2 files changed, 25 insertions(+), 0 deletions(-)
10 create mode 100644 hello/Makefile
11 create mode 100644 hello/hello.c
12

13 diff --git a/hello/Makefile b/hello/Makefile
14 new file mode 100644
15 index 0000000..4b23da7
16 --- /dev/null
17 +++ b/hello/Makefile
18 @@ -0,0 +1,7 @@
19 +obj-m := hello.o
20 +
21 +PWD := $(shell pwd)
22 +KDIR := ${PWD}/..
23 +
24 +default:
25 + make -C $(KDIR) SUBDIRS=$(PWD) modules
26 diff --git a/hello/hello.c b/hello/hello.c
27 new file mode 100644
28 index 0000000..157d490
29 --- /dev/null
30 +++ b/hello/hello.c
31 @@ -0,0 +1,22 @@

(continues on next page)

624 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

32 +#include <linux/module.h> /* Needed by all modules */
33 +#include <linux/kernel.h> /* Needed for KERN_INFO */
34 +#include <linux/init.h> /* Needed for the macros */
35 +
36 +static int __init hello_start(void)
37 +{
38 + printk(KERN_INFO ”Loading hello module...\n”);
39 + printk(KERN_INFO ”Hello, World!\n”);
40 + return 0;
41 +}
42 +
43 +static void __exit hello_end(void)
44 +{
45 + printk(KERN_INFO ”Goodbye Boris\n”);
46 +}
47 +
48 +module_init(hello_start);
49 +module_exit(hello_end);
50 +
51 +MODULE_AUTHOR(”Boris Houndleroy”);
52 +MODULE_DESCRIPTION(”Hello World Example”);
53 +MODULE_LICENSE(”GPL”);

hello.patch

Here’s how to use it:

• Install the kernel sources (Compiling the Kernel).

• Change to the kernel directory (+cd ti-linux-kernel-dev/KERNEL+).

• Add Simple kernel patch file (hello.patch) to a file named hello.patch in the
ti-linux-kernel-dev/KERNEL directory.

• Run the following commands:

host$ cd ti-linux-kernel-dev/KERNEL
host$ patch -p1 < hello.patch
patching file hello/Makefile
patching file hello/hello.c

The output of the patch command apprises you of what it’s doing. Look in the hello directory to see what
was created:

host$ cd hello
host$ ls
hello.c Makefile

Building and Installing Kernel Modules shows how to build and install a module, and Creating Your Own Patch
File shows how to create your own patch file.

Creating Your Own Patch File

Problem You made a few changes to the kernel, and you want to share them with your friends.

Solution Create a patch file that contains just the changes you have made. Before making your changes,
check out a new branch:

host$ cd ti-linux-kernel-dev/KERNEL
host$ git status

(continues on next page)

13.1. BeagleBone Cookbook 625

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

On branch master
nothing to commit (working directory clean)

Good, so far no changes have been made. Now, create a new branch:

host$ git checkout -b hello1
host$ git status
On branch hello1
nothing to commit (working directory clean)

You’ve created a new branch called hello1 and checked it out. Now, make whatever changes to the kernel
you want. I did some work with a simple character driver that we can use as an example:

host$ cd ti-linux-kernel-dev/KERNEL/drivers/char/
host$ git status
On branch hello1
Changes not staged for commit:
(use ”git add file...” to update what will be committed)
(use ”git checkout -- file...” to discard changes in working directory)
#
modified: Kconfig
modified: Makefile
#
Untracked files:
(use ”git add file...” to include in what will be committed)
#
examples/
no changes added to commit (use ”git add” and/or ”git commit -a”)

Add the files that were created and commit them:

host$ git add Kconfig Makefile examples
host$ git status
On branch hello1
Changes to be committed:
(use ”git reset HEAD file...” to unstage)
#
modified: Kconfig
modified: Makefile
new file: examples/Makefile
new file: examples/hello1.c
#
host$ git commit -m ”Files for hello1 kernel module”
[hello1 99346d5] Files for hello1 kernel module
4 files changed, 33 insertions(+)
create mode 100644 drivers/char/examples/Makefile
create mode 100644 drivers/char/examples/hello1.c

Finally, create the patch file:

host$ git format-patch master --stdout > hello1.patch

13.1.8 Real-Time I/O

Sometimes, when BeagleBone Black interacts with the physical world, it needs to respond in a timely manner.
For example, your robot has just detected that one of the driving motors needs to turn a bit faster. Systems
that can respond quickly to a real event are known as real-time systems. There are two broad categories
of real-time systems: soft and hard.

In a soft real-time system, the real-time requirements should be met most of the time, where most
depends on the system. A video playback system is a good example. The goal might be to display 60 frames per

626 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

second, but it doesn’t matter much if you miss a frame now and then. In a 100 percent hard real-time
system, you can never fail to respond in time. Think of an airbag deployment system on a car. You can’t even
be 50 ms late.

Systems running Linux generally can’t do 100 percent hard real-time processing, because Linux gets in the
way. However, the Bone has an ARM processor running Linux and two additional 32-bit programmable real-
time units (PRUs Ti AM33XX PRUSSv2) available to do real-time processing. Although the PRUs can achieve
100 percent hard real-time, they take some effort to use.

This chapter shows several ways to do real-time input/output (I/O), starting with the effortless, yet slower
JavaScript and moving up with increasing speed (and effort) to using the PRUs.

Note: In this chapter, as in the others, we assume that you are logged in as debian (as indicated by the bone$
prompt). This gives you quick access to the general-purpose input/output (GPIO) ports but you may have to
use sudo some times.

I/O with Python and JavaScript

Problem You want to read an input pin and write it to the output as quickly as possible with JavaScript.

Solution Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor) shows how to read
a pushbutton switch and Toggling an External LED controls an external LED. This recipe combines the two to
read the switch and turn on the LED in response to it. To make this recipe, you will need:

• Breadboard and jumper wires

• Pushbutton switch

• 220R resistor

• LED

Wire up the pushbutton and LED as shown in Diagram for wiring a pushbutton and LED with the LED attached
to P9_14.

The code in Monitoring a pushbutton (pushLED.js) reads GPIO port P9_42, which is attached to the pushbutton,
and turns on the LED attached to P9_12 when the button is pushed.

Listing 13.59: Monitoring a pushbutton (pushLED.py)

1 #!/usr/bin/env python
2 # //
3 # // pushLED.py
4 # // Blinks an LED attached to P9_12 when the button at P9_42 is␣

↪→pressed
5 # // Wiring:
6 # // Setup:
7 # // See:
8 # //
9 import time
10 import os
11

12 ms = 50 # Read time in ms
13

14 LED=”50” # Look up P9.14 using gpioinfo | grep -e chip -e P9.14. chip 1,␣
↪→line 18 maps to 50

15 button=”7” # P9_42 mapps to 7
16

17 GPIOPATH=”/sys/class/gpio/”
18

19 # Make sure LED is exported
(continues on next page)

13.1. BeagleBone Cookbook 627

http://bit.ly/1EzTPZv

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.69: Diagram for wiring a pushbutton and LED with the LED attached to P9_14

(continued from previous page)

20 if (not os.path.exists(GPIOPATH+”gpio”+LED)):
21 f = open(GPIOPATH+”export”, ”w”)
22 f.write(LED)
23 f.close()
24

25 # Make it an output pin
26 f = open(GPIOPATH+”gpio”+LED+”/direction”, ”w”)
27 f.write(”out”)
28 f.close()
29

30 # Make sure button is exported
31 if (not os.path.exists(GPIOPATH+”gpio”+button)):
32 f = open(GPIOPATH+”export”, ”w”)
33 f.write(button)
34 f.close()
35

36 # Make it an output pin
37 f = open(GPIOPATH+”gpio”+button+”/direction”, ”w”)
38 f.write(”in”)
39 f.close()
40

41 # Read every ms
42 fin = open(GPIOPATH+”gpio”+button+”/value”, ”r”)
43 fout = open(GPIOPATH+”gpio”+LED+”/value”, ”w”)
44

45 while True:
46 fin.seek(0)
47 fout.seek(0)
48 fout.write(fin.read())
49 time.sleep(ms/1000)

pushLED.py

628 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.60: Monitoring a pushbutton (pushLED.js)

1 #!/usr/bin/env node
2 //
3 // pushLED.js
4 // Blinks an LED attached to P9_12 when the button at P9_42 is pressed
5 // Wiring:
6 // Setup:
7 // See:
8 //
9 const fs = require(”fs”);
10

11 const ms = 500 // Read time in ms
12

13 const LED=”50”; // Look up P9.14 using gpioinfo | grep -e chip -e P9.14. ␣
↪→chip 1, line 18 maps to 50

14 const button=”7”; // P9_42 mapps to 7
15

16 GPIOPATH=”/sys/class/gpio/”;
17

18 // Make sure LED is exported
19 if(!fs.existsSync(GPIOPATH+”gpio”+LED)) {
20 fs.writeFileSync(GPIOPATH+”export”, LED);
21 }
22 // Make it an output pin
23 fs.writeFileSync(GPIOPATH+”gpio”+LED+”/direction”, ”out”);
24

25 // Make sure button is exported
26 if(!fs.existsSync(GPIOPATH+”gpio”+button)) {
27 fs.writeFileSync(GPIOPATH+”export”, button);
28 }
29 // Make it an input pin
30 fs.writeFileSync(GPIOPATH+”gpio”+button+”/direction”, ”in”);
31

32 // Read every ms
33 setInterval(flashLED, ms);
34

35 function flashLED() {
36 var data = fs.readFileSync(GPIOPATH+”gpio”+button+”/value”).slice(0, -1);
37 console.log('data = ' + data);
38 fs.writeFileSync(GPIOPATH+”gpio”+LED+”/value”, data);
39 }

pushLED.js

Add the code to a file named pushLED.py and run it by using the following commands:

bone$ chmod *x pushLED.py
bone$./pushLED.py
data = 0
data = 0
data = 1
data = 1
^C

Press ^C (Ctrl-C) to stop the code.

I/O with C

Problem You want to use the C language to process inputs in real time, or Python/JavaScript isn’t fast enough.

13.1. BeagleBone Cookbook 629

BeagleBoard Docs, Release 1.0.20230711-wip

Solution I/O with Python and JavaScript shows how to control an LED with a pushbutton using Python and
JavaScript. This recipe accomplishes the same thing using C. It does it in the same way, opening the correct
/sys/class/gpio files and reading an writing them.

Wire up the pushbutton and LED as shown in Diagram for wiring a pushbutton and LED with the LED attached
to P9_14. Then add the code in Code for reading a switch and blinking an LED (pushLED.c) to a file named
pushLED.c.

Listing 13.61: Code for reading a switch and blinking an LED (push-
LED.c)

1 //
2 // blinkLED.c
3 // Blinks the P9_14 pin based on the P9_42 pin
4 // Wiring:
5 // Setup:
6 // See:
7 //
8 #include <stdio.h>
9 #include <string.h>
10 #include <unistd.h>
11 #define MAXSTR 100
12

13 int main() {
14 FILE *fpbutton, *fpLED;
15 char LED[] = ”50”; // Look up P9.14 using gpioinfo | grep -e chip -e P9.

↪→14. chip 1, line 18 maps to 50
16 char button[] = ”7”; // Look up P9.42 using gpioinfo | grep -e chip -e P9.

↪→42. chip 0, line 7 maps to 7
17 char GPIOPATH[] = ”/sys/class/gpio”;
18 char path[MAXSTR] = ””;
19

20 // Make sure LED is exported
21 snprintf(path, MAXSTR, ”%s%s%s”, GPIOPATH, ”/gpio”, LED);
22 if (!access(path, F_OK) == 0) {
23 snprintf(path, MAXSTR, ”%s%s”, GPIOPATH, ”/export”);
24 fpLED = fopen(path, ”w”);
25 fprintf(fpLED, ”%s”, LED);
26 fclose(fpLED);
27 }
28

29 // Make it an output LED
30 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, LED, ”/direction”);
31 fpLED = fopen(path, ”w”);
32 fprintf(fpLED, ”out”);
33 fclose(fpLED);
34

35 // Make sure bbuttonutton is exported
36 snprintf(path, MAXSTR, ”%s%s%s”, GPIOPATH, ”/gpio”, button);
37 if (!access(path, F_OK) == 0) {
38 snprintf(path, MAXSTR, ”%s%s”, GPIOPATH, ”/export”);
39 fpbutton = fopen(path, ”w”);
40 fprintf(fpbutton, ”%s”, button);
41 fclose(fpbutton);
42 }
43

44 // Make it an input button
45 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, button, ”/direction

↪→”);
46 fpbutton = fopen(path, ”w”);
47 fprintf(fpbutton, ”in”);
48 fclose(fpbutton);
49

(continues on next page)

630 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

50 // I don't know why I can open the LED outside the loop and use fseek␣
↪→before

51 // each read, but I can't do the same for the button. It appears it needs
52 // to be opened every time.
53 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, LED, ”/value”);
54 fpLED = fopen(path, ”w”);
55

56 char state = '0';
57

58 while (1) {
59 snprintf(path, MAXSTR, ”%s%s%s%s”, GPIOPATH, ”/gpio”, button, ”/value”);
60 fpbutton = fopen(path, ”r”);
61 fseek(fpLED, 0L, SEEK_SET);
62 fscanf(fpbutton, ”%c”, &state);
63 printf(”state: %c\n”, state);
64 fprintf(fpLED, ”%c”, state);
65 fclose(fpbutton);
66 usleep(250000); // sleep time in microseconds
67 }
68 }

pushLED.c

Compile and run the code:

bone$ gcc -o pushLED pushLED.c
bone$./pushLED
state: 1
state: 1
state: 0
state: 0
state: 0
state: 1
^C

The code responds quickly to the pushbutton. If you need more speed, comment-out the printf() and the
sleep().

I/O with devmem2

Problem Your C code isn’t responding fast enough to the input signal. You want to read the GPIO registers
directly.

Solution The solution is to use a simple utility called devmem2, with which you can read and write registers
from the command line.

Warning: This solution is much more involved than the previous ones. You need to understand binary
and hex numbers and be able to read the AM335x Technical Reference Manual.

First, download and install devmem2:

bone$ wget http://bootlin.com/pub/mirror/devmem2.c
bone$ gcc -o devmem2 devmem2.c
bone$ sudo mv devmem2 /usr/bin

This solution will read a pushbutton attached to P9_42 and flash an LED attached to P9_13. Note that this is a
change from the previous solutions that makes the code used here much simpler. Wire up your Bone as shown
in Diagram for wiring a pushbutton and LED with the LED attached to P9_13.

13.1. BeagleBone Cookbook 631

http://bit.ly/1B4Cm45

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.70: Diagram for wiring a pushbutton and LED with the LED attached to P9_13

Now, flash the LED attached to P9_13 using the Linux sysfs interface (Controlling GPIOs by Using SYSFS Entries).
To do this, first look up which GPIO number P9_13 is attached to by referring to Mapping from header pin to
internal GPIO number. Finding P9_13 at GPIO 31, export GPIO 31 and make it an output:

bone$ cd cd /sys/class/gpio/
bone$ echo 31 > export
bone$ cd gpio31
bone$ echo out > direction
bone$ echo 1 > value
bone$ echo 0 > value

The LED will turn on when 1 is echoed into value and off when 0 is echoed.

Now that you know the LED is working, look up its memory address. This is where things get very detailed.
First, download the AM335x Technical Reference Manual. Look up GPIO0 in the Memory Map chapter (sen-
sors). Table 2-2 indicates that GPIO0 starts at address 0x44E0_7000. Then go to Section 25.4.1, “GPIO Regis-
ters.” This shows that GPIO_DATAIN has an offset of 0x138, GPIO_CLEARDATAOUT has an offset of 0x190, and
GPIO_SETDATAOUT has an offset of 0x194.

This means you read from address 0x44E0_7000 + 0x138 = 0x44E0_7138 to see the status of the LED:

bone$ sudo devmem2 0x44E07138
/dev/mem opened.
Memory mapped at address 0xb6f8e000.
Value at address 0x44E07138 (0xb6f8e138): 0xC000C404

The returned value 0xC000C404 (1100 0000 0000 0000 1100 0100 0000 0100 in binary) has bit 31 set to 1,
which means the LED is on. Turn the LED off by writing 0x80000000 (1000 0000 0000 0000 0000 0000 0000
0000 binary) to the GPIO_CLEARDATA register at 0x44E0_7000 + 0x190 = 0x44E0_7190:

bone$ sudo devmem2 0x44E07190 w 0x80000000
/dev/mem opened.
Memory mapped at address 0xb6fd7000.
Value at address 0x44E07190 (0xb6fd7190): 0x80000000

(continues on next page)

632 Chapter 13. Books

http://bit.ly/1B4Cm45

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Written 0x80000000; readback 0x0

The LED is now off.

You read the pushbutton switch in a similar way. Mapping from header pin to internal GPIO number says P9_42
is GPIO 7, which means bit 7 is the state of P9_42. The devmem2 in this example reads 0x0, which means all
bits are 0, including GPIO 7. Section 25.4.1 of the Technical Reference Manual instructs you to use offset 0x13C
to read GPIO_DATAOUT. Push the pushbutton and run devmem2:

bone$ sudo devmem2 0x44e07138
/dev/mem opened.
Memory mapped at address 0xb6fe2000.
Value at address 0x44E07138 (0xb6fe2138): 0x4000C484

Here, bit 7 is set in 0x4000C484, showing the button is pushed.

This is much more tedious than the previous methods, but it’s what’s necessary if you need to minimize the
time to read an input. I/O with C and mmap() shows how to read and write these addresses from C.

I/O with C and mmap()

Problem Your C code isn’t responding fast enough to the input signal.

Solution In smaller processors that aren’t running an operating system, you can read and write a given
memory address directly from C. With Linux running on Bone, many of the memory locations are hardware
protected, so you can’t accidentally access them directly.

This recipe shows how to use mmap() (memory map) to map the GPIO registers to an array in C. Then all you
need t o do is access the array to read and write the registers.

Warning: This solution is much more involved than the previous ones. You need to understand binary
and hex numbers and be able to read the AM335x Technical Reference Manual.

This solution will read a pushbutton attached to P9_42 and flash an LED attached to P9_13. Note that this is a
change from the previous solutions that makes the code used here much simpler.

Tip: See I/O with devmem2 for details on mapping the GPIO numbers to memory addresses.

Add the code in Memory address definitions (pushLEDmmap.h) to a file named pushLEDmmap.h.

Listing 13.62: Memory address definitions (pushLEDmmap.h)

1 // From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
2 // -through-dev-mem
3 // user contributions licensed under cc by-sa 3.0 with attribution required
4 // http://creativecommons.org/licenses/by-sa/3.0/
5 // http://blog.stackoverflow.com/2009/06/attribution-required/
6 // Author: madscientist159 (http://stackoverflow.com/users/3000377/

↪→madscientist159)
7

8 #ifndef _BEAGLEBONE_GPIO_H_
9 #define _BEAGLEBONE_GPIO_H_
10

11 #define GPIO0_START_ADDR 0x44e07000
12 #define GPIO0_END_ADDR 0x44e08000
13 #define GPIO0_SIZE (GPIO0_END_ADDR - GPIO0_START_ADDR)

(continues on next page)

13.1. BeagleBone Cookbook 633

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

14

15 #define GPIO1_START_ADDR 0x4804C000
16 #define GPIO1_END_ADDR 0x4804D000
17 #define GPIO1_SIZE (GPIO1_END_ADDR - GPIO1_START_ADDR)
18

19 #define GPIO2_START_ADDR 0x41A4C000
20 #define GPIO2_END_ADDR 0x41A4D000
21 #define GPIO2_SIZE (GPIO2_END_ADDR - GPIO2_START_ADDR)
22

23 #define GPIO3_START_ADDR 0x41A4E000
24 #define GPIO3_END_ADDR 0x41A4F000
25 #define GPIO3_SIZE (GPIO3_END_ADDR - GPIO3_START_ADDR)
26

27 #define GPIO_DATAIN 0x138
28 #define GPIO_SETDATAOUT 0x194
29 #define GPIO_CLEARDATAOUT 0x190
30

31 #define GPIO_03 (1<<3)
32 #define GPIO_07 (1<<7)
33 #define GPIO_31 (1<<31)
34 #define GPIO_60 (1<<28)
35 #endif

pushLEDmmap.h

Add the code in Code for directly reading memory addresses (pushLEDmmap.c) to a file named
pushLEDmmap.c.

Listing 13.63: Code for directly reading memory addresses (pushLED-
mmap.c)

1 // From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
2 // -through-dev-mem
3 // user contributions licensed under cc by-sa 3.0 with attribution required
4 // http://creativecommons.org/licenses/by-sa/3.0/
5 // http://blog.stackoverflow.com/2009/06/attribution-required/
6 // Author: madscientist159 (http://stackoverflow.com/users/3000377/

↪→madscientist159)
7 //
8 // Read one gpio pin and write it out to another using mmap.
9 // Be sure to set -O3 when compiling.
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <sys/mman.h>
13 #include <fcntl.h>
14 #include <signal.h> // Defines signal-handling functions (i.e. trap Ctrl-

↪→C)
15 #include ”pushLEDmmap.h”
16

17 // Global variables
18 int keepgoing = 1; // Set to 0 when Ctrl-c is pressed
19

20 // Callback called when SIGINT is sent to the process (Ctrl-C)
21 void signal_handler(int sig) {
22 printf(”\nCtrl-C pressed, cleaning up and exiting...\n”);
23 keepgoing = 0;
24 }
25

26 int main(int argc, char *argv[]) {
27 volatile void *gpio_addr;
28 volatile unsigned int *gpio_datain;
29 volatile unsigned int *gpio_setdataout_addr;

(continues on next page)

634 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

30 volatile unsigned int *gpio_cleardataout_addr;
31

32 // Set the signal callback for Ctrl-C
33 signal(SIGINT, signal_handler);
34

35 int fd = open(”/dev/mem”, O_RDWR);
36

37 printf(”Mapping %X - %X (size: %X)\n”, GPIO0_START_ADDR, GPIO0_END_ADDR,
38 GPIO0_SIZE);
39

40 gpio_addr = mmap(0, GPIO0_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
41 GPIO0_START_ADDR);
42

43 gpio_datain = gpio_addr + GPIO_DATAIN;
44 gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;
45 gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;
46

47 if(gpio_addr == MAP_FAILED) {
48 printf(”Unable to map GPIO\n”);
49 exit(1);
50 }
51 printf(”GPIO mapped to %p\n”, gpio_addr);
52 printf(”GPIO SETDATAOUTADDR mapped to %p\n”, gpio_setdataout_addr);
53 printf(”GPIO CLEARDATAOUT mapped to %p\n”, gpio_cleardataout_addr);
54

55 printf(”Start copying GPIO_07 to GPIO_31\n”);
56 while(keepgoing) {
57 if(*gpio_datain & GPIO_07) {
58 *gpio_setdataout_addr= GPIO_31;
59 } else {
60 *gpio_cleardataout_addr = GPIO_31;
61 }
62 //usleep(1);
63 }
64

65 munmap((void *)gpio_addr, GPIO0_SIZE);
66 close(fd);
67 return 0;
68 }

pushLEDmmap.c

Now, compile and run the code:

bone$ gcc -O3 pushLEDmmap.c -o pushLEDmmap
bone$ sudo ./pushLEDmmap
Mapping 44E07000 - 44E08000 (size: 1000)
GPIO mapped to 0xb6fac000
GPIO SETDATAOUTADDR mapped to 0xb6fac194
GPIO CLEARDATAOUT mapped to 0xb6fac190
Start copying GPIO_07 to GPIO_31
^C
Ctrl-C pressed, cleaning up and exiting...

The code is in a tight while loop that checks the status of GPIO 7 and copies it to GPIO 31.

Tighter Delay Bounds with the PREEMPT_RT Kernel

Problem You want to run real-time processes on the Beagle, but the OS is slowing things down.

13.1. BeagleBone Cookbook 635

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The Kernel can be compiled with PREEMPT_RT enabled which reduces the delay from when a thread
is scheduled to when it runs.

Switching to a PREEMPT_RT kernel is rather easy, but be sure to follow the steps in the Discussion to see how
much the latencies are reduced.

• First see which kernel you are running:

bone$ uname -a
Linux breadboard-home 5.10.120-ti-r47 #1bullseye SMP PREEMPT Tue Jul 12␣
↪→18:59:38 UTC 2022 armv7l GNU/Linux

I’m running a 5.10 kernel. Remember the whole string, 5.10.120-ti-r47, for later.

• Go to kernel update and look for 5.10.

Fig. 13.71: The regular and RT kernels

In The regular and RT kernels you see the reular kernel on top and the RT below.

• We want the RT one.

bone$ sudo apt update
bone$ sudo apt install bbb.io-kernel-5.10-ti-rt-am335x

Note: Use the am57xx if you are using the BeagleBoard AI or AI64.

• Before rebooting, edit /boot/uEnv.txt to start with:

#Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0

uname_r=5.10.120-ti-r47
uname_r=5.10.120-ti-rt-r47
#uuid=
#dtb=

uname_r tells the boot loader which kernel to boot. Here we’ve commented out the regular kernel and left in
the RT kernel. Next time you boot you’ll be running the RT kernel. Don’t reboot just yet. Let’s gather some
latency data first.

Bootlin’s preempt_rt workshop looks like a good workshop on PREEMPT RT. Their slides say:

• One way to implement a multi-task Real-Time Operating System is to have a preemptible system

• Any task can be interrupted at any point so that higher priority tasks can run

• Userspace preemption already exists in Linux

636 Chapter 13. Books

https://forum.beagleboard.org/t/debian-10-x-11-x-kernel-updates/30928
https://bootlin.com/doc/training/preempt-rt/

BeagleBoard Docs, Release 1.0.20230711-wip

• The Linux Kernel also supports real-time scheduling policies

• However, code that runs in kernel mode isn’t fully preemptible

• The Preempt-RT patch aims at making all code running in kernel mode preemptible

The workshop goes into many details on how to get real-time performance on Linux. Checkout their slides and
labs. Though you can skip the first lab since we present a simpler way to get the RT kernel running.

Cyclictest

cyclictest is one tool for measuring the latency from when a thread is schduled and when it runs. The code/rt
directory in the git repo has some scripts for gathering latency data and plotting it. Here’s how to run the
scripts.

• First look in rt/install.sh to see what to install.

Listing 13.64: rt/install.sh

1 sudo apt install rt-tests
2 # You can run gnuplot on the host
3 sudo apt install gnuplot

rt/install.sh

• Open up another window and start something that will create a load on the Bone, then run the following:

bone$ time sudo ./hist.gen > nort.hist

hist.gen shows what’s being run. It defaults to 100,000 loops, so it takes a while. The data is saved in nort.hist,
which stands for no RT histogram.

Listing 13.65: hist.gen

1 #!/bin/sh
2 # This code is from Julia Cartwright julia@kernel.org
3

4 cyclictest -m -S -p 90 -h 400 -l ”${1:-100000}”

rt/hist.gen

Note: If you get an error:

Unable to change scheduling policy! Probably missing capabilities, either run as root or increase RLIMIT_RTPRIO
limits

try running ./setup.sh. If that doesn’t work try:

bone$ sudo bash
bone# ulimit -r unlimited
bone# ./hist.gen > nort.hist
bone# exit

• Now you are ready to reboot into the RT kernel and run the test again.

bone$ reboot

• After rebooting:

bone$ uname -a
Linux breadboard-home 5.10.120-ti-rt-r47 #1bullseye SMP PREEMPT RT Tue Jul␣
↪→12 18:59:38 UTC 2022 armv7l GNU/Linux

13.1. BeagleBone Cookbook 637

https://bootlin.com/doc/training/preempt-rt/preempt-rt-slides.pdf
https://bootlin.com/doc/training/preempt-rt/preempt-rt-labs.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Congratulations you are running the RT kernel.

Note: If the Beagle appears to be running (the LEDs are flashing) but you are having trouble connecting via
ssh 192.168.7.2, you can try connecting using the approach shown in Viewing and Debugging the Kernel and
u-boot Messages at Boot Time.

Now run the script again (note it’s being saved in rt.hist this time.)

bone$ time sudo ./hist.gen > rt.hist

Note: At this point yoou can edit /boot/uEnt.txt to boot the non RT kernel and reboot.

Now it’s time to plot the results.

bone$ gnuplot hist.plt

This will generate the file cyclictest.png which contains your plot. It should look like:

Fig. 13.72: Histogram of Non-RT and RT kernels running cyclictest

Notice the NON-RT data have much longer latenices. They may not happen often (fewer than 10 times in each
bin), but they are occurring and may be enough to miss a real-time deadline.

The PREEMPT-RT times are all under a 150 us.

638 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

I/O with simpPRU

Problem You require better timing than running C on the ARM can give you.

Solution The AM335x processor on the Bone has an ARM processor that is running Linux, but it also has two
32-bit PRUs that are available for processing I/O. It takes a fair amount of understanding to program the PRU.
Fortunately, simpPRU is an intuitive language for PRU which compiles down to PRU C. This solution shows how
to use it.

Background

simpPRU

13.1.9 Capes

Previous chapters of this book show a variety of ways to interface BeagleBone Black to the physical world by
using a breadboard and wiring to the +P8+ and +P9+ headers. This is a great approach because it’s easy to
modify your circuit to debug it or try new things. At some point, though, you might want a more permanent
solution, either because you need to move the Bone and you don’t want wires coming loose, or because you
want to share your hardware with the masses.

You can easily expand the functionality of the Bone by adding a cape. A cape is simply a board–often a printed
circuit board (PCB) that connects to the P8 and P9 headers and follows a few standard pin usages. You can
stack up to four capes onto the Bone. Capes can range in size covering a few pins to much larger than the
Bone.

Todo: Add cape examples of various sizes

This chapter shows how to attach a couple of capes, move your design to a protoboard, then to a PCB, and
finally on to mass production.

Todo: Update display cape example

Connecting Multiple Capes

Problem You want to use more than one cape at a time.

Solution First, look at each cape that you want to stack mechanically. Are they all using stacking headers
like the ones shown in Stacking headers? No more than one should be using non-stacking headers.

Note that larger LCD panels might provide expansion headers, such as the ones shown in LCD Backside, rather
than the stacking headers, and that those can also be used for adding additional capes.

LCD Backside

Note: Back side of LCD7 cape, LCD Backside was originally posted by CircuitCo at http://elinux.org/File:
BeagleBone-LCD-Backside.jpg under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

13.1. BeagleBone Cookbook 639

https://simppru.readthedocs.io/en/latest/
http://bit.ly/1wucweC
http://elinux.org/File:BeagleBone-LCD-Backside.jpg
http://elinux.org/File:BeagleBone-LCD-Backside.jpg
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.73: Stacking headers

640 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Note: #TODO# One of the 4D Systems LCD capes would make a better example for an LCD cape. The
CircuitCo cape is no longer available.

Next, take a note of each pin utilized by each cape. The BeagleBone Capes catalog provides a graphical
representation for the pin usage of most capes, as shown in Audio cape pins for the Circuitco Audio Cape.

Note: #TODO# Bela would make a better example for an audio cape. The CircuitCo cape is no longer
available.

Audio cape pins

Note: Pins utilized by CircuitCo Audio Cape, Audio cape pins was originally posted by Djackson at http:
//elinux.org/File:Audio_pins_revb.png under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

In most cases, the same pin should never be used on two different capes, though in some cases, pins can be
shared. Here are some exceptions:

• GND

– The ground (GND) pins should be shared between the capes, and there’s no need to worry
about consumed resources on those pins.

• VDD_3V3

– The 3.3 V power supply (VDD_3V3) pins can be shared by all capes to supply power, but the
total combined consumption of all the capes should be less than 500 mA (250 mA per VDD_3V3
pin).

13.1. BeagleBone Cookbook 641

https://beagleboard.org/capes
http://elinux.org/File:Audio_pins_revb.png
http://elinux.org/File:Audio_pins_revb.png
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBoard Docs, Release 1.0.20230711-wip

642 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

• VDD_5V
The 5.0 V power supply (VDD_5V) pins can be shared by all capes to supply power, but the total
combined consumption of all the capes should be less than 2 A (1 A per +VDD_5V+ pin). It is
possible for one, and only one, of the capes to provide power to this pin rather than consume it,
and it should provide at least 3 A to ensure proper system function. Note that when no voltage
is applied to the DC connector, nor from a cape, these pins will not be powered, even if power is
provided via USB.

• SYS_5V
The regulated 5.0 V power supply (SYS_5V) pins can be shared by all capes to supply power, but
the total combined consumption of all the capes should be less than 500 mA (250 mA per SYS_5V
pin).

• VADC and AGND

– The ADC reference voltage pins can be shared by all capes.

• I2C2_SCL and I2C2_SDA

– I2C is a shared bus, and the I2C2_SCL and I2C2_SDA pins default to having this bus enabled for
use by cape expansion ID EEPROMs.

Moving from a Breadboard to a Protoboard

Problem You have your circuit working fine on the breadboard, but you want a more reliable solution.

Solution Solder your components to a protoboard.

To make this recipe, you will need:

• Protoboard

• Soldering iron

• Your other components

Many places make premade circuit boards that are laid out like the breadboard we have been using. The
Adafruit Proto Cape Kit is one protoboard option.

BeagleBone Breadboard
Note: This was originally posted byWilliam Traynor at http://elinux.org/File:BeagleBone-Breadboard.jpg under
a Creative Commons Attribution-ShareAlike 3.0 Unported License

You just solder your parts on the protoboard as you had them on the breadboard.

Creating a Prototype Schematic

Problem You’ve wired up a circuit on a breadboard. How do you turn that prototype into a schematic others
can read and that you can import into other design tools?

Solution In Fritzing tips, we introduced Fritzing as a useful tool for drawing block diagrams. Fritzing can also
do circuit schematics and printed-circuit layout. For example, A simple robot controller diagram (quickBot.fzz)
shows a block diagram for a simple robot controller (quickBot.fzz is the name of the Fritzing file used to create
the diagram).

The controller has an H-bridge to drive two DC motors (Controlling the Speed and Direction of a DC Motor),
an IR range sensor, and two headers for attaching analog encoders for the motors. Both the IR sensor and
the encoders have analog outputs that exceed 1.8 V, so each is run through a voltage divider (two resistors)

13.1. BeagleBone Cookbook 643

https://www.adafruit.com/product/572
http://elinux.org/File:BeagleBone-Breadboard.jpg
http://creativecommons.org/licenses/by-sa/3.0/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.74: A simple robot controller diagram (quickBot.fzz)

644 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

to scale the voltage to the correct range (see Reading a Distance Sensor (Variable Pulse Width Sensor) for a
voltage divider example).

Automatically generated schematic shows the schematic automatically generated by Fritzing. It’s a mess. It’s
up to you to fix it.

Fig. 13.75: Automatically generated schematic

Cleaned-up schematic shows my cleaned-up schematic. I did it by moving the parts around until it looked
better.

You might find that you want to create your design in a more advanced design tool, perhaps because it has the
library components you desire, it integrates better with other tools you are using, or it has some other feature
(such as simulation) of which you’d like to take advantage.

Verifying Your Cape Design

Problem You’ve got a design. How do you quickly verify that it works?

Solution To make this recipe, you will need:

• An oscilloscope

Break down your design into functional subcomponents and write tests for each. Use components you already
know are working, such as the onboard LEDs, to display the test status with the code in Testing the quickBot
motors interface (quickBot_motor_test.js).

Testing the quickBot motors interface (quickBot_motor_test.js)

#!/usr/bin/env node
var b = require('bonescript');
var M1_SPEED = 'P9_16'; // �
var M1_FORWARD = 'P8_15';
var M1_BACKWARD = 'P8_13';
var M2_SPEED = 'P9_14';
var M2_FORWARD = 'P8_9';
var M2_BACKWARD = 'P8_11';
var freq = 50; // �

(continues on next page)

13.1. BeagleBone Cookbook 645

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.76: Cleaned-up schematic
646 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.77: Zoomed-in schematic

(continued from previous page)

var fast = 0.95;
var slow = 0.7;
var state = 0; // �

b.pinMode(M1_FORWARD, b.OUTPUT); // �
b.pinMode(M1_BACKWARD, b.OUTPUT);
b.pinMode(M2_FORWARD, b.OUTPUT);
b.pinMode(M2_BACKWARD, b.OUTPUT);
b.analogWrite(M1_SPEED, 0, freq); // �
b.analogWrite(M2_SPEED, 0, freq);

updateMotors(); // �

function updateMotors() {
//console.log(”Setting state = ” + state); // �
updateLEDs(state);
switch(state) { // �

case 0:
default:

M1_set(0); // �
M2_set(0);
state = 1; // �
break;

case 1:
M1_set(slow);
M2_set(slow);
state = 2;
break;

case 2:
M1_set(slow);
M2_set(-slow);
state = 3;
break;

case 3:
M1_set(-slow);
M2_set(slow);
state = 4;
break;

case 4:
M1_set(fast);
M2_set(fast);
state = 0;

(continues on next page)

13.1. BeagleBone Cookbook 647

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

break;
}
setTimeout(updateMotors, 2000); // �

}

function updateLEDs(state) { // �
switch(state) {
case 0:

b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.LOW);
break;

case 1:
b.digitalWrite(”USR0”, b.HIGH);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.LOW);
break;

case 2:
b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.HIGH);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.LOW);
break;

case 3:
b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.HIGH);
b.digitalWrite(”USR3”, b.LOW);
break;

case 4:
b.digitalWrite(”USR0”, b.LOW);
b.digitalWrite(”USR1”, b.LOW);
b.digitalWrite(”USR2”, b.LOW);
b.digitalWrite(”USR3”, b.HIGH);
break;

}
}

function M1_set(speed) { // �
speed = (speed > 1) ? 1 : speed; // �
speed = (speed < -1) ? -1 : speed;
b.digitalWrite(M1_FORWARD, b.LOW);
b.digitalWrite(M1_BACKWARD, b.LOW);
if(speed > 0) {

b.digitalWrite(M1_FORWARD, b.HIGH);
} else if(speed < 0) {

b.digitalWrite(M1_BACKWARD, b.HIGH);
}
b.analogWrite(M1_SPEED, Math.abs(speed), freq); // �

}

function M2_set(speed) {
speed = (speed > 1) ? 1 : speed;
speed = (speed < -1) ? -1 : speed;
b.digitalWrite(M2_FORWARD, b.LOW);
b.digitalWrite(M2_BACKWARD, b.LOW);
if(speed > 0) {

b.digitalWrite(M2_FORWARD, b.HIGH);
} else if(speed < 0) {

(continues on next page)

648 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

b.digitalWrite(M2_BACKWARD, b.HIGH);
}
b.analogWrite(M2_SPEED, Math.abs(speed), freq);

① Define each pin as a variable. This makes it easy to change to another pin if you decide that is necessary.

② Make other simple parameters variables. Again, this makes it easy to update them. When creating this test,
I found that the PWM frequency to drive the motors needed to be relatively low to get over the kickback shown
in quickBot motor test showing kickback. I also found that I needed to get up to about 70 percent duty cycle
for my circuit to reliably start the motors turning.

③ Use a simple variable such as state to keep track of the test phase. This is used in a switch statement to
jump to the code to configure for that test phase and updated after configuring for the current phase in order
to select the next phase. Note that the next phase isn’t entered until after a two-second delay, as specified in
the call to setTimeout().

④ Perform the initial setup of all the pins.

⑤ The first time a PWM pin is used, it is configured with the update frequency. It is important to set this just
once to the right frequency, because other PWM channels might use the same PWM controller, and attempts
to reset the PWM frequency might fail. The pinMode() function doesn’t have an argument for providing the
update frequency, so use the analogWrite() function, instead. You can review using the PWM in Controlling a
Servo Motor.

⑥ updateMotors() is the test function for the motors and is defined after all the setup and initialization code.
The code calls this function every two seconds using the setTimeout() JavaScript function. The first call is used
to prime the loop.

⑦ The call to console.log() was initially here to observe the state transitions in the debug console, but it was
replaced with the updateLEDs() call. Using the USER LEDsmakes it possible to note the state transitions without
having visibility of the debug console. updateLEDs() is defined later.

⑧ The M1_set() and M2_set() functions are defined near the bottom and do the work of configuring the motor
drivers into a particular state. They take a single argument of speed, as defined between -1 (maximum reverse),
0 (stop), and 1 (maximum forward).

⑨ Perform simple bounds checking to ensure that speed values are between -1 and 1.

⑩ The analogWrite() call uses the absolute value of speed, making any negative numbers a positive magnitude.

Using the solution in Basics, you can untether from your coding station to test your design at your lab work-
bench, as shown in quickBot motor test code under scope.

SparkFun provides a useful guide to using an oscilloscope. You might want to check it out if you’ve never used
an oscilloscope before. Looking at the stimulus you’ll generate before you connect up your hardware will help
you avoid surprises.

Laying Out Your Cape PCB

Problem You’ve generated a diagram and schematic for your circuit and verified that they are correct. How
do you create a PCB?

Solution If you’ve been using Fritzing, all you need to do is click the PCB tab, and there’s your board. Well,
almost. Much like the schematic view shown in Creating a Prototype Schematic, you need to do some layout
work before it’s actually usable. I just moved the components around until they seemed to be grouped logically
and then clicked the Autoroute button. After a minute or two of trying various layouts, Fritzing picked the one
it determined to be the best. Simple robot PCB shows the results.

The Fritzing pre-fab web page has a few helpful hints, including checking the widths of all your traces and
cleaning up any questionable routing created by the autorouter.

13.1. BeagleBone Cookbook 649

http://bit.ly/18AzuoR
http://bit.ly/1HCxokQ

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.78: quickBot motor test showing kickback

650 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.79: quickBot motor test code under scope

Fig. 13.80: Simple robot PCB

13.1. BeagleBone Cookbook 651

BeagleBoard Docs, Release 1.0.20230711-wip

The PCB in Simple robot PCB is a two-sided board. One color (or shade of gray in the printed book) represents
traces on one side of the board, and the other color (or shade of gray) is the other side. Sometimes, you’ll see
a trace come to a small circle and then change colors. This is where it is switching sides of the board through
what’s called a via. One of the goals of PCB design is to minimize the number of vias.

Simple robot PCB wasn’t my first try or my last. My approach was to see what was needed to hook where and
move the components around to make it easier for the autorouter to carry out its job.

Note: There are entire books and websites dedicated to creating PCB layouts. Look around and see what you
can find. SparkFun’s guide to making PCBs is particularly useful.

Customizing the Board Outline

One challenge that slipped my first pass review was the board outline. The part we installed in Fritzing tips is
meant to represent BeagleBone Black, not a cape, so the outline doesn’t have the notch cut out of it for the
Ethernet connector.

The Fritzing custom PCB outline page describes how to create and use a custom board outline. Although it is
possible to use a drawing tool like Inkscape, I chose to use the SVG path command directly to create Outline
SVG for BeagleBone cape (beaglebone_cape_boardoutline.svg).

Listing 13.66: Outline SVG for BeagleBone cape (beagle-
bone_cape_boardoutline.svg)

1 <?xml version='1.0' encoding='UTF-8' standalone='no'?>
2 <svg xmlns=”http://www.w3.org/2000/svg” version=”1.1”
3 width=”306” height=”193.5”> <!-- � -->
4 <g id=”board”> <!-- � -->
5 <path fill=”#338040” id=”boardoutline” d=”M 22.5,0 l 0,56 L 72,56
6 q 5,0 5,5 l 0,53.5 q 0,5 -5,5 L 0,119.5 L 0,171 Q 0,193.5 22.5,193.5
7 l 238.5,0 c 24.85281,0 45,-20.14719 45,-45 L 306,45
8 C 306,20.14719 285.85281,0 261,0 z”/> <!-- � -->
9 </g>
10 </svg>

① This is a standard SVG header. The width and height are set based on the BeagleBone outline provided in
the Adafruit library.

② Fritzing requires the element to be within a layer called board

③ Fritzing requires the color to be #338040 and the layer to be called boardoutline. The units end up being
1/90 of an inch. That is, take the numbers in the SVG code and divide by 90 to get the numbers from the
System Reference Manual.

The measurements are taken from the BeagleBone Black Mechanical section of the BeagleBone Black System
Reference Manual, as shown in Cape dimensions.

You can observe the rendered output of Outline SVG for BeagleBone cape (beaglebone_cape_boardoutline.svg)
quickly by opening the file in a web browser, as shown in Rendered cape outline in Chrome.

Fritzing tips

After you have the SVG outline, you’ll need to select the PCB in Fritzing and select a custom shape in the
Inspector box. Begin with the original background, as shown in PCB with original board, without notch for
Ethernet connector.

Hide all but the Board Layer (PCB with all but the Board Layer hidden).

Select the PCB1 object and then, in the Inspector pane, scroll down to the “load image file” button (Clicking
:load image file: with PCB1 selected).

652 Chapter 13. Books

http://bit.ly/1wXTLki
https://fritzing.org/pcb-custom-shape/
https://inkscape.org/en/
https://www.w3schools.com/graphics/svg_path.asp

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.81: Cape dimensions

13.1. BeagleBone Cookbook 653

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.82: Rendered cape outline in Chrome

Fig. 13.83: PCB with original board, without notch for Ethernet connector

654 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.84: PCB with all but the Board Layer hidden

Fig. 13.85: Clicking :load image file: with PCB1 selected

13.1. BeagleBone Cookbook 655

BeagleBoard Docs, Release 1.0.20230711-wip

Navigate to the beaglebone_cape_boardoutline.svg file created in Outline SVG for BeagleBone cape (beagle-
bone_cape_boardoutline.svg), as shown in Selecting the .svg file.

Fig. 13.86: Selecting the .svg file

Turn on the other layers and line up the Board Layer with the rest of the PCB, as shown in PCB Inspector.

Now, you can save your file and send it off to be made, as described in Producing a Prototype.

PCB Design Alternatives

There are other free PCB design programs. Here are a few.

EAGLE Eagle PCB and DesignSpark PCB are two popular design programs. Many capes (and other PCBs) are
designed with Eagle PCB, and the files are available. For example, the MiniDisplay cape has the schematic
shown in Schematic for the MiniDisplay cape and PCB shown in PCB for MiniDisplay cape.

Note: #TODO#: The MiniDisplay cape is not currently available, so this example should be updated.

A good starting point is to take the PCB layout for the MiniDisplay and edit it for your project. The connectors
for P8 and P9 are already in place and ready to go.

Eagle PCB is a powerful system with many good tutorials online. The free version runs on Windows, Mac, and
Linux, but it has three limitations:

• The usable board area is limited to 100 x 80 mm (4 x 3.2 inches).

• You can use only two signal layers (Top and Bottom).

• The schematic editor can create only one sheet.

656 Chapter 13. Books

https://en.wikipedia.org/wiki/EAGLE_(program)
https://en.wikipedia.org/wiki/DesignSpark_PCB
https://en.wikipedia.org/wiki/EAGLE_(program)#License_model

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.87: PCB Inspector

Fig. 13.88: Schematic for the MiniDisplay cape

13.1. BeagleBone Cookbook 657

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.89: PCB for MiniDisplay cape

You can install Eagle PCB on your Linux host by using the following command:

host$ sudo apt install eagle
Reading package lists... Done
Building dependency tree
Reading state information... Done
...
Setting up eagle (6.5.0-1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.4) ...
host$ eagle

You’ll see the startup screen shown in Eagle PCB startup screen.

Fig. 13.90: Eagle PCB startup screen

Click “Run as Freeware.” When my Eagle started, it said it needed to be updated. To update on Linux, follow
the link provided by Eagle and download eagle-lin-7.2.0.run (or whatever version is current.). Then run the
following commands:

host$ chmod +x eagle-lin-7.2.0.run
host$./eagle-lin-7.2.0.run

A series of screens will appear. Click Next. When you see a screen that looks like The Eagle installation
destination directory, note the Destination Directory.

Continue clicking Next until it’s installed. Then run the following commands (where ~/eagle-7.2.0 is the path
you noted in The Eagle installation destination directory):

658 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.91: The Eagle installation destination directory

13.1. BeagleBone Cookbook 659

BeagleBoard Docs, Release 1.0.20230711-wip

host$ cd /usr/bin
host$ sudo rm eagle
host$ sudo ln -s ~/eagle-7.2.0/bin/eagle .
host$ cd
host$ eagle

The ls command links eagle in /usr/bin, so you can run +eagle+ from any directory. After eagle starts, you’ll
see the start screen shown in The Eagle start screen.

Fig. 13.92: The Eagle start screen

Ensure that the correct version number appears.

If you are moving a design from Fritzing to Eagle, see Migrating a Fritzing Schematic to Another Tool for tips on
converting from one to the other.

DesignSpark PCB The free DesignSpark doesn’t have the same limitations as Eagle PCB, but it runs only on
Windows. Also, it doesn’t seem to have the following of Eagle at this time.

Upverter In addition to free solutions you run on your desktop, you can also work with a browser-based tool
called Upverter. With Upverter, you can collaborate easily, editing your designs from anywhere on the Internet.
It also provides many conversion options and a PCB fabrication service.

Note: Don’t confuse Upverter with Upconverter (Migrating a Fritzing Schematic to Another Tool). Though
their names differ by only three letters, they differ greatly in what they do.

660 Chapter 13. Books

http://bit.ly/19cbwS0
https://upverter.com/

BeagleBoard Docs, Release 1.0.20230711-wip

Kicad Unlike the previously mentioned free (no-cost) solutions, Kicad is open source and provides some fea-
tures beyond those of Fritzing. Notably, CircuitHub site (discussed in Putting Your Cape Design into Production)
provides support for uploading Kicad designs.

Migrating a Fritzing Schematic to Another Tool

Problem You created your schematic in Fritzing, but it doesn’t integrate with everything you need. How can
you move the schematic to another tool?

Solution Use the Upverter schematic-file-converter Python script. For example, suppose that you want to
convert the Fritzing file for the diagram shown in A simple robot controller diagram (quickBot.fzz). First, install
Upverter.

I found it necessary to install +libfreetype6+ and +freetype-py+ onto my system, but you might not need this
first step:

host$ sudo apt install libfreetype6
Reading package lists... Done
Building dependency tree
Reading state information... Done
libfreetype6 is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 154 not upgraded.
host$ sudo pip install freetype-py
Downloading/unpacking freetype-py
Running setup.py egg_info for package freetype-py

Installing collected packages: freetype-py
Running setup.py install for freetype-py

Successfully installed freetype-py
Cleaning up...

Note: All these commands are being run on the Linux-based host computer, as shown by the host$ prompt.
Log in as a normal user, not +root+.

Now, install the schematic-file-converter tool:

host$ git clone git@github.com:upverter/schematic-file-converter.git
Cloning into 'schematic-file-converter'...
remote: Counting objects: 22251, done.
remote: Total 22251 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (22251/22251), 39.45 MiB | 7.28 MiB/s, done.
Resolving deltas: 100% (14761/14761), done.
Checking connectivity... done.
Checking out files: 100% (16880/16880), done.
host$ cd schematic-file-converter
host$ sudo python setup.py install
.
.
.
Extracting python_upconvert-0.8.9-py2.7.egg to \

/usr/local/lib/python2.7/dist-packages
Adding python-upconvert 0.8.9 to easy-install.pth file

Installed /usr/local/lib/python2.7/dist-packages/python_upconvert-0.8.9-py2.
↪→7.egg
Processing dependencies for python-upconvert==0.8.9
Finished processing dependencies for python-upconvert==0.8.9

(continues on next page)

13.1. BeagleBone Cookbook 661

https://www.kicad.org/
http://circuithub.com/
https://github.com/ljmljz/schematic-file-converter

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

host$ cd ..
host$ python -m upconvert.upconverter -h
usage: upconverter.py [-h] [-i INPUT] [-f TYPE] [-o OUTPUT] [-t TYPE]

[-s SYMDIRS [SYMDIRS ...]] [--unsupported]
[--raise-errors] [--profile] [-v] [--formats]

optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT

read INPUT file in
-f TYPE, --from TYPE read input file as TYPE
-o OUTPUT, --output OUTPUT

write OUTPUT file out
-t TYPE, --to TYPE write output file as TYPE
-s SYMDIRS [SYMDIRS ...], --sym-dirs SYMDIRS [SYMDIRS ...]

specify SYMDIRS to search for .sym files (for gEDA
only)

--unsupported run with an unsupported python version
--raise-errors show tracebacks for parsing and writing errors
--profile collect profiling information
-v, --version print version information and quit
--formats print supported formats and quit

At the time of this writing, Upverter supports the following file types:

File type Support
openjson i/o
kicad i/o
geda i/o
eagle i/o
eaglexml i/o
fritzing in only schematic only
gerber i/o
specctra i/o
image out only
ncdrill out only
bom (csv) out only
netlist (csv) out only

After Upverter is installed, run the file (quickBot.fzz) that generated A simple robot controller diagram
(quickBot.fzz) through Upverter:

host$ python -m upconvert.upconverter -i quickBot.fzz \
-f fritzing -o quickBot-eaglexml.sch -t eaglexml --unsupported
WARNING: RUNNING UNSUPPORTED VERSION OF PYTHON (2.7 > 2.6)
DEBUG:main:parsing quickBot.fzz in format fritzing
host$ ls -l
total 188
-rw-rw-r-- 1 ubuntu 63914 Nov 25 19:47 quickBot-eaglexml.sch
-rw-r--r-- 1 ubuntu 122193 Nov 25 19:43 quickBot.fzz
drwxrwxr-x 9 ubuntu 4096 Nov 25 19:42 schematic-file-converter

Output of Upverter conversion shows the output of the conversion.

No one said it would be pretty!

I found that Eagle was more generous at reading in the eaglexml format than the eagle format. This also
made it easier to hand-edit any translation issues.

Producing a Prototype

Problem You have your PCB all designed. How do you get it made?

662 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.93: Output of Upverter conversion

13.1. BeagleBone Cookbook 663

BeagleBoard Docs, Release 1.0.20230711-wip

Solution To make this recipe, you will need:

• A completed design

• Soldering iron

• Oscilloscope

• Multimeter

• Your other components

Upload your design to OSH Park and order a few boards. The OSH Park QuickBot Cape shared project page
shows a resulting shared project page for the quickBot cape created in Laying Out Your Cape PCB. We’ll proceed
to break down how this design was uploaded and shared to enable ordering fabricated PCBs.

Fig. 13.94: The OSH Park QuickBot Cape shared project page

Within Fritzing, click the menu next to “Export for PCB” and choose “Extended Gerber,” as shown in Choosing
“Extended Gerber” in Fritzing. You’ll need to choose a directory in which to save them and then compress them
all into a Zip file. The WikiHow article on creating Zip files might be helpful if you aren’t very experienced at
making these.

Things on the OSH Park website are reasonably self-explanatory. You’ll need to create an account and upload
the Zip file containing the Gerber files you created. If you are a cautious person, you might choose to examine
the Gerber files with a Gerber file viewer first. The Fritzing fabrication FAQ offers several suggestions, including
gerbv for Windows and Linux users.

When your upload is complete, you’ll be given a quote, shown images for review, and presented with options
for accepting and ordering. After you have accepted the design, your list of accepted designs will also include
the option of enabling sharing of your designs so that others can order a PCB, as well. If you are looking to
make some money on your design, you’ll want to go another route, like the one described in Putting Your Cape
Design into Production. QuickBot PCB shows the resulting PCB that arrives in the mail.

Now is a good time to ensure that you have all of your components and a soldering station set up as in Moving
from a Breadboard to a Protoboard, as well as an oscilloscope, as used in Verifying Your Cape Design.

When you get your board, it is often informative to “buzz out” a few connections by using a multimeter. If
you’ve never used a multimeter before, the SparkFun or Adafruit tutorials might be helpful. Set your meter to

664 Chapter 13. Books

http://oshpark.com
http://bit.ly/1MtlzAp
http://bit.ly/1Br5lEh
http://bit.ly/1B4GqRU
http://oshpark.com
https://en.wikipedia.org/wiki/Gerber_format
https://aisler.net/partners/fritzing
http://gerbv.geda-project.org/
https://oshpark.com/project_history
https://learn.sparkfun.com/tutorials/how-to-use-a-multimeter/all
http://bit.ly/1Br5Xtv

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.95: Choosing “Extended Gerber” in Fritzing

13.1. BeagleBone Cookbook 665

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.96: QuickBot PCB

666 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

continuity testing mode and probe between points where the headers are and where they should be connecting
to your components. This would be more difficult and less accurate after you solder down your components,
so it is a good idea to keep a bare board around just for this purpose.

You’ll also want to examine your board mechanically before soldering parts down. You don’t want to waste
components on a PCB that might need to be altered or replaced.

When you begin assembling your board, it is advisable to assemble it in functional subsections, if possible,
to help narrow down any potential issues. QuickBot motors under test shows the motor portion wired up and
running the test in Testing the quickBot motors interface (quickBot_motor_test.js).

Fig. 13.97: QuickBot motors under test

Continue assembling and testing your board until you are happy. If you find issues, you might choose to cut
traces and use point-to-point wiring to resolve your issues before placing an order for a new PCB. Better right
the second time than the third!

Creating Contents for Your Cape Configuration EEPROM

Problem Your cape is ready to go, and you want it to automatically initialize when the Bone boots up.

Solution Complete capes have an I2C EEPROM on board that contains configuration information that is read
at boot time. Adventures in BeagleBone Cape EEPROMs gives a helpful description of two methods for pro-
gramming the EEPROM. How to Roll your own BeagleBone Capes is a good four-part series on creating a cape,
including how to wire and program the EEPROM.

Note: The current effort to document how to enable software for a cape is ongoing at https://docs.

13.1. BeagleBone Cookbook 667

https://web.archive.org/web/20190108195421/http://azkeller.com:80/blog/?p=62
https://web.archive.org/web/20200222204651/http://papermint-designs.com/community/taxonomy/term/68
https://docs.beagleboard.org/latest/boards/capes
https://docs.beagleboard.org/latest/boards/capes

BeagleBoard Docs, Release 1.0.20230711-wip

beagleboard.org/latest/boards/capes.

Putting Your Cape Design into Production

Problem You want to share your cape with others. How do you scale up?

Solution CircuitHub offers a great tool to get a quick quote on assembled PCBs. To make things simple, I
downloaded the CircuitCo MiniDisplay Cape Eagle design materials and uploaded them to CircuitHub.

After the design is uploaded, you’ll need to review the parts to verify that CircuitHub has or can order the right
ones. Find the parts in the catalog by changing the text in the search box and clicking the magnifying glass.
When you’ve found a suitable match, select it to confirm its use in your design, as shown in CircuitHub part
matching.

Fig. 13.98: CircuitHub part matching

When you’ve selected all of your parts, a quote tool appears at the bottom of the page, as shown in CircuitHub
quote generation.

Checking out the pricing on the MiniDisplay Cape (without including the LCD itself) in CircuitHub price examples
(all prices USD), you can get a quick idea of how increased volume can dramatically impact the per-unit costs.

Table 13.5: CircuitHub price examples (all prices USD)
Quantity 1 10 100 1000 10,000
PCB $208.68 $21.75 $3.30 $0.98 $0.90
Parts $11.56 $2.55 $1.54 $1.01 $0.92
Assembly $249.84 $30.69 $7.40 $2.79 $2.32
Per unit $470.09 $54.99 $12.25 $4.79 $4.16
Total $470.09 $550.00 $1,225.25 $4,796.00 $41,665.79

Checking the Crystalfontz web page for the LCD, you can find the prices for the LCDs as well, as shown in LCD
pricing (USD).

668 Chapter 13. Books

https://docs.beagleboard.org/latest/boards/capes
https://docs.beagleboard.org/latest/boards/capes
https://circuithub.com/
https://elinux.org/MiniDisplay_Cape
http://bit.ly/1GF6xqE

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.99: CircuitHub quote generation

Table 13.6: LCD pricing (USD)
Quantity 1 10 100 1000 10,000
Per unit $12.12 $7.30 $3.86 $2.84 $2.84
Total $12.12 $73.00 $386.00 $2,840.00 $28,400.00

To enable more cape developers to launch their designs to the market, CircuitHub has launched a group buy
campaign site. You, as a cape developer, can choose how much markup you need to be paid for your work and
launch the campaign to the public. Money is only collected if and when the desired target quantity is reached,
so there’s no risk that the boards will cost too much to be affordable. This is a great way to cost-effectively
launch your boards to market!

There’s no real substitute for getting to know your contract manufacturer, its capabilities, communication style,
strengths, and weaknesses. Look around your town to see if anyone is doing this type of work and see if they’ll
give you a tour.

Note: Don’t confuse CircuitHub and CircuitCo. CircuitCo is closed.

13.1.10 Parts and Suppliers

The following tables list where you can find the parts used in this book. We have listed only one or two sources
here, but you can often find a given part in many places.

13.1. BeagleBone Cookbook 669

https://hackaday.com/2014/11/13/circuithub-launches-group-buy-crowdsourcing-campaigns/
https://hackaday.com/2014/11/13/circuithub-launches-group-buy-crowdsourcing-campaigns/

BeagleBoard Docs, Release 1.0.20230711-wip

Table 13.7: United States suppliers
Supplier Website Notes
Adafruit http://www.adafruit.com Good for modules and parts
Amazon http://www.amazon.com/ Carries everything
Digikey http://www.digikey.com/ Wide range of components
MakerShed http://www.makershed.com/ Good for modules, kits, and tools
SeeedStudio https://www.seeedstudio.com/SBC-Beaglebone-Original-c-2031.html? Low-cost modules
SparkFun http://www.sparkfun.com Good for modules and parts

Table 13.8: Other suppliers
Supplier Website Notes
Ele-
ment14

http://element14.com/
BeagleBone

World-wide BeagleBoard.org-compliant clone of BeagleBone Black, carries many ac-
cessories

Prototyping Equipment

Many of the hardware projects in this book use jumper wires and a breadboard. We prefer the preformed wires
that lie flat on the board. Jumper wires lists places with jumper wires, and Breadboards shows where you can
get breadboards.

Table 13.9: Jumper wires
Supplier Website
Amazon http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG
Digikey http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115
SparkFun https://www.sparkfun.com/products/124

Table 13.10: Breadboards
Sup-
plier

Website

Ama-
zon

http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&
sprefix=breadboards%2Ctoys-and-games

Digikey https://www.digikey.com/en/products/filter/solderless-breadboards/638
Spark-
Fun

https://www.sparkfun.com/search/results?term=breadboard

Cir-
cuitCo

https://elinux.org/BeagleBoneBreadboard (no longer manufactured, but design available)

If you want something more permanent, try Adafruit’s Perma-Proto Breadboard, laid out like a breadboard.

Resistors

We use 220 , 1k, 4.7k, 10k, 20k, and 22 kΩ resistors in this book. All are 0.25 W. The easiest way to get all
these, and many more, is to order SparkFun’s Resistor Kit. It’s a great way to be ready for future projects,
because it has 500 resistors.

If you don’t need an entire kit of resistors, you can order a la carte from a number of places. DigiKey has more
than a quarter million through-hole resistors at good prices, but make sure you are ordering the right one.

You can find the 10 kΩ trimpot (or variable resistor) at SparkFun 10k POT or Adafruit 10k POT.

Flex resistors (sometimes called flex sensors or bend sensors) are available at SparkFun flex resistors and
Adafruit flex resistors.

Transistors and Diodes

The 2N3904 is a common NPN transistor that you can get almost anywhere. Even Amazon NPN transitor has
it. Adafruit NPN transitor has a nice 10-pack. SparkFun NPN transitor lets you buy them one at a time. DigiKey
NPN transitor will gladly sell you 100,000.

670 Chapter 13. Books

http://www.adafruit.com
http://www.amazon.com/
http://www.digikey.com/
http://www.makershed.com/
https://www.seeedstudio.com/SBC-Beaglebone-Original-c-2031.html
http://www.sparkfun.com
http://element14.com/BeagleBone
http://element14.com/BeagleBone
http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG
http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115
https://www.sparkfun.com/products/124
http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games
http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games
https://www.digikey.com/en/products/filter/solderless-breadboards/638
https://www.sparkfun.com/search/results?term=breadboard
https://elinux.org/BeagleBoneBreadboard
https://www.adafruit.com/product/1609
http://bit.ly/1EXREh8
http://bit.ly/1C6WQjZ
http://bit.ly/18ACvpm
http://bit.ly/1NKg1Tv
http://bit.ly/1Br7HD2
http://bit.ly/1HCGoql
http://bit.ly/1B4J8H4
http://amzn.to/1AjvcsD
http://bit.ly/1b2dgxT
http://bit.ly/1GrZj5P
http://bit.ly/1GF8H9K
http://bit.ly/1GF8H9K

BeagleBoard Docs, Release 1.0.20230711-wip

The 1N4001 is a popular 1A diode. Buy one at SparkFun diode, 10 at Adafruit diode, or 10,000 at DigiKey diode.

Integrated Circuits

The PCA9306 is a small integrated circuit (IC) that converts voltage levels between 3.3 V and 5 V. You can get it
cheaply in large quantities from DigiKey PCA9306, but it’s in a very small, hard-to-use, surface-mount package.
Instead, you can get it from SparkFun PCA9306 on a Breakout board, which plugs into a breadboard.

The L293D is an H-bridge IC with which you can control large loads (such asmotors) in both directions. SparkFun
L293D, Adafruit L293D, and DigiKey L293D all have it in a DIP package that easily plugs into a breadboard.

The ULN2003 is a 7 darlington NPN transistor IC array used to drive motors one way. You can get it from DigiKey
ULN2003. A possible substitution is ULN2803 available from SparkFun ULN2003 and Adafruit ULN2003.

The TMP102 is an I2C-based digital temperature sensor. You can buy them in bulk from DigiKey TMP102, but it’s
too small for a breadboard. SparkFun TMP102 sells it on a breakout board that works well with a breadboard.

The DS18B20 is a one-wire digital temperature sensor that looks like a three-terminal transistor. Both SparkFun
DS18B20 and Adafruit DS18B20 carry it.

Opto-Electronics

LEDs are light-emitting diodes. LEDs come in a wide range of colors, brightnesses, and styles. You can get a
basic red LED at SparkFun red LED, Adafuit red LED, and DigiKey red LED.

Many places carry bicolor LED matrices, but be sure to get one with an I2C interface. Adafruit LED matrix is
where I got mine.

Capes

There are a number of sources for capes for BeagleBone Black. BeagleBoard.org capes page keeps a current
list.

Miscellaneous

Here are some things that don’t fit in the other categories.

13.1. BeagleBone Cookbook 671

http://bit.ly/1EbRzF6
http://bit.ly/1Ajw54G
http://bit.ly/1Gs05zP
https://www.digikey.com/en/products/detail/mdd/1N4001/15517721
http://bit.ly/1Fb8REd
http://bit.ly/19ceTsd
http://bit.ly/1wujQqk
http://bit.ly/18bXChR
http://bit.ly/18bXChR
http://bit.ly/1xd43Yh
https://www.digikey.com/en/products/detail/stmicroelectronics/L293D/634700
https://www.digikey.com/en/products/detail/texas-instruments/ULN2003AN/277624
https://www.digikey.com/en/products/detail/texas-instruments/ULN2003AN/277624
http://bit.ly/1xd4oKy
http://bit.ly/1EXWhaU
https://www.digikey.com/en/products/filter/temperature-sensors/analog-and-digital-output/518?s=N4IgTCBcDaIC4FsAOBGADBAugXyA
http://bit.ly/1GFafAE
http://bit.ly/1Fba7Hv
http://bit.ly/1Fba7Hv
http://bit.ly/1EbSYvC
http://bit.ly/1BwZvQj
http://bit.ly/1GFaHPi
http://bit.ly/1GFaH1M
http://bit.ly/1b2f2PD
http://bit.ly/18AENVn
http://docs.beagleboard.org/

BeagleBoard Docs, Release 1.0.20230711-wip

Table 13.11: Miscellaneous
3.3 V FTDI cable SparkFun FTDI cable, Adafruit FTDI cable
USB WiFi adapter Adafruit WiFi adapter
HDMI cable SparkFun HDMI cable
Micro HDMI to HDMI cable Adafruit HDMI to microHDMI cable
HDMI to DVI Cable SparkFun HDMI to DVI cable
HDMI monitor Amazon HDMI monitor
Powered USB hub Amazon power USB hub, Adafruit power USB hub
Soldering iron SparkFun soldering iron, Adafruit soldering iron
Oscilloscope Adafruit oscilloscope
Multimeter SparkFun multimeter, Adafruit multimeter
PowerSwitch Tail II SparkFun PowerSwitch Tail II, Adafruit PowerSwitch Tail II
Servo motor SparkFun servo motor, Adafruit servo motor
5 V power supply SparkFun 5V power supply, Adafruit 5V power supply
3 V to 5 V motor SparkFun 3V-5V motor, Adafruit 3V-5V motor
3 V to 5 V bipolar stepper motor SparkFun 3V-5V bipolar stepper motor, Adafruit 3V-5V bipolar stepper motor
3 V to 5 V unipolar stepper motor Adafruit 3V-5V unipolar stepper motor
Pushbutton switch SparkFun pushbutton switch, Adafruit pushbutton switch
Magnetic reed switch SparkFun magnetic reed switch
LV-MaxSonar-EZ1 Sonar Range Finder SparkFun LV-MaxSonar-EZ1, Amazon LV-MaxSonar-EZ1
HC-SR04 Ultrsonic Range Sensor Amazon HC-SR04
Rotary encoder SparkFun rotary encoder, Adafruit rotary encoder
GPS receiver SparkFun GPS, Adafruit GPS
BLE USB dongle Adafruit BLE USB dongle
Syba SD-CM-UAUD USB Stereo Audio Adapter Amazon USB audio adapter
Sabrent External Sound Box USB-SBCV Amazon USB audio adapter (alt)
Vantec USB External 7.1 Channel Audio Adapter Amazon USB audio adapter (alt2)

13.1.11 Misc

Here are bits and pieces of ideas that are being developed.

Converting a tmp117 to a tmp114

Problem You have a tmp114 temperature sensor and you need a driver for it.

Solution Find a similar driver and convert it to the tmp114.

Let’s first see if there is a driver for it already. Run the following on the bone using the tab key in place of
<tab>.

bone$ modinfo tmp<tab><tab>
tmp006 tmp007 tmp102 tmp103 tmp108 tmp401 tmp421 tmp513
bone$ modinfo tmp

Here you see a list of modules that match tmp, unfortunately tmp114 is not there. Let’s see if there are any
matches in /lib/modules.

bone$ find /lib/modules/ -iname ”*tmp*”
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/iio/temperature/tmp006.ko.
↪→xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/iio/temperature/tmp007.ko.
↪→xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp103.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp421.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp108.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp513.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp401.ko.xz
/lib/modules/5.10.168-ti-arm64-r104/kernel/drivers/hwmon/tmp102.ko.xz

672 Chapter 13. Books

http://bit.ly/1FMeXsG
http://bit.ly/18AF1Mm
http://www.adafruit.com/products/814
https://www.sparkfun.com/products/11572
http://www.adafruit.com/products/1322
https://www.sparkfun.com/products/12612
http://amzn.to/1B4MABD
http://amzn.to/1NKm2zB
http://www.adafruit.com/products/961
http://bit.ly/1FMfUkP
http://bit.ly/1EXZ6J1
https://www.adafruit.com/products/468
http://bit.ly/1C5BUbu
http://bit.ly/1wXX3np
http://bit.ly/1Ag5bLP
http://bit.ly/1wXX8aF
http://bit.ly/1C72cvw
http://bit.ly/1HCPQdl
http://bit.ly/1C72q5C
http://bit.ly/18c0n2D
http://bit.ly/1b2g65Y
http://bit.ly/1C72DWF
http://bit.ly/1Bx2hVU
http://bit.ly/18c0HhV
http://www.adafruit.com/products/858
http://bit.ly/1AjDf90
http://bit.ly/1b2glhw
https://www.sparkfun.com/products/8642
http://bit.ly/1C73dDH
http://amzn.to/1wXXvlP
http://amzn.to/1FbcPNa
http://bit.ly/1D5ZypK
http://bit.ly/1D5ZGp3
http://bit.ly/1EA2sn0
http://bit.ly/1MrS2VV
http://www.adafruit.com/products/1327
http://amzn.to/1EA2GdI
http://amzn.to/1C74kTU
http://amzn.to/19cinev

BeagleBoard Docs, Release 1.0.20230711-wip

Looks like the same list, but here we can see what type of driver it is, either hwmon or iio. hwmon is an older
harware monitor. iio is the newer, and prefered, Industrial IO driver. Googling tmp006 and tmp007 shows that
they are Infrared Thermopile Sensors, not the same at the tmp114. (Google it). Let’s keep looking for a more
compatible device.

Browse over to http://kernel.org to see if there are tmp114 drivers in the newer versions of the kernel. The
first line in the table is mainline. Click on the browse link on the right. Here you will see the top level of the
Linux sourse tree for the mainline version of the kernel. Click on drivers and then iio. Finally, since tmp114 is
a temperture sensor, click on temperature. Here you see all the source code for the iio temperature drivers
for the mainline version of the kernel. We’ve seen tmp006 and tmp007 as before, tmp117 is new. Maybe it will
work. Click on tmp117.c to see the code. Looks like it also works for the tmp116 too. Let’s try convering it to
work with the tmp114.

A quick way to copy the code to the bone is to right-click on the plain link and select Copy link address. Then,
on the bone enter wget and paste the link. Mine looks like the following, yours will be similar.

bone$ wget https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
↪→git/plain/drivers/iio/temperature/tmp117.c?h=v6.4-rc7
bone$ mv 'tmp117.c?h=v6.4-rc7' tmp117.c
bone$ cp tmp117.c tmp114.c

The mv command moves the downloaded file to a usable name and the cp copies to a new file with the new
name.

Compiling the module Next we need to compile the driver. To do this we need to load the corresponding
header files for the version of the kernel that’s beening run.

bone$ uname -r
5.10.168-ti-arm64-r105

Here you see which version I’m running, yours will be similar. Now load the headers.

bone$ sudo apt install linux-headers-`uname -r`

Next create a Makefile. Put the following in a file called Makefile.

Listing 13.67: Makefile for compiling module (Makefile)

1 obj-m += tmp114.o
2

3 KDIR ?= /lib/modules/$(shell uname -r)/build
4 PWD := $(CURDIR)
5

6 all:
7 make -C $(KDIR) M=$(PWD) modules
8

9 clean:
10 make -C $(KDIR) M=$(PWD) cleanobj-m += tmp114.o
11

12 KDIR ?= /lib/modules/$(shell uname -r)/build
13 PWD := $(CURDIR)
14

15 all:
16 make -C $(KDIR) M=$(PWD) modules
17

18 clean:
19 make -C $(KDIR) M=$(PWD) clean

Makefile

Now you are ready to compile:

13.1. BeagleBone Cookbook 673

https://docs.kernel.org/hwmon/hwmon-kernel-api.html
https://www.kernel.org/doc/html/v4.12/driver-api/iio/index.html
http://kernel.org

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ make
make -C /lib/modules/5.10.168-ti-arm64-r105/build M=/home/debian/play modules
make[1]: Entering directory '/usr/src/linux-headers-5.10.168-ti-arm64-r105'
CC [M] /home/debian/play/tmp114.o
/home/debian/play/tmp114.c: In function ‘tmp117_identify’:
/home/debian/play/tmp114.c:150:7: error: implicit declaration of function␣
↪→‘i2c_client_get_device_id’; did you mean ‘i2c_get_device_id’? [-
↪→Werror=implicit-function-declaration]
150 | id = i2c_client_get_device_id(client);

| ^~~~~~~~~~~~~~~~~~~~~~~~
| i2c_get_device_id

/home/debian/play/tmp114.c:150:5: warning: assignment to ‘const struct i2c_
↪→device_id *’ from ‘int’ makes pointer from integer without a cast [-Wint-
↪→conversion]
150 | id = i2c_client_get_device_id(client);

| ^
cc1: some warnings being treated as errors
make[2]: *** [scripts/Makefile.build:286: /home/debian/play/tmp114.o] Error 1
make[1]: *** [Makefile:1822: /home/debian/play] Error 2
make[1]: Leaving directory '/usr/src/linux-headers-5.10.168-ti-arm64-r105'
make: *** [Makefile:7: all] Error 2

Well, the good news is, it is compiling, that means it found the correct headers. But now the work begins
converting to the tmp114.

Converting to the tmp114 You are mostly on your own for this part, but here are some suggestions:

• First get it to compile without errors. In this case, the function at line 150 isn’t defined. Try commenting
it out and recompiling.

• Once it’s compiling without errors, try running it. First open another window and login to beagle. Then
run:

bone$ dmesg -Hw

This will display the kernel messages. The -H put them in human readable form, and the -w waits for more
messages.

• Next, “insert” it in the running kernel:

bone$ sudo insmod tmp114.ko

If all worked you shouldn’t see any messages, either after the command or in the dmesg window. If you want
to insert the module again, you will have to remove it first. Remove with:

bone$ sudo rmmod tmp114

Now we need to tell the kernel we have an I2C device and which bus and which address.

Finding your I2C device Each I2C device appears at a certain address on a given bus. My device is on bus
3, so I run:

bone$ i2cdetect -y -r 3
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- 4d -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

(continues on next page)

674 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

This shows there is a device at address 0x4d. If you don’t know your bus number, just try a few until you find
it.

The temperature is in register 0 for my device and it’s 16 bits (one word), it is read with:

bone$ i2cget -y 3 0x4d 0 w
0xb510

The tmp114 swaps the two bytes, so the real temperature is 0x10b5, or so. You need to look up the datawsheet
to learn how to comvert it.

Registers and IDs Each I2C device has a number of internal registers that interact with the device. The
tmp114 uses different register numbers than the tmp117, so you need to change these values. To do this,
Google for the data sheets for each and look them up. I found them at: https://www.ti.com/lit/gpn/tmp114 and
https://www.ti.com/lit/gpn/tmp117.

Creating a new device Once you’ve converted the module for the tmp114 and inserted it, you can now
create a new device.

bone$ cd /sys/class/i2c-adapter/i2c-3
bone$ sudo chgrp gpio *
bone$ sudo chmod g+w *
bone$ ls -ls
total 0
0 --w--w---- 1 root gpio 4096 Jun 22 18:24 delete_device
0 lrwxrwxrwx 1 root root 0 Jan 1 1970 device -> ../../20030000.i2c
0 drwxrwxr-x 3 root gpio 0 Jun 22 18:20 i2c-dev
0 -r--rw-r-- 1 root gpio 4096 Jun 22 18:20 name
0 --w--w---- 1 root gpio 4096 Jun 22 18:20 new_device
0 lrwxrwxrwx 1 root root 0 Jan 1 1970 of_node -> ../../../../../
↪→firmware/devicetree/base/bus@f0000/i2c@20030000
0 drwxrwxr-x 2 root gpio 0 Jun 22 18:20 power
0 lrwxrwxrwx 1 root root 0 Jan 1 1970 subsystem -> ../../../../../bus/
↪→i2c
0 -rw-rw-r-- 1 root gpio 4096 Jun 22 18:20 uevent

The first line changes to the directory to where we can create the new device. The final 3 in the path is for bus
3, your milage may vary. We then change the group to gpio and give it write permission. You only need to do
this once.

Now make a new device.

bone$ echo tmp114 0x4d > new_device

Look in the demsg window and you should see:

[Jun22 19:24] tmp114 3-004d: tmp114_identify id (0x1114)
[+0.000027] tmp114 3-004d: tmp114_probe id (0x1114)
[+0.000502] i2c i2c-3: new_device: Instantiated device tmp114 at 0x4d

It’s been found! Let’s see what it knows about it.

bone$ iio_info
Library version: 0.24 (git tag: v0.24)
...

iio:device1: tmp114
1 channels found:

(continues on next page)

13.1. BeagleBone Cookbook 675

https://www.ti.com/lit/gpn/tmp114
https://www.ti.com/lit/gpn/tmp117

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

temp: (input)
2 channel-specific attributes found:

attr 0: raw value: 4257
attr 1: scale value: 7.812500

No trigger on this device

I’ve left out some of the lines, at the bottom you see the tmp114, and two values (raw and scale) that were
read from it. Let’s read them ourselves. Do an ls and you’ll see a new directory, 3-004d. This is address 0x4d
on bus 3, just what we wanted.

bone$ cd 3-004d/iio:device1
bone$ ls
dev in_temp_raw in_temp_scale name power subsystem uevent
bone$ cat in_temp_raw
4275

You’ll have to look in the datasheet to learn how to convert the temperature.

If you try to run i2cget again, you’ll get an error:

bone$ i2cget -y 3 0x4d 0 w
Error: Could not set address to 0x4d: Device or resource busy

This is because the module is using it. Delete the device and you’ll have access again.

bone$ echo 0x4d > /sys/class/i2c-adapter/i2c-3/delete_device
bone$ i2cget -y 3 0x4d 0 w
0x8e10

You should also see a message in dmesg.

Documenting with Sphinx

Problem You want to add or update the Beagle documentation.

Solution BeagleBoard.org uses the Sphinx Python Documentation Generator and the rst markup language.

Here’s what you need to do to fork the repository and render a local copy of the documentation. Browse to
https://docs.beagleboard.org/latest/ and click on the Edit on GitLab button on the upper-right of the page.
Clone the repository.

bash$ git clone git@git.beagleboard.org:docs/docs.beagleboard.io.git
bash$ cd docs.beagleboard.io

Then run the following to load the code submodule

bash$ git submodule update --init

Now, sync changes with upstream:

bone$ git remote add upstream https://git.beagleboard.org/docs/docs.
↪→beagleboard.io.git
bone$ git fetch upstream
bone$ git pull upstream main

Downloading Sphinx Run the following to download Sphinx. Note: This will take a while, it loads some 6G
bytes.

676 Chapter 13. Books

https://www.sphinx-doc.org/en/master/index.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://docs.beagleboard.org/latest/

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ sudo apt update
bone$ sudo apt upgrade
bone$ sudo apt install -y \

make git wget \
doxygen graphviz librsvg2-bin\
texlive-latex-base texlive-latex-extra latexmk texlive-fonts-recommended␣

↪→\
python3 python3-pip \
python3-sphinx python3-sphinx-rtd-theme python3-sphinxcontrib.

↪→svg2pdfconverter \
python3-pil \
imagemagick-6.q16 librsvg2-bin webp \
texlive-full texlive-latex-extra texlive-fonts-extra \
fonts-freefont-otf fonts-dejavu fonts-dejavu-extra fonts-freefont-ttf

bone$ python3 -m pip install --upgrade pip
bone$ pip install -U sphinx_design
bone$ pip install -U sphinxcontrib-images
bone$ pip install -U sphinx-serve

These instructions came from lorforlinux on the Beagleboard Slack channel.

Now go to the cloned docs.beagleboard.io repository folder and do the following. To clean build directory:

bone$ cd docs.beagleboard.io
bone$ make clean

To generate HTML output of docs:

bone$ make html

To generate PDF output of docs:

bone$ make latexpdf

To preview docs on your local machine:

bone$ sphinx-serve

Then point your browser to localhost:8081.

Tip: You can keep the sphinx-serve running until you clean the build directory using make clean. Warnings
will be hidden after first run of make html or make latexpdf, to see all the warnings again just run make clean
before building HTML or PDF

Creating A New Book

• Create a new book folder here: https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books

• Create rst files for all the chapters in there respective folders so that you can easily manage media
for that chapter as shown here: https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books/
pru-cookbook

• Create an index.rst file in the book folder and add a table of content (toc) for all the chapters. For exam-
ple see this file: https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/pru-cookbook/
index.rst

• Add the bookname/index.rst reference in the main index file as well: https://git.beagleboard.org/docs/
docs.beagleboard.io/-/raw/main/books/index.rst

• At last you have to update the two files below to render the book in HTML and PDF version of the
docs respectively: https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index.rst https://git.
beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index-tex.rst

13.1. BeagleBone Cookbook 677

https://beagleboard.slack.com/archives/C8S7EKZC2/p1684940872699269
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books/pru-cookbook
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/books/pru-cookbook
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/pru-cookbook/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/pru-cookbook/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/books/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index-tex.rst
https://git.beagleboard.org/docs/docs.beagleboard.io/-/raw/main/index-tex.rst

BeagleBoard Docs, Release 1.0.20230711-wip

Running Sparkfun’s qwiic Python Examples

Many of the Sparkfun qwiic devices have Python examples showing how to use them. Unfortunately the exam-
ples assume I2C bus 1 is used, but the qwiic bus on the Play is bus 5. Here is a quick hack to get the Sparkfun
Python examples to use bus 5. I’ll show it for the Joystick, but it should work for the others as well.

First, browse to Sparkfun’s qwiic Joystick page, https://www.sparkfun.com/products/15168 and click on the
DOCUMENTS tab and then on Python Package. Follow the pip instillation instructions (sudo pip install
sparkfun-qwiic-joystick)

Next, uninstall the current qwiic I2C package.

bone$ sudo pip uninstall sparkfun-qwiic-i2c

Then clone the Qwiic I2C repo:

bone$ git clone git@github.com:sparkfun/Qwiic_I2C_Py.git
bone$ cd Qwiic_I2C_Py/qwiic_i2c

Edit linux_i2c.py and go to around line 62 and change it to:

iBus = 5

Next, cd up a level to the Qwiic_I2C_Py directory and reinstall

bone$ cd ..
bone$ sudo python setup.py install

Finally, run one of the Joystick examples. If it isn’t using bus 5, try reinstalling setup.py again.

Controlling LEDs by Using SYSFS Entries

Problem You want to control the onboard LEDs from the command line.

Solution On Linux, everything is a file that is, you can access all the inputs and outputs, the LEDs, and so on
by opening the right file and reading or writing to it. For example, try the following:

bone$ cd /sys/class/leds/
bone$ ls
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

What you are seeing are four directories, one for each onboard LED. Now try this:

bone$ cd beaglebone\:green\:usr0
bone$ ls
brightness device max_brightness power subsystem trigger uevent
bone$ cat trigger
none nand-disk mmc0 mmc1 timer oneshot [heartbeat]

backlight gpio cpu0 default-on transient

The first command changes into the directory for LED usr0, which is the LED closest to the edge of the board.
The [heartbeat] indicates that the default trigger (behavior) for the LED is to blink in the heartbeat pattern.
Look at your LED. Is it blinking in a heartbeat pattern?

Then try the following:

bone$ echo none > trigger
bone$ cat trigger
[none] nand-disk mmc0 mmc1 timer oneshot heartbeat

backlight gpio cpu0 default-on transient

678 Chapter 13. Books

https://www.sparkfun.com/products/15168
http://bit.ly/1AjhWUW

BeagleBoard Docs, Release 1.0.20230711-wip

This instructs the LED to use none for a trigger. Look again. It should be no longer blinking.

Now, try turning it on and off:

bone$ echo 1 > brightness
bone$ echo 0 > brightness

The LED should be turning on and off with the commands.

Controlling GPIOs by Using SYSFS Entries

Problem You want to control a GPIO pin from the command line.

Solution Controlling LEDs by Using SYSFS Entries introduces the sysfs. This recipe shows how to read and
write a GPIO pin.

Reading a GPIO Pin via sysfs

Suppose that you want to read the state of the P9_42 GPIO pin. (Reading the Status of a Pushbutton or Magnetic
Switch (Passive On/Off Sensor) shows how to wire a switch to P9_42.) First, you need to map the P9 header
location to GPIO number using Mapping P9_42 header position to GPIO 7, which shows that P9_42 maps to
GPIO 7.

Fig. 13.100: Mapping P9_42 header position to GPIO 7

Next, change to the GPIO sysfs directory:

bone$ cd /sys/class/gpio/
bone$ ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

The ls command shows all the GPIO pins that have be exported. In this case, none have, so you see only the
four GPIO controllers. Export using the export command:

13.1. BeagleBone Cookbook 679

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ echo 7 > export
bone$ ls
export gpio7 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Now you can see the gpio7 directory. Change into the gpio7 directory and look around:

bone$ cd gpio7
bone$ ls
active_low direction edge power subsystem uevent value
bone$ cat direction
in
bone$ cat value
0

Notice that the pin is already configured to be an input pin. (If it wasn’t already configured that way, use echo
in > direction to configure it.) You can also see that its current value is 0—that is, it isn’t pressed. Try pressing
and holding it and running again:

bone$ cat value
1

The 1 informs you that the switch is pressed. When you are done with GPIO 7, you can always unexport it:

bone$ cd ..
bone$ echo 7 > unexport
bone$ ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Writing a GPIO Pin via sysfs

Now, suppose that you want to control an external LED. Toggling an External LED shows how to wire an LED to
P9_14. Mapping P9_42 header position to GPIO 7 shows P9_14 is GPIO 50. Following the approach in Controlling
GPIOs by Using SYSFS Entries, enable GPIO 50 and make it an output:

bone$ cd /sys/class/gpio/
bone$ echo 50 > export
bone$ ls
gpio50 gpiochip0 gpiochip32 gpiochip64 gpiochip96
bone$ cd gpio50
bone$ ls
active_low direction edge power subsystem uevent value
bone$ cat direction
in

By default, P9_14 is set as an input. Switch it to an output and turn it on:

bone$ echo out > direction
bone$ echo 1 > value
bone$ echo 0 > value

The LED turns on when a 1 is written to value and turns off when a 0 is written.

13.2 PRU Cookbook

Contributors

• Author: Mark A. Yoder

680 Chapter 13. Books

mailto:Mark.A.Yoder@Rose-Hulman.edu

BeagleBoard Docs, Release 1.0.20230711-wip

• Book revision: v2.0 beta

Outline

A cookbook for programming the PRUs in C using remoteproc and compiling on the Beagle

13.2.1 Case Studies - Introduction

It’s an exciting time to be making projects that use embedded processors. Make:’s Makers’ Guide to Boards
shows many of the options that are available and groups them into different types. Single board computers
(SBCs) generally run Linux on some sort of ARM processor. Examples are the BeagleBoard and the Raspberry
Pi. Another type is the microcontroller, of which the Arduino is popular.

The SBCs are used because they have an operating system to manage files, I/O, and schedule when things
are run, all while possibly talking to the Internet. Microcontrollers shine when things being interfaced require
careful timing and can’t afford to have an OS preempt an operation.

But what if you have a project that needs the flexibility of an OS and the timing of a microcontroller? This
is where the BeagleBoard excels since it has both an ARM procssor running Linux and two1 Programmable
Real-Time Units (PRUs). The PRUs have 32-bit cores which run independently of the ARM processor, therefore
they can be programmed to respond quickly to inputs and produce very precisely timed outputs.

There are many Projects that use the PRU. They are able to do things that can’t be done with just a SBC or just
a microcontroller. Here we present some case studies that give a high-level view of using the PRUs. In later
chapters you will see the details of how they work.

Here we present:

• Robotics Control Library

• BeagleLogic

• NeoPixels – 5050 RGB LEDs with Integrated Drivers (Falcon Christmas)

• RGB LED Matrix (Falcon Christmas)

• simpPRU – A python-like language for programming the PRUs

• MachineKit

• BeaglePilot

• BeagleScope

The following are resources used in this chapter.

Resources

• PocketBeagle System Reference Manual

• BeagleBone Black P8 Header Table

– P8 Header Table from exploringBB

• BeagleBone Black P9 Header Table

– P9 Header Table from exploringBB

• BeagleBone AI System Reference Manual

1 Four if you are on the BeagleBone AI

13.2. PRU Cookbook 681

https://makezine.com/comparison/boards/
https://www.arm.com/
https://www.arduino.cc/
https://beagleboard.org/librobotcontrol
https://github.com/abhishek-kakkar/BeagleLogic/wiki
http://falconchristmas.com
http://falconchristmas.com
https://github.com/VedantParanjape/simpPRU
http://www.machinekit.io/
http://ardupilot.org/dev/docs/beaglepilot.html
https://github.com/ZeekHuge/BeagleScope
https://docs.beagleboard.io/latest/boards/pocketbeagle/original/index.html
https://docs.beagleboard.io/latest/boards/beaglebone/black/ch07.html#id2
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf
https://docs.beagleboard.io/latest/boards/beaglebone/black/ch07.html#id3
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf
https://docs.beagleboard.io/latest/boards/beaglebone/ai/index.html

BeagleBoard Docs, Release 1.0.20230711-wip

Robotics Control Library

Robotics is an embedded application that often requires both an SBC to control the high-level tasks (such as
path planning, line following, communicating with the user) and a microcontroller to handle the low-level tasks
(such as telling motors how fast to turn, or how to balance in response to an IMU input). The EduMIP balancing
robot demonstrates that by using the PRU, the Blue can handle both the high and low -level tasks without an
additional microcontroller. The EduMIP is shown in Blue balancing.

Fig. 13.101: Blue balancing

The Robotics Control Library is a package that is already installed on the Beagle that contains a C library and
example/testing programs. It uses the PRU to extend the real-time hardware of the Bone by adding eight
additional servo channels and one addition real-time encoder input.

The following examples show how easy it is to use the PRU for robotics.

682 Chapter 13. Books

https://www.ucsdrobotics.org/edumip
https://www.hackster.io/edumip/edumip-13a29c
https://beagleboard.org/librobotcontrol

BeagleBoard Docs, Release 1.0.20230711-wip

Controlling Eight Servos

Problem You need to control eight servos, but the Bone doesn’t have enough pulse width modulation (PWM)
channels and you don’t want to add hardware.

Solution The Robotics Control Library provides eight additional PWM channels via the PRU that can be used
out of the box.

Note: The I/O pins on the Beagles have a mutliplexer that lets you select what I/O appears on a given pin.
The Blue has the mux already configured to run these examples. Follow the instructions in Configuring Pins for
Controlling Servos to configure the pins for the Black and the Pocket.

Just run:

bone$ sudo rc_test_servos -f 10 -p 1.5

The -f 10 says to use a frequency of 10 Hz and the -p 1.5 says to set the position to 1.5. The range of
positions is -1.5 to 1.5. Run rc_test_servos -h to see all the options.

bone$ rc_test_servos -h

Options
-c {channel} Specify one channel from 1-8.

Otherwise all channels will be driven equally
-f {hz} Specify pulse frequency, otherwise 50hz is used
-p {position} Drive servo to a position between -1.5 & 1.5
-w {width_us} Send pulse width in microseconds (us)
-s {limit} Sweep servo back/forth between +- limit

Limit can be between 0 & 1.5
-r {ch} Use DSM radio channel {ch} to control servo
-h Print this help message

sample use to center servo channel 1:
rc_test_servo -c 1 -p 0.0

Discussion The BeagleBone Blue sends these eight outputs to its servo channels. The others use the pins
shown in the PRU register to pin table.

PRU register to pin table
PRU pin Blue pin Black pin Pocket pin AI pin
pru1_r30_8 1 P8_27 P2.35
pru1_r30_10 2 P8_28 P1.35 P9_42
pru1_r30_9 3 P8_29 P1.02 P8_14
pru1_r30_11 4 P8_30 P1.04 P9_27
pru1_r30_6 5 P8_39 P8_19
pru1_r30_7 6 P8_40 P8_13
pru1_r30_4 7 P8_41
pru1_r30_5 8 P8_42 P8_18

You can find these details in the

• PocketBeagle pinout

• BeagleBone AI PRU pins

Be default the PRUs are already loaded with the code needed to run the servos. All you have to do is run the
command.

13.2. PRU Cookbook 683

https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

BeagleBoard Docs, Release 1.0.20230711-wip

Controlling Individual Servos

Problem rc_test_servos is nice, but I need to control the servos individually.

Solution You can modify rc_test_servos.c. You’ll find it on the bone online at https://git.beagleboard.
org/beagleboard/librobotcontrol/-/blob/master/examples/src/rc_test_servos.c

Just past line 250 you’ll find awhile loop that has calls torc_servo_send_pulse_normalized(ch,
servo_pos) and rc_servo_send_pulse_us(ch, width_us). The first call sets the pulse
width relative to the pulse period; the other sets the width to an absolute time. Use whichever works for you.

Controlling More Than Eight Channels

Problem I need more than eight PWM channels, or I need less jitter on the off time.

Solution This is a more advanced problem and required reprograming the PRUs. See PWM Generator for an
example.

Reading Hardware Encoders

Problem I want to use four encoders to measure four motors, but I only see hardware for three.

Solution The forth encoder can be implemented on the PRU. If you run rc_test_encoders_eqep on
the Blue, you will see the output of encoders E1-E3 which are connected to the eEQP hardware.

bone$ rc_test_encoders_eqep

Raw encoder positions
E1 | E2 | E3 |

0 | 0 | 0 |^C

You can also access these hardware encoders on the Black and Pocket using the pins shown in eQEP to pin
mapping.

eQEP to pin mapping

eQEP Blue pin Black pin A Black pin B AI pin A AI pin B Pocket pin A Pocket pin B
0 E1 P9_42B P9_27 P1.31 P2.24
1 E2 P8_35 P8_33 P8_35 P8_33 P2.10
2 E3 P8_12 P8_11 P8_12 P8_11 P2.24 P2.33
2 P8_41 P8_42 P9_19 P9_41

E4 P8_16 P8_15 P2.09 P2.18
3 P8_25 P8_24
3 P9_42 P9_27

Note: The I/O pins on the Beagles have a mutliplexer that lets you select what I/O appears on a given pin.
The Blue has the mux already configured to run these examples. Follow the instructions in Configuring Pins for
Controlling Encoders to configure the pins for the Black and the Pocket.

Reading PRU Encoder

Problem I want to access the PRU encoder.

684 Chapter 13. Books

https://git.beagleboard.org/beagleboard/librobotcontrol/-/blob/master/examples/src/rc_test_servos.c
https://git.beagleboard.org/beagleboard/librobotcontrol/-/blob/master/examples/src/rc_test_servos.c

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The forth encoder is implemented on the PRU and accessed with sudo rc_test_encoders_pru

Note: This command needs root permission, so the sudo is needed. The default password is temppwd.

Here’s what you will see

bone$ sudo rc_test_encoders_pru
[sudo] password for debian:

Raw encoder position
E4 |

0 |^C

Note: If you aren’t running the Blue you will have to configure the pins as shown in the note above.

BeagleLogic – a 14-channel Logic Analyzer

Problem I need a 100Msps, 14-channel logic analyzer

Solution BeagleLogic documentation is a 100Msps, 14-channel logic analyzer that runs on the Beagle.

information

BeagleLogic turns your BeagleBone [Black] into a 14-channel, 100Msps Logic Analyzer. Once loaded, it presents
itself as a character device node /dev/beaglelogic. The core of the logic analyzer is the ‘beaglelogic’ kernel
module that reserves memory for and drives the two Programmable Real-Time Units (PRU) via the remoteproc
interface wherein the PRU directly writes logic samples to the System Memory (DDR RAM) at the configured
sample rate one-shot or continuously without intervention from the ARM core.

https://github.com/abhishek-kakkar/BeagleLogic/wiki

The quickest solution is to get the no-setup-required image. It points to an older image (beaglelogic-stretch-
2017-07-13-4gb.img.xz) but should still work.

If you want to be running a newer image, there are instructions on the site for installing BeagleLogic, but I had
to do the additional steps in Installing BeagleLogic.

Listing 13.68: Installing BeagleLogic

bone$ git clone https://github.com/abhishek-kakkar/BeagleLogic
bone$ cd BeagleLogic/kernel
bone$ mv beaglelogic-00A0.dts beaglelogic-00A0.dts.orig
bone$ wget https://gist.githubusercontent.com/abhishek-kakkar/
↪→0761ef7b10822cff4b3efd194837f49c/raw/
↪→eb2cf6cfb59ff5ccb1710dcd7d4a40cc01cfc050/beaglelogic-00A0.dts
bone$ make overlay
bone$ sudo cp beaglelogic-00A0.dtbo /lib/firmware/
bone$ sudo update-initramfs -u -k \`uname -r`
bone$ sudo reboot

Once the Bone has rebooted, browse to 192.168.7.2:4000 where you’ll see BeagleLogic Data Capture. Here
you can easily select the sample rate, number of samples, and which pins to sample. Then click Begin Capture
to capture your data, at up to 100 MHz!

13.2. PRU Cookbook 685

https://beaglelogic.readthedocs.io/en/latest/
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://github.com/abhishek-kakkar/BeagleLogic/wiki/BeagleLogic-%22no-setup-required%22-setup:-Introducing-System-Image!
https://beaglelogic.readthedocs.io/en/latest/install.html

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.102: BeagleLogic Data Capture

Discussion BeagleLogic is a complete system that includes firmware for the PRUs, a kernel module and a
web interface that create a powerful 100 MHz logic analyzer on the Bone with no additional hardware needed.

Tip: If you need buffered inputs, consider BeagleLogic Standalone, a turnkey Logic Analyzer built on top of
BeagleLogic.

The kernel interface makes it easy to control the PRUs through the command line. For example

bone$ dd if=/dev/beaglelogic of=mydump bs=1M count=1

will capture a binary dump from the PRUs. The sample rate and number of bits per sample can be controlled
through /sys/.

bone$ cd /sys/devices/virtual/misc/beaglelogic
bone$ ls
buffers filltestpattern power state uevent
bufunitsize lasterror samplerate subsystem
dev memalloc sampleunit triggerflags
bone$ *cat samplerate*
1000
bone$ *cat sampleunit*
8bit

You can set the sample rate by simply writing to samplerate.

bone$ echo 100000000 > samplerate

sysfs attributes Reference has more details on configuring via sysfs.

If you run dmesg -Hw in another window you can see when a capture is started and stopped.

bone$ dmesg -Hw
[Jul25 08:46] misc beaglelogic: capture started with sample rate=100000000␣

(continues on next page)

686 Chapter 13. Books

http://standalone.beaglelogic.net/en/latest/
https://beaglelogic.readthedocs.io/en/latest/sysfs_attributes.html

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→Hz, sampleunit=1, triggerflags=0
[+0.086261] misc beaglelogic: capture session ended

BeagleLogic uses the two PRUs to sample at 100Msps. Getting a PRU running at 200Hz to sample at 100Msps
is a slick trick. The Embedded Kitchen has a nice article explaining how the PRUs get this type of performance.

RGB LED Matrix – No Integrated Drivers (Falcon Christmas)

Problem You want to use a RGB LED Matrix display that doesn’t have integrated drivers such as the 64x32
RGB LED Matrix by Adafuit shown in Adafruit LED Matrix.

Fig. 13.103: Adafruit LED Matrix

Solution Falcon Christmasmakes a software package called Falcon Player (FPP) which can drive such displays.

information:

The Falcon Player (FPP) is a lightweight, optimized, feature-rich sequence player designed to run on low-cost
SBC’s (Single Board Computers). FPP is a software solution that you download and install on hardware which
can be purchased from numerous sources around the internet. FPP aims to be controller agnostic, it can talk
E1.31, DMX, Pixelnet, and Renard to hardware from multiple hardware vendors, including controller hardware
from Falcon Christmas available via COOPs or in the store on FalconChristmas.com.

http://www.falconchristmas.com/wiki/FPP:FAQ#What_is_FPP.3F

Hardware The Beagle hardware can be either a BeagleBone Black with the Octoscroller Cape, or a Pocket-
Beagle with the PocketScroller LED Panel Cape. (See to purchase.) Building and Octoscroller Matrix Display
gives details for using the BeagleBone Black.

PocketBeagle Driving a P5 RGB LED Matrix via the PocketScroller Cape shows how to attach the PocketBeagle
to the P5 LED matrix and where to attach the 5V power. If you are going to turn on all the LEDs to full white at
the same time you will need at least a 4A supply.

Software The FPP software is most easily installed by downloading the current FPP release, flashing an SD
card and booting from it.

13.2. PRU Cookbook 687

http://theembeddedkitchen.net/beaglelogic-building-a-logic-analyzer-with-the-prus-part-1/449
https://www.adafruit.com/product/2277
https://www.adafruit.com/product/2277
http://falconchristmas.com
http://falconchristmas.com/forum/index.php/board,8.0.html
http://www.falconchristmas.com/wiki/FPP:FAQ#What_is_FPP.3F
https://oshpark.com/shared_projects/7mSHNZcD
https://www.hackster.io/daniel-kulp/pocketscroller-led-panel-cape-for-pocketbeagle-fe12a6
https://kulplights.com/product/pocketscroller/
https://www.diychristmas.org/wiki/index.php?title=Building_an_Octoscroller_Matrix_Display
https://github.com/FalconChristmas/fpp/releases/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.104: PocketBeagle Driving a P5 RGB LED Matrix via the PocketScroller Cape

Tip: The really brave can install it on a already running image. See details at https://github.com/
FalconChristmas/fpp/blob/master/SD/FPP_Install.sh

Assuming the PocketBeagle is attached via the USB cable, on your host computer browse to http://192.168.7.2/
and you will see Falcon Play Program Control.

You can test the display by first setting up the Channel Outputs and then going to Display Testing. Selecting
Channel Outputs shows where to select Channel Outputs and Channel Outputs Settings shows which settings
to use.

Click on the LED Panels tab and then the only changes I made was to select the Single Panel Size to be
64x32 and to check the Enable LED Panel Output.

Next we need to test the display. Select Display Testing shown in Selecting Display Testing.

Set the End Channel to 6144. (6144 is 3*64*32) Click Enable Test Mode and your matrix should light up.
Try the different testing patterns shown in Display Testing Options.

xLights - Creating Content for the Display Once you are sure your LED Matrix is working correctly you
can program it with a sequence.

information:

xLights is a free and open source program that enables you to design, create and play amazing lighting displays
through the use of DMX controllers, E1.31 Ethernet controllers and more.

With it you can layout your display visually then assign effects to the various items throughout your sequence.
This can be in time to music (with beat-tracking built into xLights) or just however you like. xLights runs on
Windows, OSX and Linux

https://xlights.org/

xLights can be installed on your host computer (not the Beagle) by following instructions at https://xlights.org/
releases/.

Run xLights and you’ll see xLights Setup.

host$ chmod +x xLights-2021.18-x86_64.AppImage
host$./xLights-2021.18-x86_64.AppImage

688 Chapter 13. Books

https://github.com/FalconChristmas/fpp/blob/master/SD/FPP_Install.sh
https://github.com/FalconChristmas/fpp/blob/master/SD/FPP_Install.sh
http://192.168.7.2/
https://xlights.org/
https://xlights.org/releases/
https://xlights.org/releases/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.105: Falcon Play Program Control

13.2. PRU Cookbook 689

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.106: Selecting Channel Outputs

We’ll walk you through a simple setup to get an animation to display on the RGB Matrix. xLights can use a
protocol called E1.31 to send information to the display. Setup xLights by clicking on Add Ethernet and entering
the values shown in Setting Up E1.31.

The IP Address is the Bone’s address as seen from the host computer. Each LED is one channel, so one RGB
LED is three channels. The P5 board has 3*64*32 or 6144 channels. These are grouped into universes of 512
channels each. This gives 6144/512 = 12 universes. See the E.13 documentation for more details.

Your setup should look like xLights setup for P5 display. Click the Save Setup button to save.

Next click on the Layout tab. Click on the Matrix button as shown in Setting up the Matrix Layout, then click
on the black area where you want your matrix to appear.

Layout details for P5 matrix shows the setting to use for the P5 matrix.

All I changed was # Strings, Nodes/String, Starting Location and most importantly, expand String Prop-
erties and select at String Type of RGB Nodes. Above the setting you should see that Start Chan is 1 and
the End Chan is 6144, which is the total number of individual LEDs (3*63*32). xLights now knows we are
working with a P5 matrix, now on to the sequencer.

Now click on the Sequencer tab and then click on the New Sequence button (Starting a new sequence).

Then click on Animation, 20fps (50ms), and Quick Start. Learning how to do sequences is beyond the
scope of this cookbook, however I’ll shown you how do simple sequence just to be sure xLights is talking to the
Bone.

Setting Up E1.31 on the Bone First we need to setup FPP to take input from xLights. Do this by going to
the Input/Output Setup menu and selecting Channel Inputs. Then enter 12 for Universe Count and click set
and you will see E1.31 Inputs.

Click on the Save button above the table.

Then go to the Status/Control menu and select Status Page.

690 Chapter 13. Books

https://www.doityourselfchristmas.com/wiki/index.php?title=E1.31_(Streaming-ACN)_Protocol#Configuring_Sequencing_Software_to_use_E1.31_Output

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.107: Channel Outputs Settings

13.2. PRU Cookbook 691

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.108: Selecting Display Testing

Testing the xLights Connection The Bone is now listening for commands from xLights via the E1.31 proto-
col. A quick way to verify everything is t o return to xLights and go to the Tools menu and select Test (xLights
test page).

Click the box under Select channels…, click Output to lights and select Twinkle 50%. You matrix should
have a colorful twinkle pattern (xLights Twinkle test pattern).

A Simple xLights Sequence Now that the xLights to FPP link is tested you can generate a sequence to
play. Close the Test window and click on the Sequencer tab. Then drag an effect from the Effects box to the
timeline that below it. Drop it to the right of theMatrix label (Drag an effect to the timeline). The click Output
To Lights which is the yellow lightbulb to the right on the top toolbar. Your matrix should now be displaying
your effect.

The setup requires the host computer to send the animation data to the Bone. The next section shows how to
save the sequence and play it on the Bone standalone.

Saving a Sequence and Playing it Standalone In xLights save your sequence by hitting Ctrl-S and giving
it a name. I called mine fire since I used a fire effect. Now, switch back to FPP and select the Content Setup
menu and select File Manager. Click the black Select Files button and select your sequence file that ends in
.fseq (FPP file manager).

Once your sequence is uploaded, got to Content Setup and select Playlists. Enter you playlist name (I used
fire) and click Add. Then click Add a Sequence/Entry and select Sequence Only (Adding a new playlist to
FPP), then click Add.

Be sure to click Save Playlist on the right. Now return to Status/Control and Status Page and make sure
FPPD Mode: is set to Standalone. You should see your playlist. Click the Play button and your sequence
will play.

The beauty of the PRU is that the Beagle can play a detailed sequence at 20 frames per second and the ARM
procossor is only 15% used. The PRUs are doing all the work.

692 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.109: Display Testing Options

13.2. PRU Cookbook 693

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.110: xLights Setup

Fig. 13.111: Setting Up E1.31

694 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.112: xLights setup for P5 display

Fig. 13.113: Setting up the Matrix Layout

13.2. PRU Cookbook 695

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.114: Layout details for P5 matrix

Fig. 13.115: Starting a new sequence

696 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.116: E1.31 Inputs

13.2. PRU Cookbook 697

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.117: Bridge Mode

698 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.118: xLights test page

Fig. 13.119: xLights Twinkle test pattern

13.2. PRU Cookbook 699

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.120: Drag an effect to the timeline

simpPRU – A python-like language for programming the PRUs simpPRU is a simple, python-like pro-
gramming language designed to make programming the PRUs easy. It has detailed documentation and many
examples.

information

simpPRU is a procedural programming language that is statically typed. Variables and functions must be as-
signed data types during compilation. It is type-safe, and data types of variables are decided during compila-
tion. simPRU codes have a +.sim+ extension. simpPRU provides a console app to use Remoteproc functionality.

https://simppru.readthedocs.io/en/latest/

You can build simpPRU from source, more easily just install it. On the Beagle run:

bone$ wget https://github.com/VedantParanjape/simpPRU/releases/download/1.4/
↪→simppru-1.4-armhf.deb
bone$ sudo dpkg -i simppru-1.4-armhf.deb
bone$ sudo apt update
bone$ sudo apt install gcc-pru

Now, suppose you wanted to run the LED blink example which is reproduced here.

Listing 13.69: LED Blink (blink.sim)

1 /* From: https://simppru.readthedocs.io/en/latest/examples/led_blink/ */
2 while : 1 == 1 {
3 digital_write(P1_31, true);
4 delay(250); /* Delay 250 ms */
5 digital_write(P1_31, false);
6 delay(250);
7 }

700 Chapter 13. Books

https://github.com/VedantParanjape/simpPRU
https://simppru.readthedocs.io/en/latest/
https://simppru.readthedocs.io/en/latest/examples/digital_read/
https://simppru.readthedocs.io/en/latest/
https://simppru.readthedocs.io/en/latest/install/build/
https://simppru.readthedocs.io/en/latest/install/install/
https://simppru.readthedocs.io/en/latest/examples/led_blink/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.121: FPP file manager

13.2. PRU Cookbook 701

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.122: Adding a new playlist to FPP

702 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.123: Adding a new playlist to FPP

13.2. PRU Cookbook 703

BeagleBoard Docs, Release 1.0.20230711-wip

blink.sim

Just run simppru

bone$ simppru blink.sim --load
Detected TI AM335x PocketBeagle
inside while
[4] : setting P1_31 as output

Current mode for P1_31 is: pruout

Detected TI AM335x PocketBeagle The +–load+ flag caused the compiled code to be copied to
+/lib/firmware+. To start just do:

bone$ cd /dev/remoteproc/pruss-core0/
bone$ ls
device firmware name power state subsystem uevent
bone$ echo start > state
bone$ cat state
running

Your LED should now be blinking.

Check out the many examples (https://simppru.readthedocs.io/en/latest/examples/led_blink/).

Fig. 13.124: simpPRU Examples

MachineKit MachineKit is a platform for machine control applications. It can control machine tools, robots,
or other automated devices. It can control servo motors, stepper motors, relays, and other devices related to
machine tools.

information

Machinekit is portable across a wide range of hardware platforms and real-time environments, and delivers
excellent performance at low cost. It is based on the HAL component architecture, an intuitive and easy to use
circuit model that includes over 150 building blocks for digital logic, motion, control loops, signal processing,

704 Chapter 13. Books

https://simppru.readthedocs.io/en/latest/examples/led_blink/
http://www.machinekit.io/

BeagleBoard Docs, Release 1.0.20230711-wip

and hardware drivers. Machinekit supports local and networked UI options, including ubiquitous platforms like
phones or tablets.

http://www.machinekit.io/about/

ArduPilot ArduPilot is a open source autopilot system supporting multi-copters, traditional helicopters, fixed
wing aircraft and rovers. ArduPilot runs on a many hardware platforms including the BeagleBone Black and the
BeagleBone Blue.

information

Ardupilot is the most advanced, full-featured and reliable open source autopilot software available. It has
been developed over 5+ years by a team of diverse professional engineers and computer scientists. It is the
only autopilot software capable of controlling any vehicle system imaginable, from conventional airplanes,
multirotors, and helicopters, to boats and even submarines. And now being expanded to feature support for
new emerging vehicle types such as quad-planes and compound helicopters.

Installed in over 1,000,000 vehicles world-wide, and with its advanced data-logging, analysis and simulation
tools, Ardupilot is the most tested and proven autopilot software. The open-source code base means that it
is rapidly evolving, always at the cutting edge of technology development. With many peripheral suppliers
creating interfaces, users benefit from a broad ecosystem of sensors, companion computers and communica-
tion systems. Finally, since the source code is open, it can be audited to ensure compliance with security and
secrecy requirements.

The software suite is installed in aircraft frommany OEM UAV companies, such as 3DR, jDrones, PrecisionHawk,
AgEagle and Kespry. It is also used for testing and development by several large institutions and corporations
such as NASA, Intel and Insitu/Boeing, as well as countless colleges and universities around the world.

http://www.machinekit.io/about/

13.2.2 Getting Started

We assume you have some experience with the Beagle and are here to learn about the PRU. This chapter
discusses what Beagles are out there, how to load the latest software image on your beagle, how to run the
Cloud9 IDE and how to blink an LED.

If you already have your Beagle and know your way around it, you can find the code at https://git.beagleboard.
org/beagleboard/pru-cookbook-code and book contents at https://git.beagleboard.org/docs/docs.beagleboard.
io under the books/pru-cookbook directory.

Selecting a Beagle

Problem Which Beagle should you use?

Solution http://beagleboard.org/boards lists the many Beagles from which to choose. Here we’ll give exam-
ples for the venerable BeagleBone Black, the robotics BeagleBone Blue, tiny PockeBeagle and the powerful AI.
All the examples should also run on the other Beagles too.

Discussion

BeagleBone Black If you aren’t sure which Beagle to use, it’s hard to go wrong with the BeagleBone Black.
It’s the most popular member of the open hardware Beagle family.

The Black has:

13.2. PRU Cookbook 705

http://www.machinekit.io/about/
http://ardupilot.org/
http://ardupilot.org/copter/docs/common-autopilots.html
http://ardupilot.org/dev/docs/building-for-beaglebone-black-on-linux.html#building-for-beaglebone-black-on-linux
http://ardupilot.org/copter/docs/common-beagle-bone-blue.html
http://www.machinekit.io/about/
https://git.beagleboard.org/beagleboard/pru-cookbook-code
https://git.beagleboard.org/beagleboard/pru-cookbook-code
https://git.beagleboard.org/docs/docs.beagleboard.io
https://git.beagleboard.org/docs/docs.beagleboard.io
http://beagleboard.org/boards
http://beagleboard.org/black
http://beagleboard.org/blue
http://beagleboard.org/pocket
http://beagleboard.org/ai
http://beagleboard.org/black

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.125: BeagleBone Black

• AM335x 1GHz ARM® Cortex-A8 processor

• 512MB DDR3 RAM

• 4GB 8-bit eMMC on-board flash storage

• 3D graphics accelerator

• NEON floating-point accelerator

• 2x PRU 32-bit microcontrollers

• USB client for power & communications

• USB host

• Ethernet

• HDMI

• 2x 46 pin headers

See http://beagleboard.org/black for more details.

BeagleBone Blue The Blue is a good choice if you are doing robotics.

Fig. 13.126: BeagleBone Blue

The Blue has everything the Black has except it has no Ethernet or HDMI. But it also has:

• Wireless: 802.11bgn, Bluetooth 4.1 and BLE

• Battery support: 2-cell LiPo with balancing, LED state-of-charge monitor

• Charger input: 9-18V

706 Chapter 13. Books

http://beagleboard.org/black
http://beagleboard.org/blue

BeagleBoard Docs, Release 1.0.20230711-wip

• Motor control: 8 6V servo out, 4 bidirectional DC motor out, 4 quadrature encoder in

• Sensors: 9 axis IMU (accels, gyros, magnetometer), barometer, thermometer

• User interface: 11 user programmable LEDs, 2 user programmable buttons

In addition you canmount the Blue on the EduMIP kit as shown in BeagleBone Blue EduMIP Kit to get a balancing
robot.

Fig. 13.127: BeagleBone Blue EduMIP Kit

https://www.hackster.io/53815/controlling-edumip-with-ni-labview-2005f8 shows how to assemble the robot
and control it from LabVIEW.

PocketBeagle The PocketBeagle is the smallest member of the Beagle family. It is an ultra-tiny-yet-complete
Beagle that is software compatible with the other Beagles.

The Pocket is based on the same processor as the Black and Blue and has:

• 8 analog inputs

• 44 digital I/Os and

13.2. PRU Cookbook 707

https://www.renaissancerobotics.com/eduMIP.html
https://www.hackster.io/53815/controlling-edumip-with-ni-labview-2005f8
http://www.ni.com/en-us/shop/labview.html
http://beagleboard.org/pocket

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.128: PocketBeagle

• numerous digital interface peripherals

See http://beagleboard.org/pocket for more details.

BeagleBone AI If you want to do deep learning, try the BeagleBone AI.

The AI has:

• Dual Arm® Cortex®-A15 microprocessor subsystem

• 2 C66x floating-point VLIW DSPs

• 2.5MB of on-chip L3 RAM

• 2x dual Arm® Cortex®-M4 co-processors

• 4x Embedded Vision Engines (EVEs)

• 2x dual-core Programmable Real-Time Unit and Industrial Communication SubSystem (PRU-ICSS)

• 2D-graphics accelerator (BB2D) subsystem

• Dual-core PowerVR® SGX544™ 3D GPU

• IVA-HD subsystem (4K @ 15fps encode and decode support for H.264, 1080p60 for others)

• BeagleBone Black mechanical and header compatibility

• 1GB RAM and 16GB on-board eMMC flash with high-speed interface

• USB type-C for power and superspeed dual-role controller; and USB type-A host

• Gigabit Ethernet, 2.4/5GHz WiFi, and Bluetooth

• microHDMI

• Zero-download out-of-box software experience with Debian GNU/Linux

708 Chapter 13. Books

http://beagleboard.org/pocket
http://beagleboard.org/ai

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.129: BeagleBone AI

Installing the Latest OS on Your Bone

Problem You want to find the latest version of Debian that is available for your Bone.

Solution On your host computer open a browser and go to http://www.beagleboard.org/distros.

This shows you two current choices of recent Debian images, one for the BeagleBone AI (AM5729 Debian 10.3
2020-04-06 8GB SD IoT TIDL) and one for all the other Beagles (AM3358 Debian 10.3 2020-04-06 4GB SD IoT).
Download the one for your Beagle.

It contains all the packages we’ll need.

Flashing a Micro SD Card

Problem I’ve downloaded the image and need to flash my micro SD card.

Solution Get a micro SD card that has at least 4GB and preferably 8GB.

There are many ways to flash the card, but the best seems to be Etcher by https://www.balena.io/. Go to
https://www.balena.io/etcher/ and download the version for your host computer. Fire up Etcher, select the
image you just downloaded (no need to uncompress it, Etcher does it for you), select the SD card and hit the
Flash button and wait for it to finish.

Once the SD is flashed, insert it in the Beagle and power it up.

Cloud9 IDE

Problem How do I manage and edit my files?

13.2. PRU Cookbook 709

http://www.beagleboard.org/distros
https://debian.beagleboard.org/images/am57xx-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz
https://debian.beagleboard.org/images/am57xx-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz
https://debian.beagleboard.org/images/bone-debian-10.3-iot-armhf-2020-04-06-4gb.img.xz
https://www.balena.io/
https://www.balena.io/etcher/

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.130: Latest Debian images

Fig. 13.131: Etcher

710 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Solution The image you downloaded includes Cloud9, a web-based integrated development environment
(IDE) as shown in Cloud9 IDE.

Fig. 13.132: Cloud9 IDE

Just point the browser on your host computer to http://192.168.7.2 and start exploring. If you want the files in
your home directory to appear in the tree structure click the settings gear and select Show Home in Favorites
as shown in Cloud9 Showing Home files.

If you want to edit files beyond your home directory you can link to the root file system by:

bone$ cd
bone$ ln -s / root
bone$ cd root
bone$ ls
bbb-uEnv.txt boot etc ID.txt lost+found mnt opt root sbin␣
↪→ sys usr
bin dev home lib media nfs-uEnv.txt proc run srv ␣
↪→ tmp var

Now you can reach all the files from Cloud9.

Getting Example Code

Problem You are ready to start playing with the examples and need to find the code.

Solution You can find the code on the PRU Cookbook Code project on git.beagleboard.org: https://git.
beagleboard.org/beagleboard/pru-cookbook-code. Just clone it on your Beagle.

bone$ cd /opt/source
bone$ git clone https://git.beagleboard.org/beagleboard/pru-cookbook-code
bone$ cd pru-cookbook-code
bone$ sudo ./install.sh

(continues on next page)

13.2. PRU Cookbook 711

https://aws.amazon.com/cloud9/
http://192.168.7.2
https://git.beagleboard.org/beagleboard/pru-cookbook-code
https://git.beagleboard.org/beagleboard/pru-cookbook-code

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.133: Cloud9 Showing Home files

712 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

bone$ ls -F
01case/ 03details/ 05blocks/ 07more/ README.md
02start/ 04details/ 06io/ 08ai/

Each chapter has its own directory that has all of the code.

bone$ cd 02start/
bone$ ls
hello.pru0.c hello.pru1_1.c Makefile setup.sh
ai.notes hello2.pru1_1.c hello2.pru2_1.c Makefile
hello2.pru0.c hello2.pru1.c hello.pru0.c setup2.sh*
hello2.pru1_0.c hello2.pru2_0.c hello.pru1_1.c setup.sh*

Go and explore.

Blinking an LED

Problem You want to make sure everything is set up by blinking an LED.

Solution The ‘hello, world’ of the embedded world is to flash an LED. hello.pru0.c is some code that blinks
the USR3 LED ten times using the PRU.

Listing 13.70: hello.pru0.c

1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include ”resource_table_empty.h”
4 #include ”prugpio.h”
5

6 volatile register unsigned int __R30;
7 volatile register unsigned int __R31;
8

9 void main(void) {
10 int i;
11

12 uint32_t *gpio1 = (uint32_t *)GPIO1;
13

14 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
15 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
16

17 for(i=0; i<10; i++) {
18 gpio1[GPIO_SETDATAOUT] = USR3; // The the USR3 LED␣

↪→on
19

20 __delay_cycles(500000000/5); // Wait 1/2 second
21

22 gpio1[GPIO_CLEARDATAOUT] = USR3;
23

24 __delay_cycles(500000000/5);
25

26 }
27 __halt();
28 }
29

30 // Turns off triggers
31 #pragma DATA_SECTION(init_pins, ”.init_pins”)
32 #pragma RETAIN(init_pins)
33 const char init_pins[] =
34 ”/sys/class/leds/beaglebone:green:usr3/trigger\0none\0” \
35 ”\0\0”;

13.2. PRU Cookbook 713

BeagleBoard Docs, Release 1.0.20230711-wip

hello.pru0.c

Later chapters will go into details of how this code works, but if you want to run it right now do the following.

bone$ cd /opt/source
bone$ git clone https://git.beagleboard.org/beagleboard/pru-cookbook-code
bone$ cd pru-cookbook-code/02start
bone$ sudo ../install.sh

Tip: If the following doesn’t work see Compiling with clpru and lnkpru for instillation instructions.

Running Code on the Black or Pocket

bone$ make TARGET=hello.pru0
/opt/source/pru-cookbook-code/common/Makefile:27: MODEL=TI_AM335x_BeagleBone_
↪→Green_Wireless,TARGET=hello.pru0,COMMON=/opt/source/pru-cookbook-code/
↪→common
- Stopping PRU 0
CC hello.pru0.c
”/opt/source/pru-cookbook-code/common/prugpio.h”, line 53: warning #1181-D:
↪→#warning directive: ”Found else”
LD /tmp/vsx-examples/hello.pru0.o
- copying firmware file /tmp/vsx-examples/hello.pru0.out to /lib/firmware/
↪→am335x-pru0-fw
- Starting PRU 0
write_init_pins.sh
writing ”none” to ”/sys/class/leds/beaglebone:green:usr3/trigger”
MODEL = TI_AM335x_BeagleBone_Green_Wireless
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

Running Code on the AI

bone$ make TARGET=hello.pru1_1
/var/lib/cloud9/common/Makefile:28: MODEL=BeagleBoard.org_BeagleBone_AI,
↪→TARGET=hello.pru1_1
- Stopping PRU 1_1
CC hello.pru1_1.c
”/var/lib/cloud9/common/prugpio.h”, line 4: warning #1181-D: #warning␣
↪→directive: ”Found AI”
LD /tmp/cloud9-examples/hello.pru1_1.o
- copying firmware file /tmp/cloud9-examples/hello.pru1_1.out to /lib/
↪→firmware/am57xx-pru1_1-fw
write_init_pins.sh
writing ”none” to ”/sys/class/leds/beaglebone:green:usr3/trigger”
- Starting PRU 1_1
MODEL = BeagleBoard.org_BeagleBone_AI
PROC = pru
PRUN = 1_1
PRU_DIR = /dev/remoteproc/pruss1-core1
rm /tmp/cloud9-examples/hello.pru1_1.o

Look quickly and you will see the USR3 LED blinking.

Later sections give more details on how all this works.

714 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

13.2.3 Running a Program; Configuring Pins

There are a lot of details in compiling and running PRU code. Fortunately those details are captured in a
common Makefile that is used throughout this book. This chapter shows how to use the Makefile to compile
code and also start and stop the PRUs.

Note: The following are resources used in this chapter:

• PRU Code Generation Tools - Compiler

• PRU Software Support Package

• PRU Optimizing C/C++ Compiler

• PRU Assembly Language Tools

• AM572x Technical Reference Manual (AI)

• AM335x Technical Reference Manual (All others)

Getting Example Code

Problem I want to get the files used in this book.

Solution It’s all on a GitHub repository.

bone$ cd /opt/source
bone$ git clone https://git.beagleboard.org/beagleboard/pru-cookbook-code
bone$ cd pru-cookbook-code
bone$ sudo ./install.sh

Note: #TODO#: The version of code used needs to be noted in the documentation.

Note: #TODO#: Why is this documented in multiple places?

Compiling with clpru and lnkpru

Problem You need details on the c compiler, linker and other tools for the PRU.

Solution The PRU compiler and linker are already installed on many images. They are called clpru and
lnkpru. Do the following to see if clpru is installed.

bone$ which clpru
/usr/bin/clpru

Tip: If clpru isn’t installed, follow the instructions at https://elinux.org/Beagleboard:BeagleBoneBlack_
Debian#TI_PRU_Code_Generation_Tools to install it.

bone$ sudo apt update
bone$ sudo apt install ti-pru-cgt-installer

Details on each can be found here:

13.2. PRU Cookbook 715

https://www.ti.com/tool/PRU-CGT
http://git.ti.com/pru-software-support-package
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73
https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#TI_PRU_Code_Generation_Tools
https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#TI_PRU_Code_Generation_Tools

BeagleBoard Docs, Release 1.0.20230711-wip

• PRU Optimizing C/C++ Compiler

• PRU Assembly Language Tools

In fact there are PRU versions of many of the standard code generation tools.

code tools

bone$ ls /usr/bin/*pru
/usr/bin/abspru /usr/bin/clistpru /usr/bin/hexpru /usr/bin/ofdpru
/usr/bin/acpiapru /usr/bin/clpru /usr/bin/ilkpru /usr/bin/optpru
/usr/bin/arpru /usr/bin/dempru /usr/bin/libinfopru /usr/bin/rc_test_
↪→encoders_pru
/usr/bin/asmpru /usr/bin/dispru /usr/bin/lnkpru /usr/bin/strippru
/usr/bin/cgpru /usr/bin/embedpru /usr/bin/nmpru /usr/bin/xrefpru

See the PRU Assembly Language Tools for more details.

Making sure the PRUs are configured

Problem When running the Makefile for the PRU you get and error about /dev/remoteproc is missing.

Solution Edit /boot/uEnv.txt and enble pru_rproc by doing the following.

bone$ sudo vi /boot/uEnv.txt

Around line 40 you will see:

###pru_rproc (4.19.x-ti kernel)
uboot_overlay_pru=AM335X-PRU-RPROC-4-19-TI-00A0.dtbo

Uncomment the uboot_overlay line as shown and then reboot. /dev/remoteproc should now be
there.

bone$ sudo reboot
bone$ ls -ls /dev/remoteproc/
total 0
0 lrwxrwxrwx 1 root root 33 Jul 29 16:12 pruss-core0 -> /sys/class/
↪→remoteproc/remoteproc1
0 lrwxrwxrwx 1 root root 33 Jul 29 16:12 pruss-core1 -> /sys/class/
↪→remoteproc/remoteproc2

Compiling and Running

Problem I want to compile and run an example.

Solution Change to the directory of the code you want to run.

bone$ cd pru-cookbook-code/06io
bone$ ls
gpio.pru0.c Makefile setup.sh

Source the setup file.

bone$ source setup.sh
TARGET=gpio.pru0
PocketBeagle Found
P2_05

(continues on next page)

716 Chapter 13. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

Current mode for P2_05 is: gpio
Current mode for P2_05 is: gpio

Now you are ready to compile and run. This is automated for you in the Makefile

bone$ make
/opt/source/pru-cookbook-code/common/Makefile:27: MODEL=TI_AM335x_BeagleBone_
↪→Green_Wireless,TARGET=gpio.pru0,COMMON=/opt/source/pru-cookbook-code/common
- Stopping PRU 0
CC gpio.pru0.c
”/opt/source/pru-cookbook-code/common/prugpio.h”, line 53: warning #1181-D:
↪→#warning directive: ”Found else”
LD /tmp/vsx-examples/gpio.pru0.o
- copying firmware file /tmp/vsx-examples/gpio.pru0.out to /lib/firmware/
↪→am335x-pru0-fw
- Starting PRU 0
write_init_pins.sh
MODEL = TI_AM335x_BeagleBone_Green_Wireless
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1
rm /tmp/vsx-examples/gpio.pru0.o

Congratulations, your are now running a PRU. If you have an LED attached to P9_11 on the Black, or P2_05
on the Pocket, it should be blinking.

Discussion The setup.sh file sets the TARGET to the file you want to compile. Set it to the filename,
without the .c extension (gpio.pru0). The file extension .pru0 specifies the number of the PRU you are
using (either 1_0, 1_1, 2_0, 2_1 on the AI or 0 or 1 on the others)

You can override the TARGET on the command line.

bone$ cp gpio.pru0.c gpio.pru1.c
bone$ export TARGET=gpio.pru1

Notice the TARGET doesn’t have the .c on the end.

You can also specify them when running make.

bone$ cp gpio.pru0.c gpio.pru1.c
bone$ make TARGET=gpio.pru1

The setup file also contains instructions to figure out which Beagle you are running and then configure the pins
accordingly.

Listing 13.71: setup.sh

1 #!/bin/bash
2

3 export TARGET=gpio.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = ”Black”]; then
10 echo ” Found”
11 pins=”P9_11”
12 elif [$machine = ”Blue”]; then
13 echo ” Found”
14 pins=””

(continues on next page)

13.2. PRU Cookbook 717

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

15 elif [$machine = ”PocketBeagle”]; then
16 echo ” Found”
17 pins=”P2_05”
18 else
19 echo ” Not Found”
20 pins=””
21 fi
22

23 for pin in $pins
24 do
25 echo $pin
26 config-pin $pin gpio
27 config-pin -q $pin
28 done

setup.sh

Line Explanation
2-5 Set which PRU to use and which file to compile.
7 Figure out which type of Beagle we have.
9-21 Based on the type, set the pins.
23-28 Configure (set the pin mux) for each of the pins.

Tip: The BeagleBone AI has it’s pins preconfigured at boot time, so there’s no need to use config-pin.

The Makefile stops the PRU, compiles the file and moves it where it will be loaded, and then restarts the
PRU.

Stopping and Starting the PRU

Problem I want to stop and start the PRU.

Solution It’s easy, if you already have TARGET set up:

bone$ make stop
- Stopping PRU 0
stop
bone$ make start
- Starting PRU 0
start

See dmesg Hw to see how to tell if the PRU is stopped.

This assumes TARGET is set to the PRU you are using. If you want to control the other PRU use:

bone$ cp gpio.pru0.c gpio.pru1.c
bone$ make TARGET=gpio.pru1
bone$ make TARGET=gpio.pru1 stop
bone$ make TARGET=gpio.pru1 start

The Standard Makefile

Problem There are all sorts of options that need to be set when compiling a program. How can I be sure to
get them all right?

Solution The surest way to make sure everything is right is to use our standard Makefile.

718 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Discussion It’s assumed you already know how Makefiles work. If not, there are many resources online that
can bring you up to speed. Here is the local Makefile used throughout this book.

Listing 13.72: Local Makefile

1 include /opt/source/pru-cookbook-code/common/Makefile

Makefile

Each of the local Makefiles refer to the same standard Makefile. The details of how the Makefile works is beyond
the scope of this cookbook.

Fortunately you shouldn’t have to modify the Makefile.

The Linker Command File - am335x_pru.cmd

Problem The linker needs to be told where in memory to place the code and variables.

Solution am335x_pru.cmd is the standard linker command file that tells the linker where to put what
for the BeagleBone Black and Blue, and the Pocket. The am57xx_pru.cmd does the same for the AI. Both
files can be found in /var/lib/cloud9/common.

Listing 13.73: am335x_pru.cmd

1 /
↪→**/
↪→

2 /* AM335x_PRU.cmd ␣
↪→*/

3 /* Copyright (c) 2015 Texas Instruments Incorporated ␣
↪→*/

4 /* ␣
↪→*/

5 /* Description: This file is a linker command file that can be used for ␣
↪→*/

6 /* linking PRU programs built with the C compiler and */
7 /* the resulting .out file on an AM335x device. ␣

↪→*/
8 /

↪→**/
↪→

9

10 -cr /* Link␣
↪→using C conventions */

11

12 /* Specify the System Memory Map */
13 MEMORY
14 {
15 PAGE 0:
16 PRU_IMEM : org = 0x00000000 len = 0x00002000 /* 8kB␣

↪→PRU0 Instruction RAM */
17

18 PAGE 1:
19

20 /* RAM */
21

22 PRU_DMEM_0_1 : org = 0x00000000 len = 0x00002000 CREGISTER=24␣
↪→/* 8kB PRU Data RAM 0_1 */

23 PRU_DMEM_1_0 : org = 0x00002000 len =␣
↪→0x00002000 CREGISTER=25 /* 8kB PRU Data RAM 1_0 */

24

(continues on next page)

13.2. PRU Cookbook 719

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

25 PAGE 2:
26 PRU_SHAREDMEM : org = 0x00010000 len = 0x00003000␣

↪→CREGISTER=28 /* 12kB Shared RAM */
27

28 DDR : org = 0x80000000 len =␣
↪→0x00000100 CREGISTER=31

29 L3OCMC : org = 0x40000000 len =␣
↪→0x00010000 CREGISTER=30

30

31

32 /* Peripherals */
33

34 PRU_CFG : org = 0x00026000 len =␣
↪→0x00000044 CREGISTER=4

35 PRU_ECAP : org = 0x00030000 len =␣
↪→0x00000060 CREGISTER=3

36 PRU_IEP : org = 0x0002E000 len =␣
↪→0x0000031C CREGISTER=26

37 PRU_INTC : org = 0x00020000 len =␣
↪→0x00001504 CREGISTER=0

38 PRU_UART : org = 0x00028000 len =␣
↪→0x00000038 CREGISTER=7

39

40 DCAN0 : org = 0x481CC000 len =␣
↪→0x000001E8 CREGISTER=14

41 DCAN1 : org = 0x481D0000 len =␣
↪→0x000001E8 CREGISTER=15

42 DMTIMER2 : org = 0x48040000 len =␣
↪→0x0000005C CREGISTER=1

43 PWMSS0 : org = 0x48300000 len =␣
↪→0x000002C4 CREGISTER=18

44 PWMSS1 : org = 0x48302000 len =␣
↪→0x000002C4 CREGISTER=19

45 PWMSS2 : org = 0x48304000 len =␣
↪→0x000002C4 CREGISTER=20

46 GEMAC : org = 0x4A100000 len =␣
↪→0x0000128C CREGISTER=9

47 I2C1 : org = 0x4802A000 len =␣
↪→0x000000D8 CREGISTER=2

48 I2C2 : org = 0x4819C000 len =␣
↪→0x000000D8 CREGISTER=17

49 MBX0 : org = 0x480C8000 len =␣
↪→0x00000140 CREGISTER=22

50 MCASP0_DMA : org = 0x46000000 len =␣
↪→0x00000100 CREGISTER=8

51 MCSPI0 : org = 0x48030000 len =␣
↪→0x000001A4 CREGISTER=6

52 MCSPI1 : org = 0x481A0000 len =␣
↪→0x000001A4 CREGISTER=16

53 MMCHS0 : org = 0x48060000 len =␣
↪→0x00000300 CREGISTER=5

54 SPINLOCK : org = 0x480CA000 len =␣
↪→0x00000880 CREGISTER=23

55 TPCC : org = 0x49000000 len =␣
↪→0x00001098 CREGISTER=29

56 UART1 : org = 0x48022000 len =␣
↪→0x00000088 CREGISTER=11

57 UART2 : org = 0x48024000 len =␣
↪→0x00000088 CREGISTER=12

58

59 RSVD10 : org = 0x48318000 len =␣

(continues on next page)

720 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→0x00000100 CREGISTER=10
60 RSVD13 : org = 0x48310000 len =␣

↪→0x00000100 CREGISTER=13
61 RSVD21 : org = 0x00032400 len =␣

↪→0x00000100 CREGISTER=21
62 RSVD27 : org = 0x00032000 len =␣

↪→0x00000100 CREGISTER=27
63

64 }
65

66 /* Specify the sections allocation into memory */
67 SECTIONS {
68 /* Forces _c_int00 to the start of PRU IRAM. Not necessary when␣

↪→loading
69 an ELF file, but useful when loading a binary */
70 .text:_c_int00* > 0x0, PAGE 0
71

72 .text > PRU_IMEM, PAGE 0
73 .stack > PRU_DMEM_0_1, PAGE 1
74 .bss > PRU_DMEM_0_1, PAGE 1
75 .cio > PRU_DMEM_0_1, PAGE 1
76 .data > PRU_DMEM_0_1, PAGE 1
77 .switch > PRU_DMEM_0_1, PAGE 1
78 .sysmem > PRU_DMEM_0_1, PAGE 1
79 .cinit > PRU_DMEM_0_1, PAGE 1
80 .rodata > PRU_DMEM_0_1, PAGE 1
81 .rofardata > PRU_DMEM_0_1, PAGE 1
82 .farbss > PRU_DMEM_0_1, PAGE 1
83 .fardata > PRU_DMEM_0_1, PAGE 1
84

85 .resource_table > PRU_DMEM_0_1, PAGE 1
86 .init_pins > PRU_DMEM_0_1, PAGE 1
87 }

am335x_pru.cmd

The cmd file for the AI is about the same, with appropriate addresses for the AI.

Discussion The important things to notice in the file are given in the following table.

AM335x_PRU.cmd important things

Line Explanation
16 This is where the instructions are stored. See page 206 of the AM335x Technical Reference Manual rev. P Or see page 417 of

AM572x Technical Reference Manual for the AI.
22 This is where PRU 0’s DMEM 0 is mapped. It’s also where PRU 1’s DMEM 1 is mapped.
23 The reverse to above. PRU 0’s DMEM 1 appears here and PRU 1’s DMEM 0 is here.
26 The shared memory for both PRU’s appears here.
72 The .text section is where the code goes. It’s mapped to IMEM
73 The ((stack)) is then mapped to DMEM 0. Notice that DMEM 0 is one bank

of memory for PRU 0 and another for PRU1, so they both get their own stacks.
74 The .bss section is where the heap goes.

Why is it important to understand this file? If you are going to store things in DMEM, you need to be sure to
start at address 0x0200 since the stack and the heap are in the locations below 0x0200.

Loading Firmware

Problem I have my PRU code all compiled and need to load it on the PRU.

13.2. PRU Cookbook 721

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
http://www.ti.com/lit/pdf/spruhz6l

BeagleBoard Docs, Release 1.0.20230711-wip

Solution It’s a simple three step process.

• Stop the PRU

• Write the .out file to the right place in /lib/firmware

• Start the PRU.

This is all handled in the The Standard Makefile.

Discussion The PRUs appear in the Linux file space at /dev/remoteproc/.

Finding the PRUs

bone$ cd /dev/remoteproc/
bone$ ls
pruss-core0 pruss-core1

Or if you are on the AI:

bone$ cd /dev/remoteproc/
bone$ ls
dsp1 dsp2 ipu1 ipu2 pruss1-core0 pruss1-core1 pruss2-core0 pruss2-
↪→core1

You see there that the AI has two pairs of PRUs, plus a couple of DSPs and other goodies.

Here we see PRU 0 and PRU 1 in the path. Let’s follow PRU 0.

bone$ cd pruss-core0
bone$ ls
device firmware name power state subsystem uevent

Here we see the files that control PRU 0. firmware tells where in /lib/firmware to look for the code
to run on the PRU.

bone$ cat firmware
am335x-pru0-fw

Therefore you copy your .out file to /lib/firmware/am335x-pru0-fw.

Configuring Pins for Controlling Servos

Problem You want to configure the pins so the PRU outputs are accessible.

Solution It depends on which Beagle you are running on. If you are on the AI or Blue, everything is already
configured for you. If you are on the Black or Pocket you’ll need to run the following script.

Listing 13.74: servos_setup.sh

1 #!/bin/bash
2 # Configure the PRU pins based on which Beagle is running
3 machine=$(awk '{print $NF}' /proc/device-tree/model)
4 echo -n $machine
5 if [$machine = ”Black”]; then
6 echo ” Found”
7 pins=”P8_27 P8_28 P8_29 P8_30 P8_39 P8_40 P8_41 P8_42”
8 elif [$machine = ”Blue”]; then
9 echo ” Found”
10 pins=””
11 elif [$machine = ”PocketBeagle”]; then

(continues on next page)

722 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

12 echo ” Found”
13 pins=”P2_35 P1_35 P1_02 P1_04”
14 else
15 echo ” Not Found”
16 pins=””
17 fi
18

19 for pin in $pins
20 do
21 echo $pin
22 config-pin $pin pruout
23 config-pin -q $pin
24 done

servos_setup.sh

Discussion The first part of the code looks in /proc/device-tree/model to see which Beagle is
running. Based on that it assigns pins a list of pins to configure. Then the last part of the script loops through
each of the pins and configures it.

Configuring Pins for Controlling Encoders

Problem You want to configure the pins so the PRU inputs are accessible.

Solution It depends on which Beagle you are running on. If you are on the AI or Blue, everything is already
configured for you. If you are on the Black or Pocket you’ll need to run the following script.

Listing 13.75: encoder_setup.sh

1 #!/bin/bash
2 # Configure the pins based on which Beagle is running
3 machine=$(awk '{print $NF}' /proc/device-tree/model)
4 echo -n $machine
5

6 # Configure eQEP pins
7 if [$machine = ”Black”]; then
8 echo ” Found”
9 pins=”P9_92 P9_27 P8_35 P8_33 P8_12 P8_11 P8_41 P8_42”
10 elif [$machine = ”Blue”]; then
11 echo ” Found”
12 pins=””
13 elif [$machine = ”PocketBeagle”]; then
14 echo ” Found”
15 pins=”P1_31 P2_34 P2_10 P2_24 P2_33”
16 else
17 echo ” Not Found”
18 pins=””
19 fi
20

21 for pin in $pins
22 do
23 echo $pin
24 config-pin $pin qep
25 config-pin -q $pin
26 done
27

28 ##
29 # Configure PRU pins

(continues on next page)

13.2. PRU Cookbook 723

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

30 if [$machine = ”Black”]; then
31 echo ” Found”
32 pins=”P8_16 P8_15”
33 elif [$machine = ”Blue”]; then
34 echo ” Found”
35 pins=””
36 elif [$machine = ”PocketBeagle”]; then
37 echo ” Found”
38 pins=”P2_09 P2_18”
39 else
40 echo ” Not Found”
41 pins=””
42 fi
43

44 for pin in $pins
45 do
46 echo $pin
47 config-pin $pin pruin
48 config-pin -q $pin
49 done

encoder_setup.sh

Discussion This works like the servo setup except some of the pins are configured as to the hardware eQEPs
and other to the PRU inputs.

13.2.4 Debugging and Benchmarking

One of the challenges is getting debug information out of the PRUs since they don’t have a traditional
printf(). In this chapter four different methods are presented that I’ve found useful in debugging. The
first is simply attaching an LED. The second is using dmesg to watch the kernel messages. prudebug, a
simple debugger that allows you to inspect registers and memory of the PRUs, is then presented. Finally, using
one of the UARTS to send debugging information out a serial port is shown.

Debugging via an LED

Problem I need a simple way to see if my program is running without slowing the real-time execution.

Solution One of the simplest ways to do this is to attach an LED to the output pin and watch it flash. LED
used for debugging P9_29 shows an LED attached to pin P9_29 of the BeagleBone Black.

Make sure you have the LED in the correct way, or it won’t work.

Discussion If your output is changing more than a few times a second, the LED will be blinking too fast and
you’ll need an oscilloscope or a logic analyzer to see what’s happening.

Another useful tool that let’s you see the contents of the registers and RAM is discussed in prudebug - A Simple
Debugger for the PRU.

dmesg Hw

Problem I’m getting an error message (/sys/devices/platform/ocp/4a326000.
pruss-soc-bus/4a300000.pruss/4a334000.pru0/remoteproc/remoteproc1/
state: Invalid argument) when I load my code, but don’t know what’s causing it.

724 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.134: LED used for debugging P9_29

Solution The command dmesg outputs useful information when dealing with the kernel. Simply running
dmesg -Hw can tell you a lot. The -H flag puts the dates in the human readable form, the -w tells it to wait
for more information. Often I’ll have a window open running dmesg -Hw.

Here’s what dmesg said for the example above.

dmesg -Hw

[+0.000018] remoteproc remoteproc1: header-less resource table
[+0.011879] remoteproc remoteproc1: Failed to find resource table
[+0.008770] remoteproc remoteproc1: Boot failed: -22

It quickly told me I needed to add the line #include ”resource_table_empty.h” to my code.

prudebug - A Simple Debugger for the PRU

Problem You need to examine registers and memory on the PRUs.

Solution prudebug is a simple debugger for the PRUs that lets you start and stop the PRUs and examine
the registers and memory. It can be found on GitHub https://github.com/RRvW/prudebug-rl. I have a version I
updated to use byte addressing rather than word addressing. This makes it easier to work with the assembler
output. You can find it in my GitHub BeagleBoard repo https://github.com/MarkAYoder/BeagleBoard-exercises/
tree/master/pru/prudebug.

Just download the files and type make.

Discussion Once prudebug is installed is rather easy to use.

Note: prudebug has now been ported to the AI.

13.2. PRU Cookbook 725

https://github.com/RRvW/prudebug-rl
https://github.com/MarkAYoder/BeagleBoard-exercises/tree/master/pru/prudebug
https://github.com/MarkAYoder/BeagleBoard-exercises/tree/master/pru/prudebug

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ *sudo prudebug*
PRU Debugger v0.25
(C) Copyright 2011, 2013 by Arctica Technologies. All rights reserved.
Written by Steven Anderson

Using /dev/mem device.
Processor type AM335x
PRUSS memory address 0x4a300000
PRUSS memory length 0x00080000

offsets below are in 32-bit byte addresses (not ARM byte addresses)
PRU Instruction Data Ctrl
0 0x00034000 0x00000000 0x00022000
1 0x00038000 0x00002000 0x00024000

You get help by entering help. You cal also enter hb to get a brief help.

PRU0> *hb*
Command help

BR [breakpoint_number [address]] - View or set an instruction breakpoint
D memory_location_ba [length] - Raw dump of PRU data memory (32-bit byte␣

↪→offset from beginning of full PRU memory block - all PRUs)
DD memory_location_ba [length] - Dump data memory (32-bit byte offset␣

↪→from beginning of PRU data memory)
DI memory_location_ba [length] - Dump instruction memory (32-bit byte␣

↪→offset from beginning of PRU instruction memory)
DIS memory_location_ba [length] - Disassemble instruction memory (32-bit␣

↪→byte offset from beginning of PRU instruction memory)
G - Start processor execution of instructions (at current IP)
GSS - Start processor execution using automatic single stepping - this␣

↪→allows running a program with breakpoints
HALT - Halt the processor
L memory_location_iwa file_name - Load program file into instruction␣

↪→memory
PRU pru_number - Set the active PRU where pru_number ranges from 0 to 1
Q - Quit the debugger and return to shell prompt.
R - Display the current PRU registers.
RESET - Reset the current PRU
SS - Single step the current instruction.
WA [watch_num [address [value]]] - Clear or set a watch point
WR memory_location_ba value1 [value2 [value3 ...]] - Write a 32-bit␣

↪→value to a raw (offset from beginning of full PRU memory block)
WRD memory_location_ba value1 [value2 [value3 ...]] - Write a 32-bit␣

↪→value to PRU data memory for current PRU
WRI memory_location_ba value1 [value2 [value3 ...]] - Write a 32-bit␣

↪→value to PRU instruction memory for current PRU

Initially you are talking to PRU 0. You can enter pru 1 to talk to PRU 1. The commands I find most useful are,
r, to see the registers.

PRU0> *r*
Register info for PRU0

Control register: 0x00008003
Reset PC:0x0000 RUNNING, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING,␣

↪→PROC_ENABLED

Program counter: 0x0030
Current instruction: ADD R0.b0, R0.b0, R0.b0

Rxx registers not available since PRU is RUNNING.

Notice the PRU has to be stopped to see the register contents.

726 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

PRU0> *h*
PRU0 Halted.
PRU0> *r*
Register info for PRU0

Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING,␣

↪→PROC_DISABLED

Program counter: 0x0028
Current instruction: LBBO R15, R15, 4, 4

R00: 0x00000000 R08: 0x00000000 R16: 0x00000001 R24: 0x00000002
R01: 0x00000000 R09: 0xaf40dcf2 R17: 0x00000000 R25: 0x00000003
R02: 0x000000dc R10: 0xd8255b1b R18: 0x00000003 R26: 0x00000003
R03: 0x000f0000 R11: 0xc50cbefd R19: 0x00000100 R27: 0x00000002
R04: 0x00000000 R12: 0xb037c0d7 R20: 0x00000100 R28: 0x8ca9d976
R05: 0x00000009 R13: 0xf48bbe23 R21: 0x441fb678 R29: 0x00000002
R06: 0x00000000 R14: 0x00000134 R22: 0xc8cc0752 R30: 0x00000000
R07: 0x00000009 R15: 0x00000200 R23: 0xe346fee9 R31: 0x00000000

You can resume using g which starts right where you left off, or use reset to restart back at the beginning.

The dd command dumps the memory. Keep in mind the following.

Table 13.12: Important memory locations
Address Contents
0x00000 Start of the stack for PRU 0. The file AM335x_PRU.cmd specifies where the stack is.
0x00100 Start of the heap for PRU 0.
0x00200 Start of DRAM that your programs can use. The Makefile specifies

the size of the stack and the heap.
0x10000 Start of the memory shared between the PRUs.

Using dd with no address prints the next section of memory.

PRU0> *dd*
dd
Absolute addr = 0x0000, offset = 0x0000, Len = 16
[0x0000] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0010] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0020] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0030] 0x00000000 0x00000000 0x00000000 0x00000000

The stack grows from higher memory to lower memory, so you often won’t see much around address 0x0000.

PRU0> *dd 0x100*
dd 0x100
Absolute addr = 0x0100, offset = 0x0000, Len = 16
[0x0100] 0x00000001 0x00000002 0x00000003 0x00000004
[0x0110] 0x00000004 0x00000003 0x00000002 0x00000001
[0x0120] 0x00000001 0x00000000 0x00000000 0x00000000
[0x0130] 0x00000000 0x00000200 0x862e5c18 0xfeb21aca

Here we see some values on the heap.

PRU0> *dd 0x200*
dd 0x200
Absolute addr = 0x0200, offset = 0x0000, Len = 16
[0x0200] 0x00000001 0x00000004 0x00000002 0x00000003
[0x0210] 0x00000003 0x00000011 0x00000004 0x00000010
[0x0220] 0x0a4fe833 0xb222ebda 0xe5575236 0xc50cbefd
[0x0230] 0xb037c0d7 0xf48bbe23 0x88c460f0 0x011550d4

Data written explicitly to 0x0200 of the DRAM.

13.2. PRU Cookbook 727

BeagleBoard Docs, Release 1.0.20230711-wip

PRU0> *dd 0x10000*
dd 0x10000
Absolute addr = 0x10000, offset = 0x0000, Len = 16
[0x10000] 0x8ca9d976 0xebcb119e 0x3aebce31 0x68c44d8b
[0x10010] 0xc370ba7e 0x2fea993b 0x15c67fa5 0xfbf68557
[0x10020] 0x5ad81b4f 0x4a55071a 0x48576eb7 0x1004786b
[0x10030] 0x2265ebc6 0xa27b32a0 0x340d34dc 0xbfa02d4b

Here’s the shared memory.

You can also use prudebug to set breakpoints and single step, but I haven’t used that feature much.

Memory Allocation gives examples of how you can control where your variables are stored in memory.

UART

Problem I’d like to use something like printf() to debug my code.

Solution One simple, yet effective approach to ‘printing’ from the PRU is an idea taken from the Adruino
playbook; use the UART (serial port) to output debug information. The PRU has it’s own UART that can send
characters to a serial port.

You’ll need a 3.3V FTDI cable to go between your Beagle and the USB port on your host computer as shown in
FTDI cable.1 you can get such a cable from places such as Sparkfun or Adafruit.

Fig. 13.135: FTDI cable

1 FTDI images are from the BeagleBone Cookbook

728 Chapter 13. Books

https://www.sparkfun.com/products/9717
https://www.adafruit.com/product/70
http://shop.oreilly.com/product/0636920033899.do

BeagleBoard Docs, Release 1.0.20230711-wip

Discussion The Beagle side of the FTDI cable has a small triangle on it as shown in FTDI connector which
marks the ground pin, pin 1.

Fig. 13.136: FTDI connector

The Wring for FTDI cable to Beagle table shows which pins connect where and FTDI to BB Black is a wiring
diagram for the BeagleBone Black.

Table 13.13: Wring for FTDI cable to Beagle
FTDI pin Color Black pin AI 1 pin AI 2 pin Pocket Function
0 black P9_1 P8_1 P8_1 P1_16 ground
4 orange P9_24 P8_43 P8_33a P1_12 rx
5 yellow P9_26 P8_44 P8_31a P1_06 tx

Details Two examples of using the UART are presented here. The first (uart1.pru1_0.c) sends a character
out the serial port then waits for a character to come in. Once the new character arrives another character is
output.

The second example (uart2.pru1_0.c) prints out a string and then waits for characters to arrive. Once an ENTER
appears the string is sent back.

Tip: On the Black, either PRU0 and PRU1 can run this code. Both have access to the same UART.

You need to set the pin muxes.

config-pin

Configure tx Black
bone$ *config-pin P9_24 pru_uart*

(continues on next page)

13.2. PRU Cookbook 729

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.137: FTDI to BB Black

(continued from previous page)

Configure rx Black
bone$ *config-pin P9_26 pru_uart*

Configure tx Pocket
bone$ *config-pin P1_06 pru_uart*
Configure rx Pocket
bone$ *config-pin P1_12 pru_uart*

Note: See Configuring pins on the AI via device trees for configuring pins on the AI. Make sure your rx pins
are configured as input pins in the device tree.

For example

DRA7XX_CORE_IOPAD(0x3610, *PIN_INPUT* | MUX_MODE10) // C6: P8.33a:

Listing 13.76: uart1.pru1_0.c

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-
↪→package/trees/master/examples/am335x/PRU_Hardware_UART

2 // This example was converted to the am5729 by changing the names in pru_
↪→uart.h

3 // for the am335x to the more descriptive names for the am5729.
4 // For example DLL convertes to DIVISOR_REGISTER_LSB_
5 #include <stdint.h>
6 #include <pru_uart.h>
7 #include ”resource_table_empty.h”
8

9 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
10 * only going to send 8 at a time */
11 #define FIFO_SIZE 16
12 #define MAX_CHARS 8

(continues on next page)

730 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

13

14 void main(void)
15 {
16 uint8_t tx;
17 uint8_t rx;
18 uint8_t cnt;
19

20 /* hostBuffer points to the string to be printed */
21 char* hostBuffer;
22

23 /*** INITIALIZATION ***/
24

25 /* Set up UART to function at 115200 baud - DLL divisor is 104 at␣
↪→16x oversample

26 * 192MHz / 104 / 16 = ~115200 */
27 CT_UART.DIVISOR_REGISTER_LSB_ = 104;
28 CT_UART.DIVISOR_REGISTER_MSB_ = 0;
29 CT_UART.MODE_DEFINITION_REGISTER = 0x0;
30

31 /* Enable Interrupts in UART module. This allows the main thread to␣
↪→poll for

32 * Receive Data Available and Transmit Holding Register Empty */
33 CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;
34

35 /* If FIFOs are to be used, select desired trigger level and enable
36 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first␣

↪→before
37 * other bits are configured */
38 /* Enable FIFOs for now at 1-byte, and flush them */
39 CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER =␣

↪→(0x8) | (0x4) | (0x2) | (0x1);
40 //CT_UART.FCR = (0x80) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO␣

↪→trigger
41

42 /* Choose desired protocol settings by writing to LCR */
43 /* 8-bit word, 1 stop bit, no parity, no break control and no␣

↪→divisor latch */
44 CT_UART.LINE_CONTROL_REGISTER = 3;
45

46 /* Enable loopback for test */
47 CT_UART.MODEM_CONTROL_REGISTER = 0x00;
48

49 /* Choose desired response to emulation suspend events by configuring
50 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_

↪→MGMT */
51 /* Allow UART to run free, enable UART TX/RX */
52 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x6001;
53

54 /*** END INITIALIZATION ***/
55

56 /* Priming the 'hostbuffer' with a message */
57 hostBuffer = ”Hello! This is a long string\r\n”;
58

59 /*** SEND SOME DATA ***/
60

61 /* Let's send/receive some dummy data */
62 while(1) {
63 cnt = 0;
64 while(1) {
65 /* Load character, ensure it is not string␣

↪→termination */

(continues on next page)

13.2. PRU Cookbook 731

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

66 if ((tx = hostBuffer[cnt]) == '\0')
67 break;
68 cnt++;
69 CT_UART.RBR_THR_REGISTERS = tx;
70

71 /* Because we are doing loopback, wait until LSR.DR␣
↪→== 1

72 * indicating there is data in the RX FIFO */
73 while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0);
74

75 /* Read the value from RBR */
76 rx = CT_UART.RBR_THR_REGISTERS;
77

78 /* Wait for TX FIFO to be empty */
79 while (!((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_

↪→FIFO_CONTROL_REGISTER & 0x2) == 0x2));
80 }
81 }
82

83 /*** DONE SENDING DATA ***/
84

85 /* Disable UART before halting */
86 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;
87

88 /* Halt PRU core */
89 __halt();
90 }

uart1.pru1_0.c

Set the following variables so make will know what to compile.

Listing 13.77: make

bone$ *make TARGET=uart1.pru0*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,
↪→TARGET=uart1.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/uart1.pru0.out to /lib/
↪→firmware/am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /dev/remoteproc/pruss-core0

Now make will compile, load PRU0 and start it. In a terminal window on your host computer run

host$ *screen /dev/ttyUSB0 115200*

It will initially display the first charters (H) and then as you enter characters on the keyboard, the rest of the
message will appear.

Here’s the code (uart1.pru1_0.c) that does it.

Listing 13.78: uart1.pru1_0.c

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-
↪→package/trees/master/examples/am335x/PRU_Hardware_UART

2 // This example was converted to the am5729 by changing the names in pru_
↪→uart.h

(continues on next page)

732 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.138: uart1.pru0.c output

(continued from previous page)

3 // for the am335x to the more descriptive names for the am5729.
4 // For example DLL convertes to DIVISOR_REGISTER_LSB_
5 #include <stdint.h>
6 #include <pru_uart.h>
7 #include ”resource_table_empty.h”
8

9 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
10 * only going to send 8 at a time */
11 #define FIFO_SIZE 16
12 #define MAX_CHARS 8
13

14 void main(void)
15 {
16 uint8_t tx;
17 uint8_t rx;
18 uint8_t cnt;
19

20 /* hostBuffer points to the string to be printed */
21 char* hostBuffer;
22

23 /*** INITIALIZATION ***/
24

25 /* Set up UART to function at 115200 baud - DLL divisor is 104 at␣
↪→16x oversample

26 * 192MHz / 104 / 16 = ~115200 */
27 CT_UART.DIVISOR_REGISTER_LSB_ = 104;
28 CT_UART.DIVISOR_REGISTER_MSB_ = 0;
29 CT_UART.MODE_DEFINITION_REGISTER = 0x0;
30

31 /* Enable Interrupts in UART module. This allows the main thread to␣
↪→poll for

32 * Receive Data Available and Transmit Holding Register Empty */
33 CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;
34

35 /* If FIFOs are to be used, select desired trigger level and enable
36 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first␣

↪→before
37 * other bits are configured */
38 /* Enable FIFOs for now at 1-byte, and flush them */

(continues on next page)

13.2. PRU Cookbook 733

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

39 CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER =␣
↪→(0x8) | (0x4) | (0x2) | (0x1);

40 //CT_UART.FCR = (0x80) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO␣
↪→trigger

41

42 /* Choose desired protocol settings by writing to LCR */
43 /* 8-bit word, 1 stop bit, no parity, no break control and no␣

↪→divisor latch */
44 CT_UART.LINE_CONTROL_REGISTER = 3;
45

46 /* Enable loopback for test */
47 CT_UART.MODEM_CONTROL_REGISTER = 0x00;
48

49 /* Choose desired response to emulation suspend events by configuring
50 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_

↪→MGMT */
51 /* Allow UART to run free, enable UART TX/RX */
52 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x6001;
53

54 /*** END INITIALIZATION ***/
55

56 /* Priming the 'hostbuffer' with a message */
57 hostBuffer = ”Hello! This is a long string\r\n”;
58

59 /*** SEND SOME DATA ***/
60

61 /* Let's send/receive some dummy data */
62 while(1) {
63 cnt = 0;
64 while(1) {
65 /* Load character, ensure it is not string␣

↪→termination */
66 if ((tx = hostBuffer[cnt]) == '\0')
67 break;
68 cnt++;
69 CT_UART.RBR_THR_REGISTERS = tx;
70

71 /* Because we are doing loopback, wait until LSR.DR␣
↪→== 1

72 * indicating there is data in the RX FIFO */
73 while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0);
74

75 /* Read the value from RBR */
76 rx = CT_UART.RBR_THR_REGISTERS;
77

78 /* Wait for TX FIFO to be empty */
79 while (!((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_

↪→FIFO_CONTROL_REGISTER & 0x2) == 0x2));
80 }
81 }
82

83 /*** DONE SENDING DATA ***/
84

85 /* Disable UART before halting */
86 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;
87

88 /* Halt PRU core */
89 __halt();
90 }

uart1.pru1_0.c

734 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Note: I’m using the AI version of the code since it uses variables with more desciptive names.

The first part of the code initializes the UART. Then the line CT_UART.RBR_THR_REGISTERS = tx;
takes a character in tx and sends it to the transmit buffer on the UART. Think of this as the UART version of
the printf().

Later the linewhile (!((CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER
& 0x2) == 0x2)); waits for the transmitter FIFO to be empty. This makes sure later characters won’t
overwrite the buffer before they can be sent. The downside is, this will cause your code to wait on the buffer
and it might miss an important real-time event.

The line while ((CT_UART.LINE_STATUS_REGISTER & 0x1) == 0x0); waits for an input
from the UART (possibly missing something) and rx = CT_UART.RBR_THR_REGISTERS; reads from
the receive register on the UART.

These simple lines should be enough to place in your code to print out debugging information.

Listing 13.79: uart2.pru0.c

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-
↪→package/trees/master/pru_cape/pru_fw/PRU_Hardware_UART

2

3 #include <stdint.h>
4 #include <pru_uart.h>
5 #include ”resource_table_empty.h”
6

7 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
8 * only going to send 8 at a time */
9 #define FIFO_SIZE 16
10 #define MAX_CHARS 8
11 #define BUFFER 40
12

13 //
↪→**

14 // Print Message Out
15 // This function take in a string literal of any size and then fill the
16 // TX FIFO when it's empty and waits until there is info in the RX FIFO
17 // before returning.
18 //

↪→**
19 void PrintMessageOut(volatile char* Message)
20 {
21 uint8_t cnt, index = 0;
22

23 while (1) {
24 cnt = 0;
25

26 /* Wait until the TX FIFO and the TX SR are completely empty␣
↪→*/

27 while (!CT_UART.LSR_bit.TEMT);
28

29 while (Message[index] != NULL && cnt < MAX_CHARS) {
30 CT_UART.THR = Message[index];
31 index++;
32 cnt++;
33 }
34 if (Message[index] == NULL)
35 break;
36 }
37

38 /* Wait until the TX FIFO and the TX SR are completely empty */
(continues on next page)

13.2. PRU Cookbook 735

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

39 while (!CT_UART.LSR_bit.TEMT);
40

41 }
42

43 //
↪→**

44 // IEP Timer Config
45 // This function waits until there is info in the RX FIFO and then␣

↪→returns
46 // the first character entered.
47 //

↪→**
48 char ReadMessageIn(void)
49 {
50 while (!CT_UART.LSR_bit.DR);
51

52 return CT_UART.RBR_bit.DATA;
53 }
54

55 void main(void)
56 {
57 uint32_t i;
58 volatile uint32_t not_done = 1;
59

60 char rxBuffer[BUFFER];
61 rxBuffer[BUFFER-1] = NULL; // null terminate the string
62

63 /*** INITIALIZATION ***/
64

65 /* Set up UART to function at 115200 baud - DLL divisor is 104 at␣
↪→16x oversample

66 * 192MHz / 104 / 16 = ~115200 */
67 CT_UART.DLL = 104;
68 CT_UART.DLH = 0;
69 CT_UART.MDR_bit.OSM_SEL = 0x0;
70

71 /* Enable Interrupts in UART module. This allows the main thread to␣
↪→poll for

72 * Receive Data Available and Transmit Holding Register Empty */
73 CT_UART.IER = 0x7;
74

75 /* If FIFOs are to be used, select desired trigger level and enable
76 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first␣

↪→before
77 * other bits are configured */
78 /* Enable FIFOs for now at 1-byte, and flush them */
79 CT_UART.FCR = (0x80) | (0x8) | (0x4) | (0x2) | (0x01); // 8-byte RX␣

↪→FIFO trigger
80

81 /* Choose desired protocol settings by writing to LCR */
82 /* 8-bit word, 1 stop bit, no parity, no break control and no␣

↪→divisor latch */
83 CT_UART.LCR = 3;
84

85 /* If flow control is desired write appropriate values to MCR. */
86 /* No flow control for now, but enable loopback for test */
87 CT_UART.MCR = 0x00;
88

89 /* Choose desired response to emulation suspend events by configuring
90 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_

↪→MGMT */

(continues on next page)

736 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

91 /* Allow UART to run free, enable UART TX/RX */
92 CT_UART.PWREMU_MGMT_bit.FREE = 0x1;
93 CT_UART.PWREMU_MGMT_bit.URRST = 0x1;
94 CT_UART.PWREMU_MGMT_bit.UTRST = 0x1;
95

96 /* Turn off RTS and CTS functionality */
97 CT_UART.MCR_bit.AFE = 0x0;
98 CT_UART.MCR_bit.RTS = 0x0;
99

100 /*** END INITIALIZATION ***/
101

102 while(1) {
103 /* Print out greeting message */
104 PrintMessageOut(”Hello you are in the PRU UART demo test␣

↪→please enter some characters\r\n”);
105

106 /* Read in characters from user, then echo them back out */
107 for (i = 0; i < BUFFER-1 ; i++) {
108 rxBuffer[i] = ReadMessageIn();
109 if(rxBuffer[i] == '\r') { // Quit early if␣

↪→ENTER is hit.
110 rxBuffer[i+1] = NULL;
111 break;
112 }
113 }
114

115 PrintMessageOut(”you typed:\r\n”);
116 PrintMessageOut(rxBuffer);
117 PrintMessageOut(”\r\n”);
118 }
119

120 /*** DONE SENDING DATA ***/
121 /* Disable UART before halting */
122 CT_UART.PWREMU_MGMT = 0x0;
123

124 /* Halt PRU core */
125 __halt();
126 }

uart2.pru0.c

If you want to try uart2.pru0.c, run the following:

Listing 13.80: make

bone$ *make TARGET=uart2.pru0*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,
↪→TARGET=uart2.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/uart2.pru0.out to /lib/
↪→firmware/am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /dev/remoteproc/pruss-core0

You will see:

Type a few characters and hit ENTER. The PRU will playback what you typed, but it won’t echo it as you type.

uart2.pru0.c defines PrintMessageOut() which is passed a string that is sent to the UART. It

13.2. PRU Cookbook 737

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.139: uart2.pru0.c output

takes advantage of the eight character FIFO on the UART. Be careful using it because it also uses while (!
CT_UART.LSR_bit.TEMT); to wait for the FIFO to empty, whichmay cause your code tomiss something.

uart2.pru1_0.c is the code that does it.

Listing 13.81: uart2.pru1_0.c

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-
↪→package/trees/master/pru_cape/pru_fw/PRU_Hardware_UART

2

3 #include <stdint.h>
4 #include <pru_uart.h>
5 #include ”resource_table_empty.h”
6

7 /* The FIFO size on the PRU UART is 16 bytes; however, we are (arbitrarily)
8 * only going to send 8 at a time */
9 #define FIFO_SIZE 16
10 #define MAX_CHARS 8
11 #define BUFFER 40
12

13 //
↪→**

14 // Print Message Out
15 // This function take in a string literal of any size and then fill the
16 // TX FIFO when it's empty and waits until there is info in the RX FIFO
17 // before returning.
18 //

↪→**
19 void PrintMessageOut(volatile char* Message)
20 {
21 uint8_t cnt, index = 0;
22

23 while (1) {
24 cnt = 0;
25

26 /* Wait until the TX FIFO and the TX SR are completely empty␣
↪→*/

27 while (!CT_UART.LINE_STATUS_REGISTER_bit.TEMT);
28

29 while (Message[index] != NULL && cnt < MAX_CHARS) {
30 CT_UART.RBR_THR_REGISTERS = Message[index];
31 index++;
32 cnt++;
33 }
34 if (Message[index] == NULL)

(continues on next page)

738 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

35 break;
36 }
37

38 /* Wait until the TX FIFO and the TX SR are completely empty */
39 while (!CT_UART.LINE_STATUS_REGISTER_bit.TEMT);
40

41 }
42

43 //
↪→**

44 // IEP Timer Config
45 // This function waits until there is info in the RX FIFO and then␣

↪→returns
46 // the first character entered.
47 //

↪→**
48 char ReadMessageIn(void)
49 {
50 while (!CT_UART.LINE_STATUS_REGISTER_bit.DR);
51

52 return CT_UART.RBR_THR_REGISTERS_bit.DATA;
53 }
54

55 void main(void)
56 {
57 uint32_t i;
58 volatile uint32_t not_done = 1;
59

60 char rxBuffer[BUFFER];
61 rxBuffer[BUFFER-1] = NULL; // null terminate the string
62

63 /*** INITIALIZATION ***/
64

65 /* Set up UART to function at 115200 baud - DLL divisor is 104 at␣
↪→16x oversample

66 * 192MHz / 104 / 16 = ~115200 */
67 CT_UART.DIVISOR_REGISTER_LSB_ = 104;
68 CT_UART.DIVISOR_REGISTER_MSB_ = 0;
69 CT_UART.MODE_DEFINITION_REGISTER_bit.OSM_SEL = 0x0;
70

71 /* Enable Interrupts in UART module. This allows the main thread to␣
↪→poll for

72 * Receive Data Available and Transmit Holding Register Empty */
73 CT_UART.INTERRUPT_ENABLE_REGISTER = 0x7;
74

75 /* If FIFOs are to be used, select desired trigger level and enable
76 * FIFOs by writing to FCR. FIFOEN bit in FCR must be set first␣

↪→before
77 * other bits are configured */
78 /* Enable FIFOs for now at 1-byte, and flush them */
79 CT_UART.INTERRUPT_IDENTIFICATION_REGISTER_FIFO_CONTROL_REGISTER =␣

↪→(0x80) | (0x8) | (0x4) | (0x2) | (0x01); // 8-byte RX FIFO trigger
80

81 /* Choose desired protocol settings by writing to LCR */
82 /* 8-bit word, 1 stop bit, no parity, no break control and no␣

↪→divisor latch */
83 CT_UART.LINE_CONTROL_REGISTER = 3;
84

85 /* If flow control is desired write appropriate values to MCR. */
86 /* No flow control for now, but enable loopback for test */
87 CT_UART.MODEM_CONTROL_REGISTER = 0x00;

(continues on next page)

13.2. PRU Cookbook 739

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

88

89 /* Choose desired response to emulation suspend events by configuring
90 * FREE bit and enable UART by setting UTRST and URRST in PWREMU_

↪→MGMT */
91 /* Allow UART to run free, enable UART TX/RX */
92 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.FREE = 0x1;
93 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.URRST = 0x1;
94 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER_bit.UTRST = 0x1;
95

96 /* Turn off RTS and CTS functionality */
97 CT_UART.MODEM_CONTROL_REGISTER_bit.AFE = 0x0;
98 CT_UART.MODEM_CONTROL_REGISTER_bit.RTS = 0x0;
99

100 /*** END INITIALIZATION ***/
101

102 while(1) {
103 /* Print out greeting message */
104 PrintMessageOut(”Hello you are in the PRU UART demo test␣

↪→please enter some characters\r\n”);
105

106 /* Read in characters from user, then echo them back out */
107 for (i = 0; i < BUFFER-1 ; i++) {
108 rxBuffer[i] = ReadMessageIn();
109 if(rxBuffer[i] == '\r') { // Quit early if␣

↪→ENTER is hit.
110 rxBuffer[i+1] = NULL;
111 break;
112 }
113 }
114

115 PrintMessageOut(”you typed:\r\n”);
116 PrintMessageOut(rxBuffer);
117 PrintMessageOut(”\r\n”);
118 }
119

120 /*** DONE SENDING DATA ***/
121 /* Disable UART before halting */
122 CT_UART.POWERMANAGEMENT_AND_EMULATION_REGISTER = 0x0;
123

124 /* Halt PRU core */
125 __halt();
126 }

uart2.pru1_0.c

More complex examples can be built using the principles shown in these examples.

Copyright
Listing 13.82: copyright.c

1 /*
2 * Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com/
3 *
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * * Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.

(continues on next page)

740 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

11 *
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in␣

↪→the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * * Neither the name of Texas Instruments Incorporated nor the names␣

↪→of
18 * its contributors may be used to endorse or promote products␣

↪→derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */

copyright.c

13.2.5 Building Blocks - Applications

Here are some examples that use the basic PRU building blocks.

The following are resources used in this chapter.

Note: Resources

• PRU Optimizing C/C++ Compiler, v2.2, User’s Guide

• AM572x Technical Reference Manual (AI)

• AM335x Technical Reference Manual (All others)

• Exploring BeagleBone by Derek Molloy

• WS2812 Data Sheet

Memory Allocation

Problem I want to control where my variables are stored in memory.

Solution Each PRU has is own 8KB of data memory (Data Mem0 and Mem1) and 12KB of shared memory
(Shared RAM) as shown in PRU Block Diagram.

Each PRU accesses its own DRAM starting at location 0x0000_0000. Each PRU can also access the other PRU’s
DRAM starting at 0x0000_2000. Both PRUs access the shared RAM at 0x0001_0000. The compiler can control
where each of these memories variables are stored.

shared.pro0.c - Examples of Using Different Memory Locations shows how to allocate seven variable in six
different locations.

13.2. PRU Cookbook 741

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73
http://exploringbeaglebone.com/
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.140: PRU Block Diagram

Listing 13.83: shared.pro0.c - Examples of Using Different Memory Lo-
cations

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-
↪→package/blobs/master/examples/am335x/PRU_access_const_table/PRU_access_
↪→const_table.c

2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include <pru_ctrl.h>
5 #include ”resource_table_empty.h”
6

7 #define PRU_SRAM __far __attribute__((cregister(”PRU_SHAREDMEM”, near)))
8 #define PRU_DMEM0 __far __attribute__((cregister(”PRU_DMEM_0_1”, near)))
9 #define PRU_DMEM1 __far __attribute__((cregister(”PRU_DMEM_1_0”, near)))
10

11 /* NOTE: Allocating shared_x to PRU Shared Memory means that other PRU␣
↪→cores on

12 * the same subsystem must take care not to allocate data to that␣
↪→memory.

13 * Users also cannot rely on where in shared memory these␣
↪→variables are placed

14 * so accessing them from another PRU core or from the ARM is an␣
↪→undefined behavior.

15 */
16 volatile uint32_t shared_0;
17 PRU_SRAM volatile uint32_t shared_1;
18 PRU_DMEM0 volatile uint32_t shared_2;
19 PRU_DMEM1 volatile uint32_t shared_3;
20 #pragma DATA_SECTION(shared_4, ”.bss”)
21 volatile uint32_t shared_4;
22

23 /* NOTE: Here we pick where in memory to store shared_5. The stack and
24 * heap take up the first 0x200 words, so we must start␣

↪→after that.
(continues on next page)

742 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

25 * Since we are hardcoding where things are stored we can␣
↪→share

26 * this between the PRUs and the ARM.
27 */
28 #define PRU0_DRAM 0x00000 // Offset to␣

↪→DRAM
29 // Skip the first 0x200 bytes of DRAM since the Makefile allocates
30 // 0x100 for the STACK and 0x100 for the HEAP.
31 volatile unsigned int *shared_5 = (unsigned int *) (PRU0_DRAM + 0x200);
32

33

34 int main(void)
35 {
36 volatile uint32_t shared_6;
37 volatile uint32_t shared_7;
38 /***/
39 /* Access PRU peripherals using Constant Table & PRU header file */
40 /***/
41

42 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
43 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
44

45 /***/
46 /* Access PRU Shared RAM using Constant Table */
47 /***/
48

49 /* C28 defaults to 0x00000000, we need to set bits 23:8 to 0x0100 in␣
↪→order to have it point to 0x00010000 */

50 PRU0_CTRL.CTPPR0_bit.C28_BLK_POINTER = 0x0100;
51

52 shared_0 = 0xfeef;
53 shared_1 = 0xdeadbeef;
54 shared_2 = shared_2 + 0xfeed;
55 shared_3 = 0xdeed;
56 shared_4 = 0xbeed;
57 shared_5[0] = 0x1234;
58 shared_6 = 0x4321;
59 shared_7 = 0x9876;
60

61 /* Halt PRU core */
62 __halt();
63 }

shared.pru0.c

Discussion Here’s the line-by-line

13.2. PRU Cookbook 743

BeagleBoard Docs, Release 1.0.20230711-wip

Table 13.14: Line-byline for shared.pru0.c
Line Explanation
7 PRU_SRAM is defined here. It will be used later to declare variables in the Shared RAM location of memory. Section 5.5.2

on page 75 of the PRU Optimizing C/C++ Compiler, v2.2, User’s Guide gives details of the command. The PRU_SHAREDMEM
refers to the memory section defined in am335x_pru.cmd on line 26.

8, 9 These are like the previous line except for the DMEM sections.
16 Variables declared outside of main() are put on the heap.
17 Adding PRU_SRAM has the variable stored in the shared memory.
18,
19

These are stored in the PRU’s local RAM.

20,
21

These lines are for storing in the .bss section as declared on line 74 of am335x_pru.cmd.

28-
31

All the previous examples direct the compiler to an area in memory and the compilers figures out what to put where. With
these lines we specify the exact location. Here are start with the PRU_DRAM starting address and add 0x200 to it to avoid the
stack and the heap. The advantage of this technique is you can easily share these variables between the ARM and the two
PRUs.

36,
37

Variable declared inside main() go on the stack.

Caution: Using the technique of line 28-31 you can put variables anywhere, even where the compiler has
put them. Be careful, it’s easy to overwrite what the compiler has done

Compile and run the program.

bone$ *source shared_setup.sh*
TARGET=shared.pru0
Black Found
P9_31
Current mode for P9_31 is: pruout
Current mode for P9_31 is: pruout
P9_29
Current mode for P9_29 is: pruout
Current mode for P9_29 is: pruout
P9_30
Current mode for P9_30 is: pruout
Current mode for P9_30 is: pruout
P9_28
Current mode for P9_28 is: pruout
Current mode for P9_28 is: pruout
bone$ *make*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,
↪→TARGET=shared.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/shared.pru0.out to /lib/
↪→firmware/am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

Now check the symbol table to see where things are allocated.

bone $ *grep shared /tmp/cloud9-examples/shared.pru0.map*
....
1 0000011c shared_0
2 00010000 shared_1
1 00000000 shared_2
1 00002000 shared_3
1 00000118 shared_4
1 00000120 shared_5

744 Chapter 13. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

We see, shared_0 had no directives and was places in the heap that is 0x100 to 0x1ff. shared_1 was
directed to go to the SHAREDMEM, shared_2 to the start of the local DRAM (which is also the top of the
stack). shared_3 was placed in the DRAM of PRU 1, shared_4 was placed in the .bss section, which is
in the heap. Finally shared_5 is a pointer to where the value is stored.

Where are shared_6 and shared_7? They are declared inside main() and are therefore placed on the
stack at run time. The shared.map file shows the compile time allocations. We have to look in the memory
itself to see what happen at run time.

Let’s fire up prudebug (prudebug - A Simple Debugger for the PRU) to see where things are.

bone$ *sudo ./prudebug*
PRU Debugger v0.25
(C) Copyright 2011, 2013 by Arctica Technologies. All rights reserved.
Written by Steven Anderson

Using /dev/mem device.
Processor type AM335x
PRUSS memory address 0x4a300000
PRUSS memory length 0x00080000

offsets below are in 32-bit byte addresses (not ARM byte addresses)
PRU Instruction Data Ctrl
0 0x00034000 0x00000000 0x00022000
1 0x00038000 0x00002000 0x00024000

PRU0> *d 0*
Absolute addr = 0x0000, offset = 0x0000, Len = 16
[0x0000] 0x0000feed 0x00000000 0x00000000 0x00000000
[0x0010] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0020] 0x00000000 0x00000000 0x00000000 0x00000000
[0x0030] 0x00000000 0x00000000 0x00000000 0x00000000

The value of shared_2 is in memory location 0.

PRU0> *dd 0x100*
Absolute addr = 0x0100, offset = 0x0000, Len = 16
[0x0100] 0x00000000 0x00000001 0x00000000 0x00000000
[0x0110] 0x00000000 0x00000000 0x0000beed 0x0000feef
[0x0120] 0x00000200 0x3ec71de3 0x1a013e1a 0xbf2a01a0
[0x0130] 0x111110b0 0x3f811111 0x55555555 0xbfc55555

There are shared_0 and shared_4 in the heap, but where is shared_6 and shared_7? They are
supposed to be on the stack that starts at 0.

PRU0> dd *0xc0*
Absolute addr = 0x00c0, offset = 0x0000, Len = 16
[0x00c0] 0x00000000 0x00000000 0x00000000 0x00000000
[0x00d0] 0x00000000 0x00000000 0x00000000 0x00000000
[0x00e0] 0x00000000 0x00000000 0x00000000 0x00000000
[0x00f0] 0x00000000 0x00000000 0x00004321 0x00009876

There they are; the stack grows from the top. (The heap grows from the bottom.)

PRU0> dd *0x2000*
Absolute addr = 0x2000, offset = 0x0000, Len = 16
[0x2000] 0x0000deed 0x00000001 0x00000000 0x557fcfb5
[0x2010] 0xce97bd0f 0x6afb2c8f 0xc7f35df4 0x5afb6dcb
[0x2020] 0x8dec3da3 0xe39a6756 0x642cb8b8 0xcb6952c0
[0x2030] 0x2f22ebda 0x548d97c5 0x9241786f 0x72dfeb86

And there is PRU 1’s memory with shared_3. And finally the shared memory.

13.2. PRU Cookbook 745

BeagleBoard Docs, Release 1.0.20230711-wip

PRU0> *dd 0x10000*
Absolute addr = 0x10000, offset = 0x0000, Len = 16
[0x10000] 0xdeadbeef 0x0000feed 0x00000000 0x68c44f8b
[0x10010] 0xc372ba7e 0x2ffa993b 0x11c66da5 0xfbf6c5d7
[0x10020] 0x5ada3fcf 0x4a5d0712 0x48576fb7 0x1004796b
[0x10030] 0x2267ebc6 0xa2793aa1 0x100d34dc 0x9ca06d4a

The compiler offers great control over where variables are stored. Just be sure if you are hand picking where
things are put, not to put them in places used by the compiler.

Auto Initialization of built-in LED Triggers

Problem I see the built-in LEDs blink to their own patterns. How do I turn this off? Can this be automated?

Solution Each built-in LED has a default action (trigger) when the Bone boots up. This is controlled by /
sys/class/leds.

bone$ *cd /sys/class/leds*
bone$ *ls*
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

Here you see a directory for each of the LEDs. Let’s pick USR1.

bone$ *cd beaglebone\:green\:usr1*
bone$ *ls*
brightness device max_brightness power subsystem trigger uevent
bone$ *cat trigger*
none usb-gadget usb-host rfkill-any rfkill-none kbd-scrolllock kbd-numlock
kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-
↪→altlock
kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock *[mmc0]* timer
oneshot disk-activity disk-read disk-write ide-disk mtd nand-disk heartbeat
backlight gpio cpu cpu0 activity default-on panic netdev phy0rx phy0tx
phy0assoc phy0radio rfkill0

Notice [mmc0] is in brackets. This means it’s the current trigger; it flashes when the built-in flash memory is
in use. You can turn this off using:

bone$ *echo none > trigger*
bone$ *cat trigger*
[none] usb-gadget usb-host rfkill-any rfkill-none kbd-scrolllock kbd-
↪→numlock
kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-
↪→altlock
kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock mmc0 timer
oneshot disk-activity disk-read disk-write ide-disk mtd nand-disk heartbeat
backlight gpio cpu cpu0 activity default-on panic netdev phy0rx phy0tx
phy0assoc phy0radio rfkill0

Now it is no longer flashing.

How can this be automated so when code is run that needs the trigger off, it’s turned off automatically? Here’s
a trick. Include the following in your code.

1 #pragma DATA_SECTION(init_pins, ”.init_pins”)
2 #pragma RETAIN(init_pins)
3 const char init_pins[] =
4 ”/sys/class/leds/beaglebone:green:usr3/trigger\0none\0” \
5 ”\0\0”;

746 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Lines 3 and 4 declare the arrayinit_pins to have an entry which is the path totrigger and the value that
should be ‘echoed’ into it. Both are NULL terminated. Line 1 says to put this in a section called .init_pins
and line 2 says to RETAIN it. That is don’t throw it away if it appears to be unused.

Discussion The above code stores this array in the .out file thats created, but that’s not enough. You need
to run write_init_pins.sh on the .out file to make the code work. Fortunately the Makefile always runs it.

Listing 13.84: write_init_pins.sh

1 #!/bin/bash
2 init_pins=$(readelf -x .init_pins $1 | grep 0x000 | cut -d' ' -f4-7 | xxd -r␣

↪→-p | tr '\0' '\n' | paste - -)
3 while read -a line; do
4 if [${#line[@]} == 2]; then
5 echo writing \”${line[1]}\” to \”${line[0]}\”
6 echo ${line[1]} > ${line[0]}
7 sleep 0.1
8 fi
9 done <<< ”$init_pins”

write_init_pins.sh

The readelf command extracts the path and value from the .out file.

bone$ *readelf -x .init_pins /tmp/pru0-gen/shared.out*

Hex dump of section '.init_pins':
0x000000c0 2f737973 2f636c61 73732f6c 6564732f /sys/class/leds/
0x000000d0 62656167 6c65626f 6e653a67 7265656e beaglebone:green
0x000000e0 3a757372 332f7472 69676765 72006e6f :usr3/trigger.no
0x000000f0 6e650000 0000 ne....

The rest of the command formats it. Finally line 6 echos the none into the path.

This can be generalized to initialize other things. The point is, the .out file contains everything needed to
run the executable.

PWM Generator

One of the simplest things a PRU can to is generate a simple signal starting with a single channel PWM that has
a fixed frequency and duty cycle and ending with a multi channel PWM that the ARM can change the frequency
and duty cycle on the fly.

Problem I want to generate a PWM signal that has a fixed frequency and duty cycle.

Solution The solution is fairly easy, but be sure to check the Discussion section for details on making it work.

pwm1.pru0.c shows the code.

Warning: This code is for the BeagleBone Black. See pwm1.pru1_1.c for an example that works on
the AI.

Listing 13.85: pwm1.pru0.c

1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include ”resource_table_empty.h”

(continues on next page)

13.2. PRU Cookbook 747

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

4 #include ”prugpio.h”
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

9 void main(void)
10 {
11 uint32_t gpio = P9_31; // Select which pin to toggle.;
12

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 while(1) {
17 __R30 |= gpio; // Set the GPIO pin to 1
18 __delay_cycles(100000000);
19 __R30 &= ~gpio; // Clear the GPIO pin
20 __delay_cycles(100000000);
21 }
22 }

pwm1.pru0.c

To run this code you need to configure the pin muxes to output the PRU. If you are on the Black run

bone$ config-pin P9_31 pruout

On the Pocket run

bone$ config-pin P1_36 pruout

Note: See Configuring pins on the AI via device trees for configuring pins on the AI.

Then, tell Makefile which PRU you are compiling for and what your target file is

bone$ export TARGET=pwm1.pru0

Now you are ready to compile

bone$ make
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,
↪→TARGET=pwm1.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/pwm1.pru0.out to /lib/
↪→firmware/am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

Now attach an LED (or oscilloscope) to P9_31 on the Black or P1.36 on the Pocket. You should see a
squarewave.

Discussion Since this is our first example we’ll discuss the many parts in detail.

748 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.86: pwm1.pru0.c

1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include ”resource_table_empty.h”
4 #include ”prugpio.h”
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

9 void main(void)
10 {
11 uint32_t gpio = P9_31; // Select which pin to toggle.;
12

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 while(1) {
17 __R30 |= gpio; // Set the GPIO pin to 1
18 __delay_cycles(100000000);
19 __R30 &= ~gpio; // Clear the GPIO pin
20 __delay_cycles(100000000);
21 }
22 }

pwm1.pru0.c

Line-by-line of pwm1.pru0.c is a line-by-line expanation of the c code.

Table 13.15: Line-by-line of pwm1.pru0.c
Line Explanation
1 Standard c-header include
2 Include for the PRU. The compiler knows where to find this since theMakefile says to look for includes in /usr/lib/ti/pru-software-

support-package
3 The file resource_table_empty.h is used by the PRU loader. Generally we’ll use the same file, and don’t need to modify it.
4 This include has addresses for the GPIO ports and some bit positions for some of the headers.

Here’s what’s in resource_table_empty.h

Listing 13.87: resource_table_empty.c

1 /*
2 * ======== resource_table_empty.h ========
3 *
4 * Define the resource table entries for all PRU cores. This will be
5 * incorporated into corresponding base images, and used by the remoteproc
6 * on the host-side to allocated/reserve resources. Note the remoteproc
7 * driver requires that all PRU firmware be built with a resource table.
8 *
9 * This file contains an empty resource table. It can be used either as:
10 *
11 * 1) A template, or
12 * 2) As-is if a PRU application does not need to configure PRU_INTC
13 * or interact with the rpmsg driver
14 *
15 */
16

17 #ifndef _RSC_TABLE_PRU_H_
18 #define _RSC_TABLE_PRU_H_
19

20 #include <stddef.h>
21 #include <rsc_types.h>

(continues on next page)

13.2. PRU Cookbook 749

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

22

23 struct my_resource_table {
24 struct resource_table base;
25

26 uint32_t offset[1]; /* Should match 'num' in actual definition */
27 };
28

29 #pragma DATA_SECTION(pru_remoteproc_ResourceTable, ”.resource_table”)
30 #pragma RETAIN(pru_remoteproc_ResourceTable)
31 struct my_resource_table pru_remoteproc_ResourceTable = {
32 1, /* we're the first version that implements this */
33 0, /* number of entries in the table */
34 0, 0, /* reserved, must be zero */
35 0, /* offset[0] */
36 };
37

38 #endif /* _RSC_TABLE_PRU_H_ */
39

resource_table_empty.c

Table 13.16: Line-by-line (continuted)
Line Explanation
6-7 __R30 and __R31 are two variables that refer to the PRU output (__R30) and input (__R31) registers. When you write

something to __R30 it will show up on the corresponding output pins. When you read from __R31 you read the data on
the input pins. NOTE: Both names begin with two underscore’s. Section 5.7.2 of the PRU Optimizing C/C++ Compiler, v2.2,
User’s Guide gives more details.

11 This line selects which GPIO pin to toggle. The table below shows which bits in __R30 map to which pins
14 CT_CFG.SYSCFG_bit.STANDBY_INIT is set to 0 to enable the OCP master port. More details on this and thousands of other

regesters see the TI AM335x TRM. Section 4 is on the PRU and section 4.5 gives details for all the registers.

Bit 0 is the LSB.

Table 13.17: Mapping bit positions to pin names
PRU Bit Black pin Pocket pin
0 0 P9_31 P1.36
0 1 P9_29 P1.33
0 2 P9_30 P2.32
0 3 P9_28 P2.30
0 4 P9_42b P1.31
0 5 P9_27 P2.34
0 6 P9_41b P2.28
0 7 P9_25 P1.29
0 14 P8_12(out) P8_16(in) P2.24
0 15 P8_11(out) P8_15(in) P2.33

1 0 P8_45
1 1 P8_46
1 2 P8_43
1 3 P8_44
1 4 P8_41
1 5 P8_42
1 6 P8_39
1 7 P8_40
1 8 P8_27 P2.35
1 9 P8_29 P2.01
1 10 P8_28 P1.35
1 11 P8_30 P1.04
1 12 P8_21
1 13 P8_20
1 14 P1.32
1 15 P1.30
1 16 P9_26(in)|

750 Chapter 13. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Note: See Configuring pins on the AI via device trees for all the PRU pins on the AI.

Since we are running on PRU 0, and we’re using 0x0001, that is bit 0, we’ll be toggling P9_31.

Table 13.18: Line-by-line (continued again)
Line Explanation
17 Here is where the action is. This line reads __R30 and then ORs it with gpio, setting the bits where there is a 1 in gpio and

leaving the bits where there is a 0. Thus we are setting the bit we selected. Finally the new value is written back to __R30.
18 __delay_cycles is an ((intrinsic function)) that delays with number of cycles passed to it. Each cycle is 5ns, and we are

delaying 100,000,000 cycles which is 500,000,000ns, or 0.5 seconds.
19 This is like line 17, but ~gpio inverts all the bits in gpio so that where we had a 1, there is now a 0. This 0 is then ANDed

with __R30 setting the corresponding bit to 0. Thus we are clearing the bit we selected.

Tip: You can read more about intrinsics in section 5.11 of the (PRU Optimizing C/C++ Compiler, v2.2, User’s
Guide.)

When you run this code and look at the output you will see something like the following figure.

Fig. 13.141: Output of pwm1.pru0.c with 100,000,000 delays cycles giving a 1s period

Notice the on time (+Width(1)) is 500ms, just as we predicted. The off time is 498ms, which is only 2ms
off from our prediction. The standard deviation is 0, or only 380as, which is 380 * 10^-18^!.

You can see how fast the PRU can run by setting both of the __delay_cycles to 0. This results in the next
figure.

13.2. PRU Cookbook 751

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.142: Output of pwm1.pru0c with 0 delay cycles

752 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Notice the period is 15ns which gives us a frequency of about 67MHz. At this high frequency the breadboard
that I’m using distorts the waveform so it’s no longer a squarewave. The on time is 5.3ns and the off time
is 9.8ns. That means __R30 |= gpio took only one 5ns cycle and __R30 &= ~gpio also only took one
cycle, but there is also an extra cycle needed for the loop. This means the compiler was able to implement the
while loop in just three 5ns instructions! Not bad.

We want a square wave, so we need to add a delay to correct for the delay of looping back.

Here’s the code that does just that.

Listing 13.88: pwm2.pru0.c

1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include ”resource_table_empty.h”
4 #include ”prugpio.h”
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

9 void main(void)
10 {
11 uint32_t gpio = P9_31; // Select which pin to toggle.;
12

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 while (1) {
17 __R30 |= gpio; // Set the GPIO pin to 1
18 __delay_cycles(1); // Delay one cycle to correct for␣

↪→loop time
19 __R30 &= ~gpio; // Clear the GPIO pin
20 __delay_cycles(0);
21 }
22 }

pwm2.pru0.c

The output now looks like:

It’s not hard to adjust the two __delay_cycles to get the desired frequency and duty cycle.

Controlling the PWM Frequency

Problem You would like to control the frequency and duty cycle of the PWM without recompiling.

Solution Have the PRU read the on and off times from a shared memory location. Each PRU has is own 8KB
of data memory (DRAM) and 12KB of shared memory (SHAREDMEM) that the ARM processor can also access.
See PRU Block Diagram.

The DRAM 0 address is 0x0000 for PRU 0. The same DRAM appears at address 0x4A300000 as seen from the
ARM processor.

Tip: See page 184 of the AM335x TRM (184).

We take the previous PRU code and add the lines

#define PRU0_DRAM 0x00000 // Offset to DRAM
volatile unsigned int *pru0_dram = PRU0_DRAM;

13.2. PRU Cookbook 753

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.143: Output of pwm2.pru0.c corrected delay

754 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

to define a pointer to the DRAM.

Note: The volatile keyword is used here to tell the compiler the value this points to may change, so don’t
make any assumptions while optimizing.

Later in the code we use

pru0_dram[ch] = on[ch]; // Copy to DRAM0 so the ARM can change it
pru0_dram[ch+MAXCH] = off[ch]; // Copy after the on array

to write the on and off times to the DRAM. Then inside the while loop we use

onCount[ch] = pru0_dram[2*ch]; // Read from DRAM0
offCount[ch]= pru0_dram[2*ch+1];

to read from the DRAM when resetting the counters. Now, while the PRU is running, the ARM can write values
into the DRAM and change the PWM on and off times. pwm4.pru0.c is the whole code.

Listing 13.89: pwm4.pru0.c

1 // This code does MAXCH parallel PWM channels.
2 // It's period is 3 us
3 #include <stdint.h>
4 #include <pru_cfg.h>
5 #include ”resource_table_empty.h”
6

7 #define PRU0_DRAM 0x00000 // Offset to␣
↪→DRAM

8 // Skip the first 0x200 byte of DRAM since the Makefile allocates
9 // 0x100 for the STACK and 0x100 for the HEAP.
10 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
11

12 #define MAXCH 4 // Maximum number of channels per PRU
13

14 volatile register uint32_t __R30;
15 volatile register uint32_t __R31;
16

17 void main(void)
18 {
19 uint32_t ch;
20 uint32_t on[] = {1, 2, 3, 4}; // Number of cycles to stay on
21 uint32_t off[] = {4, 3, 2, 1}; // Number to stay off
22 uint32_t onCount[MAXCH]; // Current count
23 uint32_t offCount[MAXCH];
24

25 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
26 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
27

28 // Initialize the channel counters.
29 for(ch=0; ch<MAXCH; ch++) {
30 pru0_dram[2*ch] = on[ch]; // Copy to DRAM0␣

↪→so the ARM can change it
31 pru0_dram[2*ch+1] = off[ch]; // Interleave the on and␣

↪→off values
32 onCount[ch] = on[ch];
33 offCount[ch]= off[ch];
34 }
35

36 while (1) {
37 for(ch=0; ch<MAXCH; ch++) {
38 if(onCount[ch]) {

(continues on next page)

13.2. PRU Cookbook 755

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

39 onCount[ch]--;
40 __R30 |= 0x1<<ch; // Set the␣

↪→GPIO pin to 1
41 } else if(offCount[ch]) {
42 offCount[ch]--;
43 __R30 &= ~(0x1<<ch); // Clear the␣

↪→GPIO pin
44 } else {
45 onCount[ch] = pru0_dram[2*ch];

↪→ // Read from DRAM0
46 offCount[ch]= pru0_dram[2*ch+1];
47 }
48 }
49 }
50 }

pwm4.pru0.c

Here is code that runs on the ARM side to set the on and off time values.

Listing 13.90: pwm-test.c

1 /*
2 *
3 * pwm tester
4 * The on cycle and off cycles are stored in each PRU's Data memory
5 *
6 */
7

8 #include <stdio.h>
9 #include <fcntl.h>
10 #include <sys/mman.h>
11

12 #define MAXCH 4
13

14 #define PRU_ADDR 0x4A300000 // Start of PRU␣
↪→memory Page 184 am335x TRM

15 #define PRU_LEN 0x80000 //␣
↪→Length of PRU memory

16 #define PRU0_DRAM 0x00000 // Offset to␣
↪→DRAM

17 #define PRU1_DRAM 0x02000
18 #define PRU_SHAREDMEM 0x10000 // Offset to␣

↪→shared memory
19

20 unsigned int *pru0DRAM_32int_ptr; // Points to the␣
↪→start of local DRAM

21 unsigned int *pru1DRAM_32int_ptr; // Points to the␣
↪→start of local DRAM

22 unsigned int *prusharedMem_32int_ptr; // Points to the start␣
↪→of the shared memory

23

24 /
↪→***

25 * int start_pwm_count(int ch, int countOn, int countOff)
26 *
27 * Starts a pwm pulse on for countOn and off for countOff to a single channel␣

↪→(ch)
28 ***/

↪→

29 int start_pwm_count(int ch, int countOn, int countOff) {
30 unsigned int *pruDRAM_32int_ptr = pru0DRAM_32int_ptr;

(continues on next page)

756 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

31

32 printf(”countOn: %d, countOff: %d, count: %d\n”,
33 countOn, countOff, countOn+countOff);
34 // write to PRU shared memory
35 pruDRAM_32int_ptr[2*(ch)+0] = countOn; // On time
36 pruDRAM_32int_ptr[2*(ch)+1] = countOff; // Off time
37 return 0;
38 }
39

40 int main(int argc, char *argv[])
41 {
42 unsigned int *pru; // Points to start of PRU␣

↪→memory.
43 int fd;
44 printf(”Servo tester\n”);
45

46 fd = open (”/dev/mem”, O_RDWR | O_SYNC);
47 if (fd == -1) {
48 printf (”ERROR: could not open /dev/mem.\n\n”);
49 return 1;
50 }
51 pru = mmap (0, PRU_LEN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, PRU_

↪→ADDR);
52 if (pru == MAP_FAILED) {
53 printf (”ERROR: could not map memory.\n\n”);
54 return 1;
55 }
56 close(fd);
57 printf (”Using /dev/mem.\n”);
58

59 pru0DRAM_32int_ptr = pru + PRU0_DRAM/4 + 0x200/4; //␣
↪→Points to 0x200 of PRU0 memory

60 pru1DRAM_32int_ptr = pru + PRU1_DRAM/4 + 0x200/4; //␣
↪→Points to 0x200 of PRU1 memory

61 prusharedMem_32int_ptr = pru + PRU_SHAREDMEM/4; // Points to␣
↪→start of shared memory

62

63 int i;
64 for(i=0; i<MAXCH; i++) {
65 start_pwm_count(i, i+1, 20-(i+1));
66 }
67

68 if(munmap(pru, PRU_LEN)) {
69 printf(”munmap failed\n”);
70 } else {
71 printf(”munmap succeeded\n”);
72 }
73 }
74

pwm-test.c

A quick check on the ‘scope shows Four Channel PWM with ARM control.

From the ‘scope you see a 1 cycle on time results in a 450ns wide pulse and a 3.06us period is 326KHz, much
slower than the 10ns pulse we saw before. But it may be more than fast enough for many applications. For
example, most servos run at 50Hz.

But we can do better.

13.2. PRU Cookbook 757

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.144: Four Channel PWM with ARM control

758 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Loop Unrolling for Better Performance

Problem The ARM controlled PRU code runs too slowly.

Solution Simple loop unrolling can greatly improve the speed. pwm5.pru0.c is our unrolled version.

Listing 13.91: pwm5.pru0.c Unrolled

1 // This code does MAXCH parallel PWM channels.
2 // It's period is 510ns.
3 #include <stdint.h>
4 #include <pru_cfg.h>
5 #include ”resource_table_empty.h”
6

7 #define PRU0_DRAM 0x00000 // Offset to␣
↪→DRAM

8 // Skip the first 0x200 byte of DRAM since the Makefile allocates
9 // 0x100 for the STACK and 0x100 for the HEAP.
10 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
11

12 #define MAXCH 4 // Maximum number of channels per PRU
13

14 #define update(ch) \
15 if(onCount[ch]) { \
16 onCount[ch]--; \
17 __R30 |= 0x1<<ch; \
18 } else if(offCount[ch]) { \
19 offCount[ch]--; \
20 __R30 &= ~(0x1<<ch); \
21 } else { \
22 onCount[ch] = pru0_dram[2*ch]; \
23 offCount[ch]= pru0_dram[2*ch+1]; \
24 }
25

26 volatile register uint32_t __R30;
27 volatile register uint32_t __R31;
28

29 void main(void)
30 {
31 uint32_t ch;
32 uint32_t on[] = {1, 2, 3, 4};
33 uint32_t off[] = {4, 3, 2, 1};
34 uint32_t onCount[MAXCH], offCount[MAXCH];
35

36 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
37 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
38

39 #pragma UNROLL(MAXCH)
40 for(ch=0; ch<MAXCH; ch++) {
41 pru0_dram[2*ch] = on[ch]; // Copy to DRAM0␣

↪→so the ARM can change it
42 pru0_dram[2*ch+1] = off[ch]; // Interleave the on and␣

↪→off values
43 onCount[ch] = on[ch];
44 offCount[ch]= off[ch];
45 }
46

47 while (1) {
48 update(0)
49 update(1)
50 update(2)
51 update(3)

(continues on next page)

13.2. PRU Cookbook 759

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

52 }
53 }

pwm5.pru0.c

The output of pwm5.pru0.c is in the figure below.

Fig. 13.145: pwm5.pru0.c Unrolled version of pwm4.pru0.c

It’s running about 6 times faster than pwm4.pru0.c.

Table 13.19: pwm4.pru0.c vs. pwm5.pru0.c
Measure pwm4.pru0.c time pwm5.pru0.c time Speedup pwm5.pru0.c w/o UNROLL Speedup
Period 3.06μs 510ns 6x 1.81μs ~1.7x
Width+ 450ns 70ns ~6x 1.56μs ~.3x

Not a bad speed up for just a couple of simple changes.

Discussion Here’s how it works. First look at line 39. You see #pragma UNROLL(MAXCH) which is a
pragma that tells the compiler to unroll the loop that follows. We are unrolling it MAXCH times (four times
in this example). Just removing the pragma causes the speedup compared to the pwm4.pru0.c case to
drop from 6x to only 1.7x.

We also have our for loop inside the while loop that can be unrolled. Unfortunately UNROLL() doesn’t
work on it, therefore we have to do it by hand. We could take the loop and just copy it three times, but that
would make it harder to maintain the code. Instead I converted the loop into a #define (lines 14-24) and

760 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

invoked update() as needed (lines 48-51). This is not a function call. Whenever the preprocessor sees the
update() it copies the code an then it’s compiled.

This unrolling gets us an impressive 6x speedup.

Making All the Pulses Start at the Same Time

Problem I have a mutlichannel PWM working, but the pulses aren’t synchronized, that is they don’t all start
at the same time.

Solution pwm5.pru0 Zoomed In is a zoomed in version of the previous figure. Notice the pulse in each
channel starts about 15ns later than the channel above it.

Fig. 13.146: pwm5.pru0 Zoomed In

The solution is to declare Rtmp (line 35) which holds the value for __R30.

Listing 13.92: pwm6.pru0.c Sync’ed Version of pwm5.pru0.c

1 // This code does MAXCH parallel PWM channels.
2 // All channels start at the same time. It's period is 510ns
3 #include <stdint.h>
4 #include <pru_cfg.h>
5 #include ”resource_table_empty.h”
6

7 #define PRU0_DRAM 0x00000 // Offset to␣
(continues on next page)

13.2. PRU Cookbook 761

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→DRAM
8 // Skip the first 0x200 byte of DRAM since the Makefile allocates
9 // 0x100 for the STACK and 0x100 for the HEAP.
10 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
11

12 #define MAXCH 4 // Maximum number of channels per PRU
13

14 #define update(ch) \
15 if(onCount[ch]) { \
16 onCount[ch]--; \
17 Rtmp |= 0x1<<ch; \
18 } else if(offCount[ch]) { \
19 offCount[ch]--; \
20 Rtmp &= ~(0x1<<ch); \
21 } else { \
22 onCount[ch] = pru0_dram[2*ch]; \
23 offCount[ch]= pru0_dram[2*ch+1]; \
24 }
25

26 volatile register uint32_t __R30;
27 volatile register uint32_t __R31;
28

29 void main(void)
30 {
31 uint32_t ch;
32 uint32_t on[] = {1, 2, 3, 4};
33 uint32_t off[] = {4, 3, 2, 1};
34 uint32_t onCount[MAXCH], offCount[MAXCH];
35 register uint32_t Rtmp;
36

37 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
38 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
39

40 #pragma UNROLL(MAXCH)
41 for(ch=0; ch<MAXCH; ch++) {
42 pru0_dram[2*ch] = on[ch]; // Copy to DRAM0␣

↪→so the ARM can change it
43 pru0_dram[2*ch+1] = off[ch]; // Interleave the on and␣

↪→off values
44 onCount[ch] = on[ch];
45 offCount[ch]= off[ch];
46 }
47 Rtmp = __R30;
48

49 while (1) {
50 update(0)
51 update(1)
52 update(2)
53 update(3)
54 __R30 = Rtmp;
55 }
56 }

pwm6.pru0.c Sync'ed Version of pwm5.pru0.c

Each channel writes it’s value to Rtmp (lines 17 and 20) and then after each channel has updated, Rtmp is
copied to __R30 (line 54).

Discussion The following figure shows the channel are sync’ed. Though the period is slightly longer than
before.

762 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.147: pwm6.pru0 Synchronized Channels

13.2. PRU Cookbook 763

BeagleBoard Docs, Release 1.0.20230711-wip

Adding More Channels via PRU 1

Problem You need more output channels, or you need to shorten the period.

Solution PRU 0 can output up to eight output pins (see Mapping bit positions to pin names). The code
presented so far can be easily extended to use the eight output pins.

But what if you need more channels? You can always use PRU1, it has 14 output pins.

Or, what if four channels is enough, but you need a shorter period. Everytime you add a channel, the overall
period gets longer. Twice as many channels means twice as long a period. If you move half the channels to
PRU 1, you will make the period half as long.

Here’s the code (pwm7.pru0.c)

Listing 13.93: pwm7.pru0.c Using Both PRUs

1 // This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
2 // All channels start at the same time. But the PRU 1 ch have a difference␣

↪→period
3 // It's period is 370ns
4 #include <stdint.h>
5 #include <pru_cfg.h>
6 #include ”resource_table_empty.h”
7

8 #define PRUNUM 0
9

10 #define PRU0_DRAM 0x00000 // Offset to␣
↪→DRAM

11 // Skip the first 0x200 byte of DRAM since the Makefile allocates
12 // 0x100 for the STACK and 0x100 for the HEAP.
13 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
14

15 #define MAXCH 2 // Maximum number of channels per PRU
16

17 #define update(ch) \
18 if(onCount[ch]) { \
19 onCount[ch]--; \
20 Rtmp |= 0x1<<ch; \
21 } else if(offCount[ch]) { \
22 offCount[ch]--; \
23 Rtmp &= ~(0x1<<ch); \
24 } else { \
25 onCount[ch] = pru0_dram[2*ch]; \
26 offCount[ch]= pru0_dram[2*ch+1]; \
27 }
28

29 volatile register uint32_t __R30;
30 volatile register uint32_t __R31;
31

32 void main(void)
33 {
34 uint32_t ch;
35 uint32_t on[] = {1, 2, 3, 4};
36 uint32_t off[] = {4, 3, 2, 1};
37 uint32_t onCount[MAXCH], offCount[MAXCH];
38 register uint32_t Rtmp;
39

40 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
41 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
42

43 #pragma UNROLL(MAXCH)
(continues on next page)

764 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

44 for(ch=0; ch<MAXCH; ch++) {
45 pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to␣

↪→DRAM0 so the ARM can change it
46 pru0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; //␣

↪→Interleave the on and off values
47 onCount[ch] = on [ch+PRUNUM*MAXCH];
48 offCount[ch]= off[ch+PRUNUM*MAXCH];
49 }
50 Rtmp = __R30;
51

52 while (1) {
53 update(0)
54 update(1)
55 __R30 = Rtmp;
56 }
57 }

pwm7.pru0.c Using Both PRUs

Be sure to run pwm7_setup.sh to get the correct pins configured.

Listing 13.94: pwm7_setup.sh

1 #!/bin/bash
2 #
3 export TARGET=pwm7.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = ”Black”]; then
10 echo ” Found”
11 pins=”P9_31 P9_29 P8_45 P8_46”
12 elif [$machine = ”Blue”]; then
13 echo ” Found”
14 pins=””
15 elif [$machine = ”PocketBeagle”]; then
16 echo ” Found”
17 pins=”P1_36 P1_33”
18 else
19 echo ” Not Found”
20 pins=””
21 fi
22

23 for pin in $pins
24 do
25 echo $pin
26 config-pin $pin pruout
27 config-pin -q $pin
28 done

pw7_setup.sh

This makes sure the PRU 1 pins are properly configured.

Here we have a second pwm7 file. pwm7.pru1.c is identical to pwm7.pru0.c except PRUNUM is set to
1, instead of 0.

Compile and run the two files with:

bone$ *make TARGET=pwm7.pru0; make TARGET=pwm7.pru1*
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,

(continues on next page)

13.2. PRU Cookbook 765

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→TARGET=pwm7.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/pwm7.pru0.out to /lib/
↪→firmware/am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,
↪→TARGET=pwm7.pru1
- Stopping PRU 1
- copying firmware file /tmp/cloud9-examples/pwm7.pru1.out to /lib/
↪→firmware/am335x-pru1-fw
write_init_pins.sh
- Starting PRU 1
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 1
PRU_DIR = /sys/class/remoteproc/remoteproc2

This will first stop, compile and start PRU 0, then do the same for PRU 1.

Moving half of the channels to PRU1 dropped the period from 510ns to 370ns, so we gained a bit.

Discussion There weren’t many changes to be made. Line 15 we set MAXCH to 2. Lines 44-48 is where the
big change is.

pru0_dram[2*ch] = on [ch+PRUNUN*MAXCH]; // Copy to DRAM0 so the ARM␣
↪→can change it
pru0_dram[2*ch+1] = off[ch+PRUNUN*MAXCH]; // Interleave the on and off␣
↪→values
onCount[ch] = on [ch+PRUNUN*MAXCH];
offCount[ch]= off[ch+PRUNUN*MAXCH];

If we are compiling for PRU 0, on[ch+PRUNUN*MAXCH] becomes on[ch+0*2] which is on[ch] which
is what we had before. But now if we are on PRU 1 it becomes on[ch+1*2] which is on[ch+2]. That
means we are picking up the second half of the on and off arrays. The first half goes to PRU 0, the second
to PRU 1. So the same code can be used for both PRUs, but we get slightly different behavior.

Running the code you will see the next figure.

What’s going on there, the first channels look fine, but the PRU 1 channels are blurred. To see what’s happening,
let’s stop the oscilloscope.

The stopped display shows that the four channels are doing what we wanted, except The PRU 0 channels have
a period of 370ns while the PRU 1 channels at 330ns. It appears the compiler has optimied the two PRUs
slightly differently.

Synchronizing Two PRUs

Problem I need to synchronize the two PRUs so they run together.

Solution Use the Interrupt Controller (INTC). It allows one PRU to signal the other. Page 225 of the AM335x
TRM 225 has details of how it works. Here’s the code for PRU 0, which at the end of the while loop signals
PRU 1 to start(pwm8.pru0.c).

766 Chapter 13. Books

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.148: pwm7.pru0 Two PRUs running

13.2. PRU Cookbook 767

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.149: pwm7.pru0 Two PRUs stopped

768 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.95: pwm8.pru0.c PRU 0 using INTC to send a signal to PRU
1

1 // This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
2 // All channels start at the same time.
3 // It's period is 430ns
4 #include <stdint.h>
5 #include <pru_cfg.h>
6 #include <pru_intc.h>
7 #include <pru_ctrl.h>
8 #include ”resource_table_empty.h”
9

10 #define PRUNUM 0
11

12 #define PRU0_DRAM 0x00000 // Offset to␣
↪→DRAM

13 // Skip the first 0x200 byte of DRAM since the Makefile allocates
14 // 0x100 for the STACK and 0x100 for the HEAP.
15 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
16

17 #define MAXCH 2 // Maximum number of channels per PRU
18

19 #define update(ch) \
20 if(onCount[ch]) { \
21 onCount[ch]--; \
22 Rtmp |= 0x1<<ch; \
23 } else if(offCount[ch]) { \
24 offCount[ch]--; \
25 Rtmp &= ~(0x1<<ch); \
26 } else { \
27 onCount[ch] = pru0_dram[2*ch]; \
28 offCount[ch]= pru0_dram[2*ch+1]; \
29 }
30

31 volatile register uint32_t __R30;
32 volatile register uint32_t __R31;
33

34 // Initialize interrupts so the PRUs can be syncronized.
35 // PRU1 is started first and then waits for PRU0
36 // PRU0 is then started and tells PRU1 when to start going
37 void configIntc(void) {
38 __R31 = 0x00000000; // Clear␣

↪→any pending PRU-generated events
39 CT_INTC.CMR4_bit.CH_MAP_16 = 1; // Map event 16 to␣

↪→channel 1
40 CT_INTC.HMR0_bit.HINT_MAP_1 = 1; // Map channel 1 to host 1
41 CT_INTC.SICR = 16; // Ensure␣

↪→event 16 is cleared
42 CT_INTC.EISR = 16; // Enable␣

↪→event 16
43 CT_INTC.HIEISR |= (1 << 0); // Enable Host␣

↪→interrupt 1
44 CT_INTC.GER = 1; // Globally␣

↪→enable host interrupts
45 }
46

47 void main(void)
48 {
49 uint32_t ch;
50 uint32_t on[] = {1, 2, 3, 4};
51 uint32_t off[] = {4, 3, 2, 1};
52 uint32_t onCount[MAXCH], offCount[MAXCH];

(continues on next page)

13.2. PRU Cookbook 769

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

53 register uint32_t Rtmp;
54

55 CT_CFG.GPCFG0 = 0x0000; // Configure␣
↪→GPI and GPO as Mode 0 (Direct Connect)

56 configIntc(); //␣
↪→Configure INTC

57

58 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
59 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
60

61 #pragma UNROLL(MAXCH)
62 for(ch=0; ch<MAXCH; ch++) {
63 pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to␣

↪→DRAM0 so the ARM can change it
64 pru0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; //␣

↪→Interleave the on and off values
65 onCount[ch] = on [ch+PRUNUM*MAXCH];
66 offCount[ch]= off[ch+PRUNUM*MAXCH];
67 }
68 Rtmp = __R30;
69

70 while (1) {
71 __R30 = Rtmp;
72 update(0)
73 update(1)
74 #define PRU0_PRU1_EVT 16
75 __R31 = (PRU0_PRU1_EVT-16) | (0x1<<5); //Tell PRU 1␣

↪→to start
76 __delay_cycles(1);
77 }
78 }

pwm8.pru0.c PRU 0 using INTC to send a signal to PRU 1

PRU 2’s code waits for PRU 0 before going.

Listing 13.96: pwm8.pru1.c PRU 1 waiting for INTC from PRU 0

1 // This code does MAXCH parallel PWM channels on both PRU 0 and PRU 1
2 // All channels start at the same time.
3 // It's period is 430ns
4 #include <stdint.h>
5 #include <pru_cfg.h>
6 #include <pru_intc.h>
7 #include <pru_ctrl.h>
8 #include ”resource_table_empty.h”
9

10 #define PRUNUM 1
11

12 #define PRU0_DRAM 0x00000 // Offset to␣
↪→DRAM

13 // Skip the first 0x200 byte of DRAM since the Makefile allocates
14 // 0x100 for the STACK and 0x100 for the HEAP.
15 volatile unsigned int *pru0_dram = (unsigned int *) (PRU0_DRAM + 0x200);
16

17 #define MAXCH 2 // Maximum number of channels per PRU
18

19 #define update(ch) \
20 if(onCount[ch]) { \
21 onCount[ch]--; \
22 Rtmp |= 0x1<<ch; \
23 } else if(offCount[ch]) { \

(continues on next page)

770 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

24 offCount[ch]--; \
25 Rtmp &= ~(0x1<<ch); \
26 } else { \
27 onCount[ch] = pru0_dram[2*ch]; \
28 offCount[ch]= pru0_dram[2*ch+1]; \
29 }
30

31 volatile register uint32_t __R30;
32 volatile register uint32_t __R31;
33

34 // Initialize interrupts so the PRUs can be syncronized.
35 // PRU1 is started first and then waits for PRU0
36 // PRU0 is then started and tells PRU1 when to start going
37

38 void main(void)
39 {
40 uint32_t ch;
41 uint32_t on[] = {1, 2, 3, 4};
42 uint32_t off[] = {4, 3, 2, 1};
43 uint32_t onCount[MAXCH], offCount[MAXCH];
44 register uint32_t Rtmp;
45

46 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
47 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
48

49 #pragma UNROLL(MAXCH)
50 for(ch=0; ch<MAXCH; ch++) {
51 pru0_dram[2*ch] = on [ch+PRUNUM*MAXCH]; // Copy to␣

↪→DRAM0 so the ARM can change it
52 pru0_dram[2*ch+1] = off[ch+PRUNUM*MAXCH]; //␣

↪→Interleave the on and off values
53 onCount[ch] = on [ch+PRUNUM*MAXCH];
54 offCount[ch]= off[ch+PRUNUM*MAXCH];
55 }
56 Rtmp = __R30;
57

58 while (1) {
59 while((__R31 & (0x1<<31))==0) { // Wait for␣

↪→PRU 0
60 }
61 CT_INTC.SICR = 16; //␣

↪→Clear event 16
62 __R30 = Rtmp;
63 update(0)
64 update(1)
65 }
66 }

pwm8.pru1.c PRU 1 waiting for INTC from PRU 0

In pwm8.pru0.c PRU 1 waits for a signal from PRU 0, so be sure to start PRU 1 first.

bone$ *make TARGET=pwm8.pru0; make TARGET=pwm8.pru1*

Discussion The figure below shows the two PRUs are synchronized, though there is some extra overhead in
the process so the period is longer.

This isn’t much different from the previous examples.

13.2. PRU Cookbook 771

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.150: pwm8.pru0 PRUs synced

772 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Table 13.20: pwm8.pru0.c changes from pwm7.pru0.c
PRU Line Change
0 37-

45
For PRU 0 these define configInitc() which initializes the interrupts. See page 226 of the AM335x TRM for a
diagram explaining events, channels, hosts, etc.

0 55-
56

Set a configuration register and call configInitc.

1 59-
61

PRU 1 then waits for PRU 0 to signal it. Bit 31 of __R31 corresponds to the Host-1 channel which configInitc()
set up. We also clear event 16 so PRU 0 can set it again.

0 74-
75

On PRU 0 this generates the interrupt to send to PRU 1. I found PRU 1 was slow to respond to the interrupt, so I put
this code at the end of the loop to give time for the signal to get to PRU 1.

This ends the multipart pwm example.

Reading an Input at Regular Intervals

Problem You have an input pin that needs to be read at regular intervals.

Solution You can use the __R31 register to read an input pin. Let’s use the following pins.

Table 13.21: Input/Output pins
Direction Bit number Black AI (ICSS2) Pocket
out 0 P9_31 P8_44 P1.36
in 7 P9_25 P8_36 P1.29

These values came from Mapping bit positions to pin names.

Configure the pins with input_setup.sh.

Listing 13.97: input_setup.sh

1 #!/bin/bash
2 #
3 export TARGET=input.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = ”Black”]; then
10 echo ” Found”
11 config-pin P9_31 pruout
12 config-pin -q P9_31
13 config-pin P9_25 pruin
14 config-pin -q P9_25
15 elif [$machine = ”Blue”]; then
16 echo ” Found”
17 pins=””
18 elif [$machine = ”PocketBeagle”]; then
19 echo ” Found”
20 config-pin P1_36 pruout
21 config-pin -q P1_36
22 config-pin P1_29 pruin
23 config-pin -q P1_29
24 else
25 echo ” Not Found”
26 pins=””
27 fi

input_setup.sh

The following code reads the input pin and writes its value to the output pin.

13.2. PRU Cookbook 773

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.98: input.pru0.c

1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include ”resource_table_empty.h”
4

5 volatile register uint32_t __R30;
6 volatile register uint32_t __R31;
7

8 void main(void)
9 {
10 uint32_t led;
11 uint32_t sw;
12

13 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
14 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
15

16 led = 0x1<<0; // P9_31 or P1_36
17 sw = 0x1<<7; // P9_25 or P1_29
18

19 while (1) {
20 if((__R31&sw) == sw) {
21 __R30 |= led; // Turn on LED
22 } else
23 __R30 &= ~led; // Turn off LED
24 }
25 }
26

input.pru0.c

Discussion Just remember that __R30 is for outputs and __R31 is for inputs.

Analog Wave Generator

Problem I want to generate an analog output, but only have GPIO pins.

Solution The Beagle doesn’t have a built-in analog to digital converter. You could get a USB Audio Dongle
which are under $10. But here we’ll take another approach.

Earlier we generated a PWM signal. Here we’ll generate a PWM whose duty cycle changes with time. A small
duty cycle for when the output signal is small and a large duty cycle for when it is large.

This example was inspired by A PRU Sin Wave Generator in chapter 13 of Exploring BeagleBone by Derek
Molloy.

Here’s the code.

Listing 13.99: sine.pru0.c

1 // Generate an analog waveform and use a filter to reconstruct it.
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include <math.h>
6

7 #define MAXT 100 // Maximum number of time samples
8 #define SAWTOOTH // Pick which waveform
9

10 volatile register uint32_t __R30;
(continues on next page)

774 Chapter 13. Books

https://www.amazon.com/external-Adapter-Windows-Microphone-SD-CM-UAUD/dp/B001MSS6CS/0&keywords=audio+dongle
https://github.com/derekmolloy/exploringBB/tree/master/chp13/sineWave
http://exploringbeaglebone.com/
http://exploringbeaglebone.com/

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

11 volatile register uint32_t __R31;
12

13 void main(void)
14 {
15 uint32_t onCount; // Current count for 1 out
16 uint32_t offCount; // count for 0 out
17 uint32_t i;
18 uint32_t waveform[MAXT]; // Waveform to be produced
19

20 // Generate a periodic wave in an array of MAXT values
21 #ifdef SAWTOOTH
22 for(i=0; i<MAXT; i++) {
23 waveform[i] = i*100/MAXT;
24 }
25 #endif
26 #ifdef TRIANGLE
27 for(i=0; i<MAXT/2; i++) {
28 waveform[i] = 2*i*100/MAXT;
29 waveform[MAXT-i-1] = 2*i*100/MAXT;
30 }
31 #endif
32 #ifdef SINE
33 float gain = 50.0f;
34 float bias = 50.0f;
35 float freq = 2.0f * 3.14159f / MAXT;
36 for (i=0; i<MAXT; i++){
37 waveform[i] = (uint32_t)(bias+gain*sin(i*freq));
38 }
39 #endif
40

41 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
42 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
43

44 while (1) {
45 // Generate a PWM signal whose duty cycle matches
46 // the amplitude of the signal.
47 for(i=0; i<MAXT; i++) {
48 onCount = waveform[i];
49 offCount = 100 - onCount;
50 while(onCount--) {
51 __R30 |= 0x1; // Set the GPIO␣

↪→pin to 1
52 }
53 while(offCount--) {
54 __R30 &= ~(0x1); // Clear the GPIO pin
55 }
56 }
57 }
58 }

sine.pru0.c

Set the #define at line 7 to the number of samples in one cycle of the waveform and set the #define at
line 8 to which waveform and then run make.

Discussion The code has two parts. The first part (lines 21 to 39) generate the waveform to be output. The
#define``s let you select which waveform you want to generate. Since
the output is a percent duty cycle, the values in ``waveform[] must be
between 0 and 100 inclusive. The waveform is only generated once, so this part of the code isn’t time critical.

The second part (lines 44 to 54) uses the generated data to set the duty cycle of the PWM on a cycle-by-cycle

13.2. PRU Cookbook 775

BeagleBoard Docs, Release 1.0.20230711-wip

basis. This part is time critical; the faster we can output the values, the higher the frequency of the output
signal.

Suppose you want to generate a sawtooth waveform like the one shown in Continuous Sawtooth Waveform.

Fig. 13.151: Continuous Sawtooth Waveform

You need to sample the waveform and store one cycle. Sampled Sawtooth Waveform shows a sampled version
of the sawtooth. You need to generate MAXT samples; here we show 20 samples, which may be enough. In
the code MAXT is set to 100.

Fig. 13.152: Sampled Sawtooth Waveform

There’s a lot going on here; let’s take it line by line.

776 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Table 13.22: Line-by-line of sine.pru0.c
Line Explanation
2-5 Standard c-header includes
7 Number for samples in one cycle of the analog waveform
8 Which waveform to use. We’ve defined SAWTOOTH, TRIANGLE and SINE, but you can define your own too.
10-
11

Declaring registers pass:[__R30] and pass:[__R31].

15-
16

onCount counts how many cycles the PWM should be 1 and offCount counts how many it should be off.

18 waveform[] stores the analog waveform being output.
21-
24

SAWTOOTH is the simplest of the waveforms. Each sample is the duty cycle at that time and must therefore be between 0
and 100.

26-
31

TRIANGLE is also a simple waveform.

32-
39

SINE generates a sine wave and also introduces floating point. Yes, you can use floating point, but the PRUs don’t have
floating point hardware, rather, it’s all done in software. This mean using floating point will make your code much bigger and
slower. Slower doesn’t matter in this part, and bigger isn’t bigger than our instruction memory, so we’re OK.

47 Here the for loop looks up each value of the generated waveform.
48,49 onCount is the number of cycles to be at 1 and offCount is the number of cycles to be 0. The two add to 100, one full

cycle.
50-
52

Stay on for onCount cycles.

53-
55

Now turn off for offCount cycles, then loop back and look up the next cycle count.

Unfiltered Sawtooth Waveform shows the output of the code.

Fig. 13.153: Unfiltered Sawtooth Waveform

It doesn’t look like a sawtooth; but if you look at the left side you will see each cycle has a longer and longer

13.2. PRU Cookbook 777

BeagleBoard Docs, Release 1.0.20230711-wip

on time. The duty cycle is increasing. Once it’s almost 100% duty cycle, it switches to a very small duty cycle.
Therefore it’s output what we programmed, but what we want is the average of the signal. The left hand side
has a large (and increasing) average which would be for top of the sawtooth. The right hand side has a small
average, which is what you want for the start of the sawtooth.

A simple low-pass filter, built with one resistor and one capacitor will do it. Low-Pass Filter Wiring Diagram
shows how to wire it up.

Fig. 13.154: Low-Pass Filter Wiring Diagram

Note: I used a 10K variable resistor and a 0.022uF capacitor. Probe the circuit between the resistor and the
capacitor and adjust the resistor until you get a good looking waveform.

Reconstructed Sawtooth Waveform shows the results for filtered the SAWTOOTH.

Now that looks more like a sawtooth wave. The top plot is the time-domain plot of the output of the low-pass
filter. The bottom plot is the FFT of the top plot, therefore it’s the frequency domain. We are getting a sawtooth
with a frequency of about 6.1KHz. You can see the fundamental frequency on the bottom plot along with several
harmonics.

The top looks like a sawtooth wave, but there is a high freqnecy superimposed on it. We are only using a
simple first-order filter. You could lower the cutoff freqnecy by adjusting the resistor. You’ll see something like
Reconstructed Sawtooth Waveform with Lower Cutoff Frequency.

The high frequencies have been reduced, but the corner of the waveform has been rounded. You can also adjust
the cutoff to a higher frequency and you’ll get a sharper corner, but you’ll also get more high frequencies. See
Reconstructed Sawtooth Waveform with Higher Cutoff Frequency

Adjust to taste, though the real solution is to build a higher order filter. Search for _second order filter and
you’ll find some nice circuits.

You can adjust the frequency of the signal by adjusting MAXT. A smaller MAXT will give a higher frequency.
I’ve gotten good results with MAXT as small as 20.

You can also get a triangle waveform by setting the #define. Reconstructed Triangle Waveform shows the
output signal.

778 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.155: Reconstructed Sawtooth Waveform

13.2. PRU Cookbook 779

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.156: Reconstructed Sawtooth Waveform with Lower Cutoff Frequency

780 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.157: Reconstructed Sawtooth Waveform with Higher Cutoff Frequency

13.2. PRU Cookbook 781

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.158: Reconstructed Triangle Waveform

782 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

And also the sine wave as shown in Reconstructed Sinusoid Waveform.

Fig. 13.159: Reconstructed Sinusoid Waveform

Notice on the bottom plot the harmonics are much more suppressed.

Generating the sine waveform uses floats. This requires much more code. You can look in /tmp/cloud9-
examples/sine.pru0.map to see how much memory is being used. /tmp/cloud9-examples/sine.pru0.map for
Sine Wave shows the first few lines for the sine wave.

Listing 13.100: /tmp/cloud9-examples/sine.pru0.map for Sine Wave

1 **
2 PRU Linker Unix v2.1.5
3 **
4 >> Linked Fri Jun 29 13:58:08 2018
5

6 OUTPUT FILE NAME: </tmp/pru0-gen/sine1.out>
7 ENTRY POINT SYMBOL: ”_c_int00_noinit_noargs_noexit” address: 00000000
8

9

10 MEMORY CONFIGURATION
11

12 name origin length used unused attr fill
13 ---------------------- -------- --------- -------- -------- ---- ------

↪→--
14 PAGE 0:
15 PRU_IMEM 00000000 00002000 000018c0 00000740 RWIX

(continues on next page)

13.2. PRU Cookbook 783

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

16

17 PAGE 1:
18 PRU_DMEM_0_1 00000000 00002000 00000154 00001eac RWIX
19 PRU_DMEM_1_0 00002000 00002000 00000000 00002000 RWIX
20

21 PAGE 2:
22 PRU_SHAREDMEM 00010000 00003000 00000000 00003000 RWIX
23 PRU_INTC 00020000 00001504 00000000 00001504 RWIX
24 PRU_CFG 00026000 00000044 00000044 00000000 RWIX
25 PRU_UART 00028000 00000038 00000000 00000038 RWIX
26 PRU_IEP 0002e000 0000031c 00000000 0000031c RWIX
27 PRU_ECAP 00030000 00000060 00000000 00000060 RWIX
28 RSVD27 00032000 00000100 00000000 00000100 RWIX
29 RSVD21 00032400 00000100 00000000 00000100 RWIX
30 L3OCMC 40000000 00010000 00000000 00010000 RWIX
31 MCASP0_DMA 46000000 00000100 00000000 00000100 RWIX
32 UART1 48022000 00000088 00000000 00000088 RWIX
33 UART2 48024000 00000088 00000000 00000088 RWIX
34 I2C1 4802a000 000000d8 00000000 000000d8 RWIX
35 MCSPI0 48030000 000001a4 00000000 000001a4 RWIX
36 DMTIMER2 48040000 0000005c 00000000 0000005c RWIX
37 MMCHS0 48060000 00000300 00000000 00000300 RWIX
38 MBX0 480c8000 00000140 00000000 00000140 RWIX
39 SPINLOCK 480ca000 00000880 00000000 00000880 RWIX
40 I2C2 4819c000 000000d8 00000000 000000d8 RWIX
41 MCSPI1 481a0000 000001a4 00000000 000001a4 RWIX
42 DCAN0 481cc000 000001e8 00000000 000001e8 RWIX
43 DCAN1 481d0000 000001e8 00000000 000001e8 RWIX
44 PWMSS0 48300000 000002c4 00000000 000002c4 RWIX
45 PWMSS1 48302000 000002c4 00000000 000002c4 RWIX
46 PWMSS2 48304000 000002c4 00000000 000002c4 RWIX
47 RSVD13 48310000 00000100 00000000 00000100 RWIX
48 RSVD10 48318000 00000100 00000000 00000100 RWIX
49 TPCC 49000000 00001098 00000000 00001098 RWIX
50 GEMAC 4a100000 0000128c 00000000 0000128c RWIX
51 DDR 80000000 00000100 00000000 00000100 RWIX
52

53

54 SECTION ALLOCATION MAP
55

56 output attributes/
57 section page origin length input sections
58 -------- ---- ---------- ---------- ----------------
59 .text:_c_int00*
60 * 0 00000000 00000014
61 00000000 00000014 rtspruv3_le.lib : boot_special.

↪→obj (.text:_c_int00_noinit_noargs_noexit)
62

63 .text 0 00000014 000018ac
64 00000014 00000374 rtspruv3_le.lib : sin.obj (.

↪→text:sin)
65 00000388 00000314 : frcmpyd.obj (.

↪→text:__TI_frcmpyd)
66 0000069c 00000258 : frcaddd.obj (.

↪→text:__TI_frcaddd)
67 000008f4 00000254 : mpyd.obj (.

↪→text:__pruabi_mpyd)
68 00000b48 00000248 : addd.obj (.

↪→text:__pruabi_addd)
69 00000d90 000001c8 : mpyf.obj (.

↪→text:__pruabi_mpyf)

(continues on next page)

784 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

70 00000f58 00000100 : modf.obj (.
↪→text:modf)

71 00001058 000000b4 : gtd.obj (.text:_
↪→_pruabi_gtd)

72 0000110c 000000b0 : ged.obj (.text:_
↪→_pruabi_ged)

73 000011bc 000000b0 : ltd.obj (.text:_
↪→_pruabi_ltd)

74 0000126c 000000b0 sine1.obj (.text:main)
75 0000131c 000000a8 rtspruv3_le.lib : frcmpyf.obj (.

↪→text:__TI_frcmpyf)
76 000013c4 000000a0 : fixdu.obj (.

↪→text:__pruabi_fixdu)
77 00001464 0000009c : round.obj (.

↪→text:__pruabi_nround)
78 00001500 00000090 : eqld.obj (.

↪→text:__pruabi_eqd)
79 00001590 0000008c : renormd.obj (.

↪→text:__TI_renormd)
80 0000161c 0000008c : fixdi.obj (.

↪→text:__pruabi_fixdi)
81 000016a8 00000084 : fltid.obj (.

↪→text:__pruabi_fltid)
82 0000172c 00000078 : cvtfd.obj (.

↪→text:__pruabi_cvtfd)
83 000017a4 00000050 : fltuf.obj (.

↪→text:__pruabi_fltuf)
84 000017f4 0000002c : asri.obj (.

↪→text:__pruabi_asri)
85 00001820 0000002c : subd.obj (.

↪→text:__pruabi_subd)
86 0000184c 00000024 : mpyi.obj (.

↪→text:__pruabi_mpyi)
87 00001870 00000020 : negd.obj (.

↪→text:__pruabi_negd)
88 00001890 00000020 : trunc.obj (.

↪→text:__pruabi_trunc)
89 000018b0 00000008 : exit.obj (.

↪→text:abort)
90 000018b8 00000008 : exit.obj (.

↪→text:loader_exit)
91

92 .stack 1 00000000 00000100 UNINITIALIZED
93 00000000 00000004 rtspruv3_le.lib : boot.obj (.

↪→stack)
94 00000004 000000fc --HOLE--
95

96 .cinit 1 00000000 00000000 UNINITIALIZED
97

98 .fardata 1 00000100 00000040
99 00000100 00000040 rtspruv3_le.lib : sin.obj (.

↪→fardata:R$1)
100

101 .resource_table
102 * 1 00000140 00000014
103 00000140 00000014 sine1.obj (.resource_table:retain)
104

105 .creg.PRU_CFG.noload.near
106 * 2 00026000 00000044 NOLOAD SECTION
107 00026000 00000044 sine1.obj (.creg.PRU_CFG.noload.

↪→near)

(continues on next page)

13.2. PRU Cookbook 785

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

108

109 .creg.PRU_CFG.near
110 * 2 00026044 00000000 UNINITIALIZED
111

112 .creg.PRU_CFG.noload.far
113 * 2 00026044 00000000 NOLOAD SECTION
114

115 .creg.PRU_CFG.far
116 * 2 00026044 00000000 UNINITIALIZED
117

118

119 SEGMENT ATTRIBUTES
120

121 id tag seg value
122 -- --- --- -----
123 0 PHA_PAGE 1 1
124 1 PHA_PAGE 2 1
125

126

127 GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name
128

129 page address name
130 ---- ------- ----
131 0 000018b8 C$$EXIT
132 2 00026000 CT_CFG
133 abs 481cc000 __PRU_CREG_BASE_DCAN0
134 abs 481d0000 __PRU_CREG_BASE_DCAN1
135 abs 80000000 __PRU_CREG_BASE_DDR
136 abs 48040000 __PRU_CREG_BASE_DMTIMER2
137 abs 4a100000 __PRU_CREG_BASE_GEMAC
138 abs 4802a000 __PRU_CREG_BASE_I2C1
139 abs 4819c000 __PRU_CREG_BASE_I2C2
140 abs 40000000 __PRU_CREG_BASE_L3OCMC
141 abs 480c8000 __PRU_CREG_BASE_MBX0
142 abs 46000000 __PRU_CREG_BASE_MCASP0_DMA
143 abs 48030000 __PRU_CREG_BASE_MCSPI0
144 abs 481a0000 __PRU_CREG_BASE_MCSPI1
145 abs 48060000 __PRU_CREG_BASE_MMCHS0
146 abs 00026000 __PRU_CREG_BASE_PRU_CFG
147 abs 00000000 __PRU_CREG_BASE_PRU_DMEM_0_1
148 abs 00002000 __PRU_CREG_BASE_PRU_DMEM_1_0
149 abs 00030000 __PRU_CREG_BASE_PRU_ECAP
150 abs 0002e000 __PRU_CREG_BASE_PRU_IEP
151 abs 00020000 __PRU_CREG_BASE_PRU_INTC
152 abs 00010000 __PRU_CREG_BASE_PRU_SHAREDMEM
153 abs 00028000 __PRU_CREG_BASE_PRU_UART
154 abs 48300000 __PRU_CREG_BASE_PWMSS0
155 abs 48302000 __PRU_CREG_BASE_PWMSS1
156 abs 48304000 __PRU_CREG_BASE_PWMSS2
157 abs 48318000 __PRU_CREG_BASE_RSVD10
158 abs 48310000 __PRU_CREG_BASE_RSVD13
159 abs 00032400 __PRU_CREG_BASE_RSVD21
160 abs 00032000 __PRU_CREG_BASE_RSVD27
161 abs 480ca000 __PRU_CREG_BASE_SPINLOCK
162 abs 49000000 __PRU_CREG_BASE_TPCC
163 abs 48022000 __PRU_CREG_BASE_UART1
164 abs 48024000 __PRU_CREG_BASE_UART2
165 abs 0000000e __PRU_CREG_DCAN0
166 abs 0000000f __PRU_CREG_DCAN1
167 abs 0000001f __PRU_CREG_DDR
168 abs 00000001 __PRU_CREG_DMTIMER2

(continues on next page)

786 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

169 abs 00000009 __PRU_CREG_GEMAC
170 abs 00000002 __PRU_CREG_I2C1
171 abs 00000011 __PRU_CREG_I2C2
172 abs 0000001e __PRU_CREG_L3OCMC
173 abs 00000016 __PRU_CREG_MBX0
174 abs 00000008 __PRU_CREG_MCASP0_DMA
175 abs 00000006 __PRU_CREG_MCSPI0
176 abs 00000010 __PRU_CREG_MCSPI1
177 abs 00000005 __PRU_CREG_MMCHS0
178 abs 00000004 __PRU_CREG_PRU_CFG
179 abs 00000018 __PRU_CREG_PRU_DMEM_0_1
180 abs 00000019 __PRU_CREG_PRU_DMEM_1_0
181 abs 00000003 __PRU_CREG_PRU_ECAP
182 abs 0000001a __PRU_CREG_PRU_IEP
183 abs 00000000 __PRU_CREG_PRU_INTC
184 abs 0000001c __PRU_CREG_PRU_SHAREDMEM
185 abs 00000007 __PRU_CREG_PRU_UART
186 abs 00000012 __PRU_CREG_PWMSS0
187 abs 00000013 __PRU_CREG_PWMSS1
188 abs 00000014 __PRU_CREG_PWMSS2
189 abs 0000000a __PRU_CREG_RSVD10
190 abs 0000000d __PRU_CREG_RSVD13
191 abs 00000015 __PRU_CREG_RSVD21
192 abs 0000001b __PRU_CREG_RSVD27
193 abs 00000017 __PRU_CREG_SPINLOCK
194 abs 0000001d __PRU_CREG_TPCC
195 abs 0000000b __PRU_CREG_UART1
196 abs 0000000c __PRU_CREG_UART2
197 1 00000100 __TI_STACK_END
198 abs 00000100 __TI_STACK_SIZE
199 0 0000069c __TI_frcaddd
200 0 00000388 __TI_frcmpyd
201 0 0000131c __TI_frcmpyf
202 0 00001590 __TI_renormd
203 abs ffffffff __binit__
204 abs ffffffff __c_args__
205 0 00000b48 __pruabi_addd
206 0 000017f4 __pruabi_asri
207 0 0000172c __pruabi_cvtfd
208 0 00001500 __pruabi_eqd
209 0 0000161c __pruabi_fixdi
210 0 000013c4 __pruabi_fixdu
211 0 000016a8 __pruabi_fltid
212 0 000017a4 __pruabi_fltuf
213 0 0000110c __pruabi_ged
214 0 00001058 __pruabi_gtd
215 0 000011bc __pruabi_ltd
216 0 000008f4 __pruabi_mpyd
217 0 00000d90 __pruabi_mpyf
218 0 0000184c __pruabi_mpyi
219 0 00001870 __pruabi_negd
220 0 00001464 __pruabi_nround
221 0 00001820 __pruabi_subd
222 0 00001890 __pruabi_trunc
223 0 00000000 _c_int00_noinit_noargs_noexit
224 1 00000000 _stack
225 0 000018b0 abort
226 abs ffffffff binit
227 0 0000126c main
228 0 00000f58 modf
229 1 00000140 pru_remoteproc_ResourceTable

(continues on next page)

13.2. PRU Cookbook 787

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

230 0 00000014 sin
231

232

233 GLOBAL SYMBOLS: SORTED BY Symbol Address
234

235 page address name
236 ---- ------- ----
237 0 00000000 _c_int00_noinit_noargs_noexit
238 0 00000014 sin
239 0 00000388 __TI_frcmpyd
240 0 0000069c __TI_frcaddd
241 0 000008f4 __pruabi_mpyd
242 0 00000b48 __pruabi_addd
243 0 00000d90 __pruabi_mpyf
244 0 00000f58 modf
245 0 00001058 __pruabi_gtd
246 0 0000110c __pruabi_ged
247 0 000011bc __pruabi_ltd
248 0 0000126c main
249 0 0000131c __TI_frcmpyf
250 0 000013c4 __pruabi_fixdu
251 0 00001464 __pruabi_nround
252 0 00001500 __pruabi_eqd
253 0 00001590 __TI_renormd
254 0 0000161c __pruabi_fixdi
255 0 000016a8 __pruabi_fltid
256 0 0000172c __pruabi_cvtfd
257 0 000017a4 __pruabi_fltuf
258 0 000017f4 __pruabi_asri
259 0 00001820 __pruabi_subd
260 0 0000184c __pruabi_mpyi
261 0 00001870 __pruabi_negd
262 0 00001890 __pruabi_trunc
263 0 000018b0 abort
264 0 000018b8 C$$EXIT
265 1 00000000 _stack
266 1 00000100 __TI_STACK_END
267 1 00000140 pru_remoteproc_ResourceTable
268 2 00026000 CT_CFG
269 abs 00000000 __PRU_CREG_BASE_PRU_DMEM_0_1
270 abs 00000000 __PRU_CREG_PRU_INTC
271 abs 00000001 __PRU_CREG_DMTIMER2
272 abs 00000002 __PRU_CREG_I2C1
273 abs 00000003 __PRU_CREG_PRU_ECAP
274 abs 00000004 __PRU_CREG_PRU_CFG
275 abs 00000005 __PRU_CREG_MMCHS0
276 abs 00000006 __PRU_CREG_MCSPI0
277 abs 00000007 __PRU_CREG_PRU_UART
278 abs 00000008 __PRU_CREG_MCASP0_DMA
279 abs 00000009 __PRU_CREG_GEMAC
280 abs 0000000a __PRU_CREG_RSVD10
281 abs 0000000b __PRU_CREG_UART1
282 abs 0000000c __PRU_CREG_UART2
283 abs 0000000d __PRU_CREG_RSVD13
284 abs 0000000e __PRU_CREG_DCAN0
285 abs 0000000f __PRU_CREG_DCAN1
286 abs 00000010 __PRU_CREG_MCSPI1
287 abs 00000011 __PRU_CREG_I2C2
288 abs 00000012 __PRU_CREG_PWMSS0
289 abs 00000013 __PRU_CREG_PWMSS1
290 abs 00000014 __PRU_CREG_PWMSS2

(continues on next page)

788 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

291 abs 00000015 __PRU_CREG_RSVD21
292 abs 00000016 __PRU_CREG_MBX0
293 abs 00000017 __PRU_CREG_SPINLOCK
294 abs 00000018 __PRU_CREG_PRU_DMEM_0_1
295 abs 00000019 __PRU_CREG_PRU_DMEM_1_0
296 abs 0000001a __PRU_CREG_PRU_IEP
297 abs 0000001b __PRU_CREG_RSVD27
298 abs 0000001c __PRU_CREG_PRU_SHAREDMEM
299 abs 0000001d __PRU_CREG_TPCC
300 abs 0000001e __PRU_CREG_L3OCMC
301 abs 0000001f __PRU_CREG_DDR
302 abs 00000100 __TI_STACK_SIZE
303 abs 00002000 __PRU_CREG_BASE_PRU_DMEM_1_0
304 abs 00010000 __PRU_CREG_BASE_PRU_SHAREDMEM
305 abs 00020000 __PRU_CREG_BASE_PRU_INTC
306 abs 00026000 __PRU_CREG_BASE_PRU_CFG
307 abs 00028000 __PRU_CREG_BASE_PRU_UART
308 abs 0002e000 __PRU_CREG_BASE_PRU_IEP
309 abs 00030000 __PRU_CREG_BASE_PRU_ECAP
310 abs 00032000 __PRU_CREG_BASE_RSVD27
311 abs 00032400 __PRU_CREG_BASE_RSVD21
312 abs 40000000 __PRU_CREG_BASE_L3OCMC
313 abs 46000000 __PRU_CREG_BASE_MCASP0_DMA
314 abs 48022000 __PRU_CREG_BASE_UART1
315 abs 48024000 __PRU_CREG_BASE_UART2
316 abs 4802a000 __PRU_CREG_BASE_I2C1
317 abs 48030000 __PRU_CREG_BASE_MCSPI0
318 abs 48040000 __PRU_CREG_BASE_DMTIMER2
319 abs 48060000 __PRU_CREG_BASE_MMCHS0
320 abs 480c8000 __PRU_CREG_BASE_MBX0
321 abs 480ca000 __PRU_CREG_BASE_SPINLOCK
322 abs 4819c000 __PRU_CREG_BASE_I2C2
323 abs 481a0000 __PRU_CREG_BASE_MCSPI1
324 abs 481cc000 __PRU_CREG_BASE_DCAN0
325 abs 481d0000 __PRU_CREG_BASE_DCAN1
326 abs 48300000 __PRU_CREG_BASE_PWMSS0
327 abs 48302000 __PRU_CREG_BASE_PWMSS1
328 abs 48304000 __PRU_CREG_BASE_PWMSS2
329 abs 48310000 __PRU_CREG_BASE_RSVD13
330 abs 48318000 __PRU_CREG_BASE_RSVD10
331 abs 49000000 __PRU_CREG_BASE_TPCC
332 abs 4a100000 __PRU_CREG_BASE_GEMAC
333 abs 80000000 __PRU_CREG_BASE_DDR
334 abs ffffffff __binit__
335 abs ffffffff __c_args__
336 abs ffffffff binit
337

338 [100 symbols]

lines=1..22

Notice line 15 shows 0x18c0 bytes are being used for instructions. That’s 6336 in decimal.

Now compile for the sawtooth and you see only 444 byes are used. Floating-point requires over 5K more bytes.
Use with care. If you are short on instruction space, you can move the table generation to the ARM and just
copy the table to the PRU.

WS2812 (NeoPixel) driver

Problem You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and want to light it up.

13.2. PRU Cookbook 789

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487

BeagleBoard Docs, Release 1.0.20230711-wip

Solution NeoPixel is Adafruit’s name for the WS2812 Intelligent control LED. Each NeoPixel contains a Red,
Green and Blue LED with a PWM controller that can dim each one individually making a rainbow of colors
possible. The NeoPixel is driven by a single serial line. The timing on the line is very sensesitive, which make
the PRU a perfect candidate for driving it.

Wire the input to P9_29 and power to 3.3V and ground to ground as shown in NeoPixel Wiring.

Fig. 13.160: NeoPixel Wiring

Test your wiring with the simple code in neo1.pru0.c - Code to turn all NeoPixels’s white which to turns all pixels
white.

Listing 13.101: neo1.pru0.c - Code to turn all NeoPixels’s white

1 // Control a ws2812 (NeoPixel) display, All on or all off
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include ”prugpio.h”
6

7 #define STR_LEN 24
8 #define oneCyclesOn 700/5 // Stay on 700ns
9 #define oneCyclesOff 800/5
10 #define zeroCyclesOn 350/5
11 #define zeroCyclesOff 600/5
12 #define resetCycles 60000/5 // Must be at least 50u,␣

↪→use 60u
13 #define gpio P9_29 // output pin
14

15 #define ONE
16

17 volatile register uint32_t __R30;
18 volatile register uint32_t __R31;
19

20 void main(void)
21 {
22 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */

(continues on next page)

790 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

23 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
24

25 uint32_t i;
26 for(i=0; i<STR_LEN*3*8; i++) {
27 #ifdef ONE
28 __R30 |= gpio; // Set the GPIO pin to 1
29 __delay_cycles(oneCyclesOn-1);
30 __R30 &= ~gpio; // Clear the GPIO pin
31 __delay_cycles(oneCyclesOff-2);
32 #else
33 __R30 |= gpio; // Set the GPIO pin to 1
34 __delay_cycles(zeroCyclesOn-1);
35 __R30 &= ~gpio; // Clear the GPIO pin
36 __delay_cycles(zeroCyclesOff-2);
37 #endif
38 }
39 // Send Reset
40 __R30 &= ~gpio; // Clear the GPIO pin
41 __delay_cycles(resetCycles);
42

43 __halt();
44 }

neo1.pru0.c

Discussion NeoPixel bit sequence (taken from WS2812 Data Sheet) shows the following waveforms are used
to send a bit of data.

Fig. 13.161: NeoPixel bit sequence

Table 13.23: Where the times are:
Label Time in ns
T0H 350
T0L 800
T1H 700
T1L 600
Treset >50,000

The code in neo1.pru0.c - Code to turn all NeoPixels’s white define these times in lines 7-10. The /5 is because

13.2. PRU Cookbook 791

https://cdn-shop.adafruit.com/datasheets/WS2812.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

each instruction take 5ns. Lines 27-30 then set the output to 1 for the desired time and then to 0 and keeps
repeating it for the entire string length. NeoPixel zero timing shows the waveform for sending a 0 value. Note
the times are spot on.

Fig. 13.162: NeoPixel zero timing

Each NeoPixel listens for a RGB value. Once a value has arrived all other values that follow are passed on to
the next NeoPixel which does the same thing. That way you can individually control all of the NeoPixels.

Lines 38-40 send out a reset pulse. If a NeoPixel sees a reset pulse it will grab the next value for itself and start
over again.

Setting NeoPixels to Different Colors

Problem I want to set the LEDs to different colors.

Solution Wire your NeoPixels as shown in NeoPixel Wiring then run the code in neo2.pru0.c - Code to turn on
green, red, blue.

Listing 13.102: neo2.pru0.c - Code to turn on green, red, blue

1 // Control a ws2812 (neo pixel) display, green, red, blue, green, ...
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include ”prugpio.h”

(continues on next page)

792 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

6

7 #define STR_LEN 3
8 #define oneCyclesOn 700/5 // Stay on 700ns
9 #define oneCyclesOff 800/5
10 #define zeroCyclesOn 350/5
11 #define zeroCyclesOff 600/5
12 #define resetCycles 60000/5 // Must be at least 50u,␣

↪→use 60u
13 #define gpio P9_29 // output pin
14

15 volatile register uint32_t __R30;
16 volatile register uint32_t __R31;
17

18 void main(void)
19 {
20 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
21 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
22

23 uint32_t color[STR_LEN] = {0x0f0000, 0x000f00, 0x0000f}; //␣
↪→green, red, blue

24 int i, j;
25

26 for(j=0; j<STR_LEN; j++) {
27 for(i=23; i>=0; i--) {
28 if(color[j] & (0x1<<i)) {
29 __R30 |= gpio; // Set the␣

↪→GPIO pin to 1
30 __delay_cycles(oneCyclesOn-1);
31 __R30 &= ~gpio; // Clear the␣

↪→GPIO pin
32 __delay_cycles(oneCyclesOff-2);
33 } else {
34 __R30 |= gpio; // Set the␣

↪→GPIO pin to 1
35 __delay_cycles(zeroCyclesOn-1);
36 __R30 &= ~gpio; // Clear the␣

↪→GPIO pin
37 __delay_cycles(zeroCyclesOff-2);
38 }
39 }
40 }
41 // Send Reset
42 __R30 &= ~gpio; // Clear the GPIO pin
43 __delay_cycles(resetCycles);
44

45 __halt();
46 }

neo2.pru0.c

This will make the first LED green, the second red and the third blue.

Discussion NeoPixel data sequence shows the sequence of bits used to control the green, red and blue
values.

Fig. 13.163: NeoPixel data sequence

13.2. PRU Cookbook 793

BeagleBoard Docs, Release 1.0.20230711-wip

Note: The usual order for colors is RGB (red, green, blue), but the NeoPixels use GRB (green, red, blue).

Line-by-line for neo2.pru0.c is the line-by-line for neo2.pru0.c.

Table 13.24: Line-by-line for neo2.pru0.c
Line
23

Explanation Define the string of colors to be output. Here the ordering of the bits is the same as NeoPixel data sequence, GRB.

26 Loop for each color to output.
27 Loop for each bit in an GRB color.
28 Get the j^th^ color and mask off all but the i^th^ bit. (0x1:ref:‘i) takes the value 0x1 and shifts it left i bits. When anded (&)

with color[j] it will zero out all but the i^th^ bit. If the result of the operation is 1, the if is done, otherwise the else is done.
29-
32

Send a 1.

34-
37

Send a 0.

42-
43

Send a reset pulse once all the colors have been sent.

Note: This will only change the first STR_LEN LEDs. The LEDs that follow will not be changed.

Controlling Arbitrary LEDs

Problem I want to change the 10^th^ LED and not have to change the others.

Solution You need to keep an array of colors for the whole string in the PRU. Change the color of any pixels
you want in the array and then send out the whole string to the LEDs. neo3.pru0.c - Code to animate a red pixel
running around a ring of blue shows an example animates a red pixel running around a ring of blue background.
Neo3 Video shows the code in action.

Listing 13.103: neo3.pru0.c - Code to animate a red pixel running
around a ring of blue

1 // Control a ws2812 (neo pixel) display, green, red, blue, green, ...
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include ”prugpio.h”
6

7 #define STR_LEN 24
8 #define oneCyclesOn 700/5 // Stay on 700ns
9 #define oneCyclesOff 800/5
10 #define zeroCyclesOn 350/5
11 #define zeroCyclesOff 600/5
12 #define resetCycles 60000/5 // Must be at least 50u,␣

↪→use 60u
13 #define gpio P9_29 // output pin
14

15 #define SPEED 20000000/5 // Time to wait between updates
16

17 volatile register uint32_t __R30;
18 volatile register uint32_t __R31;
19

20 void main(void)
21 {
22 uint32_t background = 0x00000f;
23 uint32_t foreground = 0x000f00;
24

(continues on next page)

794 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

25 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
26 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
27

28 uint32_t color[STR_LEN]; // green, red, blue
29 int i, j;
30 int k, oldk = 0;;
31 // Set everything to background
32 for(i=0; i<STR_LEN; i++) {
33 color[i] = background;
34 }
35

36 while(1) {
37 // Move forward one position
38 for(k=0; k<STR_LEN; k++) {
39 color[oldk] = background;
40 color[k] = foreground;
41 oldk=k;
42

43 // Output the string
44 for(j=0; j<STR_LEN; j++) {
45 for(i=23; i>=0; i--) {
46 if(color[j] & (0x1<<i)) {
47 __R30 |= gpio;

↪→ // Set the GPIO pin to 1
48 __delay_cycles(oneCyclesOn-

↪→1);
49 __R30 &= ~gpio;

↪→ // Clear the GPIO pin
50 __delay_cycles(oneCyclesOff-

↪→2);
51 } else {
52 __R30 |= gpio;

↪→ // Set the GPIO pin to 1
53 __delay_cycles(zeroCyclesOn-

↪→1);
54 __R30 &= ~gpio;

↪→ // Clear the GPIO pin
55 __delay_cycles(zeroCyclesOff-

↪→2);
56 }
57 }
58 }
59 // Send Reset
60 __R30 &= ~gpio; // Clear the GPIO pin
61 __delay_cycles(resetCycles);
62

63 // Wait
64 __delay_cycles(SPEED);
65 }
66 }
67 }

neo3.pru0.c

Neo3 Video neo3.pru0.c - Simple animation

13.2. PRU Cookbook 795

BeagleBoard Docs, Release 1.0.20230711-wip

Discussion

Table 13.25: Here’s the highlights.
Line Explanation
32,33 Initiallize the array of colors.
38-41 Update the array.
44-58 Send the array to the LEDs.
60-61 Send a reset.
64 Wait a bit.

Controlling NeoPixels Through a Kernel Driver

Problem You want to control your NeoPixels through a kernel driver so you can control it through a /dev
interface.

Solution The rpmsg_pru driver provides a way to pass data between the ARM processor and the PRUs. It’s
already included on current images. neo4.pru0.c - Code to talk to the PRU via rpmsg_pru shows an example.

Listing 13.104: neo4.pru0.c - Code to talk to the PRU via rpmsg_pru

1 // Use rpmsg to control the NeoPixels via /dev/rpmsg_pru30
2 #include <stdint.h>
3 #include <stdio.h>
4 #include <stdlib.h> // atoi
5 #include <string.h>
6 #include <pru_cfg.h>
7 #include <pru_intc.h>
8 #include <rsc_types.h>
9 #include <pru_rpmsg.h>
10 #include ”resource_table_0.h”
11 #include ”prugpio.h”
12

13 volatile register uint32_t __R30;
14 volatile register uint32_t __R31;
15

16 /* Host-0 Interrupt sets bit 30 in register R31 */
17 #define HOST_INT ((uint32_t) 1 << 30)
18

19 /* The PRU-ICSS system events used for RPMsg are defined in the Linux device␣
↪→tree

20 * PRU0 uses system event 16 (To ARM) and 17 (From ARM)
21 * PRU1 uses system event 18 (To ARM) and 19 (From ARM)
22 */
23 #define TO_ARM_HOST 16
24 #define FROM_ARM_HOST 17
25

26 /*
27 * Using the name 'rpmsg-pru' will probe the rpmsg_pru driver found
28 * at linux-x.y.z/drivers/rpmsg/rpmsg_pru.c
29 */
30 #define CHAN_NAME ”rpmsg-pru”
31 #define CHAN_DESC ”Channel 30”
32 #define CHAN_PORT 30
33

34 /*
35 * Used to make sure the Linux drivers are ready for RPMsg communication
36 * Found at linux-x.y.z/include/uapi/linux/virtio_config.h
37 */
38 #define VIRTIO_CONFIG_S_DRIVER_OK 4
39

40 char payload[RPMSG_BUF_SIZE];
(continues on next page)

796 Chapter 13. Books

https://github.com/beagleboard/linux/raw/4.9/drivers/rpmsg/rpmsg_pru.c

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

41

42 #define STR_LEN 24
43 #define oneCyclesOn 700/5 // Stay on for 700ns
44 #define oneCyclesOff 600/5
45 #define zeroCyclesOn 350/5
46 #define zeroCyclesOff 800/5
47 #define resetCycles 51000/5 // Must be at least 50u,␣

↪→use 51u
48 #define out P9_29 // Bit number to output on
49

50 #define SPEED 20000000/5 // Time to wait between updates
51

52 uint32_t color[STR_LEN]; // green, red, blue
53

54 /*
55 * main.c
56 */
57 void main(void)
58 {
59 struct pru_rpmsg_transport transport;
60 uint16_t src, dst, len;
61 volatile uint8_t *status;
62

63 uint8_t r, g, b;
64 int i, j;
65 // Set everything to background
66 for(i=0; i<STR_LEN; i++) {
67 color[i] = 0x010000;
68 }
69

70 /* Allow OCP master port access by the PRU so the PRU can read␣
↪→external memories */

71 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
72

73 /* Clear the status of the PRU-ICSS system event that the ARM will␣
↪→use to 'kick' us */

74 #ifdef CHIP_IS_am57xx
75 CT_INTC.SICR_bit.STATUS_CLR_INDEX = FROM_ARM_HOST;
76 #else
77 CT_INTC.SICR_bit.STS_CLR_IDX = FROM_ARM_HOST;
78 #endif
79

80 /* Make sure the Linux drivers are ready for RPMsg communication */
81 status = &resourceTable.rpmsg_vdev.status;
82 while (!(*status & VIRTIO_CONFIG_S_DRIVER_OK));
83

84 /* Initialize the RPMsg transport structure */
85 pru_rpmsg_init(&transport, &resourceTable.rpmsg_vring0, &

↪→resourceTable.rpmsg_vring1, TO_ARM_HOST, FROM_ARM_HOST);
86

87 /* Create the RPMsg channel between the PRU and ARM user space using␣
↪→the transport structure. */

88 while (pru_rpmsg_channel(RPMSG_NS_CREATE, &transport, CHAN_NAME,␣
↪→CHAN_DESC, CHAN_PORT) != PRU_RPMSG_SUCCESS);

89 while (1) {
90 /* Check bit 30 of register R31 to see if the ARM has kicked␣

↪→us */
91 if (__R31 & HOST_INT) {
92 /* Clear the event status */
93 #ifdef CHIP_IS_am57xx
94 CT_INTC.SICR_bit.STATUS_CLR_INDEX = FROM_ARM_HOST;

(continues on next page)

13.2. PRU Cookbook 797

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

95 #else
96 CT_INTC.SICR_bit.STS_CLR_IDX = FROM_ARM_HOST;
97 #endif
98 /* Receive all available messages, multiple messages␣

↪→can be sent per kick */
99 while (pru_rpmsg_receive(&transport, &src, &dst,␣

↪→payload, &len) == PRU_RPMSG_SUCCESS) {
100 char *ret; // rest of payload after front␣

↪→character is removed
101 int index; // index of LED to control
102 // Input format is: index red green blue
103 index = atoi(payload);
104 // Update the array, but don't write it out.
105 if((index >=0) & (index < STR_LEN)) {
106 ret = strchr(payload, ' '); //␣

↪→Skip over index
107 r = strtol(&ret[1], NULL, 0);
108 ret = strchr(&ret[1], ' '); //␣

↪→Skip over r, etc.
109 g = strtol(&ret[1], NULL, 0);
110 ret = strchr(&ret[1], ' ');
111 b = strtol(&ret[1], NULL, 0);
112

113 color[index] = (g<<16)|(r<<8)|b; /
↪→/ String wants GRB

114 }
115 // When index is -1, send the array to the LED␣

↪→string
116 if(index == -1) {
117 // Output the string
118 for(j=0; j<STR_LEN; j++) {
119 // Cycle through each bit
120 for(i=23; i>=0; i--) {
121 if(color[j] & (0x1<

↪→<i)) {
122 __R30 |= out;

↪→ // Set the GPIO pin to 1
123 __delay_

↪→cycles(oneCyclesOn-1);
124 __R30 &= ~

↪→out; // Clear the GPIO pin
125 __delay_

↪→cycles(oneCyclesOff-14);
126 } else {
127 __R30 |= out;

↪→ // Set the GPIO pin to 1
128 __delay_

↪→cycles(zeroCyclesOn-1);
129 __R30 &= ~

↪→(out); // Clear the GPIO pin
130 __delay_

↪→cycles(zeroCyclesOff-14);
131 }
132 }
133 }
134 // Send Reset
135 __R30 &= ~out; // Clear the␣

↪→GPIO pin
136 __delay_cycles(resetCycles);
137

138 // Wait

(continues on next page)

798 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

139 __delay_cycles(SPEED);
140 }
141

142 }
143 }
144 }
145 }

neo4.pru0.c

Run the code as usual.

bone$ make TARGET=neo4.pru0
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,
↪→TARGET=neo4.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/neo4.pru0.out to /lib/
↪→firmware/am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

bone$ echo 0 0xff 0 127 > /dev/rpmsg_pru30
bone$ echo -1 > /dev/rpmsg_pru30

/dev/rpmsg_pru30 is a device driver that lets the ARM talk to the PRU. The first echo says to set the
0^th^ LED to RGB value 0xff 0 127. (Note: you can mix hex and decimal.) The second echo tells the driver
to send the data to the LEDs. Your 0^th^ LED should now be lit.

Discussion There’s a lot here. I’ll just hit some of the highlights in Line-by-line for neo4.pru0.c.

Table 13.26: Line-by-line for neo4.pru0.c
Line Explanation
30 The CHAN_NAME of rpmsg-pru matches that prmsg_pru driver that is is already installed. This connects this PRU to the

driver.
32 The CHAN_PORT tells it to use port 30. That’s why we use /dev/rpmsg_pru30
40 payload[] is the buffer that receives the data from the ARM.
42-48 Same as the previous NeoPixel examples.
52 color[] is the state to be sent to the LEDs.
66-68 color[] is initialized.
70-85 Here are a number of details needed to set up the channel between the PRU and the ARM.
88 Here we wait until the ARM sends us some numbers.
99 Receive all the data from the ARM, store it in payload[].
101-
111

The data sent is: index red green blue. Pull off the index. If it’s in the right range, pull off the red, green and blue values.

113 The NeoPixels want the data in GRB order. Shift and OR everything together.
116-
133

If the index = -1, send the contents of color to the LEDs. This code is same as before.

You can now use programs running on the ARM to send colors to the PRU.

neo-rainbow.py - A python program using /dev/rpmsg_pru30 shows an example.

Listing 13.105: neo-rainbow.py - A python program using
/dev/rpmsg_pru30

1 #!/usr/bin/python3
2 from time import sleep
3 import math

(continues on next page)

13.2. PRU Cookbook 799

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

4

5 len = 24
6 amp = 12
7 f = 25
8 shift = 3
9 phase = 0
10

11 # Open a file
12 fo = open(”/dev/rpmsg_pru30”, ”wb”, 0)
13

14 while True:
15 for i in range(0, len):
16 r = (amp * (math.sin(2*math.pi*f*(i-phase-0*shift)/len) + 1)) + 1;
17 g = (amp * (math.sin(2*math.pi*f*(i-phase-1*shift)/len) + 1)) + 1;
18 b = (amp * (math.sin(2*math.pi*f*(i-phase-2*shift)/len) + 1)) + 1;
19 fo.write(b”%d %d %d %d\n” % (i, r, g, b))
20 # print(”0 0 127 %d” % (i))
21

22 fo.write(b”-1 0 0 0\n”);
23 phase = phase + 1
24 sleep(0.05)
25

26 # Close opened file
27 fo.close()

neo-rainbow.py

Line 19 writes the data to the PRU. Be sure to have a newline, or space after the last number, or you numbers
will get blurred together.

Switching from pru0 to pru1 with rpmsg_pru There are three things you need to change when switching
from pru0 to pru1 when using rpmsg_pru.

1. The include on line 10 is switched to #include ”resource_table_1.h” (0 is switched to a 1)

2. Line 17 is switched to #define HOST_INT ((uint32_t) 1 << 31) (30 is switched to 31.)

3. Lines 23 and 24 are switched to:

#define TO_ARM_HOST 18
#define FROM_ARM_HOST 19

These changes switch to the proper channel numbers to use pru1 instead of pru0.

RGB LED Matrix - No Integrated Drivers

Problem You have a RGB LED matrix (RGB LED Matrix – No Integrated Drivers (Falcon Christmas)) and want
to know at a low level how the PRU works.

Solution Here is the datasheet, but the best description I’ve found for the RGB Matrix is from Adafruit. I’ve
reproduced it here, with adjustments for the 64x32 matrix we are using.

information

There’s zero documentation out there on how these matrices work, and no public datasheets or spec sheets
so we are going to try to document how they work.

First thing to notice is that there are 2048 RGB LEDs in a 64x32 matrix. Like pretty much every matrix out
there, you can’t drive all 2048 at once. One reason is that would require a lot of current, another reason is
that it would be really expensive to have so many pins. Instead, the matrix is divided into 16 interleaved

800 Chapter 13. Books

https://cdn-shop.adafruit.com/product-files/2277/MI-T35P5RGBE-AE.pdf
https://www.adafruit.com/

BeagleBoard Docs, Release 1.0.20230711-wip

sections/strips. The first section is the 1^st^ ‘line’ and the 17^th^ ‘line’ (64 x 2 RGB LEDs = 128 RGB LEDs),
the second is the 2^nd^ and 18^th^ line, etc until the last section which is the 16^th^ and 32^nd^ line. You
might be asking, why are the lines paired this way? wouldn’t it be nicer to have the first section be the 1^st^
and 2^nd^ line, then 3^rd^ and 4^th^, until the 15^th^ and 16^th^? The reason they do it this way is so
that the lines are interleaved and look better when refreshed, otherwise we’d see the stripes more clearly.

So, on the PCB is 24 LED driver chips. These are like 74HC595s but they have 16 outputs and they are constant
current. 16 outputs * 24 chips = 384 LEDs that can be controlled at once, and 128 * 3 (R G and B) = 384. So
now the design comes together: You have 384 outputs that can control one line at a time, with each of 384 R,
G and B LEDs either on or off. The controller (say an FPGA or microcontroller) selects which section to currently
draw (using LA, LB, LC and LD address pins - 4 bits can have 16 values). Once the address is set, the controller
clocks out 384 bits of data (48 bytes) and latches it. Then it increments the address and clocks out another
384 bits, etc until it gets to address #15, then it sets the address back to #0

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

That gives a good overview, but there are a few details missing. rgb_python.py - Python code for driving RGB
LED matrix is a functioning python program that gives a nice high-level view of how to drive the display.

Listing 13.106: rgb_python.py - Python code for driving RGB LEDmatrix

1 #!/usr/bin/env python3
2 import Adafruit_BBIO.GPIO as GPIO
3

4 # Define which functions are connect to which pins
5 OE=”P1_29” # Output Enable, active low
6 LAT=”P1_36” # Latch, toggle after clocking in a row of pixels
7 CLK=”P1_33” # Clock, toggle after each pixel
8

9 # Input data pins
10 R1=”P2_10” # R1, G1, B1 are for the top rows (1-16) of pixels
11 G1=”P2_8”
12 B1=”P2_6”
13

14 R2=”P2_4” # R2, G2, B2 are for the bottom rows (17-32) of pixels
15 G2=”P2_2”
16 B2=”P2_1”
17

18 LA=”P2_32” # Address lines for which row (1-16 or 17-32) to update
19 LB=”P2_30”
20 LC=”P1_31”
21 LD=”P2_34”
22

23 # Set everything as output ports
24 GPIO.setup(OE, GPIO.OUT)
25 GPIO.setup(LAT, GPIO.OUT)
26 GPIO.setup(CLK, GPIO.OUT)
27

28 GPIO.setup(R1, GPIO.OUT)
29 GPIO.setup(G1, GPIO.OUT)
30 GPIO.setup(B1, GPIO.OUT)
31 GPIO.setup(R2, GPIO.OUT)
32 GPIO.setup(G2, GPIO.OUT)
33 GPIO.setup(B2, GPIO.OUT)
34

35 GPIO.setup(LA, GPIO.OUT)
36 GPIO.setup(LB, GPIO.OUT)
37 GPIO.setup(LC, GPIO.OUT)
38 GPIO.setup(LD, GPIO.OUT)
39

40 GPIO.output(OE, 0) # Enable the display
41 GPIO.output(LAT, 0) # Set latch to low

(continues on next page)

13.2. PRU Cookbook 801

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

42

43 while True:
44 for bank in range(64):
45 GPIO.output(LA, bank>>0&0x1) # Select rows
46 GPIO.output(LB, bank>>1&0x1)
47 GPIO.output(LC, bank>>2&0x1)
48 GPIO.output(LD, bank>>3&0x1)
49

50 # Shift the colors out. Here we only have four different
51 # colors to keep things simple.
52 for i in range(16):
53 GPIO.output(R1, 1) # Top row, white
54 GPIO.output(G1, 1)
55 GPIO.output(B1, 1)
56

57 GPIO.output(R2, 1) # Bottom row, red
58 GPIO.output(G2, 0)
59 GPIO.output(B2, 0)
60

61 GPIO.output(CLK, 0) # Toggle clock
62 GPIO.output(CLK, 1)
63

64 GPIO.output(R1, 0) # Top row, black
65 GPIO.output(G1, 0)
66 GPIO.output(B1, 0)
67

68 GPIO.output(R2, 0) # Bottom row, green
69 GPIO.output(G2, 1)
70 GPIO.output(B2, 0)
71

72 GPIO.output(CLK, 0) # Toggle clock
73 GPIO.output(CLK, 1)
74

75 GPIO.output(OE, 1) # Disable display while updating
76 GPIO.output(LAT, 1) # Toggle latch
77 GPIO.output(LAT, 0)
78 GPIO.output(OE, 0) # Enable display

rgb_python.py

Be sure to run the rgb_python_setup.sh script before running the python code.

Listing 13.107: rgb_python_setup.sh

1 #!/bin/bash
2 # Setup for 64x32 RGB Matrix
3 export TARGET=rgb1.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = ”Black”]; then
10 echo ” Found”
11 pins=””
12 elif [$machine = ”Blue”]; then
13 echo ” Found”
14 pins=””
15 elif [$machine = ”PocketBeagle”]; then
16 echo ” Found”
17 prupins=”P2_32 P1_31 P1_33 P1_29 P2_30 P2_34 P1_36”
18 gpiopins=”P2_10 P2_06 P2_04 P2_01 P2_08 P2_02”

(continues on next page)

802 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

19 # Uncomment for J2
20 # gpiopins=”$gpiopins P2_27 P2_25 P2_05 P2_24 P2_22 P2_18”
21 else
22 echo ” Not Found”
23 pins=””
24 fi
25

26 for pin in $prupins
27 do
28 echo $pin
29 # config-pin $pin pruout
30 config-pin $pin gpio
31 config-pin $pin out
32 config-pin -q $pin
33 done
34

35 for pin in $gpiopins
36 do
37 echo $pin
38 config-pin $pin gpio
39 config-pin $pin out
40 config-pin -q $pin
41 done

rgb_python_setup.sh

Make sure line 29 is commented out and line 30 is uncommented. Later we’ll configure for _pruout_, but for
now the python code doesn’t use the PRU outs.

config-pin $pin pruout
config-pin $pin out

Your display should look like Display running rgb_python.py.

Fig. 13.164: Display running rgb_python.py

So why do only two lines appear at a time? That’s how the display works. Currently lines 6 and 22 are showing,
then a moment later 7 and 23 show, etc. The display can only display two lines at a time, so it cycles through
all the lines. Unfortunately, python is too slow to make the display appear all at once. Here’s where the PRU
comes in.

:ref:blocks_rgb1 is the PRU code to drive the RGB LED matrix. Be sure to run bone$ source
rgb_setup.sh first.

13.2. PRU Cookbook 803

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.108: PRU code for driving the RGB LED matrix

1 // This code drives the RGB LED Matrix on the 1st Connector
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include ”prugpio.h”
6 #include ”rgb_pocket.h”
7

8 #define DELAY 10 // Number of cycles (5ns each) to wait after a write
9

10 volatile register uint32_t __R30;
11 volatile register uint32_t __R31;
12

13 void main(void)
14 {
15 // Set up the pointers to each of the GPIO ports
16 uint32_t *gpio[] = {
17 (uint32_t *) GPIO0,
18 (uint32_t *) GPIO1,
19 (uint32_t *) GPIO2,
20 (uint32_t *) GPIO3
21 };
22

23 uint32_t i, row;
24

25 while(1) {
26 for(row=0; row<16; row++) {
27 // Set the row address
28 // Here we take advantage of the select bits (LA,LB,

↪→LC,LD)
29 // being sequential in the R30 register (bits 2,3,4,

↪→5)
30 // We shift row over so it lines up with the select␣

↪→bits
31 // Oring (|=) with R30 sets bits to 1 and
32 // Anding (&=) clears bits to 0, the 0xffc mask␣

↪→makes sure the
33 // other bits aren't changed.
34 __R30 |= row<<pru_sel0;
35 __R30 &= (row<<pru_sel0)|0xffc3;
36

37 for(i=0; i<64; i++) {
38 // Top row white
39 // Combining these to one write works because they␣

↪→are all in
40 // the same gpio port
41 gpio[r11_gpio][GPIO_SETDATAOUT] = r11_pin | g11_

↪→pin | b11_pin;
42 __delay_cycles(DELAY);;
43

44 // Bottom row red
45 gpio[r12_gpio][GPIO_SETDATAOUT] = r12_pin;
46 __delay_cycles(DELAY);
47 gpio[r12_gpio][GPIO_CLEARDATAOUT] = g12_pin | b12_

↪→pin;
48 __delay_cycles(DELAY);
49

50 __R30 |= pru_clock; // Toggle clock
51 __delay_cycles(DELAY);
52 __R30 &= ~pru_clock;
53 __delay_cycles(DELAY);

(continues on next page)

804 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

54

55 // Top row black
56 gpio[r11_gpio][GPIO_CLEARDATAOUT] = r11_pin | g11_

↪→pin | b11_pin;
57 __delay_cycles(DELAY);
58

59 // Bottom row green
60 gpio[r12_gpio][GPIO_CLEARDATAOUT] = r12_pin | b12_

↪→pin;
61 __delay_cycles(DELAY);
62 gpio[r12_gpio][GPIO_SETDATAOUT] = g12_pin;
63 __delay_cycles(DELAY);
64

65 __R30 |= pru_clock; // Toggle clock
66 __delay_cycles(DELAY);
67 __R30 &= ~pru_clock;
68 __delay_cycles(DELAY);
69 }
70 __R30 |= pru_oe; // Disable display
71 __delay_cycles(DELAY);
72 __R30 |= pru_latch; // Toggle latch
73 __delay_cycles(DELAY);
74 __R30 &= ~pru_latch;
75 __delay_cycles(DELAY);
76 __R30 &= ~pru_oe; // Enable display
77 __delay_cycles(DELAY);
78 }
79 }
80 }

rgb1.pru0.c

The results are shown in Display running rgb1.c on PRU 0.

Fig. 13.165: Display running rgb1.c on PRU 0

The PRU is fast enough to quickly write to the display so that it appears as if all the LEDs are on at once.

Discussion There are a lot of details needed to make this simple display work. Let’s go over some of them.

First, the connector looks like RGB Matrix J1 connector.

Notice the labels on the connect match the labels in the code. PocketScroller pin table shows how the pins on
the display are mapped to the pins on the PocketBeagle.

13.2. PRU Cookbook 805

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.166: RGB Matrix J1 connector

806 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Todo: Make a mapping table for the Black

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp

Table 13.27: PocketScroller pin table
J1 Connector Pin Pocket Headers gpio port and bit number Linux gpio number PRU R30 bit number
R1 P2_10 1-20 52
B1 P2_06 1-25 57
R2 P2_04 1-26 58
B2 P2_01 1-18 50
LA P2_32 3-16 112 PRU0.2
LC P1_31 3-18 114 PRU0.4
CLK P1_33 3-15 111 PRU0.1
OE P1_29 3-21 117 PRU0.7
G1 P2_08 1-28 60
G2 P2_02 1-27 59
LB P2_30 3-17 113 PRU0.3
LD P2_34 3-19 115 PRU0.5
LAT P1_36 3-14 110 PRU0.0

The J1 mapping to gpio port and bit number comes from https://github.com/FalconChristmas/fpp/blob/master/
capes/pb/panels/PocketScroller.json. The gpio port and bit number mapping to Pocket Headers comes from
https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit#gid=0.

Oscilloscope display of CLK, OE, LAT and R1 shows four of the signal waveforms driving the RGB LED matrix.

Fig. 13.167: Oscilloscope display of CLK, OE, LAT and R1

13.2. PRU Cookbook 807

https://github.com/FalconChristmas/fpp/blob/master/src/pru/OctoscrollerV2.hp
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/panels/PocketScroller.json
https://github.com/FalconChristmas/fpp/blob/master/capes/pb/panels/PocketScroller.json
https://docs.google.com/spreadsheets/d/1FRGvYOyW1RiNSEVprvstfJAVeapnASgDXHtxeDOjgqw/edit#gid=0

BeagleBoard Docs, Release 1.0.20230711-wip

The top waveform is the CLK, the next is OE, followed by LAT and finally R1. The OE (output enable) is active
low, so most of the time the display is visible. The sequence is:

• Put data on the R1, G1, B1, R2, G2 and B2 lines

• Toggle the clock.

• Repeat the first two steps as one row of data is transferred. There are 384 LEDs (2 rows of 32 RGB LEDs
times 3 LED per RGB), but we are clocking in six bits (R1, G1, etc.) at a time, so 384/6=64 values need
to be clocked in.

• Once all the values are in, disable the display (OE goes high)

• Then toggle the latch (LAT) to latch the new data.

• Turn the display back on.

• Increment the address lines (LA, LB, LC and LD) to point to the next rows.

• Keep repeating the above to keep the display lit.

Using the PRU we are able to run the clock a about 2.9 MKHz. FPP waveforms shows the optimized assembler
code used by FPP clocks in at some 6.3 MHz. So the compiler is doing a pretty good job, but you can run some
two times faster if you want to use assembly code. In fairness to FPP, it’s having to pull it’s data out of RAM to
display it, so isn’t not a good comparison.

Fig. 13.168: FPP waveforms

Getting More Colors The Adafruit description goes on to say:

808 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

information

The only downside of this technique is that despite being very simple and fast, it has no PWM control built-in!
The controller can only set the LEDs on or off. So what do you do when you want full color? You actually need to
draw the entire matrix over and over again at very high speeds to PWM the matrix manually. For that reason,
you need to have a very fast controller (50 MHz is a minimum) if you want to do a lot of colors and motion
video and have it look good.

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

This is what FPP does, but it’s beyond the scope of this project.

Compiling and Inserting rpmsg_pru

Problem Your Beagle doesn’t have rpmsg_pru.

Solution Do the following.

bone$ *cd code/05blocks/module*
bone$ *sudo apt install linux-headers-\`uname -r`*
bone$ *wget https://github.com/beagleboard/linux/raw/4.9/drivers/rpmsg/rpmsg_
↪→pru.c*
bone$ *make*
make -C /lib/modules/4.9.88-ti-r111/build M=$PWD
make[1]: Entering directory '/usr/src/linux-headers-4.9.88-ti-r111'
LD /home/debian/PRUCookbook/docs/code/05blocks/module/built-in.o
CC [M] /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_client_

↪→sample.o
CC [M] /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_pru.o
Building modules, stage 2.
MODPOST 2 modules
CC /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_client_

↪→sample.mod.o
LD [M] /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_client_

↪→sample.ko
CC /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_pru.mod.o
LD [M] /home/debian/PRUCookbook/docs/code/05blocks/module/rpmsg_pru.ko

make[1]: Leaving directory '/usr/src/linux-headers-4.9.88-ti-r111'
bone$ *sudo insmod rpmsg_pru.ko*
bone$ *lsmod | grep rpm*
rpmsg_pru 5799 2
virtio_rpmsg_bus 13620 0
rpmsg_core 8537 2 rpmsg_pru,virtio_rpmsg_bus

It’s now installed and ready to go.

Copyright

Listing 13.109: copyright.c

1 /*
2 * Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com/
3 *
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *

(continues on next page)

13.2. PRU Cookbook 809

https://cdn-learn.adafruit.com/downloads/pdf/32x16-32x32-rgb-led-matrix.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

9 * * Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in␣

↪→the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * * Neither the name of Texas Instruments Incorporated nor the names␣

↪→of
18 * its contributors may be used to endorse or promote products␣

↪→derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */

copyright.c

13.2.6 Accessing More I/O

So far the examples have shown how to access the GPIO pins on the BeagleBone Black’sP9 header and through
the pass:[__]R30 register. Below shows how more GPIO pins can be accessed.

The following are resources used in this chapter.

Note: Resources

• P8 Header Table

• P9 Header Table

• AM572x Technical Reference Manual (AI)

• AM335x Technical Reference Manual (All others)

• PRU Assembly Language Tools

Editing /boot/uEnv.txt to Access the P8 Header on the Black

Problem When I try to configure some pins on the P8 header of the Black I get an error.

1 bone$ *config-pin P8_28 pruout*
2 ERROR: open() for /sys/devices/platform/ocp/ocp:P8_28_pinmux/state failed,␣

↪→No such file or directory

810 Chapter 13. Books

https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf
http://www.ti.com/lit/pdf/spruhz6l
http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Solution On the images for the BeagleBone Black, the HDMI display driver is enabled by default and uses
many of the P8 pins. If you are not using HDMI video (or the HDI audio, or even the eMMC) you can disable it
by editing /boot/uEnv.txt

Open /boot/uEnv.txt and scroll down always until you see:

Listing 13.110: /boot/uEnv.txt

1 ###Disable auto loading of virtual capes (emmc/video/wireless/adc)
2 #disable_uboot_overlay_emmc=1
3 disable_uboot_overlay_video=1
4 #disable_uboot_overlay_audio=1

Uncomment the lines that correspond to the devices you want to disable and free up their pins.

Tip: P8 Header Table shows what pins are allocated for what.

Save the file and reboot. You now have access to the P8 pins.

Accessing gpio

Problem I’ve used up all the GPIO in pass:[__]R30, where can I get more?

Solution So far we have focused on using PRU 0. Mapping bit positions to pin names shows that PRU 0 can
access ten GPIO pins on the BeagleBone Black. If you use PRU 1 you can get to an additional 14 pins (if they
aren’t in use for other things.)

What if you need even more GPIO pins? You can access any GPIO pin by going through the Open-Core Protocol
(OCP) port.

The figure above shows we’ve been using the _Enhanced GPIO interface when using pass:[__]R30, but
it also shows you can use the OCP. You get access to many more GPIO pins, but it’s a slower access.

Listing 13.111: gpio.pru0.c

1 // This code accesses GPIO without using R30 and R31
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include ”prugpio.h”
6

7 #define P9_11 (0x1<<30) // Bit position tied␣
↪→to P9_11 on Black

8 #define P2_05 (0x1<<30) // Bit position tied␣
↪→to P2_05 on Pocket

9

10 volatile register uint32_t __R30;
11 volatile register uint32_t __R31;
12

13 void main(void)
14 {
15 uint32_t *gpio0 = (uint32_t *)GPIO0;
16

17 while(1) {
18 gpio0[GPIO_SETDATAOUT] = P9_11;
19 __delay_cycles(100000000);
20 gpio0[GPIO_CLEARDATAOUT] = P9_11;
21 __delay_cycles(100000000);
22 }
23 }

13.2. PRU Cookbook 811

https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP8HeaderTable.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.169: PRU Integration

gpio.pru0.c

This code will toggle P9_11 on and off. Here’s the setup file.

Listing 13.112: setup.sh

1 #!/bin/bash
2

3 export TARGET=gpio.pru0
4 echo TARGET=$TARGET
5

6 # Configure the PRU pins based on which Beagle is running
7 machine=$(awk '{print $NF}' /proc/device-tree/model)
8 echo -n $machine
9 if [$machine = ”Black”]; then
10 echo ” Found”
11 pins=”P9_11”
12 elif [$machine = ”Blue”]; then
13 echo ” Found”
14 pins=””
15 elif [$machine = ”PocketBeagle”]; then
16 echo ” Found”
17 pins=”P2_05”
18 else
19 echo ” Not Found”
20 pins=””
21 fi
22

23 for pin in $pins
24 do
25 echo $pin

(continues on next page)

812 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

26 config-pin $pin gpio
27 config-pin -q $pin
28 done

setup.sh

Notice in the code config-pin set P9_11 to gpio, not pruout. This is because are using the OCP
interface to the pin, not the usual PRU interface.

Set your exports and make.

1 bone$ *source setup.sh*
2 TARGET=gpio.pru0
3 ...
4 bone$ *make*
5 /var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,

↪→TARGET=gpio.pru0
6 - Stopping PRU 0
7 - copying firmware file /tmp/cloud9-examples/gpio.pru0.out to /lib/

↪→firmware/am335x-pru0-fw
8 write_init_pins.sh
9 - Starting PRU 0
10 MODEL = TI_AM335x_BeagleBone_Black
11 PROC = pru
12 PRUN = 0
13 PRU_DIR = /sys/class/remoteproc/remoteproc1

Discussion When you run the code you seeP9_11 toggling on and off. Let’s go through the code line-by-line
to see what’s happening.

Table 13.28: gpio.pru0.c line-by-line
Line Explanation
2-5 Standard includes
5 The AM335x has four 32-bit GPIO ports. Lines 55-58 of prugpio.h

define the addresses for each of the ports. You can find these in
Table 2-2 page 180 of the AM335x TRM 180. Look up P9_11 in the
P9 header. Under the _Mode7_ column you see gpio0[30]. This
means P9_11 is bit 30 on GPIO port 0. Therefore we will use GPIO0
in this code. You can also run gpioinfo and look for P9_11.

5 Line 103 of prugpio.h defines the address offset from GIO0 that
will allow us to _clear_ any (or all) bits in GPIO port 0. Other archi-
tectures require you to read a port, then change some bit, then
write it out again, three steps. Here we can do the same by writ-
ing to one location, just one step.

5 Line 104 of prugpio.h is like above, but for _setting_ bits.
5 Using this offset of line 105 of prugpio.h lets us just read the bits

without changing them.
7,8 This shifts 0x1 to the 30^th^ bit position, which is the one corre-

sponding to P9_11.
15 Here we initialize gpio0 to point to the start of GPIO port 0’s control

registers.
18

gpio0[GPIO_SETDATAOUT] refers to the SETDATAOUT
register of port 0. Writing to this register turns on the
bits

where 1’s are written, but leaves alone the bits where 0’s
are.

19 Wait 100,000,000 cycles, which is 0.5 seconds.
20 This is line 18, but the output bit is set to 0 where 1’s are written.

How fast can it go? This approach to GPIO goes through the slower OCP interface. If you set
pass:[__]delay_cycles(0) you can see how fast it is.

13.2. PRU Cookbook 813

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
https://github.com/derekmolloy/exploringBB/blob/master/chp06/docs/BeagleboneBlackP9HeaderTable.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.170: gpio.pru0.c with pass:[__]delay_cycles(0)

814 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

The period is 80ns which is 12.MHz. That’s about one forth the speed of the pass:[__]R30 method, but
still not bad.

If you are using an oscilloscope, look closely and you’ll see the following.

Fig. 13.171: PWM with jitter

The PRU is still as solid as before in its timing, but now it’s going through the OCP interface. This interface is
shared with other parts of the system, therefore the sometimes the PRU must wait for the other parts to finish.
When this happens the pulse width is a bit longer than usual thus adding jitter to the output.

For many applications a few nanoseconds of jitter is unimportant and this GPIO interface can be used. If your
application needs better timing, use the pass:[__]R30 interface.

Configuring for UIO Instead of RemoteProc

Problem You have some legacy PRU code that uses UIO instead of remoteproc and you want to switch to UIO.

Solution Edit /boot/uEnt.txt and search for uio. I find

###pru_uio (4.4.x-ti, 4.9.x-ti, 4.14.x-ti & mainline/bone kernel)
uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo

Uncomment the uboot line. Look for other lines with uboot_overlay_pru= and be sure they are
commented out.

Reboot your Bone.

13.2. PRU Cookbook 815

BeagleBoard Docs, Release 1.0.20230711-wip

bone$ sudo reboot

Check that UIO is running.

bone$ lsmod | grep uio
uio_pruss 16384 0
uio_pdrv_genirq 16384 0
uio 20480 2 uio_pruss,uio_pdrv_genirq

You are now ready to run the legacy PRU code.

Converting pasm Assembly Code to clpru

Problem You have some legacy assembly code written in pasm and it won’t assemble with clpru.

Solution Generally there is a simple mapping from pasm to clpru. pasm vs. clpru notes what needs to be
changed. I have a less complete version on my eLinux.org site.

Discussion The clpru assembly can be found in PRU Assembly Language Tools.

13.2.7 More Performance

So far in all our examples we’ve been able to meet our timing goals by writing our code in the C programming
language. The C compiler does a surprisingly good job at generating code, most the time. However there are
times when very precise timing is needed and the compiler isn’t doing it.

At these times you need to write in assembly language. This chapter introduces the PRU assembler and shows
how to call assembly code from C. Detailing on how to program in assembly are beyond the scope of this text.

The following are resources used in this chapter.

Note: Resources

• PRU Optimizing C/C++ Compiler, v2.2, User’s Guide

• PRU Assembly Language Tools User’s Guide

• PRU Assembly Instruction User Guide

Calling Assembly from C

Problem You have some C code and you want to call an assembly language routine from it.

Solution You need to do two things, write the assembler file and modify the Makefile to include
it. For example, let’s write our own my_delay_cycles routine in in assembly. The intrinsic
pass:[__]delay_cycles must be passed a compile time constant. Our new delay_cycles can
take a runtime delay value.

delay-test.pru0.c is much like our other c code, but on line 10 we declare my_delay_cycles and then on
lines 24 and 26 we’ll call it with an argument of 1.

816 Chapter 13. Books

http://processors.wiki.ti.com/index.php/PRU_Assembly_Instructions#pasm_vs._clpru
https://elinux.org/EBC_Exercise_30_PRU_porting_pasm_to_clpru
http://www.ti.com/lit/ug/spruhv6a/spruhv6a.pdf
http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf
http://www.ti.com/lit/ug/spruhv6b/spruhv6b.pdf
http://www.ti.com/lit/ug/spruij2/spruij2.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.113: delay-test.pru0.c

1 // Shows how to call an assembly routine with one parameter
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include ”prugpio.h”
6

7 // The function is defined in delay.asm in same dir
8 // We just need to add a declaration here, the definition can be
9 // separately linked
10 extern void my_delay_cycles(uint32_t);
11

12 volatile register uint32_t __R30;
13 volatile register uint32_t __R31;
14

15 void main(void)
16 {
17 uint32_t gpio = P9_31; // Select which pin to toggle.;
18

19 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
20 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
21

22 while(1) {
23 __R30 |= gpio; // Set the GPIO pin to 1
24 my_delay_cycles(1);
25 __R30 &= ~gpio; // Clear the GPIO pin
26 my_delay_cycles(1);
27 }
28 }

delay-test.pru0.c

delay.pru0.asm is the assembly code.

Listing 13.114: delay.pru0.asm

1 ; This is an example of how to call an assembly routine from C.
2 ; Mark A. Yoder, 9-July-2018
3 .global my_delay_cycles
4 my_delay_cycles:
5 delay:
6 sub r14, r14, 1 ; The first argument␣

↪→is passed in r14
7 qbne delay, r14, 0
8

9 jmp r3.w2 ; r3 contains the␣
↪→return address

delay.pru0.asm

TheMakefile has one addition that needs to bemade to compile both delay-test.pru0.c and delay.pru0.asm.
If you look in the local Makefile you’ll see:

13.2. PRU Cookbook 817

BeagleBoard Docs, Release 1.0.20230711-wip

Listing 13.115: Makefile

1 include /opt/source/pru-cookbook-code/common/Makefile

Makefile

This Makefle includes a common Makefile at /var/lib/cloud9/common/Makefile, this the Makefile
you need to edit. Edit /var/lib/cloud9/common/Makefile and go to line 195.

$(GEN_DIR)/%.out: $(GEN_DIR)/%.o *$(GEN_DIR)/$(TARGETasm).o*
@mkdir -p $(GEN_DIR)
@echo 'LD $^'
$(eval $(call target-to-proc,$@))
$(eval $(call proc-to-build-vars,$@))
@$(LD) $@ $^ $(LDFLAGS)

Add *(GEN_DIR)/$(TARGETasm).o* as shown in bold above. You will want to remove this addition
once you are done with this example since it will break the other examples.

The following will compile and run everything.

bone$ config-pin P9_31 pruout
bone$ make TARGET=delay-test.pru0 TARGETasm=delay.pru0
/var/lib/cloud9/common/Makefile:29: MODEL=TI_AM335x_BeagleBone_Black,
↪→TARGET=delay-test.pru0
- Stopping PRU 0
- copying firmware file /tmp/cloud9-examples/delay-test.pru0.out to /lib/
↪→firmware/am335x-pru0-fw
write_init_pins.sh
- Starting PRU 0
MODEL = TI_AM335x_BeagleBone_Black
PROC = pru
PRUN = 0
PRU_DIR = /sys/class/remoteproc/remoteproc1

The resulting output is shown in Output of my_delay_cycles().

Notice the on time is about 35ns and the off time is 30ns.

Discission There is much to explain here. Let’s start with delay.pru0.asm.

Table 13.29: Line-by-line of delay.pru0.asm
Line Explanation
3 Declare my_delay_cycles to be global so the linker can find it.
4 Label the starting point for my_delay_cycles.
5 Label for our delay loop.
6 The first argument is passed in register r14. Page 111 of PRU Optimizing C/C++ Compiler, v2.2, User’s Guide gives the

argument passing convention. Registers r14 to r29 are used to pass arguments, if there are more arguments, the argument
stack (r4) is used. The other register conventions are found on page 108. Here we subtract 1 from r14 and save it back into
r14.

7 qbne is a quick branch if not equal.
9 Once we’ve delayed enough we drop through the quick branch and hit the jump. The upper bits of register r3 has the return

address, therefore we return to the c code.

Output of my_delay_cycles() shows the on time is 35ns and the off time is 30ns. With 5ns/cycle this gives 7
cycles on and 6 off. These times make sense because each instruction takes a cycle and you have, set R30,
jump to my_delay_cycles, sub, qbne, jmp. Plus the instruction (not seen) that initializes r14 to the
passed value. That’s a total of six instructions. The extra instruction is the branch at the bottom of the while
loop.

818 Chapter 13. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Fig. 13.172: Output of my_delay_cycles()

13.2. PRU Cookbook 819

BeagleBoard Docs, Release 1.0.20230711-wip

Returning a Value from Assembly

Problem Your assembly code needs to return a value.

Solution R14 is how the return value is passed back. delay-test2.pru0.c shows the c code.

Listing 13.116: delay-test2.pru0.c

1 // Shows how to call an assembly routine with a return value
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include ”resource_table_empty.h”
5 #include ”prugpio.h”
6

7 #define TEST 100
8

9 // The function is defined in delay.asm in same dir
10 // We just need to add a declaration here, the definition can be
11 // separately linked
12 extern uint32_t my_delay_cycles(uint32_t);
13

14 uint32_t ret;
15

16 volatile register uint32_t __R30;
17 volatile register uint32_t __R31;
18

19 void main(void)
20 {
21 uint32_t gpio = P9_31; // Select which pin to toggle.;
22

23 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
24 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
25

26 while(1) {
27 __R30 |= gpio; // Set the GPIO pin to 1
28 ret = my_delay_cycles(1);
29 __R30 &= ~gpio; // Clear the GPIO pin
30 ret = my_delay_cycles(1);
31 }
32 }

delay-test2.pru0.c

delay2.pru0.asm is the assembly code.

Listing 13.117: delay2.pru0.asm

1 ; This is an example of how to call an assembly routine from C with a return␣
↪→value.

2 ; Mark A. Yoder, 9-July-2018
3

4 .cdecls ”delay-test2.pru0.c”
5

6 .global my_delay_cycles
7 my_delay_cycles:
8 delay:
9 sub r14, r14, 1 ; The first argument␣

↪→is passed in r14
10 qbne delay, r14, 0
11

12 ldi r14, TEST ; TEST is defined in␣
↪→delay-test2.c

(continues on next page)

820 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

13 ; r14 is the return␣
↪→register

14

15 jmp r3.w2 ; r3 contains the␣
↪→return address

delay2.pru0.asm

An additional feature is shown in line 4 of delay2.pru0.asm. The .cdecls ”delay-test2.pru0.
c” says to include any defines from delay-test2.pru0.c In this example, line 6 of delay-test2.pru0.c
#defines TEST and line 12 of delay2.pru0.asm reference it.

Using the Built-In Counter for Timing

Problem I want to count how many cycles my routine takes.

Solution Each PRU has aCYCLE register which counts the number of cycles since the PRUwas enabled. They
also have a STALL register that counts how many times the PRU stalled fetching an instruction. cycle.pru0.c
- Code to count cycles. shows they are used.

Listing 13.118: cycle.pru0.c - Code to count cycles.

1 // Access the CYCLE and STALL registers
2 #include <stdint.h>
3 #include <pru_cfg.h>
4 #include <pru_ctrl.h>
5 #include ”resource_table_empty.h”
6 #include ”prugpio.h”
7

8 volatile register uint32_t __R30;
9 volatile register uint32_t __R31;
10

11 void main(void)
12 {
13 uint32_t gpio = P9_31; // Select which pin to toggle.;
14

15 // These will be kept in registers and never written to DRAM
16 uint32_t cycle, stall;
17

18 // Clear SYSCFG[STANDBY_INIT] to enable OCP master port
19 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
20

21 PRU0_CTRL.CTRL_bit.CTR_EN = 1; // Enable cycle counter
22

23 __R30 |= gpio; // Set the GPIO pin to␣
↪→1

24 // Reset cycle counter, cycle is on the right side to force the␣
↪→compiler

25 // to put it in it's own register
26 PRU0_CTRL.CYCLE = cycle;
27 __R30 &= ~gpio; // Clear the GPIO pin
28 cycle = PRU0_CTRL.CYCLE; // Read cycle and store in a register
29 stall = PRU0_CTRL.STALL; // Ditto for stall
30

31 __halt();
32 }

cycle.pru0.c

13.2. PRU Cookbook 821

BeagleBoard Docs, Release 1.0.20230711-wip

Discission The code is mostly the same as other examples. cycle and stall end up in registers which
we can read using prudebug. Line-by-line for cycle.pru0.c is the Line-by-line.

Table 13.30: Line-by-line for cycle.pru0.c
Line Explanation
4 Include needed to reference CYCLE and STALL.
16 Declaring cycle and stall. The compiler will optimize these and just keep them in registers. We’ll have to look at the cy-

cle.pru0.lst file to see where they are stored.
21 Enables CYCLE.
26 Reset CYCLE. It ignores the value assigned to it and always sets it to 0. cycle is on the right hand side to make the compiler

give it its own register.
28,
29

Reads the CYCLE and STALL values into registers.

You can see where cycle and stall are stored by looking into /tmp/cloud9-examples/cycle.pru0.lst Lines
113..119.

Listing 13.119: /tmp/cloud9-examples/cycle.pru0.lst Lines 113..119

113 102 .dwpsn file ”cycle.pru0.c”,line 23,column 2,is_stmt,isa 0
114 103;--

↪→--
115 104; 23 | PRU0_CTRL.CTRL_bit.CTR_EN = 1; // Enable cycle counter
116 105;--

↪→--
117 106 0000000c 200080240002C0 LDI32 r0, 0x00022000 ;␣

↪→[ALU_PRU] |23| OC1
118 107 00000014 000000F1002081 LBBO &r1, r0, 0, 4 ;␣

↪→[ALU_PRU] |23|
119 108 00000018 0000001F03E1E1 SET r1, r1, 0x00000003 ;␣

↪→[ALU_PRU] |23|

cycle.pru0.lst

Here the LDI32 instruction loads the address 0x22000 into r0. This is the offset to the CTRL registers.
Later in the file we see /tmp/cloud9-examples/cycle.pru0.lst Lines 146..152.

Listing 13.120: /tmp/cloud9-examples/cycle.pru0.lst Lines 146..152

146 129;--
↪→--

147 130; 30 | cycle = PRU0_CTRL.CYCLE; // Read cycle and store in a␣
↪→register

148 131;--
↪→--

149 132 0000002c 000000F10C2081 LBBO &r1, r0, 12, 4 ;␣
↪→[ALU_PRU] |30| OC1

150 133 .dwpsn file ”cycle.pru0.c”,line 31,column 2,is_stmt,isa 0
151 134;--

↪→--
152 135; 31 | stall = PRU0_CTRL.STALL; // Ditto for stall

cycle.pru0.lst

The first LBBO takes the contents of r0 and adds the offset 12 to it and copies 4 bytes into r1. This points
to CYCLE, so r1 has the contents of CYCLE.

The second LBBO does the same, but with offset 16, which points to STALL, thus STALL is now in r0.

Now fire up prudebug and look at those registers.

bone$ sudo prudebug
PRU0> r
r

(continues on next page)

822 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

r
Register info for PRU0

Control register: 0x00000009
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_ENABLED, NOT_SLEEPING,␣

↪→PROC_DISABLED

Program counter: 0x0012
Current instruction: HALT

R00: *0x00000005* R08: 0x00000200 R16: 0x000003c6 R24:␣
↪→0x00110210

R01: *0x00000003* R09: 0x00000000 R17: 0x00000000 R25:␣
↪→0x00000000

R02: 0x000000fc R10: 0xfff4ea57 R18: 0x000003e6 R26: 0x6e616843
R03: 0x0004272c R11: 0x5fac6373 R19: 0x30203020 R27: 0x206c656e
R04: 0xffffffff R12: 0x59bfeafc R20: 0x0000000a R28: 0x00003033
R05: 0x00000007 R13: 0xa4c19eaf R21: 0x00757270 R29: 0x02100000
R06: 0xefd30a00 R14: 0x00000005 R22: 0x0000001e R30: 0xa03f9990
R07: 0x00020024 R15: 0x00000003 R23: 0x00000000 R31: 0x00000000

So cycle is 3 and stall is 5. It must be one cycle to clear the GPIO and 2 cycles to read the CYCLE
register and save it in the register. It’s interesting there are 5 stall cycles.

If you switch the order of lines 30 and 31 you’ll see cycle is 7 and stall is 2. cycle now includes the
time needed to read stall and stall no longer includes the time to read cycle.

Xout and Xin - Transferring Between PRUs

Problem I need to transfer data between PRUs quickly.

Solution The pass:[__]xout() and pass:[__]xin() intrinsics are able to transfer up to 30 reg-
isters between PRU 0 and PRU 1 quickly. xout.pru0.c shows how xout() running on PRU 0 transfers six
registers to PRU 1.

Listing 13.121: xout.pru0.c

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-
↪→package/trees/master/examples/am335x/PRU_Direct_Connect0

2 #include <stdint.h>
3 #include <pru_intc.h>
4 #include ”resource_table_pru0.h”
5

6 volatile register uint32_t __R30;
7 volatile register uint32_t __R31;
8

9 typedef struct {
10 uint32_t reg5;
11 uint32_t reg6;
12 uint32_t reg7;
13 uint32_t reg8;
14 uint32_t reg9;
15 uint32_t reg10;
16 } bufferData;
17

18 bufferData dmemBuf;
19

20 /* PRU-to-ARM interrupt */
21 #define PRU1_PRU0_INTERRUPT (18)
22 #define PRU0_ARM_INTERRUPT (19+16)

(continues on next page)

13.2. PRU Cookbook 823

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

23

24 void main(void)
25 {
26 /* Clear the status of all interrupts */
27 CT_INTC.SECR0 = 0xFFFFFFFF;
28 CT_INTC.SECR1 = 0xFFFFFFFF;
29

30 /* Load the buffer with default values to transfer */
31 dmemBuf.reg5 = 0xDEADBEEF;
32 dmemBuf.reg6 = 0xAAAAAAAA;
33 dmemBuf.reg7 = 0x12345678;
34 dmemBuf.reg8 = 0xBBBBBBBB;
35 dmemBuf.reg9 = 0x87654321;
36 dmemBuf.reg10 = 0xCCCCCCCC;
37

38 /* Poll until R31.30 (PRU0 interrupt) is set
39 * This signals PRU1 is initialized */
40 while ((__R31 & (1<<30)) == 0) {
41 }
42

43 /* XFR registers R5-R10 from PRU0 to PRU1 */
44 /* 14 is the device_id that signifies a PRU to PRU transfer */
45 __xout(14, 5, 0, dmemBuf);
46

47 /* Clear the status of the interrupt */
48 CT_INTC.SICR = PRU1_PRU0_INTERRUPT;
49

50 /* Halt the PRU core */
51 __halt();
52 }

xout.pru0.c

PRU 1 waits at line 41 until PRU 0 signals it. xin.pru1.c sends an interrupt to PRU 0 and waits for it to send the
data.

Listing 13.122: xin.pru1.c

1 // From: http://git.ti.com/pru-software-support-package/pru-software-support-
↪→package/trees/master/examples/am335x/PRU_Direct_Connect1

2 #include <stdint.h>
3 #include ”resource_table_empty.h”
4

5 volatile register uint32_t __R30;
6 volatile register uint32_t __R31;
7

8 typedef struct {
9 uint32_t reg5;
10 uint32_t reg6;
11 uint32_t reg7;
12 uint32_t reg8;
13 uint32_t reg9;
14 uint32_t reg10;
15 } bufferData;
16

17 bufferData dmemBuf;
18

19 /* PRU-to-ARM interrupt */
20 #define PRU1_PRU0_INTERRUPT (18)
21 #define PRU1_ARM_INTERRUPT (20+16)
22

23 void main(void)
(continues on next page)

824 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

24 {
25 /* Let PRU0 know that I am awake */
26 __R31 = PRU1_PRU0_INTERRUPT+16;
27

28 /* XFR registers R5-R10 from PRU0 to PRU1 */
29 /* 14 is the device_id that signifies a PRU to PRU transfer */
30 __xin(14, 5, 0, dmemBuf);
31

32 /* Halt the PRU core */
33 __halt();
34 }

xin.pru1.c

Use prudebug to see registers R5-R10 are transferred from PRU 0 to PRU 1.

PRU0> r
Register info for PRU0

Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING,␣

↪→PROC_DISABLED

Program counter: 0x0026
Current instruction: HALT

R00: 0x00000012 *R08: 0xbbbbbbbb* R16: 0x000003c6 R24:␣
↪→0x00110210

R01: 0x00020000 *R09: 0x87654321* R17: 0x00000000 R25:␣
↪→0x00000000

R02: 0x000000e4 *R10: 0xcccccccc* R18: 0x000003e6 R26:␣
↪→0x6e616843

R03: 0x0004272c R11: 0x5fac6373 R19: 0x30203020 R27: 0x206c656e
R04: 0xffffffff R12: 0x59bfeafc R20: 0x0000000a R28: 0x00003033
R05: 0xdeadbeef R13: 0xa4c19eaf R21: 0x00757270 R29:␣

↪→0x02100000
R06: 0xaaaaaaaa R14: 0x00000005 R22: 0x0000001e R30:␣

↪→0xa03f9990
R07: 0x12345678 R15: 0x00000003 R23: 0x00000000 R31:␣

↪→0x00000000

PRU0> *pru 1*
pru 1
Active PRU is PRU1.

PRU1> *r*
r
Register info for PRU1

Control register: 0x00000001
Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING,␣

↪→PROC_DISABLED

Program counter: 0x000b
Current instruction: HALT

R00: 0x00000100 *R08: 0xbbbbbbbb* R16: 0xe9da228b R24:␣
↪→0x28113189

R01: 0xe48cdb1f *R09: 0x87654321* R17: 0x66621777 R25:␣
↪→0xddd29ab1

R02: 0x000000e4 *R10: 0xcccccccc* R18: 0x661f83ea R26:␣
↪→0xcf1cd4a5

R03: 0x0004db97 R11: 0xdec387d5 R19: 0xa85adb78 R27: 0x70af2d02
R04: 0xa90e496f R12: 0xbeac3878 R20: 0x048fff22 R28: 0x7465f5f0

(continues on next page)

13.2. PRU Cookbook 825

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

R05: 0xdeadbeef R13: 0x5777b488 R21: 0xa32977c7 R29:␣
↪→0xae96b530

R06: 0xaaaaaaaa R14: 0xffa60550 R22: 0x99fb123e R30:␣
↪→0x52c42a0d

R07: 0x12345678 R15: 0xdeb2142d R23: 0xa353129d R31:␣
↪→0x00000000

Discussion xout.pru0.c Line-by-line shows the line-by-line for xout.pru0.c

Table 13.31: xout.pru0.c Line-by-line
Line Explanation
4 A different resource so PRU 0 can receive a signal from PRU 1.
9-16 dmemBuf holds the data to be sent to PRU 1. Each will be transferred to its corresponding register by xout().
21-
22

Define the interrupts we’re using.

27-
28

Clear the interrupts.

31-
36

Initialize dmemBuf with easy to recognize values.

40 Wait for PRU 1 to signal.
45 pass:[__]xout() does a direct transfer to PRU 1. Page 92 of PRU Optimizing C/C++ Compiler, v2.2, User’s Guide shows

how to use xout(). The first argument, 14, says to do a direct transfer to PRU 1. If the first argument is 10, 11 or 12, the
data is transferred to one of three scratchpad memories that PRU 1 can access later. The second argument, 5, says to start
transferring with register r5 and use as many registers as needed to transfer all of dmemBuf. The third argument, 0, says
to not use remapping. (See the User’s Guide for details.) The final argument is the data to be transferred.

48 Clear the interrupt so it can go again.

xin.pru1.c Line-by-line shows the line-by-line for xin.pru1.c.

Table 13.32: xin.pru1.c Line-by-line
Line Explanation
8-15 Place to put the received data.
26 Signal PRU 0
30 Receive the data. The arguments are the same as xout(), 14 says to get the data directly from PRU 0. 5 says to start with

register r5. dmemBuf is where to put the data.

If you really need speed, considering using pass:[__]xout() and pass:[__]xin() in assembly.

Copyright
Listing 13.123: copyright.c

1 /*
2 * Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com/
3 *
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * * Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * * Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in␣

↪→the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * * Neither the name of Texas Instruments Incorporated nor the names␣

(continues on next page)

826 Chapter 13. Books

http://www.ti.com/lit/ug/spruhv7b/spruhv7b.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

↪→of
18 * its contributors may be used to endorse or promote products␣

↪→derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33

copyright.c

13.2.8 Moving to the BeagleBone AI

So far all our examples have focussed mostly on the BeagleBone Black and PocketBeagle. These are both
based on the am335x chip. The new kid on the block is the BeagleBone AI which is based on the am5729. The
new chip brings with it new capabilities one of which is four PRUs. This chapter details what changes when
moving from two to four PRUs.

The following are resources used in this chapter.

Note: Resources

• AM572x Technical Reference Manual (AI)

• BeagleBone AI PRU pins

Moving from two to four PRUs

Problem You have code that works on the am335x PRUs and you want to move it to the am5729 on the AI.

Solution Things to consider when moving to the AI are:

• Which pins are you going to use

• Which PRU are you going to run on

Knowing which pins to use impacts the PRU you’ll use.

Discission The various System Reference Manuals (SRM’s) list which pins go to the PRUs. Here the tables
are combined into one to make it easier to see what goes where.

13.2. PRU Cookbook 827

http://www.ti.com/lit/pdf/spruhz6l
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
bl
e
13
.3
3:
M
ap
pi
ng
bi
tp
os
iti
on
s
to
pi
n
na
m
es

PR
U
0

Bi
t0

Bl
ac
k
pi
n
P9
_3
1

AI
PR
U1

pi
n

AI
PR
U2

pi
n
P8
_4
4

Po
ck
et
pi
n
P1
.3
6

0
1

P9
_2
9

P8
_4
1

P1
.3
3

0
2

P9
_3
0

P8
_4
2/
P8
_2
1

P2
.3
2

0
3

P9
_2
8

P8
_1
2

P8
_3
9/
P8
_2
0

P2
.3
0

0
4

P9
_9
2

P8
_1
1

P8
_4
0/
P8
_2
5

P1
.3
1

0
5

P9
_2
7

P9
_1
5

P8
_3
7/
P8
_2
4

P2
.3
4

0
6

P9
_9
1

P8
_3
8/
P8
_5

P2
.2
8

0
7

P9
_2
5

P8
_3
6/
P8
_6

P1
.2
9

0
8

P8
_3
4/
P8
_2
3

0
9

P8
_3
5/
P8
_2
2

0
19

P8
_3
3/
P8
_3

0
11

P8
_3
1/
P8
_4

0
12

P8
_3
2

0
13

P8
_4
5

0
14

P8
_1
2(
ou
t)
P8
_1
6(
in
)|

P9
_1
1

P2
.2
4

0
15

P8
_1
1(
ou
t)
P8
_1
5(
in
)|

P8
_1
7/
P9
_1
3

P2
.3
3

0
16

P9
_4
1(
in
)P
9_
26
(in
)|

P8
_2
7

0
17

P9
_2
6

P8
_2
8

0
18

P8
_2
9

0
19

P8
_3
0

0
20

P8
_4
6/
P8
_8

1
0

P8
_4
5

P8
_3
2

1
1

P8
_4
6

P9
_2
0

1
2

P8
_4
3

P9
_1
9

1
3

P8
_4
4

P9
_4
1

1
4

P8
_4
1

1
5

P8
_4
2

P8
_1
8

P9
_2
5

1
6

P8
_3
9

P8
_1
9

P8
_9

1
7

P8
_4
0

P8
_1
3

P9
_3
1

1
8

P8
_2
7

P9
_1
8

P2
.3
5

1
9

P8
_2
9

P8
_1
4

P9
_1
7

P2
.0
1

1
10

P8
_2
8

P9
_4
2

P9
_3
1

P1
.3
5

1
11

P8
_3
0

P9
_2
7

P9
_2
9

P1
.0
4

1
12

P8
_2
1

P9
_3
0

1
13

P8
_2
0

P9
_2
6

co
nt
inu
es
on
ne
xt
pa
ge

828 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

Ta
ble

13
.3
3
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

1
14

P9
_1
4

P9
_4
2

P1
.3
2

1
15

P9
_1
6

P8
_1
0

P1
.3
0

1
16

P9
_2
6(
in
)

P8
_1
5

P8
_7

1
17

P8
_2
6

P8
_2
7

1
18

P8
_1
6

P8
_4
5

1
19

P8
_4
6

1
19

P8
_4
3

13.2. PRU Cookbook 829

BeagleBoard Docs, Release 1.0.20230711-wip

The pins in bold are already configured as pru pins. See Seeing how pins are configured to see what’s currently
configured as what. See Configuring pins on the AI via device trees to configure pins.

Seeing how pins are configured

Problem You want to know how the pins are currently configured.

Solution The show-pins.pl command does what you want, but you have to set it up first.

bone$ cd ~/bin
bone$ ln -s /opt/scripts/device/bone/show-pins.pl .

This creates a symbolic link to theshow-pins.pl command that is rather hidden away. The link is put in the
bin directory which is in the default command $PATH. Now you can run show-pins.pl from anywhere.

bone$ *show-pins.pl*
P9.19a 16 R6 7 fast rx up i2c4_scl
P9.20a 17 T9 7 fast rx up i2c4_sda
P8.35b 57 AD9 e fast down gpio3_0
P8.33b 58 AF9 e fast down gpio3_1
...

Here you see P9.19a and P9.20a are configured for i2c with pull up resistors. The P8 pins are configured
as gpio with pull down resistors. They are both on gpio port 3. P8.35b is bit 0 while P8.33b is bit 1. You
can find which direction they are set by using gpioinfo and the chip number. Unfortunately you subtract
one from the port number to get the chip number. So P8.35b is on chip number 2.

bone$ *gpioinfo 2*
line 0: unnamed unused *input* active-high
line 1: unnamed unused *input* active-high
line 2: unnamed unused input active-high
line 3: unnamed unused input active-high
line 4: unnamed unused input active-high

...

Here we see both (lines 0 and 1) are set to input.

Adding -v gives more details.

bone$ *show-pins.pl -v*
...
sysboot 14 14 H2 f fast down sysboot14
sysboot 15 15 H3 f fast down sysboot15
P9.19a 16 R6 7 fast rx up i2c4_scl
P9.20a 17 T9 7 fast rx up i2c4_sda

18 T6 f fast down␣
↪→Driver off

19 T7 f fast down␣
↪→Driver off
bluetooth in 20 P6 8 fast rx uart6_rxd ␣
↪→mmc@480d1000 (wifibt_extra_pins_default)
bluetooth out 21 R9 8 fast rx uart6_txd ␣
↪→mmc@480d1000 (wifibt_extra_pins_default)
...

The best way to use show-pins.pl is with grep. To see all the pru pins try:

bone$ *show-pins.pl | grep -i pru | sort*
P8.13 100 D3 c fast rx pr1_pru1_gpi7
P8.15b 109 A3 d fast down pr1_pru1_gpo16
P8.16 111 B4 d fast down pr1_pru1_gpo18

(continues on next page)

830 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

P8.18 98 F5 c fast rx pr1_pru1_gpi5
P8.19 99 E6 c fast rx pr1_pru1_gpi6
P8.26 110 B3 d fast down pr1_pru1_gpo17
P9.16 108 C5 d fast down pr1_pru1_gpo15
P9.19b 95 F4 c fast rx up pr1_pru1_gpi2
P9.20b 94 D2 c fast rx up pr1_pru1_gpi1

Here we have nine pins configured for the PRU registers R30 and R31. Five are input pins and four are out.

Configuring pins on the AI via device trees

Problem I want to configure another pin for the PRU, but I get an error.

bone$ *config-pin P9_31 pruout*
ERROR: open() for /sys/devices/platform/ocp/ocp:P9_31_pinmux/state failed,␣
↪→No such file or directory

Solution The pins on the AI must be configure at boot time and therefor cannot be configured with
config-pin. Instead you must edit the device tree.

Discission Suppose you want to make P9_31 a PRU output pin. First go to the am5729 System Reference
Manual and look up P9_31.

Tip: The BeagleBone AI PRU pins table may be easier to use.

P9_31 appears twice, as P9_31a and P9_31b. Either should work, let’s pick P9_31a.

Warning: When you have two internal pins attached to the same header (either P8 or P9) make sure only
one is configured as an output. If both are outputs, you could damage the AI.

We see that when P9_31a is set to MODE13 it will be a PRU out pin. MODE12 makes it a PRU in pin. It
appears at bit 10 on PRU2_1.

Next, find which kernel you are running.

bone$ uname -a
Linux ai 4.14.108-ti-r131 #1buster SMP PREEMPT Tue Mar 24 19:18:36 UTC 2020␣
↪→armv7l GNU/Linux

I’m running the 4.14 version. Now look in /opt/source for your kernel.

bone$ cd /opt/source/
bone$ ls
adafruit-beaglebone-io-python dtb-5.4-ti rcpy
BBIOConfig librobotcontrol u-boot_v2019.04
bb.org-overlays list.txt u-boot_v2019.07-rc4
dtb-4.14-ti pyctrl
dtb-4.19-ti py-uio

am5729-beagleboneai.dts is the file we need to edit. Search for P9_31. You’ll see:

1 DRA7XX_CORE_IOPAD(0x36DC, MUX_MODE14) // B13: P9.30: mcasp1_axr10.off //
2 DRA7XX_CORE_IOPAD(0x36D4, *MUX_MODE13*) // B12: *P9.31a*: mcasp1_axr8.off //
3 DRA7XX_CORE_IOPAD(0x36A4, MUX_MODE14) // C14: P9.31b: mcasp1_aclkx.off //

13.2. PRU Cookbook 831

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/System-Reference-Manual
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/System-Reference-Manual
https://docs.google.com/spreadsheets/d/1dFSBVem86vAUD7MLXvqdS-N0Efi8_g_O1iTqzql8DAo/edit#gid=0

BeagleBoard Docs, Release 1.0.20230711-wip

Change the MUX_MODE14 to MUX_MODE13 for output, or MUX_MODE12 for input.

Compile and install. The first time will take a while since it recompiles all the dts files.

1 bone$ make
2 ...
3 DTC src/arm/am335x-sl50.dtb
4 DTC src/arm/am5729-beagleboneai.dtb
5 DTC src/arm/am335x-nano.dtb
6 ...
7 bone$ sudo make install
8 ...
9 'src/arm/am5729-beagleboneai.dtb' -> '/boot/dtbs/4.14.108-ti-r131/am5729-

↪→beagleboneai.dtb'
10 ...
11 bone$ reboot
12 ...
13 bone$ *show-pins.pl -v | sort | grep -i pru*
14 P8.13 100 D3 c fast rx pr1_pru1_gpi7
15 P8.15b 109 A3 d fast down pr1_pru1_gpo16
16 P8.16 111 B4 d fast down pr1_pru1_gpo18
17 P8.18 98 F5 c fast rx pr1_pru1_gpi5
18 P8.19 99 E6 c fast rx pr1_pru1_gpi6
19 P8.26 110 B3 d fast down pr1_pru1_gpo17
20 P9.16 108 C5 d fast down pr1_pru1_gpo15
21 P9.19b 95 F4 c fast rx up pr1_pru1_gpi2
22 P9.20b 94 D2 c fast rx up pr1_pru1_gpi1
23 P9.31a 181 B12 d fast down pr2_pru1_gpo10

There it is. P9_31 is now a PRU output pin on PRU1_0, bit 3.

Using the PRU pins

Problem Once I have the PRU pins configured on the AI how do I use them?

Solution In Configuring pins on the AI via device trees we configured P9_31a to be a PRU pin.
show-pins.pl showed that it appears at pr2_pru1_gpo10, which means pru2_1 accesses it using
bit 10 of register R30.

Discission It’s easy to modify the pwm example from PWM Generator to use this pin. First copy the example
you want to modify to pwm1.pru2_1.c. The pru2_1 in the file name tells the Makefile to run the code
on pru2_1. pwm1.pru2_1.c shows the adapted code.

Listing 13.124: pwm1.pru2_1.c

1 #include <stdint.h>
2 #include <pru_cfg.h>
3 #include ”resource_table_empty.h”
4 #include ”prugpio.h”
5

6 #define P9_31 (0x1<<10)
7

8 volatile register uint32_t __R30;
9 volatile register uint32_t __R31;
10

11 void main(void)
12 {
13 uint32_t gpio = P9_31; // Select which pin to toggle.;
14

15 /* Clear SYSCFG[STANDBY_INIT] to enable OCP master port */
(continues on next page)

832 Chapter 13. Books

BeagleBoard Docs, Release 1.0.20230711-wip

(continued from previous page)

16 CT_CFG.SYSCFG_bit.STANDBY_INIT = 0;
17

18 while(1) {
19 __R30 |= gpio; // Set the GPIO pin to 1
20 __delay_cycles(100000000);
21 __R30 &= ~gpio; // Clear the GPIO pin
22 __delay_cycles(100000000);
23 }
24 }

pwm1.pru2_1.c

One line 6 P9_31 is defined as (0x1:ref:`10), which means shift 1 over by 10 bits. That’s the only
change needed. Copy the local Makefile to the same directory and compile and run.

1 bone$ make TARGET=pwm1.pru2_1

Attach an LED to P9_31 and it should be blinking.

13.2.9 PRU Projects

Users of TI processors with PRU-ICSS have created application for many different uses. A list of a few are shared
below. For additional support resources, software and documentation visit the PRU-ICSS wiki.

LEDscape

Description: BeagleBone Black cape and firmware for driving a large number of WS281x LED strips.

Type: Code Library Documentation and example projects.

References:

• https://github.com/osresearch/LEDscape http://trmm.net/LEDscape

LDGraphy

Description: Laser direct lithography for printing PCBs.

Type: Code Library and example project.

References:

• https://github.com/hzeller/ldgraphy/blob/master/README.md

PRdUino

Description: This is a port of the Energia platform based on the Arduino framework allowing you to use Arduino
software libraries on PRU.

Type: Code Library

References:

• https://github.com/lucas-ti/PRdUino

13.2. PRU Cookbook 833

https://github.com/osresearch/LEDscape
http://trmm.net/LEDscape
https://github.com/hzeller/ldgraphy/blob/master/README.md
https://github.com/lucas-ti/PRdUino

BeagleBoard Docs, Release 1.0.20230711-wip

DMX Lighting

Description: Controlling professional lighting systems

Type: Project Tutorial Code Library

References:

• https://beagleboard.org/CapeContest/entries/BeagleBone+DMX+Cape/

• https://web.archive.org/web/20130921033304/blog.boxysean.com/2012/08/12/
first-steps-with-the-beaglebone-pru/

• https://github.com/boxysean/beaglebone-DMX

Interacto

Description: A cape making BeagleBone interactive with a triple-axis accelerometer, gyroscope and magne-
tometer plus a 640 x 480/30 fps camera. All sensors are digital and communicate via I²C to the BeagleBone.
The camera frames are captured using the PRU-ICSS. The sensors on this cape give hobbyists and students a
starting point to easily build robots and flying drones.

Type: Project 1 Project 2 Code Library

References:

• https://beagleboard.org/CapeContest/entries/Interacto/

• https://web.archive.org/web/20130507141634/http://www.hitchhikeree.org:80/beaglebone_capes/
interacto/

• https://github.com/cclark2/interacto_bbone_cape

Replicape: 3D Printer

Description: Replicape is a high end 3D-printer electronics package in the form of a Cape that can be placed
on a BeagleBone Black. It has five high power stepper motors with cool running MosFets and it has been
designed to fit in small spaces without active cooling. For a Replicape Daemon that processes G-code, see the
Redeem Project

Type: Project Code Library

References:

• http://www.thing-printer.com/product/replicape/

• https://bitbucket.org/intelligentagent/replicape/

PyPRUSS: Python Library

Description: PyPRUSS is a Python library for programming the PRUs on BeagleBone (Black)

Type: Code Library

References:
https://github.com/MuneebMohammed/pypruss

Geiger

Description: The Geiger Cape, created by Matt Ranostay, is a design that measures radiation counts from
background and test sources by utilising multiple Geiger tubes. The cape can be used to detect low-level
radiation, which is needed in certain industries such as security and medical.

Type: Project 1 Project 2 Code Library

834 Chapter 13. Books

https://beagleboard.org/CapeContest/entries/BeagleBone+DMX+Cape/
https://web.archive.org/web/20130921033304/blog.boxysean.com/2012/08/12/first-steps-with-the-beaglebone-pru/
https://web.archive.org/web/20130921033304/blog.boxysean.com/2012/08/12/first-steps-with-the-beaglebone-pru/
https://github.com/boxysean/beaglebone-DMX
https://beagleboard.org/CapeContest/entries/Interacto/
https://web.archive.org/web/20130507141634/http://www.hitchhikeree.org:80/beaglebone_capes/interacto/
https://web.archive.org/web/20130507141634/http://www.hitchhikeree.org:80/beaglebone_capes/interacto/
https://github.com/cclark2/interacto_bbone_cape
http://www.thing-printer.com/product/replicape/
https://bitbucket.org/intelligentagent/replicape/
https://github.com/MuneebMohammed/pypruss

BeagleBoard Docs, Release 1.0.20230711-wip

References:

• http://beagleboard.org/CapeContest/entries/Geiger+Cape/

• http://elinux.org/BeagleBone/GeigerCapePrototype

Note: #TODO#: the git repo was taken down

Servo Controller Foosball Table

Description: Used for ball tracking and motor control

Type: Project Tutorial Code Library

References:

• http://www.element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/07/17/hackerspace-challenge–leeds-only-pru-can-make-the-leds-
bright

• https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&
output=html

• https://github.com/pbrook/pypruss

Imaging with connected camera

Description: Low resolution imaging ideal for machine vision use-cases, robotics and movement detection

Type: Project Code Library

References:

• http://www.element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/08/18/bbb–imaging-with-a-pru-connected-camera

Computer Numerical Control (CNC) Translator

Description: Smooth stepper motor control; real embedded version of LinuxCNC

Type: Tutorial Tutorial

References:

• http://www.buildlog.net/blog/2013/09/cnc-translator-for-beaglebone/ http://bb-lcnc.blogspot.com/
p/machinekit_16.html

Robotic Control

Description: Chubby SpiderBot

Type: Project Code Library Project Reference

References:

• http://www.youtube.com/watch?v=dEes9k7-DYY

• http://www.youtube.com/watch?v=JXyewd98e9Q

• http://www.ti.com/lit/wp/spry235/spry235.pdf

13.2. PRU Cookbook 835

http://beagleboard.org/CapeContest/entries/Geiger+Cape/
http://elinux.org/BeagleBone/GeigerCapePrototype
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/07/17/hackerspace-challenge--leeds-only-pru-can-make-the-leds-bright
https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&output=html
https://docs.google.com/spreadsheet/pub?key=0AmI_ryMKXUGJdDQ3LXB4X3VBWlpxQTFWbGh6RGJHUEE&output=html
https://github.com/pbrook/pypruss
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/18/bbb--imaging-with-a-pru-connected-camera
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/18/bbb--imaging-with-a-pru-connected-camera
http://www.buildlog.net/blog/2013/09/cnc-translator-for-beaglebone/
http://bb-lcnc.blogspot.com/p/machinekit_16.html
http://bb-lcnc.blogspot.com/p/machinekit_16.html
http://www.youtube.com/watch?v=dEes9k7-DYY
http://www.youtube.com/watch?v=JXyewd98e9Q
http://www.ti.com/lit/wp/spry235/spry235.pdf

BeagleBoard Docs, Release 1.0.20230711-wip

Note: #TODO#: The Chubby1_v1 repo on github.com for user cagdasc was taken down.

Software UART

Description: Soft-UART implementation on the PRU of AM335x

Type: Code Library Reference

References:

• https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/
PRU-ICSS/Linux_Drivers/pru-sw-uart.html

Deviant LCD

Description: PRU bit-banged LCD interface @ 240x320

Type: Project Code Library

References:

• http://www.beagleboard.org/CapeContest/entries/DeviantLCD/

• https://github.com/cclark2/deviantlcd_bbone_cape

Nixie tube interface

Description:

Type: Code Library

References:

• https://github.com/mranostay/beagle-nixie

Thermal imaging camera

Description: Thermal camera using BeagleBone Black, a small LCD, and a thermal array sensor

Type: Project Code Library

References:

• https://element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/06/07/bbb–building-a-thermal-imaging-camera

Sine wave generator using PWMs

Description: Simulation of a pulse width modulation

Type: Project Reference Code Library

References:

• http://elinux.org/ECE497_BeagleBone_PRU

• https://github.com/millerap/AM335x_PRU_BeagleBone

836 Chapter 13. Books

https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/pru-sw-uart.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/pru-sw-uart.html
http://www.beagleboard.org/CapeContest/entries/DeviantLCD/
https://github.com/cclark2/deviantlcd_bbone_cape
https://github.com/mranostay/beagle-nixie
https://element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/06/07/bbb--building-a-thermal-imaging-camera
https://element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/06/07/bbb--building-a-thermal-imaging-camera
http://elinux.org/ECE497_BeagleBone_PRU
https://github.com/millerap/AM335x_PRU_BeagleBone

BeagleBoard Docs, Release 1.0.20230711-wip

Emulated memory interface

Description: ABX loads amovie into the BeagleBone’s memory and then launches the memory emulator on
the PRU sub-processor of the BeagleBone’s ARM AM335x

Type: Project

References:

• https://github.com/lybrown/abx

6502 memory interface

Description: System permitting communication between Linux and 6502 processor

Type: Project Code Library

References:

• http://elinux.org/images/a/ac/What’s_Old_Is_New-_A_6502-based_Remote_Processor.pdf

• https://github.com/lybrown/abx

JTAG/Debug

Description: Investigating the fastest way to program using JTAG and provide for debugging facilities built
into the BeagleBone.

Type: Project

References:

• http://beagleboard.org/project/PRUJTAG/

High Speed Data Acquistion

Description: Reading data at high speeds

Type: Reference

References:

• http://www.element14.com/community/community/knode/single-board_computers/next-
gen_beaglebone/blog/2013/08/04/bbb–high-speed-data-acquisition-and-web-based-ui

Prufh (PRU Forth)

Description: Forth Programming Language and Compiler. It consists of a compiler, the forth system itself,
and anoptional program for loading and communicating with the forth code proper.

Type: Compiler

References:

• https://github.com/biocode3D/prufh

VisualPRU

Description: VisualPRU is a minimal browser-based editor and debugger for the BeagleBone PRUs. The app
runs from a local server on the BeagleBone.

Type: Editor and Debugger

13.2. PRU Cookbook 837

https://github.com/lybrown/abx
http://elinux.org/images/a/ac/What's_Old_Is_New-_A_6502-based_Remote_Processor.pdf
https://github.com/lybrown/abx
http://beagleboard.org/project/PRUJTAG/
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/04/bbb--high-speed-data-acquisition-and-web-based-ui
http://www.element14.com/community/community/knode/single-board_computers/next-gen_beaglebone/blog/2013/08/04/bbb--high-speed-data-acquisition-and-web-based-ui
https://github.com/biocode3D/prufh

BeagleBoard Docs, Release 1.0.20230711-wip

References:

• https://github.com/mmcdan/visualpru

libpruio

Description: Library for easy configuration and data handling at high speeds. This library can configure and
control the devices from single source (no need for further overlays or the device tree compiler)

Type: Documentation

References:

• http://users.freebasic-portal.de/tjf/Projekte/libpruio/doc/html/index.html

• Library http://www.freebasic-portal.de/downloads/fb-on-arm/libpruio-325.html{[}(German)]

BeagleLogic

Description: 100MHz 14channel logic analyzer using both PRUs (one to capture and one to transfer the data)

Type: Project

References:

• http://beaglelogic.net

BeaglePilot

Description: Uses PRUs as part of code for a BeagleBone based autopilot

Type: Code Library

References:

• https://github.com/BeaglePilot/beaglepilot

PRU Speak

Description: Implements BotSpeak, a platform independent interpreter for tools like Labview, on the PRUs

Type: Code Library

References:

• https://github.com/deepakkarki/pruspeak

838 Chapter 13. Books

https://github.com/mmcdan/visualpru
http://users.freebasic-portal.de/tjf/Projekte/libpruio/doc/html/index.html
http://www.freebasic-portal.de/downloads/fb-on-arm/libpruio-325.html{[}(German
http://beaglelogic.net
https://github.com/BeaglePilot/beaglepilot
https://github.com/deepakkarki/pruspeak

Chapter 14

Accessories

This section will include all the tested accessories for BeagleBoard.org hardware and kits.

Note: This documentation is not complete and we are actively looking for volunteers to test and add new
hardware accessories that they have already with them. General feedback and contribution is also appreciated.
You can checkout these pages to contribuite to BeagleBoard.org docs project,

1. Docs contribution guide

2. Docs project issue tracker.

Danger: Accessories section contains only 3rd party products that have been manually used by commu-
nity members with BeagleBoard.org products. BeagleBoard.org should not be held liable for the function-
ality of BeagleBoard.org products in association with these 3rd party products in any way possible. This is
just a place for people to report their experiences and not a statement of compatibility. BeagleBoard.org
approve that these items have at least some aspect of testing by foundation members, though only specific
versions and it is up to the manufacturers of those items to maintain compatibility.

Power Supplies

839

https://docs.beagleboard.io/latest/intro/contribution/index.html
https://git.beagleboard.org/docs/docs.beagleboard.io/-/issues

BeagleBoard Docs, Release 1.0.20230711-wip

Power source for all your BeagleBoard.org hardware.

Displays

Dedicated, portable, and TV monitors.

Peripherals

Keyboard, mice, and other peripherals.

Cables

840 Chapter 14. Accessories

BeagleBoard Docs, Release 1.0.20230711-wip

USB, debug, HDMI, and other cables.

Cameras

USB and CSI cameras

14.1 Power supplies

All BeagleBone boards require different power supplies like BeagleBone Balack and other AM335X based boards
will be fine with a 5VDC @ 1A but, BeagleBone AI-64 requires aleast 5VDC @ 3A. You have to either supply the
power via USB jack or a 2.1mm/2.5mm inner diameter and 5.5mm outer diameter (center positive) barrel jack.

14.1. Power supplies 841

BeagleBoard Docs, Release 1.0.20230711-wip

Note: The power supply is not supplied with the board.

Table 14.1: BeagleBone power supplies
Board Connector Power Tested accessories
BeagleBone Black 2.1mm Barrel Jack 5V @ 2A • Adafruit

• Sparkfun

• Logic Supply
BeagleBone Black Wireless

Beaglebone xM
PocketBeagle microUSB 5V @ 2A

• AA10A-050A(M)-R

• AA10E-050A(M)-R

BeagleBone AI-64 Type-C 5V @ 3A • AA65M-59FKA-R
Beaglebone AI
BeagleBone Green Gateway 2.1mm Barrel Jack 12V @ 5A • PSAC60M-120-R
Beaglebone Blue
BeagleBone X15 2.5mm Barrel Jack 12V @ 5A • TRG70A120-12E01-

Level-V

Tip: Most modern day mobile phone chargers are capable of delivering enough current to power any Bea-
gleBone. You may try using that with suitable cable before buying any standalone power srource for your
board.

If you plan to use capes or add your own circuitry, higher amperage may be required. Make sure that you have
a grounded connection. This can be the USB cable or the HDMI cable.

14.2 Displays

14.2.1 Monitors and Resolutions

Supported Monitors

The following monitors and resolutions have been tested for operation with the BeagleBone Black. Check here
often as we will update the list as we confirm the operation. Let Support know the model and resolution at
which it works and we will add it to the list. Only the highest resolution is listed below.

Note: All the monitors most likely will work with AI-64 also but, make sure that you are using active miniDP
to HDMI converter becuase passive convertor will not work.

Links are not provided as they change frequently. So, search on the model number to find a source for these.

• Sony Model LMD-2450W 1280 x 1024 @60Hz

• Hitachi Model LD9000T 1280 x 720 @60Hz

• Samsung UN32EH500F 1280 x 1024 @60Hz

• Samsung P2770HD Syncmaster 1280 x 1024 @60Hz

• MAG GML 2226 2200M 1280 x 1024 @60Hz

• ASUS VW266H 1280 x 1024 @60Hz

• Asus VE278H 720 x 480 @60Hz

• HP TSS-23x11 1280 x 1024 @60Hz

842 Chapter 14. Accessories

http://www.adafruit.com/products/276
https://www.sparkfun.com/products/8269?
http://www.logicsupply.com/pw-5v2a/
https://mou.sr/3XUPOL0
https://mou.sr/3jrA4zZ
https://mou.sr/3Dz9P1E
https://mou.sr/3Rs657U
https://mou.sr/3RvRBnl
https://mou.sr/3RvRBnl
https://git.beagleboard.org/docs/docs.beagleboard.io/-/issues

BeagleBoard Docs, Release 1.0.20230711-wip

• Acer S230HL 1280 x 1024 @60Hz

• Acer S231HL 1280 x 720 @60Hz

• ASUS VH238H 1280 x 720 @50Hz

• Sharp Aquos TV Dell S244OL 1920 x 1080 @60HZ

Unsupported Monitors

LG 37LH30 - did not seem to work, the display didn’t even recognize that anything was plugged in at all.

Supported Televisions

The following TVs and resolutions have been tested for operation with the BeagleBone Black. Check here often
as we will update the list as we confirm the operation. If you have a TV that works fine, let us know the model
and resolution at which it works and we will add it to the list. Only the highest resolution is listed below.

Links are not provided as they change frequently. So, search on the model number to find a source for these.

Vizio E371VL 1280x720 @60Hz. Vizio E322VL 1920x1080 @24Hz. Panasonic TX-L19X10BW 1280x720 @60Hz.

Unsupported Televisions

Tip: If you don’t have a monitor/TV you can use a Video Captiure Card like this from PiBox with OBS or any
camera application to see the video coming through.

14.3 Peripherals

Note: Most Keyboards, Mouse, and USB Hubs are plug-n-play devices and they are supported out of the box in
linux. List below only shows what has been tested. You may have something different and it will work without
any additional software requirement.

14.3.1 Keyboard & Mouse Combo

With limited ports availability on BeagleBones it is recommended to use wireless Keyboard & Mouse combos.

• Adafruit keyboard & Mouse w/batteries

• Portronics Key2-A Combo of Multimedia Wireless Keyboard & Mouse

14.3.2 Keyboards

Make sure that you plug the keyboard into the USB Host connector before powering on the board.

• BTC USB 6100C

• Inland USB 70010

• Gear Head Wireless KB3800TPW

• Microsoft Wireless 800

• Logitech MK320 Keyboard/Mouse Combo

14.3. Peripherals 843

https://www.amazon.com/Capture-India-Aluminium-Streaming-Teaching/dp/B0973PR9HH/
https://obsproject.com/
https://www.mouser.in/ProductDetail/Adafruit/1738?qs=GURawfaeGuBoaqdx8E%2Fl7w%3D%3D
https://www.amazon.in/Portronics-Combo-Multimedia-Wireless-Light-Weight/dp/B07X1KRPDZ/
http://www.amazon.com/BTC-6100C-Compact-MultiMedia-Keyboard/dp/B000VITZ98/
http://inlandproduct.com/usbwiredkeyboard.aspx
http://www.amazon.com/Wireless-Touch-Touchpad-Keyboard-Smart/dp/B003GU1028/
http://www.amazon.com/Microsoft-Wireless-Keyboard-800-2VJ-00001/dp/B004JO16KG/
http://www.amazon.com/Logitech-Wireless-Desktop-MK320-Keyboard/dp/B003VAGXZC/ref=sr_1_1?s=electronics&ie=UTF8&qid=1371841107&sr=1-1&keywords=mk320

BeagleBoard Docs, Release 1.0.20230711-wip

• Logitech MK710 Keyboard/Mouse Combo

• Logitech MK260 Keyboard/Mouse Combo

• Inland Keyboard and Mouse Combo

• Solidtek KB-5010BU Keyboard+Roller Ball

14.3.3 Mice

Make sure that you plug the mice into the USB Host connector before powering on the board.

• Microsoft Wireless 1000

• Logitech M705

• Logitech M600

• Logitech M310

14.3.4 USB HUBS

Make sure that you plug the HUB into the USB Host connector before powering on the board.

• Inland 4 Port

• Manhattan 10-port HUB

• 4-Port USB Cable HUB

• D-LINK DUB-H7

• Trust HU-5770 7-Port Powered Hub

Tip: Make sure you are powering BeagleBone with decent power supply with enough current before attaching
any additional Peripherals. See Power supplies for more information on power requirements.

14.4 Cables

14.4.1 USB Cables

A microUSB cable will normally be supplied with the BeagleBone Black. For other beaglebone boards like
PocketBeagle, BeagleBone AI, BeagleBone AI-64 you’ll have to procure your own USB cable.

Table 14.2: USB ports on BeagleBone hardware
Board USB type
BeagleBone Play USB-C
BeagleBone Black miniUSB
PocketBeagle microUSB
BeagleBone AI USB-C
BeagleBone AI-64 USB-C
BeagleBone Blue microUSB
BeagleBone Black Wireless microUSB
BeagleBone xM miniUSB
BeagleBone X15 microUSB

844 Chapter 14. Accessories

http://www.amazon.com/Logitech-Wireless-Desktop-Keyboard-920-002416/dp/B0036E8V08/
http://www.amazon.com/Logitech-Wireless-Combo-Keyboard-920-002950/dp/B004KSQANO
http://www.amazon.com/Inland-Wireless-2-4GHz-Optical-Keyboard/dp/B009V9IWCO/ref=sr_sp-btf_image_1_10?s=electronics&ie=UTF8&qid=1376403707&sr=1-10&keywords=inland+mouse+and+keyboard
http://www.logicsupply.com/products/kb_5010bu
http://www.amazon.com/Microsoft-Wireless-Mobile-Mouse-1000/dp/B003STDQQU/ref=sr_1_1?s=electronics&ie=UTF8&qid=1371841170&sr=1-1&keywords=microsoft+wireless+1000
http://www.amazon.com/Logitech-Wireless-Marathon-Battery-910-001935/dp/B003TG75EG/
http://www.amazon.com/Logitech-Touch-Mouse-M600-910-002666/dp/B006MBP7T0/
http://www.logitech.com/en-us/product/wireless-mouse-m310
http://www.microcenter.com/product/360458/4-Port_USB_20_Hub
http://www.microcenter.com/product/393316/10-Port_USB_20_Hi-Speed_Desktop_Hub
http://www.microcenter.com/product/354122/4-Port_USB_20_Cable_Hub
http://www.dlink.com/us/en/home-solutions/connect/usb/dub-h7-7-port-usb-2-0-hub
http://www.amazon.co.uk/TRUST-UK-HU-5770-PORT-POWERED/dp/B000HG5Q42

BeagleBoard Docs, Release 1.0.20230711-wip

14.4.2 Serial Debug Cables

The default serial port settings for the board are:

Table 14.3: UART settings
Setting Value
Baud 115,200
Bits 8
Parity N
Stop Bits 1
Handshake None

JST-SH serial cables

These cables are not active (only wries and connector) and provide interface between serial cables listed below
and serial debug ports on new BeagleBone boards like BeagleBone AI and BeagleBone AI-64. You can purchase
these cables from different sources including:

1. Farnell

2. DigiKey

Standard FTDI Cable

The debug cable is a standard FTDI to TTL cable. Make sure you get the 3.3V version. It can purchased from
several different sources including but not limited to:

• FTDI serial cable direct

• FTDI serial cable at DigiKey

• FTDI serial cable at Newark

• FTDI serial cable at Sparkfun

• FTDI serial cable at Adafruit

Pin 1 on the cable is the black wire and connects to pin 1 on the board. (the pin with the white dot next to it)

Adafruit 4 Pin Cable (CP2102)

Adafruit 4-pin serial cable (Originally this is a Prolific chipset based cable, as of Dec. 21, 2016 we will be
shipping cables with SiLabs CP2012 chipset instead of Prolific.)

14.4. Cables 845

https://uk.farnell.com/element14/1103004000156/beaglebone-ai-serials-cable/dp/3291081
https://www.digikey.in/en/products/detail/digi-key-electronics/BBCAI/10187731?s=N4Ig7CBcoIYE5QIwA5EGYA0IYBcmZAAcBLJABgDYxEyBOMAXwaA
https://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
https://www.digikey.com/product-detail/en/TTL-232R-3V3/768-1015-ND/1836393
https://www.newark.com/ftdi/ttl-232r-3v3/usb-to-serial-converter-cable/dp/34M8872?st=TTL-232R-3V3
https://www.sparkfun.com/products/9717
https://www.adafruit.com/products/70
http://www.adafruit.com/products/954

BeagleBoard Docs, Release 1.0.20230711-wip

Table 14.4: Adafruit 4 pin serial cable connection to BeagleBone Black
Board Wire
Pin 1 (GND) Black (GND)
Pin 4 (RX) Green (TX)
Pin 5 (TX) White (RX)

Note: The naming of the signals reflect those of the cable. The swapping of TX and RX takes place on the
board.

You will also find an extra RED wire on this cable that supplies 5V @ 500mA which could power the board if
connected to one of the VDD_5V pins (P9_05, P9_06). Just leave it unconnected.

FTDI 3 Pin Cable

You can purchase the another version direct from FTDI This cable only has three wires for connection. You can
find the datasheet and a picture at Cable

Board Wire
Pin 1 (GND) Black (GND)
Pin 4 (RX) Orange (TX)
Pin 5 (TX) Yellow (RX)

14.4.3 JTAG debug Cables

TagConnect (JTAG)

Boards like BeagleConnect Freedom and BeaglePlay use the TagConnect interface which allows you to perform
firmware updates and JTAG hardware debugging. To use the interface, the the parts below from tag-connect
are required.

1. 10pin TagConnect (no legs) ribbon cable.

2. TagConnect retaining clip.

14.4.4 HDMI Cables

Working HDMI Cables

The BeagleBone Black uses a microHDMI cable.

846 Chapter 14. Accessories

http://apple.clickandbuild.com/cnb/shop/ftdichip?op=catalogue-products-null&prodCategoryID=167&title=TTL-232R-RPi
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://www.tag-connect.com
https://www.tag-connect.com/product/tc2050-idc-nl-10-pin-no-legs-cable-with-ribbon-connector
https://www.tag-connect.com/product/tc2050-clip-3pack-retaining-clip

BeagleBoard Docs, Release 1.0.20230711-wip

microHDMI to VGA

Cable Matters Micro HDMI to VGA Adapter

14.4.5 miniDP to HDMI

Working miniDP to HDMI

Note: BeagleBone-AI64 requires an ACTIVE Mini DisplayPort to HDMI cable or adaptor to work, a passive
miniDP to HDMI setup will not work at all.

• IVANKY 4K Active Mini DisplayPort to HDMI Adapter

• CableCreation Mini DP (Thunderbolt 2 Compatible) to HDMI

Examples of “Bad” MiniDP to HDMI

• UGREEN Mini DP Male to HDMI

• AGARO Mini Displayport (Mini Dp) To Hdmi

• AmazonBasics Mini Display Port to HDMI

14.5 Cameras

14.5.1 USB Cameras

Camera BeagleBone Black BeagleBone AI-64
Logitech C270 Tested
Logitech C920 Tested
Logitech C922 Tested

14.5.2 CSI Cameras

Note: Using any CSI camera will require you to load an additional overlay.

BeagleBone AI-64

Tip: Additionally a 15 Pin to 22 Pin camera flex cable will be required for the camera to be used on BeagleBone
AI-64 if your camera module has a 15 pin connector.

• IMX219 from Arducam

• Raspberry Pi v2 (IMX219)

14.5. Cameras 847

https://www.amazon.com/Cable-Matters-Active-Female-Adapter/dp/B00879EZJI/ref=sr_1_2?ie=UTF8&qid=1381610066&sr=8-2&keywords=micro-hdmi+to+vga
https://www.amazon.com/dp/B089GF8M87/
https://www.amazon.in/CD0257-Mini-DP-to-HDMI/dp/B01FM51O0W/
https://www.amazon.in/Mini-Male-Female-Converter-Cable/dp/B01CL1P6TA/
https://www.amazon.in/AGARO-Meters-Laptop-Computers-Mobile/dp/B09GW1NMNZ/
https://www.amazon.in/AmazonBasics-Mini-DisplayPort-HDMI-Adapter/dp/B0134V3KIA/
https://robu.in/product/raspberry-pi-zero-v1-3-camera-cable/
https://robu.in/product/arducam-imx219-visible-light-fixed-focus-camera-module-for-raspberry-pi/
https://www.mouser.in/ProductDetail/SparkFun/DEV-14028?qs=FNcb6ahWXRycHsZ%2FjqmADw%3D%3D

BeagleBoard Docs, Release 1.0.20230711-wip

848 Chapter 14. Accessories

Chapter 15

Terms & Conditions

15.1 Design

These design materials referred to in this document are NOT SUPPORTED and DO NOT constitute a reference
design. Only “community” support is allowed via resources at forum.beagleboard.org.

THERE IS NO WARRANTY FOR THE DESIGN MATERIALS, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE DESIGN MATERIALS “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-
ING,BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND THE PERFORMANCE OF THE DESIGN MATERIALS IS WITH
YOU. SHOULD THE DESIGN MATERIALS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIRING, OR CORRECTION.

This board was designed as an evaluation and development tool. It was not designed with any other application
in mind. As such, the design materials that are provided which include schematic, BOM, and PCB files, may
or may not be suitable for any other purposes. If used, the design material becomes your responsibility as
to whether or not it meets your specific needs or your specific applications and may require changes to meet
your requirements.

See the LICENSE file regarding the copyright of these materials.

This LICENSE does not apply to BeagleBoard.org Foundation trademarks. Express written permission is re-
quired for use of BeagleBoard.org Foundation trademarks, including, but not limited to BeagleBoard.org, Bea-
gleBone, BeagleBoard, PocketBeagle, BeagleV, BeaglePlay, BeagleConnect, BeagleBoard Compatible, Bea-
gleBoard Embedded, and BeagleBoard Approved. Please visit https://www.beagleboard.org/brand-use and
https://www.beagleboard.org/partner-programs for additional details.

15.2 Additional terms

BeagleBoard.org Foundation and logo-licensedmanufacturers provide the board under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user
indemnifies the Supplier from all claims arising from the handling or use of the goods.

Should the board not meet the specifications indicated in the System Reference Manual, the board may be
returned within 90 days from the date of delivery to the distributor of purchase for a full refund. THE FORE-
GOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL
OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE,
NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUEN-
TIAL DAMAGES.

849

https://www.beagleboard.org/brand-use
https://www.beagleboard.org/partner-programs

BeagleBoard Docs, Release 1.0.20230711-wip

Please read the System Reference Manual and, specifically, the Warnings and Restrictions notice in the Sys-
tems Reference Manual prior to handling the product. This notice contains important safety information about
temperatures and voltages.

No license is granted under any patent right or other intellectual property right of Supplier covering or relating
to any machine, process, or combination in which such Supplier products or services might be or are used.
The Supplier currently deals with a variety of customers for products, and therefore our arrangement with the
user is not exclusive. The Supplier assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.

15.3 United States FCC and Canada IC regulatory compliance infor-
mation

The board is annotated to comply with Part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation. Changes or modifications
not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly
approved by the party responsible for compliance could void the user’s authority to operate the equipment.

15.4 Board warnings, restrictions and disclaimers

For Feasibility Evaluation Only, in Laboratory/Development Environments. The board is not a complete product.
It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by
technically qualified electronics experts who are familiar with the dangers and application risks associated with
handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a
finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent, and agree that:

You have unique knowledge concerning Federal, State, and local regulatory requirements (including but not
limited to Food and Drug Administration regulations, if applicable) which relate to your products and which re-
late to your use (and/or that of your employees, affiliates, contractors or designees) of the board for evaluation,
testing and other purposes.

You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws
and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by
you and/or your employees, affiliates, contractors or designees, using the board. Further, you are responsible
to assure that any interfaces (electronic and/or mechanical) between the board and any human body are
designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of
electrical shock hazard.

Since the board is not a completed product, it may not meet all applicable regulatory and safety compliance
standards which may normally be associated with similar items. You assume full responsibility to determine
and/or assure compliance with any such standards and related certifications as may be applicable. You will
employ reasonable safeguards to ensure that your use of the board will not result in any property damage,
injury, or death, even if the board should fail to perform as described or expected.

Certain Instructions. It is important to operate the board within Supplier’s recommended specifications and
environmental considerations per the user guidelines. Exceeding the specified the board ratings (including
but not limited to input and output voltage, current, power, and environmental ranges) may cause property
damage, personal injury, or death. If there are questions concerning these ratings please contact the Supplier
representative before connecting interface electronics including input power and intended loads. Any loads
applied outside of the specified output range may result in unintended and/or inaccurate operation and/or
possible permanent damage to the board and/or interface electronics. Please consult the System Reference
Manual before connecting any load to the board output. If there is uncertainty as to the load specification,

850 Chapter 15. Terms & Conditions

BeagleBoard Docs, Release 1.0.20230711-wip

please contact the Supplier representative. During normal operation, some circuit components may have case
temperatures greater than 60 C as long as the input and output are maintained at a normal ambient operating
temperature. These components include but are not limited to linear regulators, switching transistors, pass
transistors, and current sense _resistors which can be identified using the board schematic located at the
link in the board System Reference Manual. When placing measurement probes near these devices during
normal operation, please be aware that these devices may be very warm to the touch. As with all electronic
evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally
found in development environments should use the board.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold the
Suppliers, their licensors and their representatives harmless from and against any and all claims, damages,
losses, expenses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of the
board that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under the law of tort or contract or any other legal theory, and even if the board _fails to perform as
described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in
safety critical applications (such as life support) where a failure of the Supplier’s product would reasonably
be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III
or similar classification, then you must specifically notify Suppliers of such intent and enter into a separate
Assurance and Indemnity Agreement.

Mailing Address:

BeagleBoard.org Foundation 4467 Ascot Ct Oakland Twp, MI 48306 U.S.A.

WARRANTY: If purchased from an authorized distributor, as listed on the board page at https://www.
beagleboard.org/boards, then the board assembly as purchased is warranted against defects in materials and
workmanship for a period of 90 days from purchase. This warranty does not cover any problems occurring as
a result of improper use, modifications, exposure to water, excessive voltages, abuse, or accidents. No boards
should be sent to back to a distributor without contacting rma/support.

Note: Repairs and replacements only provided on unmodified boards purchased via an authorized distributor
within the first 90 days. All repaired board will have their flash reset to factory contents. For repairs and
replacements, please contact ‘support’ at BeagleBoard.org using the RMA form:

RMA request

Before making any attempt to return your defective board to a distributor you should visit support page and
reach out to Jason for possible solutions.

Additional terms: - Your repaired/replacement boards will not be sent by priority shipment, please be patient.
- You are responsible for all the expenses if there isn’t really an issue with the board. - If no issue is found or
express return is needed, the customer will pay all shipping costs.

For up to date SW images and technical information refer to https://www.beagleboard.org/distros

All support for is provided via community support at https://forum.beagleboard.org

To return a defective board for repair, please request a return materials authorization (RMA) at https://www.
beagleboard.org/rma

Important: Please DO NOT return the board without approval from the RMA team first.

15.4. Board warnings, restrictions and disclaimers 851

https://www.beagleboard.org/boards
https://www.beagleboard.org/boards
https://www.beagleboard.org/rma
https://docs.beagleboard.org/latest/intro/support/index.html
https://beagleboard.org/about/jkridner
https://www.beagleboard.org/distros
https://forum.beagleboard.org/
https://www.beagleboard.org/rma
https://www.beagleboard.org/rma

	Introduction
	Support
	Getting started
	Getting Started Guide
	Update board with latest software
	Download the latest software image
	Install SD card programming utility
	Connect SD card to your computer
	Write the image to your SD card
	Eject the SD card
	Boot your board off of the SD card

	Start your Beagle
	Power and boot
	Enable a network connection
	Browse to your Beagle

	Troubleshooting
	Hardware documentation
	Books

	Getting support
	Diagnostic tools
	Community resources
	Consulting and other resources
	Repairs

	Understanding Your Beagle
	Working with Cape Add-on Boards

	Beagle 101
	QWIIC, STEMMA and Grove Add-ons in Linux
	Using I2C with Linux drivers
	Driver name
	Kernel configuration
	I2C signals and controller
	Pinmuxing
	Wiring
	Load driver
	Interface
	Finding I2C add-on modules
	Pitfalls

	Contribution
	Code of Conduct
	Frequently Asked Questions
	What should I know before I get started?
	Upstream Kernel Contributions
	Pre-requisites
	More Git!
	Creating your first patch

	C-Programming
	Cross-arch Development
	Basics of embedded buses (I2C, UART, SPI, etc.)
	Device Drivers in Embedded Systems
	Device Trees
	Additional Resources

	How can I contribute?
	Reporting bugs
	Suggesting enhancements
	Submitting merge requests

	Style and usage guidelines
	Git Usage
	Relevance
	Technicalities
	Installing Git
	Linux
	Ubuntu/Debian
	Redhat/Fedora/Mandriva
	Mac OS X
	Windows

	Testing your git installation
	Creating a GitLab account (Optional)
	Working with the source code
	Cloning BeagleBoard directly
	Forking BeagleBoard with your GitLab account
	Making changes locally
	Pushing changes to GitLab
	Merging upstream changes
	Submitting changes for inclusion in BeagleBoard
	Evaluating changes
	Committing changes to main branch
	Prerequisites
	Committing a patch
	Tagging the official branch
	Additional Resources

	Documentation Style Guide
	ReStructuredText Cheat Sheet
	Text formatting
	Headings
	Code
	Indentation
	Example
	Output
	Code block
	Example
	Output
	Literal include
	Example
	Annotations
	Example
	Output

	Links
	External links
	Implicit Links
	Explicit link
	YouTube Videos
	More

	BeaglePlay
	Introduction
	Detailed overview
	AM6254 SoC
	Board components location
	Front components location
	Back components location

	Quick Start Guide
	What’s included in the box?
	Attaching antennas
	Tethering to PC
	Access VSCode
	Demos and Tutorials

	Design and specifications
	Block diagram
	System on Chip (SoC)
	Power management
	TLV75801 - LDO
	TLV62595 - LDO
	TPS65219 - PMIC

	General Connectivity and Expansion
	USB A & USB C
	ADC102S051 - 2ch 10bit ADC
	mikroBUS
	Grove
	Qwiic

	Buttons and LEDs
	Buttons
	LEDs

	Wired and wireless connectivity
	Gigabit ethernet
	Single pair ethernet
	WL1807MOD - WiFi 2.4G/5G
	CC1352P7 - BLE & SubGHz

	Memory, Media and Data storage
	DDR4
	eMMC/SD
	microSD Card
	Board EEPROM

	Multimedia I/O
	HDMI
	OLDI
	CSI

	RTC & Debug
	RTC
	UART Debug Port
	AM62x JTAG & TagConnect
	CC1352 JTAG & TagConnect

	Mechanical Specifications
	Dimensions & Weight

	Expansion
	mikroBUS
	Grove
	QWIIC
	CSI
	OLDI

	Demos and tutorials
	Using Serial Console
	Connect WiFi
	BeaglePlay WiFi Access Point
	Step 1. Connect to BeaglePlay-XXXX
	Step 2. Browse to 192.168.8.1

	wpa_gui
	Step 1: Starting wpa_gui
	Step 2: Understanding wpa_gui interface
	Step 3: Scanning & Connecting to WiFi access points

	wpa_cli (shell)
	wpa_cli (XFCE)
	Step 1: Open up terminal
	Step 2: Setup credentials
	Step 3: Reconfigure wlan0

	Using Grove
	Using mikroBUS
	Using boards with ClickID
	What is mikroBUS?
	What is ClickID?
	Does my add-on have ClickID?

	What if my add-on doesn’t have ClickID?
	Using boards with Linux drivers
	IIO driver
	Storage driver
	Network driver

	How does ClickID work?
	Disabling the mikroBUS driver

	Using QWIIC
	Using OLDI Displays
	Using CSI Cameras
	Wireless MCU Zephyr Development
	Install the latest software image for BeaglePlay
	Log into BeaglePlay
	Flash existing IEEE 802.15.4 radio bridge (WPANUSB) firmware
	Background
	Steps

	Setup Zephyr development on BeaglePlay
	Build applications for BeaglePlay CC1352
	Build applications for BeagleConnect Freedom
	Flash applications to BeagleConnect Freedom
	Debug applications over the serial terminal

	Support
	Certifications and export control
	Export designations
	Size and weight

	Additional documentation
	Hardware docs
	Software docs
	Support forum
	Pictures

	Change History
	Document Changes
	Board Changes

	BeagleBone AI-64
	Introduction
	Change History
	Document Change History
	Board Changes
	Rev B

	Connecting up your BeagleBone AI-64
	Methods of operation
	What’s In the Box
	Main Connection Scenarios
	Tethered To A PC
	Connect the Cable to the Board
	Accessing the Board as a Storage Drive

	Standalone w/Display and Keyboard/Mouse
	Required Accessories
	Connecting Up the Board

	BeagleBone AI-64 Overview
	BeagleBone Compatibility
	BeagleBone AI-64 Features and Specification
	Board Component Locations
	Board components

	BeagleBone AI-64 High Level Specification
	Processor
	Memory
	4GB LPDDR4
	4Kb EEPROM
	16GB Embedded MMC
	MicroSD Connector
	Boot Modes

	Power Management
	PC USB Interface
	Serial Debug Ports
	USB1 Host Port
	Power Sources
	Reset Button
	Power Button
	Indicators

	Connectors
	Expansion Connectors
	Connector P8
	P8.01-P8.02
	P8.03-P8.05
	P8.06-P8.09
	P8.10-P8.13
	P8.14-P8.16
	P8.17-P8.19
	P8.20-P8.22
	P8.23-P8.26
	P8.27-P8.29
	P8.30-P8.32
	P8.33-P8.35
	P8.36-P8.38
	P8.39-P8.41
	P8.42-P8.44
	P8.45-P8.46

	Connector P9
	P9.E1-P9.E4
	P9.01-P9.05
	P9.06-P9.10
	P9.11-P9.13
	P9.14-P9.16
	P9.17-P9.18
	P9.19-P9.20
	P9.21-P9.22
	P9.23-P9.25
	P9.26-P9.27
	P9.28-P9.29
	P9.30-P9.31
	P9.32-P9.35
	P9.36-P9.37
	P9.38-P9.39
	P9.40-P9.42
	P9.43-P9.46

	BeagleBone AI-64 Mechanical
	Dimensions and Weight
	Silkscreen and Component Locations

	Pictures
	Support Information
	Hardware Design
	Software Updates
	RMA Support
	Troubleshooting video output issues
	Getting Help

	Update software on BeagleBone AI-64
	Update U-Boot:
	Update Kernel and SGX modules:
	Update xfce:
	Update ti-edge-ai 8.2 examples
	Cleanup:

	Edge AI
	Getting Started
	Hardware setup
	BeagleBone® AI-64
	USB Camera
	IMX219 Raw sensor

	Software setup
	Preparing SD card image
	Power ON and Boot
	Connect remotely

	Running Simple demos
	Running Python based demo applications
	Building and running C++ based demo applications

	DL models for Edge Inference
	Model Downloader Tool
	Import Custom Models
	DNN directory structure
	Param file format
	DNN compilation for SDK – Basic Instructions
	DNN compilation for SDK – Advanced Instructions

	Demo Configuration file
	Inputs
	Camera sources (v4l2)
	Video sources
	Image sources
	RTSP sources

	Models
	Outputs
	Display Sink (kmssink)
	Video sinks
	Image sinks

	Flows
	Command line arguments

	Running Advance demos
	Single input multi inference demo
	Multi input multi inference demo

	Docker Environment
	Building Docker image
	Running the Docker container
	Handling proxy settings
	Additional Docker commands
	Relocating Docker Root Location

	Data Flows
	Image classification
	Object Detection
	Semantic Segmentation
	Human Pose Estimation
	Video source
	RTSP source
	RPiV2 Camera Sensor (IMX219)
	IMX390 Camera Sensor
	Video output
	Single Input Multi inference
	Multi Input Multi inference

	Performance Visualization Tool
	Generating Performance Logs
	Running the Visualization tool
	Available options

	SDK Components
	Edge AI Applications
	edgeai-tidl-tools
	edgeai-modelzoo
	edge_ai_apps
	edgeai-gst-plugins
	edgeai-tiovx-modules

	Processor SDK RTOS
	BeagleBone® AI-64 Linux

	Datasheet
	Source : USB Camera
	Source : Video
	Source : CSI Camera (ov5640)
	Source : CSI Camera with VISS (imx219)
	Source : IMX390 over FPD-Link

	Test Report
	Demo Apps test report
	Single Input Single Output
	Single Input Multi Output
	Multi Input Multi Output

	BeagleBone AI
	Introduction
	Change History
	Rev A0
	Rev A1
	Rev A1a
	Rev A2

	Connecting Up Your BeagleBone AI
	What’s In the Box
	What’s Not in the Box
	Fans
	Main Connection Scenarios
	Tethered to a PC
	Standalone w/Display and Keyboard/Mouse
	Wireless Connection
	Connecting a 3 PIN Serial Debug Cable

	BeagleBone AI Overview
	BeagleBone® AI Features
	Main Processor Features of the AM5729 Within BeagleBone® AI
	Communications
	Memory
	Connectors
	Out of Box Software

	Board Component Locations

	BeagleBone AI High Level Specification
	Block Diagram
	AM572x Sitara™ Processor
	Memory
	1GB DDR3L
	16GB Embedded MMC
	microSD Connector

	Boot Modes
	Power Management
	Connectivity

	Detailed Hardware Design
	Power Section
	TPS6590379 PMIC
	USB-C Power
	Power Button

	eMMC Flash Memory (16GB)
	eMMC Device
	eMMC Circuit Design
	Board ID

	Wireless Communication: 802.11 ac & Bluetooth: AzureWave AW-CM256SM
	WLAN on the AzureWave AW-CM256SM
	Bluetooth on the AzureWave AW-CM256S

	HDMI
	PRU-ICSS
	PRU-ICSS Features
	PRU-ICSS Block Diagram

	PRU-ICSS Resources and FAQ’s
	PRU-ICSS1 Pin Access
	PRU-ICSS2 Pin Access

	User LEDs

	Connectors
	Expansion Connectors
	Connector P8
	Connector P9

	Serial Debug
	USB 3 Type-C
	USB 2 Type-A
	Gigabit Ethernet
	Coaxial
	microSD Memory
	microHDMI

	Cape Board Support
	BeagleBone® Black Cape Compatibility
	EEPROM
	Pin Usage Consideration
	GPIO
	I2C
	UART or PRU UART
	SPI
	Analog
	PWM, TIMER, eCAP or PRU PWM/eCAP
	eQEP
	CAN
	McASP (audio serial like I2S and AC97)
	MMC
	LCD
	PRU GPIO
	CLKOUT
	Expansion Connector Headers
	Signal Usage
	Cape Power
	Mechanical

	Mechanical Information
	Pictures
	Support Information
	Terms and Conditions
	REGULATORY, COMPLIANCE, AND EXPORT INFORMATION
	WARRANTY AND DISCLAIMERS
	Additional terms

	Warnings and Restrictions
	For Feasibility Evaluation Only, in Laboratory/Development Environments
	Your Sole Responsibility and Risk
	Certain Instructions
	Agreement to Defend, Indemnify and Hold Harmless
	Safety-Critical or Life-Critical Applications

	BeagleBone Black
	Introduction
	Change History
	Document Change History
	Board Changes
	Rev C3a
	Rev C3
	Rev C2
	Rev C1
	Rev C
	Rev B
	Rev A6A
	Rev A6
	Rev A5C
	Rev A5B
	Rev A5A

	Connecting Up Your BeagleBone Black
	What’s In the Box
	Main Connection Scenarios
	Tethered To A PC
	Connect the Cable to the Board
	Accessing the Board as a Storage Drive

	Standalone w/Display and Keyboard/Mouse
	Required Accessories
	Connecting Up the Board

	BeagleBone Black Overview
	BeagleBone Compatibility
	BeagleBone Black Features and Specification
	Board Component Locations
	Connectors, LEDs, and Switches
	Key Components

	BeagleBone Black High Level Specification
	Block Diagram
	Processor
	Memory
	512MB DDR3L
	4KB EEPROM
	4GB Embedded MMC
	MicroSD Connector
	Boot Modes

	Power Management
	PC USB Interface
	Serial Debug Port
	USB1 Host Port
	Power Sources
	Reset Button
	Power Button
	Indicators
	CTI JTAG Header
	HDMI Interface
	Cape Board Support

	Detailed Hardware Design
	Power Section
	TPS65217C PMIC
	DC Input
	USB Power
	Power Selection
	Power Button
	Battery Access Pads
	Power Consumption
	Processor Interfaces
	Power Rails
	Power LED
	TPS65217C Power Up Process
	Processor Control Interface
	Low Power Mode Support

	Sitara AM3358BZCZ100 Processor
	Description
	High Level Features
	Documentation
	Crystal Circuitry
	Reset Circuitry
	Memory Device
	DDR3L Memory Design
	Power Rails
	VREF

	4GB eMMC Memory
	eMMC Device
	eMMC Circuit Design

	Board ID EEPROM
	Micro Secure Digital
	microSD Design

	6.6 User LEDs
	Boot Configuration
	Boot Configuration Design

	Default Boot Options
	10/100 Ethernet
	6.9.1 Ethernet Processor Interface
	Ethernet Connector Interface
	Ethernet PHY Power, Reset, and Clocks

	LAN8710A Mode Pins
	HDMI Interface
	Supported Resolutions
	HDMI Framer
	HDMI Video Processor Interface
	HDMI Control Processor Interface
	Interrupt Signal
	Audio Interface
	Power Connections
	HDMI Connector Interface

	USB Host
	Power Switch
	ESD Protection
	Filter Options

	PRU-ICSS
	PRU-ICSS Features
	PRU-ICSS Block Diagram
	PRU-ICSS Pin Access

	Connectors
	Expansion Connectors
	Connector P8
	Connector P9

	Power Jack
	USB Client
	USB Host
	Serial Header
	HDMI
	microSD
	Ethernet
	JTAG Connector

	Cape Board Support
	BeagleBone Black Cape Compatibility
	LCD Pins
	eMMC Pins

	EEPROM
	EEPROM Address
	I2C Bus
	EEPROM Data Format
	Pin Usage

	Pin Usage Consideration
	Boot PIN

	Expansion Connectors
	Non-Stacking Headers-Single Cape
	Main Expansion Headers-Stacking
	StackedStealing
	Retention Force

	8.5 Signal Usage
	8.6 Cape Power
	Main Board Power
	Power

	8.7 Mechanical
	Standard Cape Size
	Extended Cape Size
	Enclosures

	BeagleBone Black Mechanical
	Dimensions and Weight
	Silkscreen and Component Locations

	Pictures
	Support Information
	Hardware Design
	Software Updates
	RMA Support
	Trouble Shooting HDMI Issues
	EDID
	DISPLAY SOURCE SELECTION
	OUT OF SEQUENCE
	OVERSCAN
	Taking a Nap
	AUDIO
	Getting Help

	BeagleBone Blue
	BeagleBone Blue Pinouts
	UT1
	UART (/dev/ttyS1)

	GPS
	UART (/dev/ttyS2)

	SSH
	WiFi Setup
	IP settings
	Flashing Firmware
	Overview
	Required Items
	Steps Overview
	Windows PCs
	How to tell if it is flashing?

	Play with the code
	BeagleBone Blue tests
	ADC
	GP0
	GP1
	UT1
	GPS
	I2C
	Grove I2C modules

	Motors

	Accessories
	Chassis and kits
	Cases
	Cable assemblies and sub-assemblies
	JST Connector Bundle
	Renaissance Robotics JST Jumper Bundle
	Conrad BeagleBoard Kabel BB-Blue-Kabelset

	UART, I2C, CAN, Quadrature encoders, PWR
	SPI, GPIO, ADC
	Motors
	DSM
	microUSB
	Batteries

	Power supplies
	Motors
	Servo motors
	DC motors

	Radio remotes
	GPS
	Replacement antennas
	USB devices
	USB cameras

	SPI devices
	SPI TFT displays

	I2C devices
	UART devices
	Computer serial adapters

	Bluetooth devices

	Frequently Asked Questions (FAQs)
	Are there any books to help me get started?
	What system firmware should I use for starting to explore my BeagleBone Blue?
	What is the name of the access point SSID and password default on BeagleBone Blue?
	I’ve connected to BeagleBone Blue’s access point. How do I get logged into the board?
	How do I connect BeagleBone Blue to my own WiFi network?
	Where can I find examples and APIs for programming BeagleBone Blue?
	My BeagleBone Blue fails to run successful tests
	I’m running an image off of a microSD card. How do I write it to the on-board eMMC flash?
	I’ve written the latest image to a uSD card, but some features aren’t working. How do I make it run properly?
	I’ve got my on-board eMMC flash configured in a nice way. How do I copy that to other BeagleBone Blue boards?
	I have some low-latency I/O tasks. How do I get started programming the BeagleBone PRUs?
	Are there available mechanical models?
	What is the operating temperature range?
	What is the DC motor drive strength?

	BeagleBone (all)
	Capes
	BeagleBone cape interface spec
	Background and overview
	Digital GPIO
	I2C
	SPI
	UART
	CAN
	ADC
	PWM
	TIMER PWM
	eQEP
	eCAP
	MMC/SDIO
	LCD
	McASP
	PRU
	GPIO
	Methodology
	Device Trees
	udev rules
	10-of-symlink.rules
	TBD

	Verification

	References

	BeagleBoard.org BeagleBone Relay Cape
	Installation
	Usage
	Code to Get Started
	C Source with File Descriptors
	C Source with LibGPIOd-dev and File Descriptors

	PocketBeagle
	Introduction
	Change History
	Document Change History
	Board Changes
	PocketBone
	Rev A1
	Rev A2

	Connecting Up PocketBeagle
	What’s In the Package
	Connecting the board
	Tethered to a PC using Debian Images
	Getting Started
	Accessing the Board and Getting Started with Coding
	Powering Down

	Other ways to Connect up to your PocketBeagle

	PocketBeagle Overview
	PocketBeagle Features and Specification
	OSD3358-512M-BSM System in Package

	Board Component Locations

	PocketBeagle High Level Specification
	Block Diagram
	System in Package (SiP)
	Connectivity
	Expansion Headers
	microSD Connector
	USB 2.0 Connector
	Boot Modes

	Power
	JTAG Pads
	Serial Debug Port

	Detailed Hardware Design
	OSD3358-SM SiP Design
	SiP A OSD3358 SiP System and Power Signals
	SiP B OSD3358 SiP JTAG, USB & Analog Signals
	SiP C OSD3358 SiP Peripheral Signals
	SiP D OSD3358 SiP System Boot Configuration
	SiP E OSD3358 SiP Power Signals
	SiP F OSD3358 SiP Power Signals

	MicroSD Connection
	USB Connector
	Power Button Design
	User LEDs
	JTAG Pads
	PRU-ICSS
	PRU-ICSS Features
	PRU-ICSS Block Diagram
	PRU-ICSS Pin Access

	Connectors
	Expansion Header Connectors
	P1 Header
	P2 Header
	mikroBUS socket connections
	Setting up an additional USB Connection

	PocketBeagle Cape Support
	PocketBeagle Mechanical
	9.1 Dimensions and Weight

	Additional Pictures
	Support Information
	Hardware Design
	Software Updates
	Export Information
	RMA Support
	Getting Help

	BeagleConnect Freedom
	Introduction
	What is BeagleConnect™ Freedom?
	What makes BeagleConnect™ new and different?
	Plug & Play approach
	Reliable software update mechanism
	Rapid prototyping without wiring
	Long-range, low-power wireless
	Fully customizable design

	Quick Start Guide
	What’s included in the box?
	Attaching antenna
	Tethering to PC
	Wireless Connection
	Access Micropython
	Demos and Tutorials

	Design
	Detailed overview
	Detailed hardware design
	LEDs
	Buttons & Buzzer
	Sensors
	mikroBUS
	USB-C port
	Buck converter
	LiPo battery charger
	Battery input protection
	MSP430F5503
	CC1352P7
	Digital subsection
	Analog subsection
	Power subsection
	RF subsection

	SPI Flash
	Debug interface

	Mechanical

	Connectors
	Demos & tutorials
	Using Micropython
	Flashed firmware
	Examples
	0.0.3
	0.2.2

	Updating
	Contributing

	Using Zephyr
	Equipment to begin development
	Required
	Recommended

	Install the SDK on BeaglePlay
	Change default board

	Try demo applications
	Build and flash Blinky
	Debug applications over the serial terminal

	Using BeagleConnect Greybus
	BeagleConnect wireless user experience
	Enable a Linux host with BeagleConnect
	Connect host and device
	Device data shows up as files

	Components
	BeagleConnect gateway device
	BeagleConnect node device
	BeagleConnect compatible interface
	Greybus

	What’s different?

	Support
	Certifications and export control
	Export designations
	Size and weight

	Additional documentation
	Hardware docs
	Software docs
	Support forum
	Pictures

	Change History
	Document Changes
	Board Changes

	BeagleBoard (all)
	Projects
	simpPRU
	simpPRU Basics
	What is simpPRU

	Build from source
	Dependencies
	Build
	Install
	Generate debian package

	Install
	Dependencies
	Installation
	Requirements
	Build from source
	amd64
	armhf
	Issues

	Language Syntax
	Datatypes
	Constants
	Operators
	Variable declaration
	Declaration
	Assignment during Declaration
	Assignment

	Arrays
	Declaration and Assignment
	Indexing:

	Comments
	Keyword and Identifiers
	Valid identifier naming

	Expressions
	Arithmetic expressions
	Boolean expressions

	If-else statement
	Syntax
	Examples

	For-loop statement
	Syntax
	Examples

	While-loop statement
	Syntax
	Examples

	Control statements
	break
	Syntax
	Examples

	continue
	Syntax
	Examples

	Functions
	Function definition
	Syntax
	Examples

	Function call
	Syntax
	Examples

	Testing or Debugging
	Print functions
	Stub functions

	IO Functions
	Digital Write
	Syntax
	Parameters
	Return Type

	Example

	Digital Read
	Syntax
	Parameters
	Return Type

	Example

	Delay
	Syntax
	Parameters
	Return Type

	Example

	Start counter
	Syntax
	Parameters
	Return Type

	Example

	Stop counter
	Syntax
	Parameters
	Return Type

	Example

	Read counter
	Syntax
	Parameters
	Return Type

	Example

	Init message channel
	Syntax
	Parameters
	Return Type

	Example

	Receive message
	Syntax
	Parameters
	Return Type

	Example

	Send message
	Syntax
	Parameters

	Example

	Usage(simppru)
	Usage(simppru-console)
	Features
	Start/stop buttons
	Send message to PRU
	Receive message from PRU
	Change PRU ID

	simpPRU Examples
	Delay example
	Code
	Explanation

	Digital read example
	Code
	Explanation

	Digital write example
	Code
	Explanation

	HCSR04 Distance Sensor example (sending distance data to ARM using RPMSG)
	Code
	Explanation

	Ultrasonic range sensor example
	Code
	Explanation

	Sending state of button using RPMSG
	Code
	Explanation

	LED blink on button press example
	Code
	Explanation

	LED blink using for loop example
	Code
	Explanation

	LED blink using while loop example
	Code
	Explanation

	LED blink example
	Code
	Explanation

	LED blink using hardware counter
	Code
	Explanation

	Read hardware counter example
	Code
	Explanation

	Using RPMSG to communicate with ARM core
	Code
	Explanation

	Using RPMSG to implement a simple calculator on PRU
	Code
	Explanation

	BB-Config
	BB-Config Detail
	What is BB-Config

	Build from Source
	Dependencies
	Build
	Install

	Features
	BB-Config v1.x
	PRU Enable/Disable
	GPIO
	GPIO Menu
	GPIO Setting

	EMMC and MicroSD Stats
	LEDs
	Password
	SSH
	WiFi
	Internet Sharing and Client Config
	About

	BB-Config v2.x
	ADC (Graph)
	DAC (PWM)
	uEnv
	services
	PINMUX
	Hardware Display
	Pin Table References
	Pin Config

	Overlay (dts)
	WiFi (D-Bus)

	Version
	GSOC@21 BB-Config v1.x
	GSOC@22 BB-Config v2.x

	BeagleConnect
	BeagleConnect Technology
	Background
	High-level
	Software architecture
	TODO items
	Associated pre-work
	User experience concerns

	BeagleConnect™ Greybus demo using BeagleConnect™ Freedom
	Introduction
	Flash BeagleConnect™ Freedom node device with Greybus firmware
	Flashing via a Linux Host
	Trying for different add-on boards

	Observe the node device
	Console (tio)
	The Zephyr Shell
	Zephyr Shell: IEEE 802.15.4 commands
	Zephyr Shell: Network Commands

	Rebuilding from source
	Prerequisites
	Cloning the repository
	Clone specific tag

	Zephyr
	Add the Fork
	Build and Flash Zephyr

	Linux
	Clone, patch, and build the kernel
	Probe the IEEE 802.15.4 Device Driver
	Set the 802.15.4 Physical and Link-Layer Parameters

	Ping Pong
	Broadcast Ping
	Ping Zephyr
	Ping Linux
	Assign a Static Address

	Greybus
	Build and probe Greybus Kernel Modules
	Build and Run Gbridge

	Blinky!
	Read I2C Registers

	Conclusion

	BeagleConnect™ Story
	BeagleConnect Experience
	BeagleConnect boards

	Books
	BeagleBone Cookbook
	Basics
	Picking Your Beagle
	Problem
	Solution
	Discussion

	Getting Started, Out of the Box
	Problem
	Solution
	Discussion

	Verifying You Have the Latest Version of the OS on Your Bone
	Problem
	Solution

	Running the Python and JavaScript Examples
	Problem
	Solution

	Cloning the Cookbook Repository
	Problem
	Solution

	Wiring a Breadboard
	Problem
	Solution
	Breadboard wired to BeagleBone Black

	Editing Code Using Visual Studio Code
	Problem
	Solution

	Running Python and JavaScript Applications from Visual Studio Code
	Problem
	Solution
	Finding the Latest Version of the OS for Your Bone
	Problem
	Solution

	Running the Latest Version of the OS on Your Bone
	Problem
	Solution

	Updating the OS on Your Bone
	Problem
	Solution
	Discussion

	Backing Up the Onboard Flash
	Problem
	Solution

	Updating the Onboard Flash
	Problem
	Solution

	Sensors
	Choosing a Method to Connect Your Sensor
	Problem
	Solution

	Input and Run a Python or JavaScript Application for Talking to Sensors
	Problem
	Solution

	Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor)
	Problem
	Solution

	Mapping Header Numbers to gpio Numbers
	Problem
	Solution

	Reading a Position, Light, or Force Sensor (Variable Resistance Sensor)
	Problem
	Solution
	A variable resistor with three terminals
	A variable resistor with two terminals

	Reading a Distance Sensor (Analog or Variable Voltage Sensor)
	Problem
	Solution

	Reading a Distance Sensor (Variable Pulse Width Sensor)
	Problem
	Solution

	Accurately Reading the Position of a Motor or Dial
	Problem
	Solution
	See Also

	Acquiring Data by Using a Smart Sensor over a Serial Connection
	Problem
	Solution

	Measuring a Temperature
	Problem
	Solution

	I2C tools
	Reading the temperature via the kernel driver
	Reading i2c device directly
	Reading Temperature via a Dallas 1-Wire Device
	Problem
	Solution

	Playing and Recording Audio
	Problem
	Solution

	Listing the ALSA audio output and input devices on the Bone
	Discussion

	Displays and Other Outputs
	Toggling an Onboard LED
	Problem
	Solution

	Toggling an External LED
	Problem
	Solution

	Toggling a High-Voltage External Device
	Problem
	Solution

	Fading an External LED
	Problem
	Solution

	Writing to an LED Matrix
	Problem
	Solution

	Using I2C command-line tools to discover the address of the display
	LED matrix display (matrixLEDi2c.py)
	Driving a 5 V Device
	Problem
	Solution

	Writing to a NeoPixel LED String Using the PRUs
	Problem
	Solution

	Writing to a NeoPixel LED String Using LEDscape
	Making Your Bone Speak
	Problem
	Solution

	Motors
	Controlling a Servo Motor
	Problem
	Solution

	Controlling a Servo with an Rotary Encoder
	Problem
	Solution

	Controlling the Speed of a DC Motor
	Problem
	Solution

	See Also
	Controlling the Speed and Direction of a DC Motor
	Problem
	Solution

	Driving a Bipolar Stepper Motor
	Problem
	Solution

	Driving a Unipolar Stepper Motor
	Problem
	Solution

	Beyond the Basics
	Running Your Bone Standalone
	Problem
	Solution

	Selecting an OS for Your Development Host Computer
	Problem
	Solution

	Getting to the Command Shell via SSH
	Problem
	Solution
	Default password

	Removing the Message of the Day
	Problem
	Solution

	Getting to the Command Shell via the Virtual Serial Port
	Problem
	Solution

	Viewing and Debugging the Kernel and u-boot Messages at Boot Time
	Problem
	Solution

	Verifying You Have the Latest Version of the OS on Your Bone from the Shell
	Problem
	Solution

	Controlling the Bone Remotely with a VNC
	Problem
	Solution

	Learning Typical GNU/Linux Commands
	Problem
	Solution

	Editing a Text File from the GNU/Linux Command Shell
	Problem
	Solution

	Establishing an Ethernet-Based Internet Connection
	Problem
	Solution

	Establishing a WiFi-Based Internet Connection
	Problem
	Solution

	Sharing the Host’s Internet Connection over USB
	Problem
	Solution
	Letting your bone see the world: setting up IP masquerading

	Setting Up a Firewall
	Problem
	Solution

	Installing Additional Packages from the Debian Package Feed
	Problem
	Solution

	Removing Packages Installed with apt
	Problem
	Solution

	Copying Files Between the Onboard Flash and the MicroSD Card
	Problem
	Solution

	Freeing Space on the Onboard Flash or MicroSD Card
	Problem
	Solution
	Removing preinstalled packages
	Discovering big files

	Using C to Interact with the Physical World
	Problem
	Solution

	Internet of Things
	Accessing Your Host Computer’s Files on the Bone
	Problem
	Solution

	Serving Web Pages from the Bone
	Problem
	Solution

	Interacting with the Bone via a Web Browser
	Problem
	Solution

	First Flask - hello, world
	Adding a template
	Displaying GPIO Status in a Web Browser - reading a button
	Problem
	Solution

	Controlling GPIOs
	Problem
	Solution

	Plotting Data
	Problem
	Solution
	Analog in - Continuous
	Analog in - Continuous, Change the sample rate

	Sending an Email
	Problem
	Solution

	Sending an SMS Message
	Problem
	Solution

	Displaying the Current Weather Conditions
	Problem
	Solution

	Sending and Receiving Tweets
	Problem
	Solution

	Creating a Project and App
	Creating a tweet
	Deleting a tweet
	Wiring the IoT with Node-RED
	Problem
	Solution

	Starting Node-RED
	Building a Node-RED Flow
	Adding an LED Toggle
	Communicating over a Serial Connection to an Arduino or LaunchPad
	Problem
	Solution
	Discussion

	The Kernel
	Updating the Kernel
	Problem
	Solution
	Seeing which kernels are installed

	Building and Installing Kernel Modules
	Problem
	Solution

	Compiling the Kernel
	Problem
	Solution

	Downloading and Compiling the Kernel
	Installing the Kernel on the Bone
	Installin a Cross Compiler
	Problem
	Solution

	Setting Up Variables
	Applying Patches
	Problem
	Solution

	Creating Your Own Patch File
	Problem
	Solution

	Real-Time I/O
	I/O with Python and JavaScript
	Problem
	Solution

	I/O with C
	Problem
	Solution

	I/O with devmem2
	Problem
	Solution

	I/O with C and mmap()
	Problem
	Solution

	Tighter Delay Bounds with the PREEMPT_RT Kernel
	Problem
	Solution

	Cyclictest
	I/O with simpPRU
	Problem
	Solution

	Background

	Capes
	Connecting Multiple Capes
	Problem
	Solution

	LCD Backside
	Audio cape pins
	Moving from a Breadboard to a Protoboard
	Problem
	Solution
	BeagleBone Breadboard

	Creating a Prototype Schematic
	Problem
	Solution

	Verifying Your Cape Design
	Problem
	Solution

	Testing the quickBot motors interface (quickBot_motor_test.js)
	Laying Out Your Cape PCB
	Problem
	Solution

	Customizing the Board Outline
	Fritzing tips
	PCB Design Alternatives
	EAGLE
	DesignSpark PCB
	Upverter
	Kicad

	Migrating a Fritzing Schematic to Another Tool
	Problem
	Solution

	Producing a Prototype
	Problem
	Solution

	Creating Contents for Your Cape Configuration EEPROM
	Problem
	Solution

	Putting Your Cape Design into Production
	Problem
	Solution

	Parts and Suppliers
	Prototyping Equipment
	Resistors
	Transistors and Diodes
	Integrated Circuits
	Opto-Electronics
	Capes
	Miscellaneous

	Misc
	Converting a tmp117 to a tmp114
	Problem
	Solution
	Compiling the module
	Converting to the tmp114
	Finding your I2C device
	Registers and IDs
	Creating a new device

	Documenting with Sphinx
	Problem
	Solution
	Downloading Sphinx
	Creating A New Book

	Running Sparkfun’s qwiic Python Examples
	Controlling LEDs by Using SYSFS Entries
	Problem
	Solution

	Controlling GPIOs by Using SYSFS Entries
	Problem
	Solution

	Reading a GPIO Pin via sysfs
	Writing a GPIO Pin via sysfs

	PRU Cookbook
	Case Studies - Introduction
	Robotics Control Library
	Controlling Eight Servos
	Problem
	Solution
	Discussion
	PRU register to pin table

	Controlling Individual Servos
	Problem
	Solution

	Controlling More Than Eight Channels
	Problem
	Solution

	Reading Hardware Encoders
	Problem
	Solution
	eQEP to pin mapping
	Reading PRU Encoder

	Problem
	Solution

	BeagleLogic – a 14-channel Logic Analyzer
	Problem
	Solution
	Discussion

	RGB LED Matrix – No Integrated Drivers (Falcon Christmas)
	Problem
	Solution
	Hardware
	Software
	xLights - Creating Content for the Display
	Setting Up E1.31 on the Bone
	Testing the xLights Connection
	A Simple xLights Sequence
	Saving a Sequence and Playing it Standalone
	simpPRU – A python-like language for programming the PRUs
	Detected TI AM335x PocketBeagle
	MachineKit

	ArduPilot

	Getting Started
	Selecting a Beagle
	Problem
	Solution
	Discussion
	BeagleBone Black
	BeagleBone Blue
	PocketBeagle
	BeagleBone AI

	Installing the Latest OS on Your Bone
	Problem
	Solution

	Flashing a Micro SD Card
	Problem
	Solution

	Cloud9 IDE
	Problem
	Solution

	Getting Example Code
	Problem
	Solution

	Blinking an LED
	Problem
	Solution
	Running Code on the Black or Pocket
	Running Code on the AI

	Running a Program; Configuring Pins
	Getting Example Code
	Problem
	Solution

	Compiling with clpru and lnkpru
	Problem
	Solution
	code tools

	Making sure the PRUs are configured
	Problem
	Solution

	Compiling and Running
	Problem
	Solution
	Discussion

	Stopping and Starting the PRU
	Problem
	Solution

	The Standard Makefile
	Problem
	Solution
	Discussion

	The Linker Command File - am335x_pru.cmd
	Problem
	Solution
	Discussion
	AM335x_PRU.cmd important things

	Loading Firmware
	Problem
	Solution
	Discussion
	Finding the PRUs

	Configuring Pins for Controlling Servos
	Problem
	Solution
	Discussion

	Configuring Pins for Controlling Encoders
	Problem
	Solution
	Discussion

	Debugging and Benchmarking
	Debugging via an LED
	Problem
	Solution
	Discussion

	dmesg Hw
	Problem
	Solution

	dmesg -Hw
	prudebug - A Simple Debugger for the PRU
	Problem
	Solution
	Discussion

	UART
	Problem
	Solution
	Discussion
	Details
	config-pin
	Copyright

	Building Blocks - Applications
	Memory Allocation
	Problem
	Solution
	Discussion

	Auto Initialization of built-in LED Triggers
	Problem
	Solution
	Discussion

	PWM Generator
	Problem
	Solution
	Discussion

	Controlling the PWM Frequency
	Problem
	Solution

	Loop Unrolling for Better Performance
	Problem
	Solution
	Discussion

	Making All the Pulses Start at the Same Time
	Problem
	Solution
	Discussion

	Adding More Channels via PRU 1
	Problem
	Solution
	Discussion

	Synchronizing Two PRUs
	Problem
	Solution
	Discussion

	Reading an Input at Regular Intervals
	Problem
	Solution
	Discussion

	Analog Wave Generator
	Problem
	Solution
	Discussion

	WS2812 (NeoPixel) driver
	Problem
	Solution
	Discussion

	Setting NeoPixels to Different Colors
	Problem
	Solution
	Discussion

	Controlling Arbitrary LEDs
	Problem
	Solution
	Neo3 Video
	Discussion

	Controlling NeoPixels Through a Kernel Driver
	Problem
	Solution
	Discussion
	Switching from pru0 to pru1 with rpmsg_pru

	RGB LED Matrix - No Integrated Drivers
	Problem
	Solution
	Discussion
	Getting More Colors

	Compiling and Inserting rpmsg_pru
	Problem
	Solution

	Copyright

	Accessing More I/O
	Editing /boot/uEnv.txt to Access the P8 Header on the Black
	Problem
	Solution

	Accessing gpio
	Problem
	Solution
	Discussion
	How fast can it go?

	Configuring for UIO Instead of RemoteProc
	Problem
	Solution

	Converting pasm Assembly Code to clpru
	Problem
	Solution
	Discussion

	More Performance
	Calling Assembly from C
	Problem
	Solution
	Discission

	Returning a Value from Assembly
	Problem
	Solution

	Using the Built-In Counter for Timing
	Problem
	Solution
	Discission

	Xout and Xin - Transferring Between PRUs
	Problem
	Solution
	Discussion
	Copyright

	Moving to the BeagleBone AI
	Moving from two to four PRUs
	Problem
	Solution
	Discission

	Seeing how pins are configured
	Problem
	Solution

	Configuring pins on the AI via device trees
	Problem
	Solution
	Discission

	Using the PRU pins
	Problem
	Solution
	Discission

	PRU Projects

	Accessories
	Power supplies
	Displays
	Monitors and Resolutions
	Supported Monitors
	Unsupported Monitors
	Supported Televisions
	Unsupported Televisions

	Peripherals
	Keyboard & Mouse Combo
	Keyboards
	Mice
	USB HUBS

	Cables
	USB Cables
	Serial Debug Cables
	JST-SH serial cables
	Standard FTDI Cable
	Adafruit 4 Pin Cable (CP2102)
	FTDI 3 Pin Cable

	JTAG debug Cables
	TagConnect (JTAG)

	HDMI Cables
	Working HDMI Cables
	microHDMI to VGA

	miniDP to HDMI
	Working miniDP to HDMI
	Examples of “Bad” MiniDP to HDMI

	Cameras
	USB Cameras
	CSI Cameras
	BeagleBone AI-64

	Terms & Conditions
	Design
	Additional terms
	United States FCC and Canada IC regulatory compliance information
	Board warnings, restrictions and disclaimers

